World Wide Web manuscript No.
(will be inserted by the editor)

The Study of Trust Vector Based Trust Rating Aggregation in
Service-Oriented Environments

Lei Li - Yan Wang

Received: date / Accepted: date

Abstract In most existing studies on trust evaluation, a single trust value is aggregated
from the ratings given to previous services of a service provider, to indicate his/her current
trust level. Such a mechanism is useful but may not be able to depict the trust features of
a service provider well under certain circumstances. Alternatively, a complete set of trust
ratings can be transferred to a service client for local trust evaluation. However, this incurs a
big overhead in communication, since the rating dataset is usually in large scale covering a
long service history. The third option is to generate a small set of data that should represent
well the large set of trust ratings of a long time period.

In the literature, a trust vector approach has been proposed, with which a trust vector
of three values resulting from a computed regression line can represent a set of ratings
distributed within a time interval (e.g., a week or a month, etc.). However, the computed
trust vector can represent the set of ratings well only if these ratings imply consistent trust
trend changes and are all very close to the obtained regression line.

In a more general case with trust ratings for a long service history, multiple time intervals
have to be determined, within each of which a trust vector can be obtained and can represent
well all the corresponding ratings. Hence, a small set of data can represent well a large set of
trust ratings with well preserved trust features. This is significant for large-scale trust rating
transmission, trust evaluation and trust management. In this paper, we propose one greedy
and two optimal multiple time interval (MTI) analysis algorithms. We also have studied
the properties of our proposed algorithms analytically and empirically. These studies can
illustrate that our algorithms can return a small set of MTI to represent a large set of trust
ratings and preserve well the trust features.

Keywords Reputation-Based Trust - Trust Rating Aggregation - Trust Vector - Multiple
Time Intervals

L.Li

Computing Dept

Macquarie University

Sydney, Australia E-mail: lei.li@mq.edu.au

Y. Wang

Computing Dept

Macquarie University

Sydney, Australia E-mail: yan.wang@mgq.edu.au

2 Lei Li, Yan Wang

1 Introduction

In Service-Oriented Computing (SOC) applications, various services are provided to service
clients by different service providers in a loosely-coupled environment [19,22]. When a
client looks for a service from a large set of services offered by different service providers,
in addition to functionality, the reputation-based trust level of a service provider is a very
important concern from the view point of the service client [11, 16,18, 19]. It is also a critical
task for the trust management authority to be responsible for maintaining the list of reputable
and trustworthy services and service providers, and making these information available to
service clients [22].

Conceptually, trust is the measure taken by one party on the willingness and ability of
another party to act in the interest of the former party in a certain situation [13,15].

When there are a few service providers providing the same service, the service client
would like to order from the service provider with the best transaction reputation. This is
particularly important when the service client has to select from unknown service providers.
In general, in a trust management mechanism enabled system, service clients can provide
feedback and trust ratings after transactions. Then, the trust management system can calcu-
late the trust value based on collected ratings reflecting the quality of recent transactions,
with more weights assigned to later transactions [14,30]. The trust value can be provided to
service clients by publishing it on web or responding to their requests [14, 17]. An effective
and efficient trust management system is highly desirable and critical for service clients to
identify potential risks, providing objective trust results and preventing huge financial loss
[11].

In the literature, in most existing trust evaluation models [4,12,18,28,29,31,33,35,36],
a single final trust level (FTL) is computed to reflect the general or global trust level of a
service provider accumulated in a certain time period (e.g., in the latest 6 months). This
FTL may be presumably taken as a prediction of trustworthiness for forthcoming transac-
tions. Single-trust-value approaches are easily adopted in trust-oriented service comparison
and selection. However, a single trust value cannot preserve the trust features well, e.g.,
whether and how the trust trend changes. Certainly, a full set of trust ratings can serve for
this purpose, but it is usually a large dataset as it should cover a long service period. A good
option is to compute a small dataset to present a large set of trust ratings and well preserve
its trust features. In [14], we proposed a trust vector with three values, including final trust
level (FTL), service trust trend (STT) and service performance consistency level (SPCL),
to depict a set of trust ratings. In addition to FTL, the service trust trend indicates whether
the service trust ratings are becoming worse or better. STT is obtained from the slope of a
regression line that best fits the set of ratings { R*)|R(*) € [0,1],; € [t1,tn]} distributed
over a time interval [t1, t»]. The service performance consistency level indicates the extent
to which the computed STT fits the given set of trust ratings.

A computed service trust vector is meaningful only if the SPCL value is high, which
indicates that all ratings distributed in the time interval are very close to the computed re-
gression line. Given a large set of trust ratings {R(t’) R ¢ [0, 1] is the rating for the
service delivered at time ¢;}, if the trust trend changes greatly in the whole time interval
[t1,tn] (ti € [t1,tn]), [t1,tn] should be divided into multiple time intervals, each of which
corresponds to a subset of ratings that can be represented by one trust vector with a high
SPCL value. This task requires efficient algorithms that can determine multiple time inter-
vals. Meanwhile, the set of computed time intervals is expected to be the minimal.

For multiple time interval (MTI) analysis, in order to generate multiple trust vectors from
a large set of trust ratings, we propose three MTI algorithms: the bisection-based boundary

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 3

excluded greedy MTI algorithm, the boundary excluded optimal MTI algorithm and the
boundary mixed optimal MTI algorithm. The difference between the boundary included
MTI algorithm and the boundary excluded MTI algorithm is that in the computed MTI,
two adjacent time intervals can or can not have common boundaries. We study the proper-
ties of our proposed algorithms both analytically and empirically. In addition, we compare
these three MTT algorithms with two existing MTI algorithms in the literature, including the
boundary included greedy MTI algorithm and the boundary included optimal MTT algorithm
[30].

Our contributions in this paper can be briefly summarized as follows.

1. The bisection-based boundary excluded greedy MTI algorithm consumes much less
CPU time than any of the other four MTI algorithms. However, it cannot guarantee
returning the minimal set of MTIL.

2. The boundary excluded optimal MTI algorithm can return the minimal set of boundary
excluded MTI.

3. The boundary mixed optimal MTT algorithm returns a minimal set of boundary mixed
MTL. This set is no larger than the set returned by any of the other four MTI algorithms.

4. With any of our proposed algorithms, a small set of data can represent well a large set
of trust ratings with well preserved trust features.

This paper is organized as follows. Section 2 reviews existing trust aggregation ap-
proaches and existing trust vector approaches. Section 3 introduces the service trust vector
evaluation approach applied for MTI analysis algorithms. In Section 4, one greedy and two
optimal multiple time interval analysis algorithms are proposed. Section 5 presents our ana-
Iytical and empirical studies on the effectiveness and efficiency of our proposed algorithms.
Finally Section 6 concludes our work.

2 Related Work
2.1 Trust Aggregation Approaches In Online Environments

There are many trust aggregation approaches in the literature, which compute a single trust
value to reflect the general trust level. We briefly review some of them proposed for different
application environments.

2.1.1 Trust Evaluation in E-Commerce Environments

Trust is an important issue in e-commerce (EC) environments. At eBay [1], after each trans-
action, a buyer can give feedback with a rating of “positive”, “neutral” or “negative” to the
trust management system according to the service quality of the seller. eBay calculates the
feedback score of a seller S = P — N, where P is the number of positive ratings left by
buyers and N is the number of negative ratings. The positive feedback rate R = HLN
(e.g., R = 99.1%) is then calculated and displayed on web pages. This is a simple trust
management system providing valuable reputation information to buyers.

In [36], the Sporas system is introduced to evaluate trust for EC applications based on
the ratings of transactions in a recent time period. In this method, the ratings of later trans-
actions are given higher weights as they are more important in trust evaluation. The Histos
system proposed in [36] is a more personalized reputation system compared to Sporas. Un-
like Sporas, the reputation of a user in Histos depends on who makes the query, and how that

4 Lei Li, Yan Wang

person rated other users in the online community. In [27], Song et al. apply fuzzy logic to
trust evaluation. Their approach divides sellers into multiple classes of reputation ranks (e.g.,
a 5-star seller, or a 4-star seller). In [32], Wang and Lin present some reputation-based trust
evaluation mechanisms to more objectively depict the trust level of sellers on forthcoming
transactions and the relationship between interacting entities.

2.1.2 Trust Evaluation in P2P Information Sharing Networks

The issue of trust has been actively studied in Peer-to-Peer (P2P) information sharing net-
works, as in this environment a client peer needs to know prior to download actions which
serving peer can provide complete files. In [4], Damiani et al. propose an approach for eval-
uating the reputation of peers through a distributed polling algorithm and the XRep protocol
before initiating any download action. This approach adopts a binary rating system and is
based on the Gnutella [2] query broadcasting method. EigenTrust [12] adopts a binary rat-
ing system as well, and aims to collect the local trust values of all peers to calculate the
global trust value of a given peer. Some other earlier studies also adopted the binary rating
system. In [35], Xiong et al. propose a PeerTrust model which has two main features. First,
they introduce three basic trust parameters (i.e., the feedback that a requesting peer receives
from other peers, the total number of transactions that a serving peer performs, the credi-
bility of the feedback sources) and two adaptive factors in computing the trustworthiness of
peers (i.e., the transaction context factor and the community context factor). Second, they
define some general trust metrics and formulas to aggregate these parameters into a final
trust value. In [21], Marti et al. propose a voting reputation system that collects responses
from other peers on a target peer. The final reputation value is calculated by aggregating
the values returned by responding peers and the requesting peer’s experience with the target
peer. In [38], Zhou et al. discover a power-law distribution in peer feedbacks, and develop a
reputation system with a dynamical selection on a small number of power nodes that are the
most reputable in the system.

