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Abstract—Online Social networks have provided the infrastructure for a number of emerging applications in recent years, e.g.,
for the recommendation of service providers or the recommendation of files as services. In these applications, trust is one of
the most important factors in decision making by a service consumer, requiring the evaluation of the trustworthiness of a service
provider along the social trust paths from a service consumer to the service provider. However, there are usually many social
trust paths between two participants who are unknown to one another. In addition, some social information, such as social
relationships between participants and the recommendation roles of participants, has significant influence on trust evaluation but
has been neglected in existing studies of online social networks. Furthermore, it is a challenging problem to search the optimal
social trust path that can yield the most trustworthy evaluation result and satisfy a service consumer’s trust evaluation criteria
based on social information.
In this paper, we first present a novel complex social network structure incorporating trust, social relationships and recommen-
dation roles, and introduce a new concept, Quality of Trust (QoT), containing the above social information as attributes. We then
model the optimal social trust path selection problem with multiple end-to-end QoT constraints as a Multi-Constrained Optimal
Path (MCOP) selection problem, which is shown to be NP-Complete. To deal with this challenging problem, we propose a novel
Multiple Foreseen Path-Based Heuristic algorithm MFPB-HOSTP for the Optimal Social Trust Path selection, where multiple
backward local social trust paths (BLPs) are identified and concatenated with one Forward Local Path (FLP), forming multiple
foreseen paths. Our strategy not only could help avoid failed feasibility estimation in path selection in certain cases, but also
increase the chances of delivering a near-optimal solution with high quality. The results of our experiments conducted on a real
dataset of online social networks illustrate that MFPB-HOSTP algorithm can efficiently identify the social trust paths with better
quality than our previously proposed H OSTP algorithm that outperforms prior algorithms for the MCOP selection problem.

Index Terms—Trust, social networks, trust path selection, service selection.
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1 INTRODUCTION

Online social networking sites have become very popular, at-
tracting a large number of participants and are being used as a
means for a variety of rich activities. For example, according to
a survey on 2600 hiring managers in 2008 by CareerBuilder1

(a popular job hunting website), 22% of those managers used
social networking sites to investigate potential employees. In
June 2009, the ratio increased to 45%. In addition, Microsoft
has developed a dynamic CRM (Customer Relationship Man-
agement) system2, which allows business professionals to an-
alyze customers’ conversations on social networking sites, and
as a consequence, provides real-time status updates about their
products and services accordingly. In the above situations, trust
is one of the most important factors for participants’ decision
making, requiring approaches and mechanisms for evaluating
the trustworthiness between participants who are unknown to
each other.
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In service-oriented environments, social networks can be
used as a means for service consumers to look for trustworthy
service providers who are unknown to them prior to invoking
services, with the assistance of information from other partici-
pants. For example, at FilmTrust3, which is a social networking
site for movie recommendations, a participant can evaluate
the trustworthiness of a recommender via the social network
between them. As another example, if a social network consists
of lots of buyers and sellers, it can be used by a buyer to
find the most trustworthy/reputable seller who sells the product
preferred by the buyer [23].

In social networks, each node represents a participant and
each link between participants corresponds to the real-world
interactions or online interactions between them (e.g., A → B
and A → C in Fig. 1). One participant can give a trust value
to another based on the direct interactions between them. For
example, a trust rating can be given by a participant to another
based on the quality of the movies recommended by the latter
at FilmTrust3. As each participant usually interacts with many
other participants, multiple trust paths may exist between two
given participants who have no direct links with each other.
For example, in Fig. 1, A and M are indirectly linked by two
paths, A → B → E → M and A → D → M . If a trust
path links two nonadjacent participants (i.e., there is no direct
link between them), the source participant can evaluate the
trustworthiness of the target one based on the trust information

3. http://trust.mindswap.org/filmtrust/
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Fig. 1. A social network
found in the path. This process is called trust propagation and
the path with trust information linking the source participant
and the target one is called a social trust path [15], [21]. For
example, in Fig. 1, if A is a buyer and M is a seller, A can
evaluate the trustworthiness of M using the social trust paths
from A to M . We refer to A as the source participant and M
as the target participant.

In large-scale social networks, there could be tens of thou-
sands of social trust paths between a source participant and
the target one [25]. Evaluating the trustworthiness of the target
participant based on all these social trust paths can incur huge
computation time. Alternatively, we can search the optimal
path yielding the most trustworthy trust propagation result
from multiple paths. We call this the optimal social trust path
selection problem which is known to be a challenging research
problem [33].

In the literature, Lin et al. [30] propose an optimal social path
selection method, where all links are assigned the same weight
and the shortest path between the source participant and the
target one is selected as the optimal one. This method neglects
trust information between participants. In another work [21],
the path with the maximal propagated trust value is selected
as the most trustworthy social trust path. However, social re-
lationships between adjacent participants (e.g., the relationship
between a buyer and a seller) and the recommendation roles of
a participant (e.g., a supervisor as a referee in his postgraduate
student’s job application) have significant influence on trust
propagation [1], [39] and can be discovered by using data
mining techniques [36]. However, these factors have not been
considered in other existing trust propagation and social trust
path selection methods. In addition, a source participant may
have different purposes in evaluating the trustworthiness of
the target participant, such as hiring employees, or introducing
products. Therefore, a source participant may have different
social trust path selection criteria (e.g., with more focus on
the recommendation roles of participants in employment and/or
with more focus on the social relationships between partici-
pants in making friends) and should be able to set certain con-
straints on the above factors in trust propagation. This can help
the source participant select the optimal social trust path that
yields the most trustworthy trust propagation result. However,
such a capability is not supported by existing methods [21],
[30].

To address the above issues, in our previous work [33]4,
we have proposed a social trust path selection method where
the above impact factors and source participant’s constraints
of these factors are considered. In addition, we proposed a
heuristic algorithm H OSTP for optimal social trust path se-
lection and demonstrated that H OSTP outperformed the most
promising algorithm for the path selection problem in both the
quality of the selected path and the efficiency. However, this
work still has some disadvantages. In some cases, H OSTP
cannot deliver a near optimal solution with a high utility. The
advantages and disadvantages of this algorithm are analyzed in
detail in Section 5.2.

4. The winner of the Best Paper Award of IEEE SCC 2010

In this paper, we aim to solve the optimal social trust path
selection problem in a social network, which contains complex
social relationships and recommendation roles. Our contribu-
tions in this paper are summarized as follows.

1) We first present the structure of complex social networks
taking trust information, social relationships and recom-
mendation roles of participants into account. In addition,
we introduce a novel concept, Quality of Trust (QoT),
taking the above three factors as attributes5. Further-
more, source participants can have different social trust
path selection criteria and set different constraints for
QoT attributes in different applications. We then model
the multiple QoT constrained optimal social trust path
selection problem as a Multi-Constrained Optimal Path
(MCOP) selection problem, which is proved to be NP-
Complete in [24] (see section 4).

2) The existing approximation algorithms [24], [29], [52]
for solving the MCOP selection problem cannot be
adopted to large-scale social networks. Based on our
previously proposed heuristic algorithm H OSTP, which
is currently the most promising algorithm for the NP-
Complete optimal social trust path selection problem
[33], we propose a novel Multiple Foreseen Path-
Based Heuristic algorithm, MFPB-HOSTP, where mul-
tiple Backward Local Paths (BLPs, rather than only one
path in H OSTP) are identified in the backward search
from a target participant to the source participants. These
BLPs will be used in the forward search from the source
to the target, forming multiple foreseen paths, in order
to avoid a failed feasibility estimation of a foreseen
path. Our novel search strategies can help deliver better
solutions than H OSTP (see sections 5 and 6).

3) We have conducted extensive experiments on a real on-
line social network dataset, Enron email corpus6, which
is formed by sending and receiving emails between
participants. Experimental results have demonstrated the
good performance of our proposed algorithm MFPB-
HOSTP (see section 7).

The paper is organized as follows. Section 2 introduces
related work. Section 3 presents the complex online social
network structure which incorporates social relationships and
recommendation roles. Section 4 presents a novel social trust
path selection model. Section 5 proposes a novel heuristic
algorithm, MFPB-HOSTP. Section 7 presents the experimental
results and analysis. Finally, section 8 concludes this paper with
a summary and discussion of future work.

2 RELATED WORK

2.1 Social Network Analysis

The studies of social network properties can be traced back to
1960’s when the small-world characteristic in social networks
was validated by Milgram [38], through illustrating that the
average path length between two Americans was about 6 hops
in an experiment of mail sending. In addition, the influences of
small-world characteristic on human interactions was further
analyzed by Pool et al. [41] in the 1970’s. In recent years,
as online social networks have been gaining more popularity,
sociologists and computer scientists have started to investigate
their characteristics. In [40], Mislove et al. analyzed several

5. The complex social network structure and the QoT concept have been
presented in our previous work published at IEEE SCC 2010 [33].

6. http://www.cs.cmu.edu/enron/
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popular social networks including Facebook7, MySpace8 and
Flickr9, and validated the small-world and power-law charac-
teristics (i.e., in a social network, the probability that a node
has degree k is proportional to k−r , r > 1) of online social
networks using data mining techniques. Also using data mining
techniques, Mccallum et al. [36] discovered the social roles
(e.g., a chief financial officer or in-house lawyer) and social
relationships (e.g., partnership in a funding application) in an
email based online social network of Enron Corporation6. Guo
et al [18], further analyzed the influence of social interactions
between buyers on the purchase decisions made by a buyer in
buying products in online shopping websites.

2.2 Social Trust Evaluation in Online Social Net-
works
Trust is a critical factor in the decision-making of participants
in online social networks [26]. In this field, several trust man-
agement methods have been proposed.

