Spatially resolved kinematic observations of the planetary nebulae Hen 3-1333 and Hen 2-113

A. Danehkar1,2† and Q. A. Parker1,2,3

1Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia
2Macquarie Research Centre in Astronomy, Astrophysics & Astrophotonics, North Ryde, NSW 2109, Australia
3Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia

Accepted 2015 February 1. Received 2015 January 30; in original form 2014 December 30

ABSTRACT
We have performed integral field spectroscopy of the planetary nebulae Hen 3-1333 (PNG332.9−09.9) and Hen 2-113 (PNG321.0+03.9), which are unusual in exhibiting dual-dust chemistry and multipolar lobes but also ionized by late-type [WC 10] central stars. The spatially resolved velocity distributions of the Hα emission line were used to determine their primary orientations. The integrated Hα emission profiles indicate that Hen 3-1333 and Hen 2-113 expand with velocities of ~32 and 23 km s−1, respectively. The Hubble Space Telescope observations suggest that these planetary nebulae have two pairs of tenuous lobes extending upwardly from their bright compact cores. From three-dimensional geometric models, the primary lobes of Hen 3-1333 and Hen 2-113 were found to have inclination angles of about −30° and 40° relative to the line of sight, and position angles of −15° and 65° measured east of north in the equatorial coordinate system, respectively.

Key words: stars: Wolf–Rayet – ISM: kinematics and dynamics – planetary nebulae: general.

1 INTRODUCTION

Fig. 1 shows the Hubble Space Telescope (HST) images of Hen 3-1333 and Hen 2-113 taken with the High Resolution Channel of the Advanced Camera for Surveys (ACS/HRC), and through the F606W and F814W filters, respectively. The HST image of Hen 3-1333 studied by Chesneau et al. (2006) hints at complex multipolar lobes surrounding its bright compact core. Previously, De Marco, Barlow & Cohen (2002) identified a compact dusty disc in Hen 3-1333. Moreover, Lagadec et al. (2006) described the HST image of Hen 3-1333 as two ring-like structures produced by the projection of a hourglass-shaped geometric model.

In this paper, we present spatially resolved kinematic observations of Hen 3-1333 and Hen 2-113 made with an integral field unit (IFU) spectrograph. We first describe the observational method and the data obtained, and then proceed to determine the spatial orientations constrained by kinematic models.

2 OBSERVATIONS
The IFU observations were performed using the Wide Field Spectrograph (WiFeS; Dopita et al. 2007, 2010) mounted on the 2.3-m Australian National University (ANU) telescope on 2010 April 20. Table 1 presents an observation journal, including the exposure time used for each PN in our WiFeS observations (column 3), and information on the HST observations (columns 5–8).

WiFeS is an image-slicing IFU developed and built for the ANU, feeding a double-beam spectrograph. It has a field-of-view (FOV) of 25 arcsec × 38 arcsec and a spatial resolution of 1 arcsec. We used the spectral resolution of R ≈ 7000. The classical data accumulation mode was used, so a suitable sky window has been selected from the science data for the sky subtraction purpose. We also acquired
3 Observational Results

Fig. 2 presents spatially resolved maps of flux intensity and radial velocity derived from the Hα λ6563 emission line for Hen 3-1333 and Hen 2-113. To extract them, we utilized a Gaussian curve fitting code, which allowed us to fit a single Gaussian profile to the Hα emission line for all spaxels across the IFU field. As seen in Fig. 2, the radial velocity maps indicate the presence of outer faint lobes with a diameter of about 10 arcsec extending to the compact structure of ~3.5 arcsec diameter (see Fig. 1). Contour lines in the figure depict the 2D distribution of the Hα emission obtained from the SuperCOSMOS Hα Sky Survey (Parker et al. 2005), which may aid us in distinguishing the nebular borders. However, the broader point spread function (PSF) of the stellar Hα emission creates diffraction spikes around these PNe, so the contours do not actually show the nebular borders. The IFU flux map presents the resolved nebular Hα emission.

Table 1. Journal of observations.