2.1.3 Trust Evaluation in Service-Oriented Environments

In the literature, the issue of trust also has received much attention in the field of service-
oriented computing (SOC). In [29], Vu et al. present a model to evaluate service trust by
comparing the advertised service quality and the delivered service quality. If the advertised
service quality is as good as the delivered service quality, the service is reputable. In [33],
Wang et al. propose some trust evaluation metrics and a formula for trust computation with
which a final trust value is computed. In addition, they propose a fuzzy logic based approach
for determining reputation ranks that particularly differentiates the service periods of new
service providers and old (long-existing) ones. The aim is to provide incentives to new ser-
vice providers and penalize those old service providers with poor service quality. In [20],
Malik et al propose a set of decentralized techniques aiming at evaluating reputation-based
trust with the ratings from clients to facilitate the trust-based selection and composition of
Web services. In [3], Conner et al. present a trust model that allows service clients with dif-
ferent trust requirements to use different weight functions that place emphasis on different
transaction attributes. This customized trust evaluation provides flexibility for service clients
to have different trust values from the same feedback data.

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 5

2.1.4 Trust Evaluation in Multi-Agent Systems

Trust is also an important issue in the field of multi-agent systems. In [10], Jgsang describes
a framework for combining and assessing subjective ratings from different sources based
on Dempster-Shafer belief theory [26]. In [28], Teacy et al. introduce the TRAVOS system
(Trust and Reputation model for Agent-based Virtual OrganisationS), which calculates an
agent’s trust on an interaction partner using probability theory, taking into account past in-
teractions between agents. In [7], Griffiths proposes a multi-dimensional trust model which
allows agents to model the trust of others according to various criteria. In [25], Sabater et
al. propose a model discussing trust development between groups. When calculating the
trust from individual A to individual B, a few factors are considered, e.g., the interaction
between A and B, the evaluation of A’s group on B and B’s group, and A’s evaluation on B’s
group. In [5], a community-wide trust evaluation method is proposed where the final trust
value is computed by aggregating the ratings (termed as votes in [5]) and other aspects (e.g.,
the rater’s location and connection medium). In addition, this approach computes the trust
level of an assertion (e.g., trustworthy, untrustworthy) as the aggregation of multiple fuzzy
values representing the trust resulting from human interactions. In [9], in trust evaluation,
the motivations of agents and the dependency relationships among them are also taken into
account.

2.2 Existing Trust Vector Approaches

In the literature, there exist some approaches using trust vectors, with different focuses. In
[24], Ray et al. propose a trust vector that consists of the experience of a truster about a
trustee, the knowledge of the truster regarding the trustee for a particular context, and the
recommendation of other trustees. The focus of this model is how to address these three
independent aspects of trust in evaluations. In [37], Zhao et al. propose a method using a
trust vector to represent the directed link with a trust value between two peers. The trust
vector includes a truster, a trustee and the trust value that the truster gives to the trustee. In
[31], Wang et al. propose an approach to evaluate situational transaction trust in e-commerce
environments, which binds a new transaction with the trust ratings of previous transactions.
Since the situational trust vector includes service specific trust, service category trust, trans-
action amount category specific trust and price trust, it can deliver more objective transaction
specific trust information to buyers and prevent some typical attacks.

In summary, these existing approaches using trust vectors have their goals, which are
totally different from that of our model.

3 Trust Vector Evaluation

In cognitive science, it has been pointed out that people are motivated to maintain consis-
tency among their actions [34]. This consistency provides the rationale that the performance
of a service provider during a time interval can be consistent implying a consistent trust
level.

In this section, we briefly introduce our trust vector approach proposed in [14] that
depicts the trust level with three values, including final trust level (FTL), service trust trend
(STT) and service performance consistency level (SPCL). Hence, a trust vector can represent
a large volume of trust ratings.

6 Lei Li, Yan Wang

A A

Q (5]

2 2 e

< : < .

>l oo o o0 00 0o > o *

on ; s 1) N s

g E| oo L

= IS

~ » >
Time t Time t
(a) coherent (b) upgoing

A A

) L]

2| oo, g LA

s T, N

%D ° ° %D p . 4

)51 ° = . °

o~ > X hd >
Time t Time t
(c) dropping (d) uncertain

Fig. 1 Several STT cases

3.1 Final Trust Level (FTL) Evaluation

The calculation of FTL follows a common principle below, which is termed as recency
effect in cognitive science [34]. This principle appears in a number of studies on service
trust evaluations [14,17,36].

Principle 1 The final trust value should be computed by taking the trust ratings in a recent
time interval into account, with more weight given to the ratings of later services.

Definition 1 Based on Principle 1, the FTL value for time interval [¢1, ¢,] can be calculated

as:
[t1,tn] _ Dopey Wi, - R
Ty ™ = g 0
i=1 Wt;
where ¢; € [t1,t,] and we, can be calculated as the exponential moving average [8]:
Wt :atn—ti, O0<a<l. (2)

i

Actually, most existing single-trust-value methods (e.g., the methods proposed in [18,
33,36]) can be adopted to compute the FTL value if they are based on non-binary ratings
{R®*)} and follow Principle 1.

3.2 Service Trust Trend (STT) Evaluation

STT aims to illustrate the trend of service trust value changes in a given time interval. Some
typical cases of STT are depicted in Fig. 1, which are “coherent”, “upgoing”, “dropping”
and “uncertain” in sequence.

Let (t1, R®V), (t2, R*)), .., (tn, R"")) be the given data points within a time inter-
val [t1,t,], where R € [0,1] is the trust rating for the services delivered during a short
time period t; (t; < tit1, t1 = tsar and t,, = tenq). In general, R can be the value
aggregated from a set of ratings for the services delivered at ¢; (e.g., a day, or a week) [30].

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 7

<-- regression line
(weighted least-squares fit)

Rating value

\4

Time t
Fig. 2 Weighted least square linear regression
8 2 S ey e e
=2 = 5 :
g £ z R
= = < L REREEY 3 °
E g 2 R
Time t Time t Time t
(a) absolutely consistent (b) relatively consistent (c) inconsistent

Fig. 3 Several SPCL cases

In order to evaluate the STT of a set of ratings {R(*)|t; € [t1,%,]} for time interval
[t1,tn], following Principle 1, we have designed a weighted least square linear regression
method in [14], as depicted in Fig. 2. This method is used to obtain the best-fit straight line
from a set of data points {(¢;, R*))}. It is characterized by the sum of weighted squared
residuals with its least value, where a residual is the distance from a data point to the regres-
sion line (see Fig. 2). Once the regression line is obtained

R = ao + ait, 3)

its slope a1 is the STT value.

3.3 Service Performance Consistency Level (SPCL) Evaluation

The SPCL value offers the indication of the consistency level of the service trust ratings in
a certain time interval. Some typical SPCL cases are depicted in Fig. 3.

T S[It,lc’Lt "), the SPCL value for time interval [t1,tn], is @ monotonically decreasing func-

tion of the weighted mean distance from rating points {(¢;, R**))} to the corresponding
regression line. Then, the SPCL value for time interval [¢1, t,] can be defined by

S we, [RY) — (ag + aity)|

\/ 1+ a% Z?:l We;

“

t1,tn
TS[PICL F—1-2

Obviously, we have Ts[lt,lc’z"] € [0,1].

8 Lei Li, Yan Wang

= L]
S|, : - 5| T % 3 ‘.
L]
= s =
& & &
Time t Time t Time t
(a) Case 1 with one time interval (b) Case 2 with one time interval (c) Case 3 with one time interval
gl gl ~_ gl
s : A B NN
g : 2 : g A
= = =
& & &
Time t Time t Time t
(d) Case 1 with two time intervals (e) Case 2 with two time intervals (f) Case 3 with four time intervals

Fig. 4 Several MTI examples

3.4 Service Trust Vector
Based on the above introductions, we can define the service trust vector as follows.

]

o . lt1,tn . . S
Definition 2 The service trust vector T for the trust ratings given in time interval

[tl, tn] is

T[thtn] =< TfL;ll,’tn]7 ;%7t71],T£;Ezn] > . (5)

4 Multiple Time Interval (MTI) Analysis

A single trust vector with three values can represent well the ratings in a given time interval
[t1,tr] if its SPCL value is high (i.e., 0.9 or more). However, when the trust trend signif-
icantly changes in [t1, t,], though a single trust vector can be computed, the SPCL value
will be low, indicating that the obtained trust vector or regression line can not represent all
ratings precisely. In such a case, in order to represent all trust ratings well, multiple intervals
in [t1,tn] should be determined, within each of which one trust vector with a high SPCL
value can be obtained to represent the corresponding ratings well.

For example, in Fig. 4, we can notice that all three cases are quite different from each
other in terms of trust trend changes. If only one trust vector is computed in each case,
all three cases have approximately the same Trrr, Tsrr and Tspcr.. However, in each case,
most points have clear distances to the obtained regression line. This leads to a low SPCL
value, indicating that the obtained single trust vector (or regression line) cannot represent all
trust ratings well. Instead, in each case, the whole time interval can be divided into multiple
time intervals (i.e., 2 time intervals in Fig. 4(d) & (e), and 4 time intervals in Fig. 4(f)). In
each sub-time interval, one trust vector (or a regression line) with a high SPCL value can
represent all corresponding ratings well.

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 9

1 1 :
. ° ® e . A P Y = —
o 075 . © 0.751 /- .
= = :
< < ;
> . > .
o 05 > 05} % -
;= £ :
T = :
T 0.25 & 0.25 :
o _ 0 - _
01 3 6 9 Time't 012 6 9 Timet
(a) raw data (b) included boundary
1 1 . . .
. ‘ ° c e °
o 0.75 / . T o 0.75 / $:
= oL = - :
S Lo < I i
> e e e e > . .« .
o 05f e o 05 - o :
£ Lol £
IS IS
T 0.25 T 0.25
0 Lo . 0 Lo . .
012345 9 Timet 01 3 4 6 9 Time't

(c) excluded boundaries (d) mixed boundaries
Fig. 5 MTI examples with different boundaries

4.1 Boundaries of MTI

In order to determine multiple time intervals, we first need to study the boundaries of time
intervals. For example, in Fig. 5(b), ¢ = 1 and ¢ = 2 are the boundaries of time interval
[1, 2]. In multiple time interval analysis, there are two types of boundaries as follows.

Included boundary: Two adjacent time intervals have the same boundaries. For example,
in Fig. 5(b), boundary ¢t = 2 is included in both time interval [1,2] and time interval
[2,9].