In the studies of trust propagation, Golback et al. [15]
proposed a trust inference mechanism for establishing the trust
relation between a source participant and the target one based
on averaging trust values along the social trust paths. They
further adopted this model into an online social network of film
recommendations to indicate the reputation of films. Guha et
al. [17] proposed a trust propagation model, where the number
of hops in trust propagation is considered in calculating the
propagated trust values between a source participant and the
target one. In [34], a trust antecedent framework is used to
determine trust relevant feature categories, namely (i) trustee
ability, (ii) trustee benevolence, and (iii) trustee integrity to
derive features for predict the trust level between two users.

In the studies of trust-oriented recommendation systems,
Walter et al. [45] proposed a recommendation system in a
social network. In their model, a participant can give a trust
value to a recommender based on the recommendation behavior
of participants. This trust value is visible and regarded as
a reference for other participants to select recommendations.
Jamali et al. [23] proposed a random walk model in a social
network consisting of sellers and buyers. In their model, a buyer
performs several random walks with a fixed number of hops
along a path from this buyer in the social network to find the
ratings given by the ending participant to a seller who sells
products preferred by the buyer. The degree of confidence on
the seller is calculated based on the number of random walk
paths, hops and ratings of the seller in each path.

The above trust management strategies are solely based on
trust ratings given by participants. As pointed out in social
science theories [1], [39], social relationships (e.g., the rela-
tionship between a buyer and a seller, or the one between an
employer and an employee) and recommendation roles (e.g.,
the supervisor as a referee in a job application) both have
significant influence on participants’ decision making.

2.3 Social Trust Influence on Service Selection
As indicated in social psychology [5], [12], [50], in the reality
of our society, a person prefers the recommendation from
his/her trusted friends over those from others. In addition, in the
discipline of computer science, based on statistics, Bedi et al.,
[4] and Sinha et al., [42] have demonstrated that, given a choice
between recommendations from trusted friends and those from
recommender systems, trusted friends’ recommendations are

7. http://www.facebook.com
8. http://www.myspace.com
9. http://www.flickr.com

more preferred in terms of quality and usefulness. Furthermore,
in several recent studies, some researchers [8], [10] have inves-
tigated how and to what extent a participant’s service selection
behavior (e.g., installing a specific application software) im-
pacts on his/her friends’ decision-making in service selection.
These studies have indicated that the recommendations from
trusted friends have significant influence on service or target
selection, not only in the society in the real world, but also in
online social networks.

Although a complete social network based trust-oriented
service recommendation system does not yet exists, it has
become an important research topic in recent years. Some
researchers [19], [35] have proposed several models to provide
more accurate recommendations of products and/or services by
taking some social context information into consideration. In
these studies, social trust path selection is a critical problem.
We will analyze some existing studies for this problem in the
following subsection.

2.4 Social Trust Path Selection Methods
In the literature, there are only a few works addressing the
social path selection problem. SmallBlue [30] is an online social
network constructed for IBM staff. In this system, up to 16
social paths with no more than 6 hops are selected between a
source participant and a target participant and the shortest one is
taken as the optimal path. However, in this method, some major
factors including trust information, recommendation roles and
social relationships between participants are not taken into
account in path selection. Hang et al. [21] proposed a social
trust path selection method in online social networks, where
the social trust path with the highest belief (i.e., the maximum
of propagated trust values) is selected as the optimal one that
yields the most trustworthy result of trust propagation between
a source participant and the target participant. Wang et al. [47]
aggregated trust values given to each of the recommenders (i.e.,
the intermediate node) in the network between a source partic-
ipant and the target participant. If the aggregated trust value
of a recommender is greater than the threshold specified by
the source participant, the recommender is kept in the network
for trust evaluation. Otherwise, the recommender (the node)
is deleted from the network. In their models, although trust
information is taken into consideration in trust path selection,
they cannot be applied to social networks which contain social
information, including social relationships and recommenda-
tion roles.

As mentioned above, a source participant can have different
purposes in evaluating the trustworthiness of the target partic-
ipants (e.g., employment or buying products). Therefore, the
source participant can have different trust evaluation criteria in
different applications, and thus they should be able to specify
certain constraints of the above social impact factors for social
trust path selection. But this flexibility is not supported in other
existing methods.

3 COMPLEX SOCIAL NETWORKS
In this section, we present a complex social network structure
originally proposed by us in [33]. Unlike the other existing
models reported in the literature, it takes trust information,
social relationships and recommendation roles of participants
into account.

3.1 Trust
In human societies, trust is a complex topic subject to a lot of
factors, such as previous experience, and other people’s rec-
ommendations [15]. Many different trust definitions have been
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Fig. 2. Complex social network

proposed addressing different aspects. Alunkal et al. [2] define
that “trust is the value attributed to a specific entity, including an
agent, a service, or a person, based on the behaviors exhibited
by the entity in the past”. Golbeck et al. [15] define that “trust
in a person is a commitment to an action based on a belief that
the future action of that person will lead to a good outcome”.

In the context of this paper, trust between participants in
social networks can be defined as follows.
Definition 1: Trust is the belief of one participant in another,
based on their interactions, in the extent to which the future
action to be performed by the latter will lead to an expected
outcome.

Let TAB ∈ [0, 1] denote the trust value that participant
A assigns to participant B. If TAB = 0, it indicates that A
completely distrusts B while TAB =1 indicates A completely
believes B’s future action can lead to the expected outcome.

3.2 Social Intimacy Degree
As illustrated in social psychology [3], a participant can trust
the participants with whom he/she has more intimate social
relationships more than those with whom he/she has less in-
timate social relationships. Therefore, we introduce the social
intimacy degree between participants into complex social net-
works structure, and give its definition as follows.
Definition 2: rAB ∈ [0, 1] is the Social Intimacy Degree be-
tween any given participants A and B in online social networks.
rAB = 0 indicates that A and B have no social relationship
while rAB = 1 indicates they have the most intimate social
relationship.

3.3 Role Impact Factor
Rich activities of participants in social networks can be catego-
rized into different domains (e.g., hiring employees or product
sale) based on their characteristics [48]. As illustrated in social
psychology [1], in a certain domain of interest, recommenda-
tions from a domain expert are more credible than that from a
beginner. Therefore, we introduce the role impact factor of a
participant into the complex social network structure, and give
its definition as follows.
Definition 3: ρA ∈ [0, 1] is the value of the Role Impact Fac-
tor, illustrating the impact of participant A’s recommendation
role on trust propagation. ρA = 1 indicates that A is a domain
expert while ρA = 0 indicates that A has no knowledge in the
domain.

Though it is difficult to construct social relationships and
comprehensive role hierarchies in all domains for the whole
society, and obtain their global values, it is feasible to build
them up in a specific social community.

Firstly, these values can be mined from social networks by
using data mining techniques. For example, in the work by Mc-
callum et al. [36], through mining the subjects and contents of
emails in Enron Corporation6, the social relationship between
each email sender and receiver can be discovered and their
roles can be known. Then the corresponding social intimacy
degree and role impact factor values can be estimated based on

probabilistic models. In addition, in academic social networks
formed by large databases of Computer Science literature (e.g,
DBLP10 or ACM Digital Library11), the social relationships
between two scholars (e.g., co-authors, a supervisor and his/her
students) and the role of scholars (e.g., a professor in the
field of data mining) can be mined from publications or their
homepages. The social intimacy degree and role impact fac-
tor values can be calculated as an example by applying the
PageRank model [44]. Furthermore, in the work by [14], [20],
[43], [46], through mining the profiles of participants and the
communication between them, the probability of a participant
to be knowledgeable in a specific domain and the strength of
the connections between participants are calculated, which can
be converted to the role impact factor and the social intimacy
degree.

Secondly, the values of trust and the role impact factor
can also be specified by participants directly in some social
communities. For example, at FilmTrust3, a user could specify
trust ratings for his/her friends based on the quality of their
movie recommendations. In addition, regarding the role impact
factor, at linkedin12, a user could specify his/her social position
(e.g., a senior C++ programmer at IBM). If the user becomes
a recommender, this social position information could illustrate
his/her role impact factor in the recommendation of a specified
domain. Moreover, in another example of a social network
consisting of the staff in a University [49], the social positions
of a user can also be specified, illustrating the user’s role impact
factor in the recommendations or collaborations of a specific
domain.

Based on the above discussion, in addition to participants and
the links between them, we propose a new structure for complex
social networks that models trust, social intimacy degree and
role impact factors, as depicted in Fig. 2.

4 QUALITY OF TRUST AND QOT AT-
TRIBUTES AGGREGATION
In this section, we first present a novel general concept Quality
of Trust (QoT) and then propose a novel social trust path
selection model with end-to-end QoT constraints [33].

4.1 Quality of Trust (QoT)
In Service-Oriented Computing (SOC), QoS (Quality of Ser-
vice) consists of a set of attributes, used to illustrate the ability
of services to guarantee a certain level of performance [13].
Similar to QoS, we present a new concept, Quality of Trust [31].
Definition 4: Quality of Trust (QoT) is the ability to guarantee
a certain level of trustworthiness in trust propagation along a
social trust path, taking trust (T ), social intimacy degree (r),
and role impact factor (ρ), as attributes.

In service invocations, users can set multiple end-to-end
constraints for the attributes of QoS to satisfy their require-
ments (e.g., cost, delay and availability) of services. Different
requirements have different constraints (e.g., total cost<$20,
delay<5s and availability>70%). In our model, to satisfy dif-
ferent trust evaluation criteria, a source participant can specify
multiple end-to-end constraints for QoT attributes (i.e., T , r
and ρ) as the requirements of trust propagation in a social trust
path of different domains.