<table>
<thead>
<tr>
<th>Object</th>
<th>Other name</th>
<th>WiFeS Exp. (s)</th>
<th>Obs. Date</th>
<th>Filter</th>
<th>HST Exp. (s)</th>
<th>Obs. Date</th>
<th>Programme ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hen 3-1333</td>
<td>PNG 332.9−09.9</td>
<td>1200</td>
<td>2010 Apr 20</td>
<td>F606W</td>
<td>56</td>
<td>2002 Sep 17</td>
<td>9463</td>
</tr>
<tr>
<td>Hen 2-113</td>
<td>PNG 321.0+03.9</td>
<td>60,1200</td>
<td>2010 Apr 20</td>
<td>F814W</td>
<td>56</td>
<td>2003 Mar 09</td>
<td>9463</td>
</tr>
</tbody>
</table>

Figure 2. From left to right, spatial distribution maps of flux intensity and LSR velocity of Hα λ6563 for (a) Hen 3-1333 and (b) Hen 2-113. Flux unit is in 10^{-15} erg s$^{-1}$ cm$^{-2}$ spaxel$^{-1}$ and velocities in km s$^{-1}$. The white/black contour lines show the distribution of the narrow-band emission of Hα in arbitrary unit obtained from the SuperCOSMOS Hα Survey (Parker et al. 2005). North is up and east is towards the left-hand side.
Table 2. LSR systemic velocities and HWHM expansion velocities.

<table>
<thead>
<tr>
<th>Name</th>
<th>v_{sys}(Hα) (km s(^{-1}))</th>
<th>V_{HWHM}(km s(^{-1}))</th>
<th>Hα [N II]</th>
<th>[S II] Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hen 3-1333</td>
<td>−62.2</td>
<td>31.6</td>
<td>37.2</td>
<td>30.6</td>
</tr>
<tr>
<td>Hen 2-113</td>
<td>−56.7</td>
<td>22.5</td>
<td>22.3</td>
<td>20.1</td>
</tr>
</tbody>
</table>

Table 2 lists our velocity results for different emission lines of the integrated spectrum of each PN. Column 2 presents the local standard of rest (LSR) systemic velocity (\(v_{sys}\)) derived from the Hα emission line. Our expansion velocities (\(v_{exp}\)) derived from the half width at half-maximum (HWHM) for Hαλ6563, [N II]λλ6548,6584 and [S II]λλ6716,6731, and average HWHM values are presented in columns 3–6, respectively. Our observations for the Hα emission line give \(V_{HWHM} = 31.6\) and 22.5 km s\(^{-1}\) for Hen 3-1333 and Hen 3-113, in good agreement with \(v_{exp} = 30\) and 19 km s\(^{-1}\) derived by De Marco, Barlow & Storey (1997), respectively. For Hen 3-113, Gesicki et al. (2006) also derived an expansion velocity of 18 km s\(^{-1}\) and a turbulence velocity of 15 km s\(^{-1}\).

From the HST image of Hen 3-1333 displayed in the top panel of Fig. 1, several elements can be identified: two pairs of bipolar lobes in the north and south, and some filamentary structures. The HST image of Hen 2-113 (shown in the bottom panel of Fig. 1), shows two pairs of bipolar lobes in the east and west, and a dark lane between the western border of two opposing lobes. But, the HST images are also obscured by the PSF diffraction spikes, which need to be considered carefully when studying the morphology.

4 THE MODELS

The 3D kinematic modelling program SHAPE (Steffen & López 2006; Steffen et al. 2011) was used to identify the spatial distribution of the outer tenuous lobes around the compact cores of Hen 3-1333 and Hen 2-113. The modelling procedure consists of defining a geometry, assigning emissivity distribution and defining a velocity law as a function of position. The program produces several outputs that can be directly compared with the observations, namely position–velocity diagram and appearance of the object on the sky.

For this study, we adopted a bipolar geometric model (marked as \(a - a'\) in Fig. 3, left-hand panel). To replicate the HST images, another bipolar component, which is identical to the other component, is introduced with different orientations (marked as \(b - b'\) in Fig. 3). We adjusted the inclination (\(i\)) and position angle 'PA' in an iterative process until the qualitatively fitting solution is produced. The velocity IFU maps derived from the Hα emission line, combined with the HST images, were used to constrain the primary bipolar lobes (\(a - a'\)). The HST observations were also used to reconstruct the secondary bipolar lobes (\(b - b'\)). Fig. 3 (second panel) also shows the HST images with higher contrast, which reveal details not accessible at the previous contrast level.