Excluded boundary: The boundary of a time interval is excluded from adjacent time inter-
vals. For example, in Fig. 5(c), boundary ¢t = 2 of time interval [1, 2] is excluded from
adjacent time interval [3, 4], and boundary ¢ = 3 of time interval [3, 4] is also excluded
from adjacent time interval [1, 2].

With these two types of boundaries, we can have three kinds of MTI algorithms as
follows, which determine the multiple time intervals of a given set of ratings.

Boundary included MTI algorithm: Adjacent time intervals determined by such an algo-
rithm have a common boundary, i.e., the included boundary (see Fig. 5(b)).

Boundary excluded MTT algorithm: Adjacent time intervals computed by such an algo-
rithm have no common boundary, i.e., boundaries of MTI are excluded (see Fig. 5(c)).

Boundary mixed MTI algorithm: Both included boundaries and excluded boundaries may
appear in the adjacent time intervals computed by such an algorithm (see Fig. 5(d)).

For example, there are some ratings plotted in Fig. 5(a). With a boundary included MTI
algorithm, we can assume to have 2 time intervals [1, 2] and [2, 9] with included boundary,

10 Lei Li, Yan Wang

which are depicted in Fig. 5(b). In contrast, with a boundary excluded MTI algorithm, we
can have 3 time intervals [1, 2], [3, 4] and [5, 9] with excluded boundaries, which are depicted
in Fig. 5(c). However, with a boundary mixed MTI algorithm, we can have 3 time intervals
[1, 3], [4, 6] and [6, 9], which are depicted in Fig. 5(d). Here ¢ = 3 and ¢ = 4 are excluded
boundaries while ¢ = 6 is an included boundary.

In our previous work [30], two boundary included MTI algorithms, including the bound-
ary included greedy MTI algorithm and the boundary included optimal MTI algorithm, have
been proposed. While the boundary included greedy MTI algorithm is to include as many
ratings as possible in one time interval under the condition of included boundary, the bound-
ary included optimal MTI algorithm can return the minimal set of MTI under the same
condition.

In this paper, we first propose a boundary excluded greedy MTT algorithm and a bound-
ary excluded optimal MTI algorithm for MTI analysis. Then we further develop a boundary
mixed optimal MTI algorithm that can return a minimal set of MTI, which is no larger than
the set returned by any of the other four algorithms.

4.2 Bisection-based Boundary Excluded Greedy MTI Algorithm

Take (t1, R™)) as the starting point and (¢,,, R*»)) as the ending point. If Ts[f,lc’Lt”] > ¢, the
regression line starts from (1, R®)) and ends at (£,, R(**)); otherwise, we need an MTI
algorithm which can return a set of MTL

Now let us focus on the function Ts[f,lc’Lt] in Eq. (4), analyze its properties and determine
the MTI. We introduce some theorems below to generalize these properties, which are also

depicted in Fig. 6.

Lemmal Vi€ [1,n — 1],
Ty = 1. (©)

Proof: As there are only two data points (¢;, R(ti)) and (ti+1, R(ti“)) in time interval
[ti, ti+1], both of them lie on the corresponding regression line from (¢;, R(tl)) to (tit1,
R+1)) The straight line from (t;, R%) to (t;+1, R%+1)) is the regression line. Hence,
following Eq. (4), we have Tbot 1 = 1. u

When ¢ = 1, following Lemma 1, we have Ts[?cf 2l = 1. This confirms the fact that all

the T2 functions (>) in Fig. 6 (b)(d)(H)(h) start from 1.
Theorem 1 With1 <i < j <k <mn,Vee€ (0,1),if

[ti t;] [ti tr]
(TSPCL] - 5) (TSPCLh - 5) <0, (N
then Ts[ffc’t] = ¢ has at least one root in time interval [t;, tx].

Proof: As Ts[;ic’z] is a continuous function of variable ¢, according to the intermediate value

theorem in mathematical analysis [23], the condition in Eq. (7) implies that Ts[;ic’z] = € has
at least one root in the interval [¢;, tx]. a

Take the function TS[I?C’Z] in Fig. 6(f) as an example. With e = 0.9, we have T, s[;lcfm] >

0.9 and TS[;IC’ZSO] < 0.9, ie., (Ts[f,lc’Lt‘m] - 0.9)(TS[;1C’ZSO] — 0.9) < 0. In addition, we can
observe that Tbl,t,ic’t] = 0.9 has a root in time interval [40, 80], which confirms Theorem 1.

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 11

g 1 I AR !
.g)osﬂﬂjﬁf?g;ﬂ:~~' 0.8
§ - 0.7
0 - 0.6 -
1 20 40 60 80 Timet 2 20 40 60 80 Timet
(a) raw data in Case 1 (b) T[St‘PgL in Case 1
s ‘s L
§ I .,-.,.“... v 0.9
o 0.5 T 0.8
k= et VL S | oor
3 T 0.7
& 0 - 0.6 -
1 20 40 60 80 Timet 2 20 40 60 80 Timet
(c) raw data in Case 2 (d) T[St‘F',gL in Case 2
1
(0] .
R o 0.9
= 0.5 -~ > 0.8
£ - Lo
§ . .’—v’-."-‘.'. ‘,.'V"' ° 0.7
0 - 0.6 -
1 20 40 60 80 Timet 2 20 40 60 80 Timet
1 (e) raw data in Case 3 1 () T[qt’&,:],l in Case 3
% .‘... .-‘f"\.h .-.."o.'*\\- 3 0.9
> K -- - ..-.
8’055‘:. swz. e 0.8
E : 0.7
0 - 0.6
1 20 40 60 80 Timet 2 20 40 60 80 Timet
(g) raw data in Case 4 (h) 9 in case 4

SPCL

Fig. 6 The properties of SPCL function 7’ S[PCL]

Theorem 2 With1 < ¢ < j < n, Ve € (0,1), if T s[;cz i) < ¢, then TS[PCL] = ¢ has at least

one root in time interval [t;41, ¢;].

Proof: Following Lemma 1, we know T[;’C’z’“] = 1 > e In addition, with TS[PELJ l<e

we have (Ts[ltjc’z“’l] e)(TS[;iC’z"‘] — €) < 0. Then, following Theorem 1, we can know that

TS[;lC’z] = ¢ has at least one root in time interval [t;41, t;]. O

In Fig. 6, with € = 0.9, for each case we have Ts[f,lc’t] < 0.9. In addition, we can observe

that for each case, 7. S[It,lc’ I = 0.9 has at least one root in time interval [t1, ¢100]. This confirms

Theorem 2 empirically.

Now let us introduce our bisection-based boundary excluded greedy MTI algorithm in
detail. Let t;5, denote the left boundary of the ith time interval, and let t,;, denote the
right boundary of the ith time interval. In this algorithm, in order to determine the first

time interval [¢;p,, trb,] (tn, = t1), we need to find the maximal right time boundary ¢,4,

satisfying TS[;IC’L i1l > ¢ Ifthe root t* of Ts[;lc’L} = € can be obtained, we round down ¢* and

let trp, = [t*] (e.g., if t* = 63.25, then ¢,p, = [63.25] = 63). Then set t;p, = trp,+1
(i.e., if t;p, = 63, then t;p, = 64), and repeat the above process until the last time interval
reaches t,,. Thus, all MTI can be determined.

12 Lei Li, Yan Wang

Algorithm 1 Bisection-based boundary excluded greedy MTI algorithm

Input: trust ratings R(:) | the threshold € of Tspcr (such as 0.9), the given time interval [t1, ¢y,].
Output: the boundary set ¢, of MTL

1: j<=1;
2: left time boundary tlbj <= t1;
3: right time boundary trbj <= tn;
) . [t1p;+tn]
4: while T,/ < edo
50 i <=ty
6: Lright <= tn;
7. while tright — tieft > 1do
8: toid = tle//‘;trigh!;
o [tib stmial
9: if Topef ==) then
10: t'rbj <= tmids
) i nltib o tmidl
11: else if Ty} >)\ then
12: et < tmids
13: else
14: tright <= tmids
15: end if

16: end while

17: find £ < tigp < tigw < £ + L thenlet ¥ <= |tip] and t,; < £
18 j<j+1;

19: < tep; 415

20: end while

21: return t, < [t} tT]7T;

Now the task is to find the root of equation Ts[f,lc’z] = ¢. Our method is to repeatedly
bisect the time interval that contains a root of Ts[ffc’t] = ¢, until a subinterval can be selected

which is smaller than 1. Let us explain this bisection process in detail with an example
depicted in Fig. 6(f). With e = 0.9, as Ts[f,lc’f“’(’] < 0.9, according to Theorem 2, Ts[,t,lc’Lt] =€
has a root in time interval [t2,t100]. By bisecting time interval [t2, ¢100], with midpoint
ts1, we have TS[;IC’EM] > 0.9. Thus, according to Theorem 1, Ts[f,lc’Lt] = ¢ has a root in
time interval [t51,t100]. By bisecting time interval [¢51,t100] at midpoint t75.5, we can
obtain Ts[;lc’Lt”'S] < 0.9. According to Theorem 1, T S[?C’Lt] = € has a root in time interval
[t51,t75.5]. We repeatedly bisect the time interval containing a root of Ts[f,lc’Lt] = ¢, until
we obtain that Ts[;lc’f] = € has a root in [t63.25, t64.0156], Where 64.0156 — 63.25 < 1.
Hence, the right boundary of the first time interval can be determined as ¢y, = t|g3.25] =
ts3. Now with the left boundary of the second time interval ¢;;, = t64, we can repeat the
above process to determine the right boundary ¢,4, for the second regression line. The whole
process terminates when ¢, is determined as the right boundary of a regression line (the last
one).

The bisection-based boundary excluded greedy MTI algorithm (Algorithm 1) works as
follows.

Step 1: Take (1, R%)) as the starting point and (t,, R*")) as the initial ending point
(lines 1-3 in Algorithm 1).

a) If Ts[;lc’Lt"] > ¢, the regression line starts from (t1, R®")) and ends at (t,, R(*"))
(line 4);

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 13

b) otherwise, following Theorem 2, function Ts[;lc’z] = e has a root in interval [t2, t5].
We initialize the left boundary ¢, < t1 and the right boundary t,;e; <= t» (lines

5-6).