Let Qµ
vs,vt

(µ ∈ {T, r, ρ}) denote the end-to-end constraint
of QoT attribute µ for the paths between vs and vt (throughout

10. http://www.informatik.uni-trier.de/ ley/db/
11. http://portal.acm.org/
12. http://www.linkedin.com
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this paper, vs denotes the source participant and vt denotes the
target participant in a social network). For example, as shown
in Fig. 2, to hire employees, A, a retailer manager specifies the
end-to-end QoT constraints for the social trust paths from A to
M as QAM = {QT

A,M > 0.3, Qr
A,M > 0.3, Qρ

A,M > 0.8},
if he/she believes the social position of participants is more
important in the domain of employment. But when looking for
new customers for selling products, A could specify QoT con-
straints as QA,M = {QT

A,M > 0.8, Qr
A,M > 0.3, Qρ

A,M >
0.3}, if he/she believes the social relationships between partic-
ipants are more important in the domain of product sale.

4.2 QoT Attribute Aggregation

To specify end-to-end QoT constraints, we present the follow-
ing aggregation methods for QoT attributes in a social trust path
[33].

4.2.1 Trust Aggregation

The trust values between a source participant and the target
participant in a social path can be aggregated based on trust
transitivity property (i.e., if A trusts B and B trusts C, then
A trusts C to some extent) [15]. Since trust is discounted
with the increase of transitivity hops [9], in our model, we
adopt the strategy proposed in [28], [45], where if there are n
participants a1, ..., an in order in a social trust path (denoted
as p(a1, ..., an)), the aggregated trust value is calculated as in
Eq. (1). This strategy has been widely used in the literature as a
feasible trust aggregation method [6], [32], [45].

Tp(a1,...,an) =
∏

(ai,ai+1)∈p(a1,...,an)

Tai ai+1 (1)

This aggregated trust value will be combined with the social
intimacy degree and the role impact factor in the following
context to select the optimal social trust path.

4.2.2 Social Intimacy Degree Aggregation

Firstly, social intimacy between participants decays with the
increasing number of hops between them in a social trust path
[27], [39]. In addition, in the real-world, the intimacy degree de-
cays fast when it approaches 1. In contrast, the intimacy degree
decays slowly when it approaches zero [7], [22]. Namely, the
decay speed of the social intimacy degree is non-linear in social
networks. The aggregated r value in path p(a1, ..., an) can
be calculated by Eq.(2) whose function image is a hyperbolic
curve, fitting the characteristic of social intimacy attenuation
[39].

rp(a1,...,an) =
∏

(ai,ai+1)∈p(a1,...,an)

rai ai+1 (2)

4.2.3 Role Impact Factor Aggregation

As illustrated in social psychology [37], in the same society,
the role impact factor of a participant does not decay with the
increase of transitivity hops. Thus, the aggregated ρ value of
p(a1,...an) can be calculated by Eq. (3).

ρp(a1,...,an) =
∑n−1

i=2 ρai

n− 2
(3)

4.3 Utility Function
In our model, we define the utility (denoted as F ) as the
measurement of the trustworthiness of social trust paths. The
utility function takes the QoT attributes T , r and ρ as the
arguments in Eq. (4)

Fp(a1,...,an) =ωT ∗Tp(a1,...,an)+ωr ∗rp(a1,...,an)+ωρ∗ρp(a1,...,an)
(4)

where ωT , ωr and ωρ are the weights of T , r and ρ respectively;
0 < ωT , ωr, ωρ < 1 and ωT + ωr + ωρ = 1.

The goal of optimal social trust path selection is to select
the path that satisfies multiple end-to-end QoT constraints and
yields the best utility with the weights specified by the source
participant.

5 SOCIAL TRUST PATH SELECTION ALGO-
RITHMS
The optimal social trust path selection with multiple end-to-
end QoT constraints can be modelled as the classical Multi-
Constrained Optimal Path (MCOP) selection problem which
has been proved to be NP-Complete [24]. In this section,
we first analyze some existing approximation algorithms for
the MCOP selection problem, including our earlier H OSTP
algorithm [33], and then propose a novel Multiple Foreseen
Path-Based Heuristic algorithm for Optimal Social Trust Path
selection, MFPB-HOSTP.

5.1 Existing Algorithms
5.1.1 H MCOP
Korkmaz et al. [24] propose a heuristic algorithm H MCOP
for the multiple-constrained optimal path selection in service
invocation. In this algorithm, both multi-constrained values and
QoS attributes values are aggregated based on Eq. (5).

gλ(p) , (
q1(p)
Q1

vs,vt

)λ + (
q2(p)
Q2

vs,vt

)λ + ... + (
qm(p)
Qm

vs,vt

)λ (5)

where λ ≥ 1; qi(p) is the aggregated value of the ith QoS
attribute of path p (e.g., the total cost of the services in a
path formed by service invocation); Qi

vs,vt
is the ith QoS

constraint value of the selected path between vs and vt (e.g.,
Qcost

vs,vt
≤ $100).

H MCOP first adopts Dijkstra’s shortest path algorithm [11]
to find the path with the minimum gλ from vt to vs, which
intends to investigate whether there exists a feasible solution
satisfying all end-to-end QoS constraints in a sub-network. In
this process, at each intermediated node vk, the aggregated
value of each QoS attribute for the identified path from vk to vt

is computed and recorded. If there exists at least one feasible
solution, then these aggregated values are used in another
search from vs to vt, which intends to identify a feasible path
from vs to vt with the minimal cost of services.

Before we proposed H OSTP in 2010 [33], H MCOP was
one of the most promising algorithms for the MCOP selection
problem as it outperformed prior existing algorithms in both
algorithm efficiency and solution quality [24], [33].

5.1.2 MCSP K
Based on H MCOP, in the field of Service-Oriented Computing
(SOC), Yu et al. [52] propose an approximation algorithm,
MCSP K, which keeps only K paths from a source node to
each intermediate node, aiming to reduce the search space and
execution time. In their service candidate graph, each node rep-
resents a service and all services are categorized into different
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service sets based on their functionality. There is a link between
any two nodes in adjacent service sets and thus all the paths
from a source node to an intermediate node can be enumerated
when necessary, avoiding an exhaustive search. But if a network
does not have such a typical structure, MCSP K has to search
all the paths from a source node to each intermediate node and
hence the time complexity becomes exponential. Therefore, it
does not scale up to large social networks.

5.1.3 H OSTP
In [33], based on Dijkstra’s shortest path algorithm [11], we
developed a novel efficient Heuristic algorithm for the Optimal
Social Trust Path selection, called H OSTP, in complex social
networks.

In H OSTP, we first proposed the objective function given
in Eq. (6) and adopted the Backward Search procedure to
identify the path with the minimal δ from vt to vs to investigate
whether there exists a feasible solution where all end-to-end
QoT constraints can be satisfied in the sub-network, and to
record the aggregated QoT attributes (i.e., T, r and ρ) of the
path identified from vt to each intermediate node vk.

δ(p) , max{( 1− Tp

1−QT
vs,vt

), (
1− rp

1−Qr
vs,vt

), (
1− ρp

1−Qρ
vs,vt

)}
(6)

If a feasible solution exists, H OSTP then adopts the For-
ward Search procedure to search the network from vs to
vt to deliver a near-optimal solution. This process adopts
the information provided by Backward Search to identify
whether there is another path pforward

vs→vt
which satisfies QoT

constraints. In this process, H OSTP first searches the path
with the maximal F value from vs. Assume node vm ∈
{neighboring nodes of vs} is selected based on Dijkstra’s
shortest path algorithm as the utility of the path from vs to
vm (denoted as the forward local path p

f(u)
vs→vm ) is maximal.

Let p
b(δ)
vm→vt denote the backward local path from vm to vt

identified in the Backward Search procedure. Then a foreseen
path from vs to vt via vm (denoted as fp

f(u)+b(δ)
vs→vm→vt =

p
f(u)
vs→vm + p

b(δ)
vm→vt ) is formed.

If fp
f(u)+b(δ)
vs→vm→vt is feasible, then H OSTP chooses the next

node from vm with the maximal F value which is calcu-
lated based on Dijkstra’s shortest path algorithm. Otherwise,
H OSTP does not search the path from vm and the link
vs → vm is deleted from the sub-network. Subsequently,
H OSTP performs the Forward Search procedure to search the
path from vs in the sub-network without the link vs → vm.

5.1.4 Other algorithms
Some other algorithms [53], [54] adopt integer linear pro-
gramming to solve the service selection problem with multi-
QoS constraints. But in [52] they have been proved having
low efficiency in finding a near-optimal solution in large-scale
networks.

5.2 Advantages and Disadvantage of H OSTP
Advantages: H OSTP could detect whether there exist a fea-
sible solution in a sub-network, as it adopts a new objective
function δ(p) which is better than that of H MCOP. If there
exists at least one feasible solution, H OSTP does not deliver
any solution which is worse in quality than that of H MCOP,
and could possibly deliver better solutions than H MCOP. In
addition, when a foreseen path is infeasible (i.e., at least one
aggregated QoT attribute value of the path does not satisfy the

Fig. 3. Limitation of H OSTP
TABLE 1

Social trust paths and the aggregated QoT attributes
values

Path Nodes and Links T r ρ

pf(u)
vs→v4

vs → v1 → v2 → v4 0.4 0.8 0.5

pb(δ)
v4→vt

v4 → v3 → v5 → vt 0.5 0.6 0.5

pb(T )
v4→vt

v4 → vt 0.8 0.45 0.5
path v2 → vt v2 → vt 0.75 0.4 0.4

corresponding QoT constraint), the corresponding link between
nodes is deleted, which reduces the search space and makes
H OSTP more efficient than H MCOP [33].