Fig. 3 (third panel) shows a 3D representation of the model at the best-fitting inclination of each object. From the best-fitting kinematic models, the primary lobes (\(a - a'\) of Hen 3-1333 and Hen 2-113 were found to have PA = −15° ± 5° and 65° ± 5°, and inclination angles of \(i = −30° ± 15°\) and 40° ± 15°, respectively. The secondary lobes (\(b - b'\) of Hen 3-1333 and Hen 2-113, which are only noticeable in the HST images, were found to have PA.
= 60° ± 5° and 120° ± 5°. Fig. 3 (right-hand panel) shows the synthetic rendered images. As seen, the rendered images perfectly resembles the HST observations shown in Fig. 3 (left-hand panel).

Table 3 lists the key parameters of the best-fitting morphokinematic models: the sizes, the PA, the Galactic position angle (GPA), and the inclination (i) of the lobes, respectively. The PA is the position angle of the bipolar lobes projected on to the plane of the sky, and measured from the north towards the east in the equatorial coordinate system (ECS). The GPA is the position angle projected on to the plane, measured from the North Galactic Pole (NGP) towards the Galactic east. The inclination is measured between the line of sight and the nebular symmetry axis (\(i = 0°\) being pole-on).

5 Conclusion

The spatially resolved kinematic observations of Hen 3-1333 and Hen 2-113 presented in this paper have allowed us to identify their primary orientations. Our kinematic maps also indicate that these PNe have large extended faint lobes upwardly from their compact structures. For the primary lobes of Hen 3-1333 and Hen 2-113, we derived the inclination angles of \(i = -30°\) and \(40°\), respectively. Accordingly, the main orientations of Hen 3-1333 and Hen 2-113 were found to be PA = −15° and 65° in the ECS, in excellent agreement with the HST studies by Chesneau et al. (2006) and Lagadec et al. (2006), respectively. Interestingly, both Hen 3-1333 and Hen 2-113 have the same stellar characteristics (De Marco & Crowther 1998), but they show different expansion velocities (see Table 2). Therefore, it seems that their nebular kinematic features are somehow unrelated to their stellar characteristics.

Both Hen 3-1333 and Hen 2-113 demonstrate a dual-dust chemistry consisting of carbon-rich and oxygen-rich grains (Cohen et al. 1999, 2002; De Marco et al. 2002). Cohen et al. (2002) also found the same properties in other PNe with late-type [WC] stars. Moreover, Görny et al. (2010) found more PNe with dual-dust chemistry in the Galactic bulge, and speculated that the simultaneous presence of O-rich and C-rich dust grains is more likely related to the stellar evolution in a close binary system. Recently, Guzman-Ramirez et al. (2014) identified the presence of dense central tori in PNe with dual-dust chemistry, suggesting the possible formation through a common-envelope phase. Meanwhile, some recent kinematic studies of bipolar PNe around close-binary central stars indicate that their binary orbital inclinations are very close to their nebular inclinations (see e.g. Jones et al. 2012; Tyndall et al. 2012; Huckvale et al. 2013). Therefore, deeper observations of the central stars of Hen 3-1333 and Hen 2-113 will lead to a better understanding of their bipolar morphology and dual-dust chemistry. The presence of a stellar companion should be inspected. However, it is extremely difficult to detect a substellar companion, which also could affect the nebular properties.

Acknowledgements

AD gratefully acknowledges the award of a Macquarie Research Excellence Scholarship (MQRES). QAP acknowledges support from Macquarie University and the Australian Astronomical Observatory (AAO). We would like to thank the staff at the ANU Siding Spring Observatory for their support. Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). We thank the anonymous referee for helpful comments.

References

Dopita M. et al., 2010, ApJSS, 327, 245

This paper has been typeset from a TEX file prepared by the author.