¢) Time interval [tlgﬁ, t,igh,} contains a root of Ts[lt,lc’t] = ¢, and the midpoint of interval
[tlefh tright] iS timid < M (line 8).

d) If Té;lc’z"”'d] = ¢, the first time interval [¢1,t7] can be determined such that 7 <
tmid < t7 + 1 (lines 9-10).

e) If TS[;.‘C’E”“] > €, TS[;IC’Z} = ¢ has a root in the interval [t,iq,tn], and the left

boundary %y is replaced by t,,i4, 1.€., tiefi <= tmiq (lines 11-12);

f) otherwise, Ts[lilc’,f] = ¢ has a root in the interval [t1, t,.4], and the right boundary
trign: 1s replaced by toiq, i.€., Lright <= tmiq (lines 13-15).

g) Procedures c)-f) repeat until the first time interval [t;;, < 1,6, < ti] can be

determined such that t]7 < tef < trigne < t7-+1andt] <= |t). The corresponding

regression line is the longest one that starts from (1, R(**)) and satisfies Ts[f,lc’z*] >
¢ (lines 7-17).

Step 2: Take (541, R“111) as the new starting point and (¢,,, R*")) as the ending point.
The time interval [t;p, < t7 + 1,t.p, < t3] (t5 € [t] + 1,¢xn]) can be determined
following the same procedure introduced in Step 1, and a regression line can be drawn
from (£} + 1, R TD) to (5, R*3)) satisfying Tioe, 2! > € (lines 4-20).

Step 3: Repeat Step 2 until the last regression line reaches (¢r, R(t")).

The computation of Tspcy, incurs a complexity of O(n) (line 9), where n is the number of
data points, i.e., n = |{(t;, R%))}|. As it is contained in the bisection process (O(n logn))
(lines 4-20), the bisection-based boundary excluded greedy MTI algorithm incurs a com-
plexity of O(n?logn).

4.3 Boundary Excluded Optimal MTI Algorithm

As the above bisection-based boundary excluded greedy MTI algorithm cannot guarantee
finding the minimal set of time intervals, now we develop a boundary excluded optimal MTI
algorithm, which can deliver the minimal set of boundary excluded regression lines.

In this optimal MTI algorithm, each point (¢;, R®?)) is taken as a vertex v; in a graph.
There is a directed edge from v; to v; (¢ < j) of weight 1 if Ts[f,gzj I'> ¢ Thus, the task to
obtain a minimal set of MTI is converted to the one to find the shortest path from v (i.e.,
point (t1, R®))) to vy (i.e., point (t,, R"))) with excluded boundaries, i.c., if there is a
directed edge from v; to v; in the shortest path, the next edge in the path starts from v; 41,
not v;. For this task, we extend Dijkstra’s shortest path algorithm [6] as follows.

In Dijkstra’s shortest path algorithm, when dealing with the current vertex v;, which
changes unvisited to visited, we need to update the distance from v1 to every unvisited
vertex with distance 1 to v;.

In contrast, in boundary excluded optimal MTI algorithm, when dealing with the current
vertex v;, we need to update the distance from v; to every unvisited vertex with distance
1 to vi+1, not v;. The obtained shortest path from v to v, with excluded boundaries
corresponds to the minimal set of boundary excluded regression lines from (1, R(tl))
to (tn, R1)).

In this section, we introduce how our boundary excluded optimal MTI algorithm (Algo-

rithm 2) works.

14 Lei Li, Yan Wang

Algorithm 2 Boundary Excluded Optimal MTT algorithm

Input: trust ratings R(:) | the threshold € of Tspcr (such as 0.9), the given time interval [t1, ¢y,].
Output: the minimal boundary set v;, of MTL
1: foralli € [1,v,] do

2 for all j € [i,v,] do
3 it T[57) > e then
4 Mi’j <= 1;

5 else

6: Miyj <~ 005

7 end if

8 end for

9: end for

10: for all v; € [v1,v,] do

11: dis(v;) <= My, v;5

12: end for

13: initialize vector unvisit <= {v1,v2,...,vn};

14: let u be v1;

15: while unvisit # () do

16: letube v; € unvisit with the smallest dis(v;);

17: remove u from unvisit,

18: for all v; with Mu+1,vj =1do
19: temp <= dis(u) + Muyt1,0;3
20: if temp < dis(v;) then

21: dis(vj) <= temp;

22: previous(vj) <= u;

23: end if

24: end for

25: end while

26: v <= vn;

27: vy, < 0

28: while previous(vy) # v1 do
29: vy < previous(v);

30: Vp <= vp Uy

31: end while

32: return vp;

Step 1: Take (t;, R(ti)) as vertex v;. Initialize the adjacent matrix M with n vertices where
the weight of the edge between v; and v; is M; ; < 1 if TS[;iC’z"] >e(i<j, i, =
1,...,n); otherwise, M; ;j < oo (O(n*)) (lines 1-9 in Algorithm 2).

Step 2: Let dis(v;) denote the distance from v; to v;. Initialize the distance dis(v;) for
every vertex v; according to the adjacent matrix M (O(n)) (lines 10-12).

Step 3: Mark all vertices as unvisited. Set v; as the current vertex, and mark it as visited
(O(n)) (lines 13-14).

Step 4: For current vertex v;, considering all the unvisited vertices with distance 1 to its
neighbors v;41, denoted as {vy}, compute the distance dis(vy) respectively. If this
computed dis(v) is less than the previous recorded dis(vg), overwrite the recorded
distance with the computed distance. If all vertices have been visited, go to Step 5.
Otherwise, set the unvisited vertex v; with the smallest dis(v;) as the current vertex v;,
mark it as visited and go back to the beginning of Step 4. (O((n + m)logn), where
Zvi deg™ (v;) = 2m, deg™ (v;) is the indegree of v;) (lines 15-25).

Step 5: The recorded dis(vy,) is now minimized, and the corresponding path from v1 to vy,
is returned (lines 26-32).

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 15

Since n® dominates m log n, the boundary excluded optimal MTI algorithm incurs a
complexity of O(n®), where n is the number of data points, i.e., n = |{(t;, R*))}].

4.4 Boundary Mixed Optimal MTI Algorithm

Our empirical studies can demonstrate that both the boundary included optimal MTI algo-
rithm [30] and the boundary excluded optimal MTT algorithm can return the minimal set
of MTI with constraints, namely, the boundaries are included or excluded in adjacent time
intervals respectively. If there is no such constraint, there may exist a set of boundary mixed
time intervals, which is no larger than the set returned by either the boundary included opti-
mal MTI algorithm or the boundary excluded optimal MTI algorithm. This requires the use
of a boundary mixed optimal MTTI algorithm.

Let us briefly illustrate the difference between the boundary excluded optimal MTT al-
gorithm and the boundary mixed optimal MTI algorithm.

1. In the boundary excluded optimal MTI algorithm, when dealing with the current vertex
v;, we need to update the distance from v1 to every unvisited vertex with distance 1 to
Vi+41-

2. In contrast, in the boundary mixed optimal MTI algorithm, when dealing with the cur-
rent vertex v;, we need to update the distance from v; to every unvisited vertex with
distance 1 to v; or v;41.

The boundary mixed optimal MTT algorithm (Algorithm 3) works as follows.

Step 1: Take (¢, R(t"")) as vertex v;. Initialize the adjacent matrix M with n vertices where
the weight of the edge between v; and v; is M; ; < 1 if Ts[,tfc’zj] >e(i<yg, t,j=
1,...,n); otherwise, M; j < oo (O(n®)) (lines 1-9 in Algorithm 3).

Step 2: Let dis(v;) denote the distance from v to v;. Initialize the distance dis(v;) for
every vertex v; according to the adjacent matrix M (O(n)) (lines 10-12).

Step 3: Mark all vertices as unvisited. Set vy as the current vertex, and mark it as visited
(O(n)) (lines 13-14).

Step 4: For current vertex v;, considering all the unvisited vertices with distance 1 to its
neighbor v;41 or itself v;, denoted as {vy}, compute the distance dis(vy) respec-
tively. If this computed dis(vy) is less than the previous recorded dis(vg), overwrite
the recorded distance with the computed distance. If all vertices have been visited, go
to Step 5. Otherwise, set the unvisited vertex v; with the smallest dis(v;) as the current
vertex v;, mark it as visited and go back to the beginning of Step 4. (O((n + m) logn),
where Zvl deg™ (v;) = 2m, deg™ (v;) is the indegree of v;) (lines 15-30).

Step 5: The recorded dis(vy,) is now minimized, and the corresponding path from v; to v,
is returned (lines 31-39).

Since n® dominates 7 log 7, the boundary mixed optimal MTTI algorithm incurs a com-
plexity of O(n®), where n is the number of data points, i.e., n = |{(t;, R*))}|.

Theorem 3 The boundary mixed optimal MTI algorithm returns the minimal set of bound-
ary mixed time intervals.

Proof: Let D(v;, vj) denote the distance from v; to v;. In the boundary mixed optimal MTI
algorithm, the following two conditions hold.

16

Lei Li, Yan Wang

Algorithm 3 Boundary Mixed Optimal MTI algorithm

Input: trust ratings R(:) | the threshold € of Tspcr (such as 0.9), the given time interval [t1, ¢y,].
Output: the minimal boundary set v;, of MTL

1:

forall i € [1,v,] do
for all j € [i,v,] do
it T[57) > e then
Mi’j <= 1;
else
Miyj <= 00
end if
end for

: end for
: for all v; € [v1,v,] do

dis(vi) <= My, v;;

: end for

. initialize vector unvisit <= {v1,v2,...,vn};
. let u be vy;

: while unvisit # () do

let u be v; € unvisit with smallest dis(v;);
remove u from unvisit,
for all v; with Mu,v]- =1lor Mu+17vj =1do
temp <= min{dis(u), dis(u) + Mu,v;, dis(u) + Mut1,0;};
if (temp == dis(u) + Mut1,0;)&(temp < dis(u)) then
dis(u) <= temp;
previousl’vj <=
previousz’vj <u+1;
else if (temp == dis(u) + Mu,v;)&(temp < dis(u)) then
dis(u) < temp;
previousl,vj < u;
previouslvj < u;
end if
end for

. end while

LV <= Un;

DU <= U1

L U2 <= Un;

: while previousy # vy do

Va,b <= previousy , U vz p;
U <= previousy ., ;
v1,p <= V1,6 U Vs

: end while
: return v, <= v, oI,]T;

Cl:

C2:

the directed edge from v; to v; (¢ < j) weights 1 only if T}?c’f"] > € ie., D(vs,v5) =

1; otherwise it weights infinite, i.e., D(v;,v;) = 00.

if there is a directed edge from v; to v; in the shortest path,

(a) with included boundary, the next edge in the path starts from v;, and D (v, v;) = 0.