Disadvantage: Although H OSTP significantly outper-
forms existing approximation algorithms in both the efficiency
and the quality of identified social trust paths, it still has a
disadvantage called the imbalance problem of QoT attributes,
which may cause a failed feasibility estimation of a foreseen
path in the forward search procedure from vs to vt, and deliver
a solution with a low utility that is not near optimal. We analyze
the disadvantage of H OSTP below in detail.

If a feasible solution (i.e., a path where the aggregated value
of each QoT attribute satisfies the corresponding QoT con-
straint) exists in the sub-network between vs and vt, H OSTP
performs the Forward Search procedure, where H OSTP in-
vestigates the feasibility of the foreseen path fp

f(u)+b(δ)
vs→vk→vt

to estimate whether a feasible solution can be delivered by
following p

f(u)
vs→vk . But this strategy may give a failed feasi-

bility estimation. Namely, even if fp
f(u)+b(δ)
vs→vk→vt is infeasible,

there may still exist a feasible solution identified by following
p

f(u)
vs→vk in the sub-network.

We use the following example to illustrate the imbalance
problem of QoT attributes in H OSTP. Fig. 3 depicts a social
network between vs and vt, which contains five intermedi-
ate nodes v1 to v5, and the aggregated QoT attribute values
computed by the Backward Search procedure at each of these
nodes are listed in Table 1. Suppose that vs specifies the QoT
constraints as QT

vs,vt
> 0.3, Qr

vs,vt
> 0.3 and Qρ

vs,vt
> 0.2.

Based on the search strategy introduced in Section 5.1.3, at
v4, H OSTP concatenates the social trust path p

f(u)
vs→v4 with

p
b(δ)
v4→vt to form a foreseen path fp

f(u)+b(δ)
vs→v4→vt with the aggre-

gated QoT attributes values as T = 0.2, r = 0.48 and ρ = 0.5,
which is infeasible (note: the aggregated T = 0.2 does not
satisfy the corresponding constraint QT

vs,vt
> 0.3). In such a

situation, H OSTP deletes the link v2 → v4 in p
f(u)
vs→v4 and

selects another path vs → v1 → v2 → vt as the near-optimal
social trust path between vs and vt. Suppose the QoT attributes
have the same weights in the utility function, then the utility of
this path is 0.35.

However, as shown in Fig. 3, the aggregated values of QoT
attributes of another path v4 → vt (denoted as p

b(T )
v4→vt ) are

T = 0.8, r = 0.45 and ρ = 0.5. If we concatenate p
f(u)
vs→v4 and

p
b(T )
v4→vt together, a new foreseen path fp

f(u)+b(T )
vs→v4→vt is formed

that is feasible. In such a situation, the path vs → v1 → v2 →
v4 → vt with a utility of 0.39 is selected as the solution, which
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has a better quality than the one identified by H OSTP (i.e., the
utility=0.35).

From the above example, we can see that the foreseen
path formed by concatenating path p

f(u)
vs→vk with path p

b(δ)
vk→vt

may not accurately estimate whether there exists a feasible a
solution identified by following p

f(u)
vs→vk in the forward search

procedure. This is because during searching p
b(δ)
vk→vt , one of the

aggregated values of the QoT attributes may be already close
to the corresponding QoT constraints (e.g., T = 0.5 of p

b(δ)
v4→vt

in Fig. 3). In such a situation, if the aggregated values of that
QoT attribute is also close to the corresponding QoT constraint
in p

f(u)
vs→vk (e.g., T = 0.4 of p

f(u)
v4→vt in Fig. 3), the foreseen

path at vk is usually infeasible. This is the typical imbalance
problem of QoT attributes (e.g., the imbalance problem of T at
v4 in Fig 3), which may lead to a failed feasibility estimation of
a foreseen path. In such a situation, H OSTP cannot identify a
social trust path with a high utility that is near-optimal.

6 OUR PROPOSED MFPB-HOSTP ALGO-
RITHM
6.1 Algorithm Overview
We first introduce some definitions below that are used to
describe our algorithm.
Definition 5: (Backward Local Path (BLP)): In a sub-
network from vs to vt, a Backward Local Path (BLP) is the path
from vt to an intermediate node vk, identified by the backward
search from vt to vs.

Based on Definition 5, path p
b(δ)
vk→vt identified by the back-

ward search procedure is a BLP.
Definition 6: (Forward Local Path (FLP)): In a sub-network
from vs to vt, a Forward Local Path (FLP) is the path from vs to
an intermediate node vk, identified by the forward search from
vs to vt.

Based on Definition 6, path p
f(u)
vs→vt identified by the forward

search procedure is an FLP. A foreseen path can be formed at
the same intermediate node vk by concatenating an FLP that
ends at node vk and a BLP that starts from node vk.
Definition 7: (Composite Backward Local Path (CBLP)): in
a sub-network between vs and vt, a Composite Backward Local
Path (CBLP) is the path which is composed of the BLP with the
minimal δ and the links of BLP with the maximal aggregated
value for one of the QoT attributes.

Based on the above definitions, we propose a novel Multiple
Foreseen Path-Based Heuristic algorithm for Optimal Social
Trust Path selection (MFPB-HOSTP) in complex social net-
works, which inherits the advantages of H OSTP (i.e., the
objective function) and aims to overcome its disadvantage (i.e.,
the imbalance problem of QoT attributes). Our MFPB-HOSTP
also bidirectionally searches a sub-network (i.e., by employing
both a backward search and a forward search procedure) by
adopting Dijkstra’s shortest path algorithm [11]. But our algo-
rithm employs different search strategies with H OSTP.

In the backward search procedure from vt to vs, at each in-
termediate node vk, in addition to BLP p

b(δ)
vk→vt , MFPB-HOSTP

first identifies the BLPs with the maximal aggregated T , r and
ρ values respectively (denoted as p

b(µ)
vk→vt , µ ∈ {T, r, ρ}).

When facing with the imbalance problem of QoT attribute
µ (µ ∈ {T, r, ρ}) at vk (e.g., T at v4 in Fig. 3), the identified
BLPs p

b(µ)
vk→vt (µ ∈ {T, r, ρ}) are concatenated with the

identified FLP, forming other foreseen paths (e.g., fp
f(u)+b(T )
vs→v4→vt

in Fig. 3), helping avoid a failed feasibility estimation of a
foreseen path and having a chance to deliver a better solution

than H OSTP (e.g., the path vs → v1 → v2 → v4 → vt

in Fig. 3). However, greedily maximizing the aggregated value
of the QoT attribute may cause a new imbalance problem of
QoT attributes (see a detailed analysis in Step 2 in the following
section of Algorithm Description). Therefore, MFPB-HOSTP
then identifies some CBLPs the number of which depends on
the number of intermediate nodes of p

b(µ)
vk→vt (µ ∈ {T, r, ρ}).

When facing with the new imbalance problem of QoT attributes
at vk, these CBLPs are used to be concatenated with the FLP
to balance QoT attributes in the newly formed foreseen paths,
which could increase the probability of delivering a solution
with high utility that is near-optimal (see a detailed analysis in
Step 2 in the following section of Algorithm Description).

The backward search procedure could illustrate whether
there exists a feasible solution in a sub-network (it is proved in
Theorem 1 in the following section of Algorithm Description).
If there exists at least one feasible solution, MFPB-HOSTP
performs a forward search procedure from vs to vt. This pro-
cedure intends to identify the path with the maximal utility by
using Dijkstra’s shortest path algorithm [11]. When facing with
the imbalance problem of QoT attributes at vk, MFPB-HOSTP
concatenates the FLP (i.e., p

f(u)
vs→vk ) with BLPs and CBLPs,

forming multiple foreseen paths, instead of one foreseen path
only in H OSTP. This strategy could effectively help address
the imbalance problem of QoT attributes in path selection, and
thus helping avoid a failed feasibility estimation of a foreseen
path in the social path selection.

6.2 Algorithm Description
In this section, we give a more detailed description of our
proposed MFPB-HOSTP algorithm.

Backward Search: In the Backward Search procedure,
MFPB-HOSTP searches the sub-network from vt to vs to
investigate whether there exists a feasible solution in the sub-
network. In this process, at each intermediate node vk, several
BLPs and CBLPs from vt to vk are identified. The identification
of these paths can be divided into the following 4 steps.

Step 1 (identify the BLP with the minimal δ):
In social trust path selection, if a path satisfies multiple QoT

constraints, the aggregated value of each QoT attribute (i.e., T ,
r or ρ) of that path should be larger than the corresponding
QoT constraint. From Eq. (6), we can see that if any aggregated
QoT attribute value of a social trust path does not satisfy
the corresponding QoT constraint, then δ(p) > 1. Otherwise
δ(p) ≤ 1.

To investigate whether there exists a feasible solution in a
sub-network, in this step, MFPB-HOSTP identifies the path
from vt to vs with the minimal δ (i.e., p

b(δ)
vs→vt ) based on Di-

jkstra’s shortest path algorithm [11]. In the searching process,
at each intermediate node vk, BLP p

b(δ)
vk→vt is identified and the

aggregated QoT attribute values of these paths (i.e., T
p

b(δ)
vk→vt

r
p

b(δ)
vk→vt

and ρ
p

b(δ)
vk→vt

) are computed and recorded. According
to the following Theorem 1, the Backward Search procedure
can investigate whether there exists a feasible solution in the
sub-network.

Theorem 1: In the Backward Search procedure, the process
of identifying the path with the minimal δ can guarantee finding
a feasible solution if at least one feasible solution exists in a
sub-network.

