Show or explain all work. If you are unable to submit hardcopy by the deadline, an e-mailed scan by the same deadline is acceptable.

Some Formulae:

Friedmann Equation:
\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \rho - \frac{k c^2}{a^2} + \frac{\Lambda c^2}{3}
\]

Fluid Equation:
\[
\dot{\rho} + 3 \frac{\dot{a}}{a} \left(\rho + \frac{P}{c^2} \right) = 0
\]

Acceleration Equation:
\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2} \right) + \frac{\Lambda c^2}{3}
\]

Question 1:

a) What is the observational evidence for the existence of a cosmological constant? Explain how the data suggest that the expansion of the Universe is accelerating.

b) Using the Friedmann and acceleration equations, and assuming a pressureless Universe, show that for the Universe to be static, the Universe must be closed with a positive cosmological constant.

c) For a pressureless Universe with a cosmological constant, show that the deceleration parameter \(q_0 \) can be expressed as:
\[
q_0 = \frac{\Omega_0}{2} - \Omega_\Lambda(t_0)
\]
Some Constants:

Solar Luminosity $L_\odot \approx 3.8 \times 10^{26}$ W
Solar Mass $M_\odot \approx 2.0 \times 10^{30}$ kg

1 pc = 3.086×10^{16} m

$G = 6.673 \times 10^{-11}$ m3 kg$^{-1}$ s$^{-2}$

Question 2:

Draco is a dwarf spheroidal galaxy in the Local Group, with a luminosity of $L = (1.8 \pm 0.8) \times 10^5 L_\odot$ and half of its total luminosity contained within a sphere of radius $r_h = 120 \pm 12$ pc. We can measure the radial velocities of individual red giant stars in Draco, and for them we find a line-of-sight velocity dispersion of $\sigma_r = 10.5 \pm 2.2$ km s$^{-1}$.

Using the virial theorem to estimate the mass of a self-gravitating system in equilibrium we get the following formula:

$$ M = \frac{\langle v^2 \rangle r_h}{\alpha G} $$

where $\langle v^2 \rangle$ is the three-dimensional mean square velocity, r_h is the half-mass radius of the system, and α is a factor depending on the density profile of the system (typically of order unity).

a) Assuming that all the mass in Draco is distributed in the same way as the luminous mass (that is, the stars), what is the total mass of Draco? Use $\alpha = 0.4$, and assume that the velocity dispersion of the galaxy is isotropic, so that the three-dimensional mean square velocity is just three times the one-dimensional velocity dispersion.

b) What is Draco’s mass-to-light ratio (in Solar units)?

c) What are some of the potential sources of error in your calculations?