(b) with excluded boundary, the next edge in the path starts from v;1, not v;, and
D(vj,vj41) =0.

With these distances, in the boundary mixed optimal MTI algorithm, D(v1, vy,) is ob-

tained from Dijkstra’s shortest path algorithm. Then D(v1, v,) is the minimal length which
corresponds to the shortest path from v to v,,. According to C1 & C2, a path from from v
to vy, corresponds to a set of regression lines from v1 to vy, i.e., a set of boundary mixed

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 17

MTI. Hence, the boundary mixed optimal MTI algorithm returns the minimal set of bound-
ary mixed MTIL, and the number of MTL is D(v1, vy,). a

Similar to Theorem 3, we can prove that our proposed boundary excluded optimal MTI
algorithm returns the minimal set of boundary excluded MTIL.

Theorem 4 The boundary mixed optimal MTTI algorithm returns a set of MTI which is no
larger than the set returned by either the boundary included optimal MTI algorithm or the
boundary excluded optimal MTT algorithm.

Proof: In the boundary included optimal MTI algorithm, for vertex v;, we need to update
the distance from v1 to every unvisited vertex (e.g., v;) with distance 1 to v;. The distance

from v1 to v; is denoted as dg) ,and
i) = min{dl}, dll + 1} ®)

In contrast, in the boundary excluded optimal MTI algorithm, the distance from v1 to v; is
denoted as de) , and

d? = min{d?,d? +1}.)

Vi41
However, in the boundary mixed optimal MTI algorithm, the distance from v1 to v; is de-
noted as dg,?), and

d = min{d¥,d? + 1,47 +1}. (10)
Obviously, every time when updating the distance from v1 to v;, we can obtain that
d¥ <d) and d < dl?). (11)
Then, we have
di) < di) and df)) <di?. (12)

The boundary mixed optimal MTI algorithm returns a set of time intervals that is no
larger than the one returned by any of the other two optimal MTI algorithms. O

Theorem 4 is also confirmed empirically by Experiments 2 & 3 introduced in Sections
5.2 and 5.3.

5 Experiments

In this section, we introduce the results of our experiments conducted on both a real-world
dataset and synthetic datasets. The aim of our experiments is to study the effectiveness and
efficiency of our proposed MTI algorithms.

5.1 Experiment 1 — Comparison of Our Single Trust Vector Approach and A
Single-Trust-Value Method

As pointed out in Section 3.1, the evaluation of FTL can be based on any existing single-
trust-value method. In this experiment, we aim to illustrate why the service trust vector is
necessary by comparing our trust vector approach with the single-trust-value method in [18],
which is also based on non-binary ratings and applies to service-oriented environments.

18

Lei Li, Yan Wang

1
5] ()
> >
© <
> >
()] ()]
£ £
IS IS
o o
0 0
0 50 100 0 50 100
Time t Time t
@P, (b) P,
1 1
o o
= = :
<) % . oo . 0% o © A LN 0 00 o wu®,
> el e i > e e
Z o5l -~ 5 ~ S 0.5 sr e T AN
£ £
IS IS
o o
0 0
0 50 100 0 50 100
Time t Time t
) P, (dP,
1 1
o o
> >
© ©
> >
[o2] [o))
£ £
3 3
o a g
0 0
0 50 100 0 50 100
Time t Time t
(e) P5 ® Pe
Fig. 7 Trust vectors in Experiment 1
Table 1 Trust vectors in Experiment 1
Trr1 Tsrr Tspcr
P; | 0.6018 | 0.0041 | 0.9574
P> | 0.6013 | 0.0041 | 0.8852
P3| 0.6010 | 0.0001 | 0.9537
Py | 0.6010 | 0.0001 | 0.9106
Ps | 0.6017 | -0.0022 | 0.9517
Ps | 0.6012 | -0.0022 | 0.9049

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 19

¥ PRI " PR
o 0.91% RCETACIAE 0 09 =
3 S L e, e 3 :
g o8 . e g 08 .
j=)) je2}
£ 07 £ 07
Io] ©
% 06 % 06
0.5 - 0.5 >
0 Time t 0 50 100 Time t
(b) €=0.925 (boundary included greedy MTI algorithm)
" Ly, o N .“: = y 3
» 0.9 v ; t o 091
= .. L e, e H =
g 08 . e : S 08 .
o H o
£ 07 H £ 07
© - ©
% 06 H T 06
05 : 05 : _
0 50 100 Time t 0 50 100 Time t
(c) €=0.925 (bisection—based boundary excluded MTI algorithm) (d) €=0.925 (boundary included optimal MTI algorithm)
M:“'~ DA - M:""~ - =
o 097 s B o 0.9}* P
= s - = H -
S 08 H L. S 08 H
= H =3 :
£ 07 H £ 07 H
Io] H Io] H
% 06 T 06
05 : _ 05 : .
0 50 100 Time t 0 50 100 Time t

(e) €=0.925 (boundary excluded optimal MTI algorithm) (f) €=0.925 (boundary mixed optimal MTI algorithm)

Fig. 8 MTI in Experiment 2

In the comparison, we evaluate the trust level of six service providers P; to FPs, with
the parameter « = 1 and the weights determined by Eq. (2). Both the trust ratings and
corresponding regression lines are plotted in Fig. 7. The computed trust vectors are listed in
Table 1.

According to Table 1, all six service providers P; to Ps (see Fig. 7(a)-(f)) have almost
the same Trrr. Therefore, they seemingly have the same trust level. However, they have
different Tsrr or Tspcr. In detail, P; and P» have the same Tsrr (“upgoing”), but different
Tspcr; similarly, Pz and Py have the same Tsrr (“‘coherent”) but different Tspcr; Ps and Ps
have the same Tsrr (“dropping”) but different Tspcr.. Without calculated trust vectors, we
cannot distinguish these six service providers.

From this experiment, we can see that under some circumstances a service trust vector
can depict the trust level more precisely than a single trust value. Hence, the introduction of
the trust vector is necessary.

5.2 Experiment 2 — Comparison on the Number of Returned MTI

In this experiment, we study our proposed three MTI algorithms (i.e., Algorithms 1-3 listed
in Table 2) over a large set of ratings of one seller obtained from eBay [1], and compare
these algorithms with two existing MTT algorithms, including the boundary included greedy

20 Lei Li, Yan Wang

[}
=
5]
>
j=)
£
s i
@ 0.7 L -
0 20 40 60 80 100 120 Timet
(a) €=0.94 (boundary included greedy MTI algorithm) (11 time intervals)
[} T H BT
o> :: !
£ H B
& i : RN
0 20 40 60 80 100 120 Timet
(b) €=0.94 (bisection—based boundary excluded greedy MTI algorithm) (11 time intervals)
@ . T T T T H T T
€ o9f"" / \ //—
£ 08f : : 1
g 0.7 I I I I i I I -
0 20 40 60 80 100 120 Timet
(c) €=0.94 (boundary included optimal MTI algorithm) (10 time intervals)
] T g T T T N T T
S o9l \\ P /f
=] : . .
£ 08 . i B
E 0.7 I I I I i I I -
0 20 40 60 80 100 120 Timet
(d) €=0.94 (boundary excluded optimal MTI algorithm) (8 time intervals)
3] T g T T T T T T
§ 0.9 / h / /7
£ osf e e 1
§ 0.7 L L L L i L L
0 20 40 60 80 100 120 Timet

(e) €=0.94 (boundary mixed optimal MTI algorithm) (7 time intervals)

Fig. 9 Comparison of five MTI algorithms in Experiment 2

Table 2 MTI algorithms compared in Experiments

Algorithm 1 | The bisection-based boundary excluded greedy MTTI algorithm
Algorithm 2 | The boundary excluded optimal MTI algorithm

Algorithm 3 | The boundary mixed optimal MTI algorithm

Algorithm 4 | The boundary included greedy MTI algorithm [30]

Algorithm 5 | The boundary included optimal MTI algorithm [30]

MTI algorithm and the boundary included optimal MTI algorithm proposed in [30] (i.e.,
Algorithms 4 & 5 listed in Table 2).

In the rating sample of an eBay seller, there are 11752 ratings in total about the trans-
actions, which happened in 131 days from 13 February 2009 to 23 June 2009. At eBay,
a rating can be 1 (“positive”), 0 (“neutral”) or —1 (“negative”). Like the method adopted
in [35], the feedback score percentage is introduced and calculated as S, = %,
where P, Ne and N are the numbers of positive, neutral and negative ratings respectively.
We use each day’s ratings to compute the feedback score rate Sp,, which is taken as the
rating R®) for time period ¢; (i.e., t; is a day in this case and ¢+ € [1,131]). All rating
{(t:;, R*))|1 < i < 131} are plotted in Fig. 8(a). From Figs 8 & 9, we can observe that

1. when the threshold of Tspcy. is € = 0.9, as plotted in Fig. 8(a), with any of the five MTI
algorithms listed in Table 2, only 1 trust vector is obtained for the whole time interval
[t1,t131].

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 21

1 1
o 08 oé;r\g.}_ 1 o 08
2 NIt -2 i 2 o
S 0.6f- N 5 S oepe
=y ° ':'1}".-‘ “."‘V‘kﬁy {1 2 :
5 0.4 XY ol 5 0.4
e,
0.2 S 0.2
0 , 0 : .
0 200 400 Time't 0 200 400 Time't
(a) raw data (b) €=0.85 (2 time intervals)
1 1
® o 08
= =) 5
g S 0.6 ;
(o] (o))
£ £ 04
IS 5]
@ 24
0.2
0 - ' 0 : : .
0 200 400 Timet 0 200 400 Time't
(c) €=0.87 (2 time intervals) (d) £=0.9 (3 time intervals)

Fig. 10 Case 1 in Experiment 3 with the boundary mixed optimal MTI algorithm

2. with a higher threshold e = 0.925, 2 time intervals are obtained by using any of the
five MTI algorithms listed in Table 2. The results of Algorithms 1-5 are plotted in Fig.
8(b)(c)(d)(e)(f) respectively.