Proof: Let pbackward
vs→vt

= p
b(δ)
vs→vt be a path from vt to

vs with the minimal δ, and p∗ be a feasible solution. Then,
δ(pbackward

vs→vt
) ≤ δ(p∗). Assume pbackward

vs→vt
is not a feasible

solution, then ∃ϕ ∈ {T, r, ρ} that ϕpbackward
vs→vt

< Qϕ
vs,vt

.
Hence, δ(pbackward

vs→vt
) > 1. Since p∗ is a feasible solution,
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Fig. 4. Multiple CBLPs in backward search procedure

Fig. 5. The CBLP in path selection

then δ(p∗) ≤ 1 and δ(pbackward
vs→vt

) > δ(p∗). This contradicts
δ(pbackward

vs→vt
) ≤ δ(p∗). Therefore, pbackward

vs→vt
is a feasible

solution. ¤
The Backward Search procedure can always identify the

path with the minimal δ. If δmin > 1, it indicates there is
no feasible solution in the sub-network, then the algorithm
terminates. If δmin ≤ 1, it indicates there exists at least one
feasible solution and the identified path is a feasible solution.
In such a case, the algorithm will perform the following steps
to deliver a near-optimal solution.

Step 2 (identify the BLP with the maximal aggregated T
value and the corresponding CBLPs): In this step, at each
intermediate node vk, MFPB-HOSTP first identifies the BLP
with the maximal aggregated T value (i.e., p

b(T )
vk→vt ), and then

identifies several corresponding CBLPs which are composed of
part of p

b(T )
vk→vt and a BLP with the minimal δ from vt to each

intermediate node in p
b(T )
vk→vt .

(a): identify the BLPs with the maximal T . MFPB-HOSTP
first identifies the path from vt to vs with the maximal aggre-
gated T value (i.e., p

b(T )
vs→vt ) based on Dijkstra’s shortest path

algorithm [11]. In the searching process, at each intermediate
node vk, BLP p

b(T )
vk→vt (e.g., BLP v4 → vt in Fig. 3) and

the aggregated QoT attributes’ values of p
b(T )
vk→vt are computed

and recorded. When facing with the imbalance problem of
T at vk, BLP p

b(T )
vk→vt is concatenated with the FLP p

f(u)
vk→vt ,

forming a new foreseen path fp
f(u)+b(T )
vs→vk→vt (e.g., the foreseen

path v1 → v2 → v4 → vt in Fig. 3). This foreseen path
could be used as a reference to estimate whether there exists a
feasible solution identified by following p

f(u)
vs→vk . This strategy

could help avoid a failed feasibility estimation of a foreseen
path caused by the imbalance problem of T at vk.

(b): identify the CBLPs based on the BLPs with the
maximal T . Greedily maximizing the aggregated T value
without considering other QoT attributes values in p

b(T )
vk→vt may

lead to the new imbalance problem of QoT attributes (i.e., r

and ρ). Therefore, in addition to p
b(T )
vk→vt , suppose there are M

intermediate nodes (denoted as vl, l ∈ [1,M ]) in path p
b(T )
vk→vt ,

MFPB-HOSTP then identifies M Composite Backward Local
Paths at vk (denoted as p

CBLP M (T )
vk→vt which are composed of

p
b(T )
vk→vl l ∈ [1,M ] and p

b(δ)
vl→vt , l ∈ [1,M ]. For example, as

shown in Fig. 4, since there is no intermediate node between
v4 and vt in BLP p

b(T )
v4→vt (i.e., M=0), MFPB-HOSTP only

TABLE 2
BLPs, CBLPs, and the aggregated QoT attributes values

Path Nodes and Links T r ρ

pf(u)
vs→v2

vs → v1 → v2 0.3 0.8 0.5

pb(δ)
v2→vt

v2 → v4 → vt 0.25 0.5 0.4

pb(T )
v2→vt

v2 → v5 → v4 → vt 0.7 0.1 0.3

pCBLP1(T )
v2→vt

v2 → v5 → vt 0.5 0.2 0.3
path v3 → vt v3 → v6 → vt 0.4 0.2 0.3

identifies one BLP p
b(T )
v4→vt = v4 → vt. Since there exists an

intermediate node v4 between v2 and vt in BLP p
b(T )
v2→vt (i.e.,

M = 1), in addition to p
b(T )
v2→vt , MFPB-HOSTP identifies one

CBLP p
CBLP 1(T )
v2→vt = (v2 → v4) + p

b(δ)
v4→vt . Similarly, at v1

there exist two intermediate nodes between v1 and vt in BLP
p

b(T )
v1→vt (i.e., M = 2), MFPB-HOSTP identifies two CBLPs.

They are CBLP p
CBLP 1(T )
v1→vt = (v1 → v2 → v4) + p

b(δ)
v4→vt

and CBLP p
CBLP 2(T )
v1→vt = (v1 → v2) + p

b(δ)
v2→vt . When facing

with the new imbalance caused by the BLP with the maximal
T , the M CBLPs at vk are concatenated with the FLP p

f(u)
vs→vk .

This strategy could help avoid a failed feasibility estimation
of a foreseen path caused by the new imbalance problem of
other two QoT attributes (i.e., r and ρ) at vk. Next we use an
example to illustrate the effectiveness of CBLPs in solving the
new imbalance problem of QoT attributes.

Fig. 5 depicts a sub-network between vs and vt. Table 2 lists
the FLP at v2, the BLP at v2, the corresponding CBLP at v2,
and the aggregated values of QoT attributes of these paths. Sup-
pose that the QoT constraints specified by source participant vs

are QT
vs,vt

= 0.12, Qr
vs,vt

= 0.15 and Qρ
vs,vt

= 0.3. We
could see that the foreseen path fp

f(u)+b(δ)
vs→v2→vt is infeasible due

to the imbalance problem of T at v2 (T = 0.075 < QT
vs,vt

=
0.12). Then MFPB-HOSTP concatenates the FLP with BLP
p

b(T )
v2→vt to form another foreseen path fp

f(u)+b(T )
vs→v2→vt .

However, we could see there arises a new imbalance prob-
lem of r, where the aggregated r value of fp

f(u)+b(T )
vs→v2→vt does

not satisfy the corresponding QoT constraint (r = 0.08 <
Qr

vs,vt
= 0.15) and thus the foreseen path is infeasible. In

such a situation, suppose p
b(δ)
v5→vt = v5 → vt, at v2, MFPB-

HOSTP identifies the CBLP p
CBLP 1(T )
v2→vt = v2 → v5 → vt

and concatenates it with the FLP to balance the aggregated r

value. In such a situation, the foreseen path fp
f(u)+CBLP 1(T )
vs→v2→vt

is feasible. Assume the QoT attributes have the same weight in
the utility function, with the assistance of CBLP p

CBLP 1(T )
v2→vt ,

MFPB-HOSTP could select the path vs → v1 → v2 → v5 →
vt with the utility of 0.117 as the solution. Otherwise, the path
vs → v1 → v3 → v6 → vt with the utility of 0.107 will
be selected, which is worse than the one (i.e., utility is 0.117)
identified with the assistance of CBLPs.

From this example, we could see that when facing with the
new imbalance problem of QoT attributes caused by greedily
maximizing the aggregated QoT attributes values in BLPs,
CBLPs could help avoid a failed feasibility estimation caused
by a new imbalance problem of QoT attributes. Thus with
the assistance of CBLPs, MFPB-HOSTP could deliver a better
solution in some cases. In the process of identifying these BLPs
and CBLPs, if there exist two overlapping paths (i.e., they have
the same aggregated QoT attributes values), MFPB-HOSTP
keeps only one of them for further search, saving execution
time.

Step 3 (identify the BLP with the maximal aggregated r
value and the corresponding CBLPs):

(a): identify the BLPs with the maximal r. Similar to Step
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2, in order to avoid the imbalance problem of r, in this step,
at each intermediate node vk, MFPB-HOSTP first identifies the
BLP with the maximal aggregated r value (denoted as p

b(r)
vk→vt )

based on Dijkstra’s shortest path algorithm [11]. In this search
process, at vk, the aggregated values of QoT attributes of
p

b(r)
vk→vt are computed and recorded. When facing with the im-

balance problem of r at vk, BLP p
b(r)
vk→vt is concatenated with

the FLP p
f(u)
vs→vk , forming a new foreseen path fp

f(u)+b(r)
vs→vk→vt .

This foreseen path is used as a reference to estimate whether
there exists a feasible solution identified by following p

f(u)
vs→vk .

This strategy could avoid a failed feasibility estimation of a
foreseen path caused by the imbalance problem of r at vk.

(b): identify the CBLPs based on the BLPs with the max-
imal r. To avoid the new imbalance problem of QoT attributes
caused by greedily maximizing r value, MFPB-HOSTP then
identifies M CBLPs at each intermediate node vk, which are
composed of p

b(r)
vk→vl , l ∈ [1,M ] and p

b(δ)
vl→vt , l ∈ [1,M ].

When facing with the new imbalance problem of QoT attributes
caused by maximizing r value, the identified M CBLPs at vk

are concatenated with the FLP p
f(u)
vs→vk , to estimate whether

there exists a feasible solution identified by following the
FLP. This could help avoid a failed feasibility estimation of
a foreseen path caused by the new imbalance problem of the
other two QoT attributes (i.e., T and ρ) at vk.

Step 4 (identify the BLP with the maximal aggregated ρ
value and the corresponding CBLPs):

(a): identify the BLPs with the maximal ρ. To avoid the
imbalance problem of ρ, in this step, at each intermediate node
vk, MFPB-HOSTP first identifies the BLP with the maximal
aggregated ρ value (denoted as p

b(ρ)
vk→vt ) based on Dijkstra’s

shortest path algorithm [11]. In this search process, at each vk,
the aggregated QoT attributes values of p

b(ρ)
vk→vt are computed

and recorded. When facing with the imbalance problem of ρ at
vk, BLP p

b(ρ)
vk→vt is concatenated with the FLP p

f(u)
vk→vt , forming

a new foreseen path fp
f(u)+b(ρ)
vs→vk→vt . This strategy could help

avoid a failed feasibility estimation of a foreseen path caused
by the imbalance problem of ρ at vk.

