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Abstract

To alleviate the data sparsity problem, cross-domain recommendation (CDR) aims
to transfer valuable information from a relatively data-richer source domain to a rela-
tively data-sparser target domain, forming the setting of single-target CDR. In contrast,
dual-target CDR has been proposed in recent years to improve recommendation per-
formance in both domains simultaneously by sharing the common knowledge across
domains. However, existing methods still struggle to clearly distinguish different com-
ponents of user preferences, making it difficult to determine what should or should not
be transferred across domains. To effectively advance CDR, it is crucial not only to
learn disentangled representations of user preferences and better understand which
component of user preferences should be transferred across domains, but also to learn
debiased user preferences that are robust to confounders, and generalizable user pref-
erences that remain invariant across distribution shifts.

Firstly, existing dual-target CDR methods fail to recognize and decouple domain-
independent user preferences from domain-shared and domain-specific user prefer-
ences, leading to incomplete user preference modeling and suboptimal recommen-
dation performance. To address this problem, in this thesis, we propose a novel
Disentanglement-based framework with Interpolative Data Augmentation for dual-
target CDR, called DIDA-CDR. In DIDA-CDR, we first propose an interpolative data
augmentation approach to generating both relevant and diverse augmented user rep-
resentations to augment sparser domain and explore potential user preferences. We
then propose a disentanglement module to effectively decouple domain-specific and
domain-independent information to capture comprehensive user preferences, thereby
improving the recommendation performance on both domains.

Secondly, existing dual-target CDR methods often overlook that, in addition to
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users’ true preferences, user-item interactions are also influenced by observed con-
founders (e.g., free shipping, sales promotion), including single-domain confounders
and cross-domain confounders. However, the existing methods neither explicitly de-
couple cross-domain confounders, nor preserve the positive impacts of observed con-
founders on predicted interactions, while eliminating their negative impacts on captur-
ing comprehensive user preferences. To address this problem, in this thesis, we pro-
pose a novel Causal Deconfounding framework via Confounder Disentanglement for
dual-target CDR, called CD2CDR. In CD2CDR, we first propose a confounder disen-
tanglement module to effectively decouple observed single-domain and cross-domain
confounders. We then propose a causal deconfounding module to preserve the positive
effects of such observed confounders and eliminate their negative effects via backdoor
adjustment, thereby enhancing the recommendation accuracy in each domain.
Thirdly, existing CDR methods typically focus only on cross-domain distribu-
tion shifts, while assuming that training and testing data share the same distribution
within target domain, overlooking potential single-domain distribution shifts. In re-
ality, both types of distribution shifts co-exist, creating complex out-of-distribution
(OOD) scenarios in CDR. This observation motivates us to propose a new setting of
cross-domain OOD recommendation, which simultaneously addresses two types of
distribution shifts through unified modeling. To this end, in this thesis, we propose
a novel Causal-Invariant Cross-Domain Out-of-distribution Recommendation frame-
work, called CICDOR. In CICDOR, we first propose a dual-level causal preference
learning module that can effectively infer domain-specific and domain-shared causal-
invariant user preferences, respectively. Then, we propose an LLM-guided confounder
discovery module that seamlessly integrates LLLMs with a conventional causal discov-
ery method to extract observed confounders for effective deconfounding, thereby en-
suring accurate causal-invariant user preference inference for OOD recommendation.
All three proposed methods in this thesis have been validated through theoretical
analysis and extensive experiments on real-world datasets. The experimental results

demonstrate that our methods significantly outperform state-of-the-art CDR methods.
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Chapter 1

Introduction

1.1 Background and Significance

With the rapid growth of digital content across various online platforms, such as Ama-
zon, YouTube and Facebook, users face considerable difficulty in discovering relevant
information that matches their preferences [152]. To address this issue, recommender
systems (RSs) have been developed as an effective solution by analyzing user interac-
tion data to predict user preferences and deliver personalized recommendations [186].
The main goal of RSs is to identify items that align with individual user preferences,
thereby improving user satisfaction and reducing information search time. Despite
their widespread success, conventional single-domain recommendation approaches
suffer from a significant limitation, i.e., the data sparsity problem, where insufficient
user-item interactions limit RSs’ ability to accurately capture user preferences.