3. with a further higher threshold e = 0.94, we can also observe from Fig. 9 that both the
boundary included greedy MTI algorithm and the bisection-based boundary excluded
greedy MTTI algorithm return 11 time intervals (see Fig. 9(a)(b)); while the boundary
included optimal MTI algorithm returns 10 time intervals (see Fig. 9(c)); the boundary
excluded optimal MTI algorithm returns 8 time intervals (see Fig. 9(d)); in contrast, the
boundary mixed optimal MTT algorithm returns 7 time intervals (see Fig. 9(e)).

Based on the above results, among all five MTI algorithms listed in Table 2, we can
observe that the boundary mixed optimal MTT algorithm can return a set of MTI which is
no larger than any set returned by other algorithms. This confirms Theorem 4 empirically.

5.3 Experiment 3 — Comparison on Efficiency

In this experiment, we use large-scale synthetic rating datasets to compare the efficiency of
our proposed bisection-based boundary excluded greedy MTI algorithm (i.e., Algorithm 1
listed in Table 2) and two optimal MTT algorithms (i.e., Algorithms 2 & 3 listed in Table 2)
with two existing MTI algorithms in [30] (i.e., Algorithms 4 & 5 listed in Table 2).

We conducted our experiments on top of Matlab 7.6.0.324 (R2008a) running on a Dell
Vostro V1310 laptop with an Intel Core 2 Duo T5870 2.00GHz CPU and 3GB RAM. Each
result of the consumed CPU time is the average of three independent executions with very
minor differences in time.

22 Lei Li, Yan Wang

1z
08P
(0] o . ()
S T . o =}
T 06 L2 £ 8
=) Y ?’t x. & :{ o
=] o U e =
5 04 Sak % FR N F|
o4 B e o e e o4
0.2 Voo#e ":.‘g’
13
0 ﬁ & : : o :
0 200 400 Time't 0 200 400 Timet

(a) raw data

Rating value
Rating value

0 200 400 Timet 400 Time't
(c) €=0.87 (8 time intervals) (d) £=0.9 (9 time intervals)

Fig. 11 Case 2 in Experiment 3 with the boundary mixed optimal MTI algorithm

In this experiment, three different sets of ratings have been used, which are plotted in
Fig. 10(a) (Case 1), Fig. 11(a) (Case 2) and Fig. 12(a) (Case 3) respectively. Each dataset
consists of 500 trust ratings distributed in 500 time periods (i.e., t; € [t1,t500]). By applying
the boundary mixed optimal MTT algorithm to each case, we have the following results.

Case 1: In this case (see Fig. 10(a)), with the threshold of Tspcy, set as € = 0.85, 0.87 or
0.9 respectively, we can obtain 2 or 3 time intervals as plotted in Fig. 10(b)(c)(d).

Case 2: As the trust trend changes a little more frequently in this case (see Fig. 11(a)),
when the threshold is set as ¢ = 0.85, 0.87 or 0.9 respectively, 6, 8 or 9 time intervals
are obtained (see Fig. 11(b)(c)(d)).

Case 3: In contrast, in Case 3 (see Fig. 12(a)), the trust trend changes the most frequently
in all three cases. With the same thresholds € = 0.85, 0.87 or 0.9, there are 13 (see Fig.
12(b)), 16 (see Fig. 12(c)) or 20 time intervals (see Fig. 12(d)) obtained respectively.

Thus, in all three cases, with threshold e = 0.85, we can use 2, 6 or 13 trust vectors
respectively to approximately represent 500 trust ratings. With a high threshold e = 0.9,
we can use 3, 9 or 20 trust vectors respectively to approximately represent 500 trust ratings.
Thus, with our proposed algorithms, a small set of values can represent a large set of trust
ratings with well preserved trust features.

In addition, in all three cases using different thresholds, we can compare the consumed
CPU time of the five MTI algorithms listed in Table 2. From the results listed in Table 3, we
can derive the following conclusions.

Comparison of different algorithms on efficiency and the number of returned MTI:

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 23
1 1
(3
° 0.8 ; °
= . L A =
< 0.6 . & <
Z 2 ENE R 2
=3 s ? 1 @
= 04¢f:2 X gy =
© o Y g ©
o N S8 [
0.2 b 2
2 ° . . . h
0 : S
0 200 400 Time't 400 Time't
(a) raw data (b) €=0.85 (13 time intervals)
1 1r
0.8
))
= =
S 06/ ; g
g Y g
= 041 % =
© D e ©
@ M @
0.2 g
0 P ol N Z. 0 : Lol Z.
0 200 400 Time't 0 200 400 Time't
(c) €=0.87 (16 time intervals) (d) €=0.9 (20 time intervals)
Fig. 12 Case 3 in Experiment 3 with the boundary mixed optimal MTI algorithm
Table 3 Consumed CPU time in seconds and the number of returned MTI in Experiment 3
Boundary included| Bisection-based Boundary included Boundary excluded Boundary mixed
greedy boundary excluded optimal MTT algorithm optimal MTTI algorithm optimal MTTI algorithm
€ MTT algorithm |greedy MTI algorithm time (s) | time (s) | time (s) |
time (s) [num [time ()] num Step1 [Steps2-5] Total lnum Step1 [Steps2-5] Total lnum StepT [Steps2-5] Total lnum
0.85 3.7 3 0.3 2 1296.3 1.4 1297.71 2 |1295.1 4 1299.1 2 [1296.1 55 1301.6| 2
= 0.87 4.4 3 0.2 2 1299.1 14 1300.5| 2 [1297.8 39 1301.7 | 2 [1296.8 55 1302.3] 2
Z 109 9.9 4 0.3 3 1296.2 1.4 1297.6] 3 [1298.4 39 1302.3 | 3 [1300.9 55 1306.4| 3
o 1 1288.9 499 8.0 250 1301 1.6 1302.6 | 499 | 1289 4 1293 | 250 | 1289.6 55 1295.1] 250
0.85 15.6 7 0.4 6 1297.3 1.5 1298.8| 6 |[1297.6 4 1301.6 | 6 |1294.7 55 1300.2| 6
ﬁ 0.87 242 10 0.5 8 1298.4 1.4 1299.8] 9 [1296.9 39 1300.8 | 8 [1296.8 55 1302.3| 8
Z 109 26 10 0.5 9 1296.6 14 1298 9 [1299.6 39 1303.5 | 9 [1305.3 5.6 13109] 9
o 1 1265.4 499 8.0 250 1299.4 1.6 1301 | 499 | 1286.7 4 1290.7 | 250 | 1288.8 55 1294.3 | 250
0.85 374 15 0.6 13 1296.4 1.5 12979 14 [1297.8 3.9 1301.7 | 13 |1294.6 5.5 1300.1 | 13
3 0.87 47.8 20 0.7 18 1299.1 1.5 1300.6 [19 |1296.1 39 1300 16 |1301.8 55 1307.3] 16
Z (09 55.4 21 0.8 20 1298.2 1.5 1299.7] 20 [1301.1 39 1305 20 |1302.6 55 1308.1| 20
o 1 1270.7 499 8.0 250 1298.4 1.6 1300 | 499 | 1286.6 4 1290.6 | 250 | 1290 55 1295.5| 250
0.85 4.2 2 0.5 2 10473 6.2 10479 | 2 | 10474 16.5 10491 2 | 10490 23.0 10513 | 2
T+ [087] 237 3 0.7 3 10467 6.1 10473 | 3 [10434 16.3 10450 | 3 [10485 229 [10508 | 3
Z (09 29.3 3 0.6 3 10472 6.2 10478 | 3 | 10478 16.6 10495 3 | 10463 22.8 10486 | 3
© 1 10336 499 32.0 250 10507 6.2 10513 | 499 | 10473 16.3 10489 | 250 | 10487 22.7 10510 | 250
0.85 61.4 5 0.8 5 10474 6.2 10480 | 5 | 10481 16.4 10497 5 110483 22.8 10506 | 5
‘g 0.87 78.5 8 1.0 8 10500 6.6 10507 | 8 10487 16.4 10503 8 10462 22.9 10485 | 8
Z [09] 1094 9 1 9 10494 6.3 10500 | 9 [10502 | 16.3 10526 | 9 [10490 | 22.8 [10513 | 9
o 1 10289 499 31.8 250 10493 6.2 10499 | 499 | 10495 16.3 10511 | 250 | 10497 227 10520 | 250
085] 1715 4 13 4 T0481 | 6.1 | 10487 14 [10509 | 164 | 10525 | 14 | 10505] 22.7 | 10527] 14
ﬁ 0.87| 208.7 19 1.6 19 10491 6.2 10497 | 19 | 10488 16.9 10505 | 19 | 10505 22.7 10528 | 19
Z 109 222.1 20 1.6 20 10472 6.4 10478 | 20 | 10481 16.4 10497 | 20 | 10474 22.6 10497 | 20
© 10406 499 [31.9 250 10509 6.3 10515 [499 [10512 16.4 10528 | 250 [10509 | 22.6 | 10532 | 250

24

Lei Li, Yan Wang

. The consumed CPU time of the bisection-based boundary excluded greedy MTI al-

gorithm is only 0.6%-8.1% of that of the boundary included greedy MTI algorithm.
In addition, the former algorithm returns a set of MTI which is no larger than that re-
turned by the latter algorithm. Hence, the bisection-based boundary excluded greedy
MTT algorithm outperforms the boundary included greedy MTI algorithm in terms
of efficiency.

. The bisection-based boundary excluded greedy MTI algorithm consumes less than

0.6% of the CPU time consumed by any of the three optimal MTT algorithms. Thus,
we can conclude that the bisection-based boundary excluded greedy MTI algorithm
runs much faster than any of the three optimal MTI algorithms.