(b): identify the CBLPs based on the BLPs with the max-
imal ρ. To avoid the new imbalance problems of QoT attributes
caused by greedily maximizing ρ value, MFPB-HOSTP then
identifies M CBLPs at each intermediate node vk, which are
composed of p

b(ρ)
vk→vl , l ∈ [1,M ] and p

b(δ)
vl→vt , l ∈ [1,M ].

When facing with the new imbalance problem of QoT attributes
caused by the BLP with the maximal ρ at vk, the M CBLPs
at vk are concatenated with the FLP p

f(u)
vs→vk , to estimate the

feasibility of searching by following the FLP. This could avoid
a failed feasibility estimation of a foreseen path caused by the
new imbalance problem of the other two QoT attributes (i.e., T
and r) at vk.

In summary, the Backward Search procedure can illustrate
whether there exists a feasible solution in a sub-network. In
addition, if a feasible solution exists, compared with the Back-
ward Search procedure of H OSTP, MFPB-HOSTP identifies
the BLP with the maximal aggregated value of each of the QoT
attributes. Furthermore, to solve a new imbalance problem of
QoT attributes caused by greedily maximizing the aggregated
values of QoT attributes, MFPB-HOSTP also identifies several
CBLPs, which are composed of part of the BLP with the min-
imal δ and part of the BLP with the maximal aggregated value
of each of the QoT attributes. When facing with an imbalance
problem of QoT attributes, the identified BLPs and CBLPs will
be used in the following Forward Search procedure aiming
to avoid a failed feasibility estimation of a foreseen path in
H OSTP and deliver a near-optimal solution. Next we discuss

Algorithm 1: MFPB-HOSTP
Data: MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt

Result: pforward
vs→vt

, F(pforward
vs→vt

)

begin1
pforward

vs→vt
= ∅, pbackward

vs→vt
= ∅2

Backward Search(M(vs, vt), QT
vs,vt

, Qr
vs,vt

, Qρ
vs,vt

)3
if δ(pbackward

vs→vt
) > 1 then4

Return no feasible solution5

else6
Forward Search(MT (vs, vt), AQµ(pb(δ)

vk→vt
),7

AQµ(pb(µ)
vk→vt

), AQµ(pCBLP (µ)
vk→vt

), µ ∈ {T, r, ρ}, QT
vs,vt

,
Qr

vs,vt
, Qρ

vs,vt
)

Return pforward
vs→vt

and F(pforward
vs→vt

)8

end9

Algorithm 2: Backward Search ()
Data: MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt

Result: δ(pbackward
vs→vt

), AQµ(pb(δ)
vk→vt

), AQµ(pb(µ)
vk→vt

),
AQµ(pCBLP (µ)

vk→vt
), (µ ∈ {T, r, ρ})

begin1
Set vx.d = ∞ (vx 6= vt), vt.d = 0, Sx = ∅, pb(δ)

vt→vt
= vt2

Add vt into Sx3
while Sx 6= ∅ do4

va.d = min(v∗a.d) (v∗a ∈ Sx)5
for each vb ∈ adj[va] do6

if vb /∈ Sx then7
Put vb into Sx8
pb(δ)

vb→vt
= vb → va + pb(δ)

va→vt9

else if δ(vb → va + pb(δ)
va→vt

) < vb.d then10
Update vb.d and AQµ(pb(δ)

vb→vt
), (µ ∈ {T, r, ρ})11

pb(δ)
vb→vt

= vb → va + pb(δ)
va→vt12

Remove va from Sx13

pbackward
vs→vt

= pb(δ)
vs→vt14

if δ(pbackward
vs→vt

) ≤ 1 then15
Computing Max T(MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
)16

Computing Max r(MT (vs, vt), QT
vs,vt

, Qr
vs,vt

, Qρ
vs,vt

)17
Computing Max ρ(MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt
)18

end19

the search strategies adopted in the following Forward Search
procedure of MFPB-HOSTP.

Forward Search: In the forward search from vs to vt,
MFPB-HOSTP uses the BLPs and CBLPs identified by the
above Backward Search procedure to investigate whether there
exists another path pforward

vs→vt
, which is better in quality

than the above path pbackward
vs→vt

= p
b(δ)
vs→vt returned in the

Backward Search procedure (i.e., whether F(pforward
vs→vt

) >
F(pbackward

vs→vt
)).

In this procedure, MFPB-HOSTP searches the path with
the maximal F value from vs to vt. Assume node vm ∈
{neighboring nodes of vs} is selected based on Dijkstra’s
shortest path algorithm (i.e., FLP p

f(u)
vs→vm is identified). Then,

MFPB-HOSTP concatenates the FLP with BLP p
b(δ)
vm→vt to

form a foreseen path fp
f(u)+b(δ)
vs→vm→vt . If the foreseen path is fea-

sible, MFPB-HOSTP then chooses the next node from vm with
the maximal F value. Otherwise, MFPB-HOSTP concatenates
the FLP with the BLPs with the minimal T , r and ρ respec-
tively to form three foreseen paths {fp

f(u)+BLP (µ)
vs→vm→vt (µ ∈

{T, r, ρ})}. According to the feasibility of these foreseen
paths, MFPB-HOSTP adopts the following search strategies.

Situation 1: If one of {fp
f(u)+b(µ)
vs→vm→vt (µ ∈ {T, r, ρ})} is

feasible, MFPB-HOSTP adopts the following two strategies to
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Algorithm 3: Computing Max T ()
Data: MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt

Result: AQµ(pb(T )
vk→vt

) and AQµ(pCBLP (T )
vk→vt

), (µ ∈ {T, r, ρ})
begin1

Set vx.d = ∞ (vx 6= vt), vt.d = 0, Sx = ∅, pb(T )
vt→vt

= vt,2
pCBLP (T )

vt→vt
= vt

Add vt into Sx3
while Sx 6= ∅ do4

va.d = min(v∗a.d) (v∗a ∈ Sx)5
for each vb ∈ adj[va] do6

obj = 1/AQT (pb(δT )
va→vt

+ va → vb)7
if vb /∈ Sx then8

Put vb into Sx9
pb(T )

vb→vt
= vb → va + pb(T )

va→vt10

else if obj < vb.d then11
Update AQT (pb(T )

vb→vt
)12

vb.d = obj13
pb(T )

vb→vt
= vb → va + pb(T )

va→vt14

for i = 1 to M do15
pCBLP i(T )

vb→vt
= pCBLP i(T )

va→vt16
AQµ(pCBLP i(T )

vb→vt
) = AQµ(pCBLP i(T )

va→vt
)17

pCBLP M+1(T )
vb→vt

= vb → va + pb(δ)
va→vt18

Remove va from Sx19

end20

Algorithm 4: Computing Max r ()
Data: MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt

Result: AQµ(pb(r)
vk→vt

) and AQµ(pCBLP (r)
vk→vt

), (µ ∈ {T, r, ρ})
begin1

Set vx.d = ∞ (vx 6= vt), vt.d = 0, Sx = ∅, pb(r)
vt→vt

= vt,2
pCBLP (r)

vt→vt
= vt

Add vt into Sx3
while Sx 6= ∅ do4

va.d = min(v∗a.d) (v∗a ∈ Sx)5
for each vb ∈ adj[va] do6

obj = 1/AQr(pb(δr)
va→vt

+ va → vb)7
if vb /∈ Sx then8

Put vb into Sx9
pb(r)

vb→vt
= vb → va + pb(r)

va→vt10

else if obj < vb.d then11
Update AQr(pb(r)

vb→vt
)12

vb.d = obj13
pb(r)

vb→vt
= vb → va + pb(r)

va→vt14

for i = 1 to M do15
pCBLP i(r)

vb→vt
= pCBLP i(r)

va→vt16
AQµ(pCBLP i(r)

vb→vt
) = AQµ(pCBLP i(r)

va→vt
)17

pCBLP M+1(r)
vb→vt

= vb → va + pb(δ)
va→vt18

Remove va from Sx19

end20

identify two social trust paths and selects the feasible social
trust path with the higher utility value as the final solution.

1) Strategy 1: MFPB-HOSTP identifies one path by choos-
ing the next node from vm with the maximal F value.

2) Strategy 2: MFPB-HOSTP identifies another path by
searching another neighboring node of vs with the maxi-
mal F , which is the same as the search strategy adopted
in H OSTP [33].

Situation 2: If all {fp
f(u)+b(µ)
vs→vm→vt µ ∈ {T, r, ρ}}

are infeasible, then at vm, MFPB-HOSTP concatenates the
FLP with the CBLPs to form the foreseen paths (i.e.,
{fp

f(u)+CBLP M (µ)
vs→vm→vt (µ ∈ {T, r, ρ})}). According to the

Algorithm 5: Computing Max ρ ()
Data: MT (vs, vt), QT

vs,vt
, Qr

vs,vt
, Qρ

vs,vt

Result: AQµ(pb(ρ)
vk→vt

) and AQµ(pCBLP (ρ)
vk→vt

), (µ ∈ {T, r, ρ})
begin1

Set vx.d = ∞ (vx 6= vt), vt.d = 0, Sx = ∅, pb(ρ)
vt→vt

= vt,2
pCBLP (ρ)

vt→vt
= vt

Add vt into Sx3
while Sx 6= ∅ do4

va.d = min(v∗a.d) (v∗a ∈ Sx)5
for each vb ∈ adj[va] do6

obj = 1/AQρ(pb(δr)
va→vt

+ va → vb)7
if vb /∈ Sx then8

Put vb into Sx9
pb(ρ)

vb→vt
= vb → va + pb(ρ)

va→vt10

else if obj < vb.d then11
Update AQr(pb(ρ)

vb→vt
)12

vb.d = obj13
pb(ρ)

vb→vt
= vb → va + pb(ρ)

va→vt14

for i = 1 to M do15
pCBLP i(ρ)

vb→vt
= pCBLP i(ρ)

va→vt16
AQµ(pCBLP i(ρ)

vb→vt
) = AQµ(pCBLP i(ρ)

va→vt
)17

pCBLP M+1(ρ)
vb→vt

= vb → va + pb(δ)
va→vt18

Remove va from Sx19

end20

Algorithm 6: Path Selection ()
Data: MT (vs, vt), Sy , va, vb

Result: pf(u)
vs→vb

, AQµ(pf(u)
vs→vb

), µ ∈ {T, r, ρ}
begin1

if vb /∈ Sy then2
Put vb into Sy and pf(u)

vs→vb
= pf(u)

vs→va
+ va → vb3

else if 1/F(pf(u)
vs→va

+ va → vb) < vb.d then4
Update AQµ(pf(u)

vs→vb
)5

pf(u)
vs→vb

= pf(u)
vs→va

+ va → vb6

end7

feasibility of these foreseen paths, MFPB-HOSTP adopts the
following search strategies.

1) Sub-situation 2.1: If one of {fp
f(u)+CBLP M (µ)
vs→vm→vt (µ ∈

{T, r, ρ})} is feasible, MFPB-HOSTP identifies two so-
cial trust paths based on Strategies 1 and 2 in the above
Situation 1, and selects the feasible social trust path with
the higher utility as the final solution.

2) Sub-situation 2.2: If all of {fp
f(u)+CBLP M (µ)
vs→vm→vt (µ ∈

{T, r, ρ})} are infeasible, MFPB-HOSTP does not
search the path from vm. Instead, MFPB-HOSTP per-
forms the Forward Search procedure to search the path
from vs in the sub-network without taking link vs → vm

into consideration.
The following Theorem 2 illustrates that the social trust path

pforward
vs→vt

identified by the Forward Search procedure can not
be worse than the feasible social trust path pbackward

vs→vt
identified

by the Backward Search procedure. Namely, F(pforward
vs→vt

) ≥
F(pbackward

vs→vt
).

Theorem 2: With the social trust path pbackward
vs→vt

identi-
fied by the Backward Search procedure and the social trust
path pforward

vs→vt
identified by the Forward Search procedure

in MFPB-HOSTP, if pbackward
vs→vt

is a feasible solution, then
pforward

vs→vt
is feasible and F(pforward

vs→vt
) ≥ F(pbackward

vs→vt
).

Proof: Assume that path pbackward
vs→vt

consists of n + 2 nodes
vs, v1, ..., vn, vt. In the Forward Search procedure, H OSTP
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Algorithm 7: Forward Search ()
Data: MT (vs, vt), AQµ(pb(δ)

vk→vt
), AQµ(pb(µ)

vk→vt
),

AQµ(pCBLP (µ)
vk→vt

), µ ∈ {T, r, ρ}, QT
vs,vt

, Qr
vs,vt

, Qρ
vs,vt

Result: pforward
vs→vt

, F(pforward
vs→vt

)

begin1
Set vy.d = ∞ (vy 6= vs), vs.d = 0, S1

y = S2
y = ∅,pf(u)

vs→vs
= vs2

Add vs into S1
y and S2

y3
while S1

y 6= ∅ and S2
y 6= ∅ do4

v1
a.d = min(v∗a.d) (v∗a ∈ S1

y)5
v2

a.d = min(v2∗
a .d) (v2∗

a ∈ S2
y)6

if v1
a = v2

a and v1
a.d1 = v2

a.d2 then7
for each vb ∈ adj[v1

a] do8
if fpf(u)+b(δ)

vs→vb→vt
is feasible then9

Path Selection(MT (vs, vt), S1
y , v1

a, vb)10

else if fpf(u)+b(δ)
vs→vb→vt

is infeasible then11
if one of {fpf(u)+b(µ)

vs→vj→vt
} and12

{fpf(u)+CBLP M (µ)
vs→vj→vt

} is feasible then
Path Selection(MT (vs, vt), S2

y , v1
a, vb)13

else14
for each vb ∈ adj[v1

a] do15
if fpf(u)+b(δ)

vs→vb→vt
is feasible then16

Path Selection(MT (vs, vt), S1
y , v1

a, vb)17

for each vb ∈ adj[v2
a] do18

if one of {fpf(u)+b(µ)
vs→vj→vt

, fpf(u)+CBLP M (µ)
vs→vj→vt

} is19
feasible then

Path Selection(MT (vs, vt), S2
y , v2

a, vb)20

Remove v1
a from S1

y and v2
a from S2

y21

Return pforward
vs→vt

=max utility(pf(u)
vs→v1

a→vt
, p

f(u)
vs→v2

a→vt
) and22

F(pforward
vs→vt

)

end23

searches the neighboring nodes of vs and chooses v1 from these
nodes when a foreseen path from vs to vt via v1 is feasible and
the current path from vs to v1 has the maximal F . This step is
repeated at all the nodes between v1 and vn until a social trust
path pforward

vs→vt
is identified. If at each search step, only one node

of {v1, ..., vn} has a feasible foreseen path, then pforward
vs→vt

is
the only feasible solution in the sub-network between vs and vt.
According to Theorem 1, then pforward

vs→vt
= pbackward

vs→vt
. Thus,

F(pforward
vs→vt

) = F(pbackward
vs→vt

). Otherwise, if pforward
vs→vt

6=
pbackward

vs→vt
, it can lead to F(pforward

vs→vt
) > F(pbackward

vs→vt
) by

maximizing the F value in all candidate nodes which have fea-
sible foreseen paths based on Dijkstra’s shortest path algorithm.
Therefore, Theorem 2 is correct. ¤

If there exists only one feasible solution in the sub-network,
it can be identified by both the Backward Search procedure and
the Forward Seach procedure, and it is the optimal solution.
Otherwise, if there exist more than one feasible solutions in the
sub-network, then the solution identified by the Forward Seach
procedure is near-optimal or optimal, which is better than the
one identified by the Backward Search procedure.

6.3 Summary:
Based on the above discussion, during the Backward Search
procedure, MFPB-HOSTP could illustrate whether there exists
a feasible solution in a sub-network (it is proved by Theorem
1). If a feasible solution exists, MFPB-HOSTP then identifies
several BLPs and CBLPs at each intermediate node rather than
only one BLP in H OSTP. During the Forward Search proce-
dure, MFPB-HOSTP delivers a near-optimal solution which is

TABLE 3
The setting of QoT constraints

Constraint ID QT
vs,vt

Qr
vs,vt

Qρ
vs,vt

1 0.01 0.01 0.01
2 0.05 0.05 0.05
3 0.1 0.1 0.1
4 0.15 0.15 0.15
5 0.2 0.2 0.2
6 0.25 0.25 0.25
7 0.3 0.3 0.3
8 0.35 0.35 0.35
9 0.4 0.4 0.4

10 0.2 0.05 0.05
11 0.05 0.2 0.05
12 0.05 0.05 0.2
13 0.25 0.05 0.05
14 0.05 0.25 0.05
15 0.05 0.05 0.25
16 0.3 0.05 0.05
17 0.05 0.3 0.05
18 0.05 0.05 0.3
19 0.35 0.05 0.05
20 0.05 0.35 0.05
21 0.05 0.05 0.35
22 0.4 0.05 0.05
23 0.05 0.4 0.05
24 0.05 0.05 0.4

no worse than the one returned by the the Backward Search
procedure (it is proved by Theorem 2). In this search process,
the identified BLPs and CBLPs are used to concatenate with the
FLP, forming multiple foreseen paths rather than one foreseen
path only in H OSTP. These foreseen paths could help avoid
a failed feasibility estimation of a foreseen path caused by the
imbalance problem of QoT attributes.

In the Backward Search procedure, in order to identify 4
BLPs for the minimal δ and the maximal value of each QoT
attribute (i.e, T , r and ρ), MFPB-HOSTP adopts Dijkstra’s
shortest path algorithm 4 times with the time complexity of
O(4 ∗ (NlogN + E)) [11] (N is the number of nodes and E
is the number of links). In addition, in the worst case, the time
complexity of identifying the CBLPs for three QoT attributes
by MFPB-HOSTP is O(3 ∗ (KN)), where K is the maximal
path length in a sub-network. So, the time complexity of the
Backward Search procedure is O(4∗(NlogN+E)+3∗KN).

In the Forward Search procedure, in the worst case, MFPB-
HOSTP adopts Dijkstra’s shortest path algorithm twice with the
time complexity of O(2 ∗ (NlogN + E)) [11]. In addition, in
the worst case, the time complexity of evaluating the feasibility
of foreseen paths is O(KE). So, the time complexity of
MFPB-HOSTP is O(NlogN + KE).

In social networks, following the small-world13 characteris-
tic, it is usually the case that K ≤ 7 [38]. Therefore, the time
complexity of MFPB-HOSTP is O(NlogN +E), which is the
same as that of H OSTP. But our proposed heuristic algorithm
has better search strategies than H OSTP. Thus MFPB-HOSTP
delivers a solution no worse than that of H OSTP, and as
our experiments confirm, MFPB-HOSTP can deliver better
solutions than that of H OSTP in some cases (see a detailed
analysis in Section 7.2).