. For each of the three optimal MTT algorithms, we can divide the whole algorithm

into two parts, including the generation of the adjacency matrix (Step 1 introduced in
Section 4.3 or Section 4.4), and the Dijkstra’s algorithm based MTI analysis (Steps
2-5). As listed in Table 3, the former part takes above 99.6% of the total consumed
CPU time since it has to check if Tspcy, > € for all %2 — n possible edges, while the
latter part takes less than 0.4% of the total consumed CPU time.

. With the three optimal MTI algorithms, the shortest consumed CPU time is only

1.5% less than the longest one. Hence, no matter which of the three cases and with
what threshold € is used (e.g., 0.85, 0.87, 0.9 or 1), all three optimal MTTI algorithms
consume almost the same CPU time.

. The boundary mixed optimal MTI algorithm returns a set of MTI which is no larger

than the set returned by any of the other four MTT algorithms. This again confirms
Theorem 4 empirically.

Comparison on efficiency and the number of returned MTI in different cases:

1.

From Case 1 to Case 3 (see Fig. 10(a), Fig. 11(a) and Fig. 12(a)), the trust trend
changes more and more frequently. With the same MTI algorithm and the same
threshold, this change leads to a larger set of MTI. For example, from Case 1 to
Case 3, with threshold € = 0.9, the boundary mixed optimal MTT algorithm returns
3,9 and 20 time intervals respectively.

. From Case 1 to Case 3, when the trust trend changes more and more frequently, with

the same threshold the bisection-based boundary excluded greedy MTI algorithm
needs more and more CPU time to determine the set of MTI. For example, from
Case 1 to Case 3, with threshold ¢ = 0.9, this algorithm consumes 0.3, 0.5, and 0.8
seconds of CPU time respectively.

Comparison on efficiency and the number of returned MTI with different thresholds:

1.

2.

When threshold e becomes higher, with the same algorithm, a larger set of MTI is
returned.

When € becomes higher, the bisection-based boundary excluded greedy MTI algo-
rithm consumes more CPU time. However, even with the highest threshold € = 1,
its consumed CPU time is still around 0.6% of that consumed by any of the three
optimal MTT algorithms.

Moreover, by applying the five MTI algorithms to larger synthetic rating datasets with
1000 ratings each (i.e. Case 4, Case 5 and Case 6) depicted in Fig. 13, we can obtain similar
conclusions as introduced above in the comparison of five MTI algorithms on algorithm
efficiency.

In addition, from the obtained results listed in Table 3, we can see that the execution
time of any of the three optimal MTI algorithms for 1000 ratings is approximately eight

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 25

1 1 o 3’:(1: 3]
kS . ¥ 7
0.8 o Tk 0.8 2
oLF% F g o8 i
£ % y A H
. P LY 2 ¢ - o A
E] 506,&'}‘ £ 3%‘ © A i:’oef:;,:. B B T
g s i M AR R SRR R R <
o o (¥ 3 mh % o Ao 3 §F TR
£ £ A b % £ SinE é T D &
3 T 0.4p g : o S04t Fiive B Pyt
o o4 b5 £ o SRR LRI ¥ E
¥ * PR asieagiger g
- B IR LR RS
0.2 . V03 0.2 T PSS TR B
2 BYEIER
¥ ? . ¢
o IR
0 0 0 =
0 500 1000 0 500 1000 0 500 1000
(a) Case 4 Time t (b) Case 5 Time t (c) Case 6 Time t

Fig. 13 Case 4, Case 5 and Case 6 in Experiment 3

times as much as that for 500 ratings. As the datasets of 1000 ratings double those of 500
ratings in size, this confirms that the complexity of each of the three optimal MTI algorithms
is O(n?).

Therefore, by incorporating the results in Experiment 2, we can see that the bisection-
based boundary excluded greedy MTT algorithm is useful when processing large-scale rating
data, because it consumes much less CPU time than any of the other four MTI algorithms.
However, it cannot guarantee returning the minimal set of MTL In contrast, the boundary
mixed optimal MTT algorithm can return the smallest set of MTI among all five MTT algo-
rithms, but it consumes much more CPU time than the two greedy algorithms.

5.4 Experiment 4 — Comparison on MTI Goodness-of-Fit

With our proposed MTTI algorithms, a small set of MTI can represent a large set of trust
ratings well. However, how well have the trust features been preserved? Now we compare
the final trust value aggregated from a set of MTI with the final trust value aggregated from
trust ratings directly to see how well the trust features are preserved.

In this section, prior to presenting the detailed analysis, we must first introduce the
definition of the final trust value aggregated from a set of MTI.

Definition 3 With a set of MTI covering the ratings {(t;, R*))} in time interval [t1, t,,]
{[twss trv, 11 <0 < hytip, = ta, by, = tn}, (13)

the final trust value aggregated from the set of MTI is

h [tib; strb;] by
i Tpr 7 Xk, Wt

EZ=1 Wiy, '

Tere ({[tis troi]}) = (14)

where wy, is defined in Eq. (2) of Definition 1.

Now we introduce the definition of MTI goodness-of-fit, which is measured from the
relative difference between the final trust value aggregated from a set of MTI according to
Definition 3, and the final trust value aggregated from trust ratings directly according to
Definition 1. This measurement indicates how well the trust features are preserved by the
set of MTI. A high goodness-of-fit of the set of MTI indicates the high effectiveness of the
corresponding MTI algorithm.

26 Lei Li, Yan Wang

Definition 4 With a set of MTI covering the ratings {(¢;, R*"))} in time interval [t1, ¢,
{ltw, tro,]11 <8 < hytiy, = ta, e, =tn}, (15)
the MTI goodness-of-fit is

T) — T ({[t, to, 1))

Guri({[tww,» tr,]}) =1 — [t1,tn]
Trry

; (16)

where T, }TIL’ ") is defined in Definition 1 and 7} rrL({[tw,, trb;]}) is defined in Definition 3.

With Definition 4, we can study the goodness-of-fit of the set of MTI returned by each
of two boundary excluded MTT algorithms, including both the bisection-based boundary
excluded greedy MTTI algorithm and the boundary excluded optimal MTT algorithm.

Theorem 5 The goodness-of-fit of the set of MTI returned by either the bisection-based
boundary excluded greedy MTI algorithm or the boundary excluded optimal MTI algorithm
is 100%.

Proof: Let
{[ti, s tro,] =t1,trb, =tn} (17)
denote a set of MTI returned by either the bisection-based boundary excluded greedy MTI

algorithm or the boundary excluded optimal MTI algorithm. As the set of MTI is boundary
excluded, we have

trp;_,+1 = tw, for j € [2,h] (18)
By substituting Eq. (18) into Eq. (17), we then have

{[trb,»,l—‘,-latrbi”l < 7 < h‘7t7‘bg+1 = tlatrbh = tn} (19)

For time interval [t}p, ,+1, trb,], according to the definition of T}TT’ vt Eq.

(1), we have

rb; (tx)
[trb;_y+15trb;] k=rb; _1+1 wy, R
TFTL = Tb;) (20)

k=rb;_,+1 Wtk

i.e.,
[t too] rb; rb;
rb;_1+1trb; tr
Top it Swe = Y w, R 1)
k=rb;_1+1 k=rb;_1+1

For all time intervals {[t,p, ,+1,trp,]|1 < 4 < h}in [t1,tn], we have

] rb; h rb;

by _q+1strb, th

E :TFTTLl et E wty, = Z Z wy R
k=rb;_1+1 i=1 k=rb;_,+1

=" we, R, (22)
k=1

tn]

According to the definition of T};}_ in Eq. (1), we have

plintal _ Sk wi, RO .
FiL D1 Wy

(23)

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 27

If we now substitute Eq. (22) into Eq. (23), we then have

h T[trb,i,1+1wtrb,i] rb;

- W,
pltyta] _ izt 7L _ k=rbi_1+1 . 24)
e D=1 Wi
By substituting Eq. (24) into Eq. (14) in Definition 3, we have
Trre({[tr, 41, e 1) = T ™. 25)

Therefore, according to Eq. (16) in Definition 4, we can obtain that the goodness-of-fit
of the set of boundary excluded MTI {[t;p, ,+1,%rp,;]} IS

TS5 — Trn({[trs, 41, v] 1))

t1,ty
it

Guri({[tro, o +1,trb,]}) =1 — = 100%. (26)

(]

Next, with Definition 4, we can also study the goodness-of-fit of the set of MTI returned

by each of two boundary included MTI algorithms, including both the boundary included
greedy MTT algorithm and the boundary included optimal MTI algorithm.

Theorem 6 The goodness-of-fit of the set of MTI returned by either the boundary included
greedy MTT algorithm or the boundary included optimal MTT algorithm is less than 100%.

Proof: Let
{ltin, s tr, |1 <@ < hytip, =t1, s, =tn} (27)

denote a set of MTI returned by either the boundary included greedy MTTI algorithm or the
boundary included optimal MTI algorithm. As the set of MTI is boundary included, we have

trbj,l = tlbj for j € [27h}. (28)

By substituting Eq. (28) into Eq. (27), we then have

{[trbi,1 5 trbl]|1 S 7 S h> t’l‘bg = tl) trbh = tn} (29)
For time interval [tp,_,, t,b,], according to the definition of T)£TL’ —uotre] in Eq. (1), we
have
rb; (tr)
trb | strp, Zrp,_, W R
Tf[‘TLbl_l g ==* :ZtA -) (30)
k=rb,_; Wtk
ie.,
b;
[tro; _qstro;] \ (tx)
TrL Z W, = Z we, R*. 31

k=rb;_1 k=rb;_1

For all time intervals {[t,p,_,,trp,]|1 < ¢ < h}in [t1,t5], we have

h

rb;
ZTFTE'” Z we, =y Y wi, R, (32)

k=rb;_; i=1k=rb;_,

28 Lei Li, Yan Wang

Asin Eq. (22)

h rb; n
Z Z wth(tk) _ Z wth(tk)’ (33)

i=1k=rb;_1+1 k=1
we have
h Tb; n
S w, R™ >3 w, R (34)
i=1k=rb;_, k=1

Then, by substituting Eq. (32) into Eq. (34), we have

h [t o] rb; n
rby_qtrb; t
STy S wy > w, R, (35)
i=1 k=rb;_, k=1
ie.,
h [trb; g otrb;] b,
i=1 Trr k=rb;_y Wt _ > p_4 wy, R
n > " . (36)
Zkzl Wy, Zk:l Wy,

According to the definitions of 7" in Eq. (1) and Trr({[trs, ., trs,]}) in Eq. (14),
from Eq. (36) we have

Trre({ltror_ s trv]}) > T, (37)
ie.,

T8 — Trr({[trb, .y trv] 1)] > 0. (38)

Therefore, according to Eq. (16) in Definition 4, we can obtain that the goodness-of-fit
of the set of boundary included MTT {[tr,_,, trp,]} iS

T = Ten({[ten,, ten)}

t1,tn
Thy

Guri({[tro; 5t]}) = 1 <100%. (39)

(]

By applying Definition 4 to the datasets used in Experiments 2 & 3, the corresponding

MTI goodness-of-fit can be evaluated and listed in Table 4. From the results listed in Table
4, we can obtain the following conclusions.

1. The goodness-of-fit values of the sets of MTI returned by both the bisection-based
boundary excluded greedy MTTI algorithm (e.g., Fig. 8(c) and Fig. 9(b)) and the bound-
ary excluded optimal MTT algorithm (e.g., Fig. 8(e) and Fig. 9(d)) are 100%.

This confirms Theorem 5 empirically.

2. In this experiment, the goodness-of-fit values of the sets of MTI returned by the bound-
ary included greedy MTI algorithm in Fig. 8(b) and Fig. 9(a) are 99.97% and 99.79 %
respectively. The goodness-of-fit of the sets of MTI returned by the boundary included
optimal MTI algorithm in Fig. 8(d) and Fig. 9(c) are 99.97% and 99.85% .

This confirms Theorem 6 empirically.

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 29

Table 4 MTI goodness-of-fit for the datasets used in Experiments 2 & 3

(@ (b) (© (d) (e) ®
99.97% 100% 99.97% 100% 100%
Fig. 8 N/A (boundary | (boundary | (boundary | (boundary | (boundary
included) excluded) included) excluded) mixed)
99.79% 100% 99.85% 100% 99.99%
Fig. 9 (boundary | (boundary | (boundary | (boundary | (boundary N/A
included) excluded) included) excluded) mixed)
100% 100% 100%
Fig. 10 N/A (boundary | (boundary | (boundary N/A N/A
mixed) mixed) mixed)
100% 100% 100%
Fig. 11 N/A (boundary | (boundary | (boundary N/A N/A
mixed) mixed) mixed)
99.99% 99.99% 99.91%
Fig. 12 N/A (boundary | (boundary | (boundary N/A N/A
mixed) mixed) mixed)

3. In this experiment, the goodness-of-fit values of the sets of MTI returned by the the
boundary mixed optimal MTTI algorithm in Fig. 9(e) and Fig. 12(b)(c)(d) are 99.99%,
99.99%, 99.99% and 99.91% respectively. In contrast, the MTI goodness-of-fit of the
ones in Fig. 10(b)(c)(d) and Fig. 11(b)(c)(d) are 100%.

Therefore, the goodness-of-fit of the set of MTI returned by the boundary mixed optimal
MTI algorithm can be less than or equal to 100%.

As we pointed out in Section 1, a single trust value cannot preserve the trust features well
(e.g., whether and how the trust trend changes). Hence, it is necessary to generate a small
set of data that represents a large set of trust ratings over a long service history. The research
presented in this section confirms that with any of our proposed five MTI algorithms, a
small set of values can represent a large set of trust ratings while the trust features can be
well preserved. It illustrates the high effectiveness of our proposed algorithms.

6 Conclusions

In this paper, we have proposed three trust vector based multiple time interval (MTI) anal-
ysis approaches, including a bisection-based boundary excluded greedy MTI algorithm, a
boundary excluded optimal MTI algorithm and a boundary mixed optimal MTI algorithm.
These algorithms are better than the two existing boundary included algorithms in the liter-
ature. The proposed bisection-based boundary excluded greedy MTI algorithm has a lower
time complexity, and it is much faster than any of the other four MTI algorithms. The pro-
posed boundary mixed optimal MTI analysis algorithm can guarantee the representation of
a large set of trust ratings with a minimal set of values while highly preserving the trust fea-
tures. Therefore, our work is significant for large-scale trust data management, transmission
and evaluation.

In the boundary mixed optimal MTI algorithm, given a set of ratings and the same
threshold, several minimal sets of boundary mixed MTI may exist. Thus, in our future work,
the boundary mixed optimal MTT algorithm can be further extended to find the best set of
MTI with the largest MTI goodness-of-fit or the largest summation of SPCL values.

30 Lei Li, Yan Wang
References
1. eBay. http://www.eBay.com/
2. GNutella. http://www.gnutella.com/
3. Conner, W., Iyengar, A., Mikalsen, T.A., Rouvellou, I., Nahrstedt, K.: A trust management framework
for service-oriented environments. In: WWW, pp. 891-900 (2009)
4. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., Violante, F.: A reputation-based approach

10.
11.

12.

14.

15.
16.

17.
18.
19.
20.
21.
22.

23.
24.

25.
. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
27.
28.
29.
30.
31.

32.

for choosing reliable resources in peer-to-peer networks. In: ACM Conference on Computer and Com-
munications Security (CCS 2002), pp. 207-216 (2002)

. Damiani, E., di Vimercati, S.D.C., Samarati, P., Viviani, M.: A wowa-based aggregation technique on

trust values connected to metadata. Electr. Notes Theor. Comput. Sci. 157(3), 131-142 (2006)

. Dijkstra, E.-W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269-271

(1959)

. Griffiths, N.: Task delegation using experience-based multi-dimensional trust. In: AAMAS 2005, pp.

489-496 (2005)

. Hines, W.W., Montgomery, D.C., Goldsman, D.M., Borror, C.M.: Probability and Statistics in Engineer-

ing. John Wiley & Sons, Inc (2003)

. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-

agent systems. Autonomous Agents and Multi-Agent Systems 13(2), 119-154 (2006)

Jgsang, A.: Subjective evidential reasoning. In: IPMU (2002)

Jgsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision.
Decision Support Systems 43(2), 618—644 (2007)

Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management
in p2p networks. In: WWW 2003, pp. 640-651 (2003)

. Knight, D.H., Chervany, N.L.: The meaning of trust. Tech. Rep. WP9604, University of Minnesota,

Management Information Systems Research Center (1996)

Li, L., Wang, Y.: A trust vector approach to service-oriented applications. In: ICWS 2008, pp. 270-277
(2008)

Li, L., Wang, Y.: Subjective trust inference in composite services. In: AAAI 2010, pp. 1377-1384 (2010)
Li, L., Wang, Y., Lim, E.P.: Trust-oriented composite service selection and discovery. In: IC-
SOC/ServiceWave 2009, pp. 50-67 (2009)

Li, L., Wang, Y., Varadharajan, V.: Fuzzy regression based trust prediction in service-oriented applica-
tions. In: ATC 2009, pp. 221-235 (2009)

Li, M., Sun, X., Wang, H., Zhang, Y., Zhang, J.: Privacy-aware access control with trust management in
web service. World Wide Web 14(4), 407-430 (2011)

Malik, Z., Bouguettaya, A.: Rater credibility assessment in web services interactions. World Wide Web
12(1), 3-25 (2009)

Malik, Z., Bouguettaya, A.: RATEWeb: Reputation assessment for trust establishment among web ser-
vices. VLDB J. 18(4), 885-911 (2009)

Marti, S., Garcia-Molina, H.: Limited reputation sharing in p2p systems. In: ACM EC 2004, pp. 91-101
(2004)

Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a research
roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223-255 (2008)

Rao, S.: Applied Numerical Methods for Engineers and Scientists. Prentice Hall (2002)

Ray, I., Chakraborty, S.: A vector model of trust for developing trustworthy systems. In: 9th European
Symposium on Research Computer Security, pp. 260-275 (2004)

Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: Agents 2001, pp. 194-195 (2001)

Song, S., Hwang, K., Zhou, R., Kwok, Y.K.: Trusted p2p transactions with fuzzy reputation aggregation.
IEEE Internet Computing 9(6), 24-34 (2005)

Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation in the context of inaccu-
rate information sources. Autonomous Agents and Multi-Agent Systems 12(2), 183-198 (2006)

Vu, L.H., Hauswirth, M., Aberer, K.: QoS-based service selection and ranking with trust and reputation
management. In: CooplS 2005, pp. 466483 (2005)

Wang, Y., Li, L.: Two-dimensional trust rating aggregations in service-oriented applications. IEEE Trans.
Services Computing In press (2012)

Wang, Y., Lim, E.P.: The evaluation of situational transaction trust in e-service environments. In: ICEBE
2008, pp. 265-272 (2008)

Wang, Y., Lin, K.J.: Reputation-oriented trustworthy computing in e-commerce environments. IEEE
Internet Computing 12(4), 55-59 (2008)

The Study of Trust Vector Based Trust Rating Aggregation in Service-Oriented Environments 31

33.

34.
35.

36.

37.

38.

Wang, Y., Lin, K.J., Wong, D.S., Varadharajan, V.: Trust management towards service-oriented applica-
tions. Service Oriented Computing and Applications 3(2), 129-146 (2009)

Wilson, R.A., Keil, F.C.: The MIT encyclopedia of the cognitive sciences. The MIT Press (1999)
Xiong, L., Liu, L.: PeerTrust: Supporting reputation-based trust for peer-to-peer electronic communities.
IEEE Trans. Knowl. Data Eng. 16(7), 843-857 (2004)

Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied Artificial Intelli-
gence 14(9), 881-907 (2000)

Zhao, H., Li, X.: Vectortrust: Trust vector aggregation scheme for trust management in peer-to-peer
networks. In: 18th Internatonal Conference on Computer Communications and Networks, pp. 1-6 (2009)
Zhou, R., Hwang, K.: Powertrust: A robust and scalable reputation system for trusted peer-to-peer com-
puting. IEEE Trans. Parallel Distrib. Syst. 18(4), 460-473 (2007)