7 EXPERIMENTS
7.1 Experiment Settings
The Enron email dataset6 has been proved to possess the small-
world and power-law characteristics of social networks and
thus it has been widely used in the studies of social networks

13. The average path length between any two nodes is about 6 hops in a social
network.



IEEE TRANSACTIONS ON SERVICES COMPUTING 12

0

10

20

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

QoT constraint IDsub−network ID

ut
ili

ty

0

10

20

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

 

QoT constraint IDsub−network ID
 

ut
ili

ty

MFPB−HOSTP
H_OSTP

S1: infeasible

S3: same

S2: better

S1: infeasible
S3: same

S2: better

4 hops, WID=1 5 hops, WID=1

Fig. 6. The path utilities of sub-networks with 4 and 5
hops based on WID=1
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Fig. 7. The path utilities of sub-networks with 4 and 5
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[16], [32], [33], [36], [51]. In addition, as we explained in
section 3, the social intimacy degree between participants and
the role impact factor of participants can be calculated through
mining the subjects and contents of emails in the Enron email
dataset [36]. Therefore, in contrast to other real social network
datasets, the Enron email dataset fits our proposed complex
social network structure better. Thus, to validate our proposed
algorithm, we select the Enron email dataset6 with 87,474
nodes (participants) and 30,0511 links (formed by sending and
receiving emails) for our experiments.

As we analyzed in Section 5.1, our previously proposed
H OSTP outperforms prior algorithms in both efficiency and
the quality of identified social trust path [33]. Therefore, in
order to study the performance of our proposed algorithm, we
compare MFPB-HOSTP with H OSTP in both execution time
and the utilities of the identified social trust paths (see section
7.2). In our experiments, since the detailed mining method of
QoT attribute values (i.e., T , r and ρ) is out of the scope of
this paper, and they could have different values in different
applications, the QoT attribute values are randomly generated
by using rand() in Matlab.

As illustrated in Section 3, trust is domain-dependent. There-
fore, in our model, source participants may specify different
QoT constraints for the social trust path selection in different
domains. In order to investigate the performance of MFPB-
HOSTP with different QoT constraints values, 24 sets of QoT
constraints are specified and listed in Table 3, which cover
some possible settings of QoT constraints. In some cases (i.e.,
constraint IDs 1 to 9), the values of QoT constraints are the
same, and in the rest of the cases (i.e., constraint IDs 10 to 24),
the constraint of one QoT attribute (i.e., T , r or ρ) is larger
than the values of the other two QoT attributes. In addition, in
order to investigate the performance of MFPB-HOSTP in path
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Fig. 8. The path utilities of sub-networks with 4 and 5
hops based on WID=3
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Fig. 9. The path utilities of sub-networks with 6 and 7
hops based on WID=1

selection with different weights of QoT attributes in the utility
function, three sets of weights are specified and listed in Table
4, where T , r and ρ are given a lager weight than other two
QoT attributes respectively.

In order to study the performance of our proposed heuristic
algorithm in the sub-networks of different scales and struc-
tures, we first randomly select 80 pairs of source and target
participants from the Enron email dataset6. We then extract
the corresponding 80 sub-networks between them by using the
exhaustive search method. Among them, the maximal length of
a social trust path varies from 4 to 7 hops following the small-
world characteristic. These sub-networks are grouped by the
number of hops. In each group they are ordered by the number
of nodes in them. Table 5 lists the properties of the simplest
and the most complex sub-networks in each group of hops.
The simplest sub-network has 33 nodes and 56 links (4 hops),
while the most complex sub-network has 1300 nodes and 6396
links (6 hops). With each sub-network, we run MFPB-HOSTP
and H OSTP 3 times independently to calculate the average
execution time.

Both MFPB-HOSTP and H OSTP are implemented using
Matlab R2008a running on an IBM ThinkPad SL500 laptop
with an Intel Core 2 Duo T5870 2.00GHz CPU, 3GB RAM,
Windows XP SP3 operating system and MySql 5.1.35 database.

7.2 Experimental Results
Results and analysis of path utility. Fig. 6 to Fig. 11 plot
the path utilities of the identified social trust paths in the sub-
networks categorized in groups of hops. From these figures,
we can observe that if there are no feasible solutions in a sub-
network, both of MFPB-HOSTP and H OSTP can investigate
the infeasibility (e.g., case S1 in Fig. 6 to Fig. 11). This is
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Fig. 10. The path utilities of sub-networks with 6 and 7
hops based on WID=2
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because both of them perform a backward search from vt to vs

to identify the social trust path with the minimal δ. It has been
proved in Theorem 1 that this procedure can always investigate
whether there exists a feasible solution in a sub-network.

From Fig. 6 to Fig. 11, we can see that in all cases of the 80
sub-networks, our MFPB-HOSTP does not yield any feasible
social trust path with a utility worse than that of H OSTP (e.g.,
cases S2 and S3 in Fig. 6 to Fig. 11). This is because in the
Forward Search procedure, if there is no imbalance problem of
QoT attributes, MFPB-HOSTP identifies the same social trust
path with H OSTP. When facing with an imbalance problem of
QoT attributes, MFPB-HOSTP identifies two social trust paths,
out of which one path is identified by using the same search
strategy adopted in H OSTP (see Strategy 2 of Situation 1 in
Section 6.2), and selects the feasible path with the higher utility
as the solution. Therefore, MFPB-HOSTP does not yield any
solution worse than that of H OSTP in any cases.

According to our experimental results, in 27 out of 75
sub-networks with feasible solutions (i.e., 36% of total sub-
networks with feasible solutions), MFPB-HOSTP can deliver
better social trust paths than H OSTP (e.g., case S2 in Fig. 6
to Fig. 11). The sums of utilities computed by MFPB-HOSTP
and H OSTP in these sub-networks with each group of hops
are listed in Table 7, where we can see that the sum of utilities
of our proposed MFPB-HOSTP algorithm is 15.94% more
than that of H OSTP in 4 hops sub-networks, 46.51% more
in 5 hops, 12.63% more in 6 hops and 17.79% more in 7
hops. This is because when facing with an imbalance problem
of QoT attributes at an intermediate node vk, in addition to
p

b(δ)
vk→vt , more BLPs are concatenated with the FLP identified

by the forward search procedure, forming multiple foreseen
paths and helping avoid a failed feasibility estimation. Thus
MFPB-HOSTP can deliver a better solution than H OSTP in
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Fig. 12. The execution time of sub-networks with 4 and 5
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some cases.
Results and analysis of the execution time. Fig. 12 to

Fig. 13 plot the average execution time of the social trust
path selection with three different weights of QoT attributes.
From these figures we can see that in most cases (i.e.,
3082/5760=53.5% of total cases), MFPB-HOSTP has the same
execution time as that of H OSTP (e.g., case S4 in Fig. 12 to
Fig. 13). This is because if no feasible solution exists in the
sub-network, based on Theorem 1, both of MFPB-HOSTP and
H OSTP can identify this and stop the search process, resulting
in the same execution time. In addition, in the rest of the cases,
MFPB-HOSTP consumes more execution time than H OSTP
(e.g., case S5 in Fig. 12 to Fig. 13). This is because if a feasible
solution exists in a sub-network, at each intermediate node
vk, in addition to p

b(δ)
vs→vk , MFPB-HOSTP identifies multiple

BLPs (i.e., the BLPs with the maximal aggregated value of
each of QoT attribute and M CBLPs for each QoT attribute)
in the Backward Search procedure, rather than one BLP only
in H OSTP (see Section 6.2). Moreover, when facing with the
imbalance problem of QoT attributes at vk, MFPB-HOSTP
needs to identify two social trust paths. The total execution time
of each of MFPB-HOSTP and H OSTP in sub-networks with
each group of hops is listed in Table 6, where we conclude that
the difference of the execution time between MFPB-HOSTP
and H OSTP is similar in sub-networks with each group of
hops. On average, the execution time of MFPB-HOSTP is
1.288 times of that of H OSTP.

Through the above experiments conducted on sub-networks
with different scales and structures, we can see that on average
MFPB-HOSTP consumes 1.288 times of the execution time
of H OSTP while delivering better solutions in sub-networks.
Since MFPB-HOSTP has the same polynomial time complexity
(i.e, O(NlogN + E)) as H OSTP, MFPB-HOSTP is superior
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TABLE 4
The setting of the weight of QoT attributes

Weight ID wT wr wρ
1 0.5 0.25 0.25
2 0.25 0.5 0.25
3 0.25 0.25 0.5

TABLE 5
The properties of the simplest and the most complex

sub-networks in each group of hops

Hops The simplest sub-network The most complex sub-network
ID Nodes Links ID Nodes Links

4 1 33 56 20 393 1543
5 1 49 90 20 680 2670
6 1 48 74 20 1300 6396
7 1 40 64 20 964 4955

to H OSTP when applied to large-scale social networks.

8 CONCLUSIONS
In this paper, we have presented a complex social network
structure that takes trust information, social relationships and
recommendation roles into account, reflecting the real-world
situations better. For selecting the optimal social trust path
with end-to-end QoT constraints in complex social networks,
which is an NP-Complete problem, we first analyzed the ad-
vantages and the disadvantage (i.e., the imbalance problem of
QoT attributes) of our previously proposed H OSTP that is
one of the most promising algorithms for the MCOP selection
problem. Based on H OSTP, we then proposed MFPB-HOSTP,
an efficient heuristic algorithm, where multiple foreseen paths
are formed, helping avoid a failed feasibility estimation of a
foreseen path caused by the imbalance problem of QoT at-
tributes. The results of experiments conducted on a real dataset
demonstrate that MFPB-HOSTP outperforms existing methods
in optimal social trust path selection with good efficiency.

For our future work, we plan to develop a social network
based trust-oriented social service and service provider search
engine, which maintains a database of participants and the com-
plex social network among them. In this system, our proposed
method will be applied, for instance, to help a buyer identify
the most trustworthy one from all sellers selling the product
preferred by the buyer.
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