To alleviate the data sparsity problem, Cross-Domain Recommendation (CDR)
[82] aims to employ abundant information from a relatively richer domain to improve
recommendation performance on a sparser domain, forming the so-called single-target
CDR [183]. Effective CDR requires the source and target domains to share certain
relatedness while maintaining distinctions in user intents, user behaviors, or item cat-
egories [84]. For instance, on e-commerce platforms like Taobao!, different purchase
scenarios, such as ‘what to take when travelling’ and ‘how to dress up for a party’,

share overlapping user interests (e.g., finding suitable clothing or accessories), while

'Taobao is a Chinese Customer-to-Customer (C2C) platform that facilitates transactions between
individual sellers and buyers, similar to eBay.



1.1. BACKGROUND AND SIGNIFICANCE 2

maintaining distinctions in user intents, such as practicality for travel and aesthetics for
parties [22, 170]. Similarly, on Tmall?, behaviors such as ‘add to favorite’ and ‘pur-
chase’ can be regarded as business domains, both reflecting user interest but differing
in their focus as exploration- and purchase-oriented actions, respectively [63, 167]. In
contrast, on Amazon, domains often refer to different item categories (e.g., ‘movie’
and ‘book’) that share user interests in certain features (e.g., genres or styles), while
differing in domain-specific item features and user preferences [14, 105]. These re-
latedness and distinctions together define the principle of domains, thereby ensuring
CDR’s adaptability to diverse recommendation scenarios.

Moreover, on top of the same above-mentioned principle of domains, Dual-Target
CDR [186] has been proposed to capture comprehensive user preferences, and thus
enhance the recommendation accuracy in both data-richer and data-sparser domains
simultaneously, which are source domains and target domains as well. The exist-
ing dual-target CDR methods can be divided into two groups, i.e., (1) conventional
methods, (2) disentanglement-based methods. Conventional methods mainly utilize
various transfer layers [44, 59, 172, 74] to integrate the representations learned by
two base encoders in their respective domains. In contrast, disentanglement-based
methods tend to use the variational autoencoder (VAE) [8] or other disentangling tech-
niques [34, 165, 9] to decouple the domain-shared and domain-specific information,
and only transfer the domain-shared information to each domain, which enhances the
recommendation accuracy on both domains simultaneously.

The effectiveness of both single-target and dual-target CDR methods fundamen-
tally depends on the quality of user preference modeling. High-quality user preference
modeling is crucial not only for making accurate recommendations within individual
domains, but also for enabling effective knowledge transfer across domains. Despite
growing research efforts in this field, existing CDR methods still suffer from three crit-

ical limitations in modeling user preferences. These limitations are discussed in the

>Tmall is a Chinese Business-to-Customer (B2C) platform designed for brand merchants and flag-
ship stores, similar to Amazon.
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following three subsections.

1.1.1 From Incomplete to Comprehensive User Preference Model-
ing
Limitation 1: None of the existing CDR methods decouple all three essential com-
ponents needed to capture comprehensive user preferences. To be specific, the exist-
ing CDR methods only decouple two essential components, i.e., domain-shared and
domain-specific information, and ignore the existence of domain-independent infor-
mation. For example, in the movie and music domains, the domain-shared informa-
tion (e.g., ‘Category’) extracted from two domains expresses the same meaning in each
domain. In addition, the domain-specific information, e.g., ‘Frame’ in the movie do-
main, exists only in its own domain. By contrast, although the domain-independent
information, e.g., ‘Rhythm’, exists in each domain, it has different meanings in differ-
ent domains. Such oversight of domain-independent information results in incomplete

preference modeling, leading to suboptimal recommendation results in both domains.

1.1.2 From Biased to Debiased User Preference Modeling

Even with well-disentangled components for capturing comprehensive user prefer-
ences, the user-item interactions might also be affected by confounding factors. A
confounding factor, termed as confounder in causal inference [27, 192], affects both
the treatment and the outcome [138, 83], which can be broadly interpreted as user
preference and user-item interaction respectively (see Figure 1.1(a)) in the context of
RSs [32, 191].

In the dual-target CDR scenario, observed confounders can be divided into two
types, i.e., single-domain confounder (SDC) and cross-domain confounder (CDC).
SDC only affects user preference and user-item interaction in one specific domain and
has been widely studied in the existing literature [166, 122]. By contrast, CDC affects

both domains, which, however, has been overlooked in existing dual-target CDR meth-
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1.1. BACKGROUND AND SIGNIFICANCE 5

ods. Essentially, SDC is a simplified version of CDC. Below we first briefly review
SDCs and then provide an in-depth analysis of CDCs, both illustrated with examples
from Tmall, where ‘purchase’ and ‘add to favorite’ are regarded as two domains, as
they align with the principle of domains.

SDCs have both positive and negative impacts on predicting user-item interactions
in their corresponding domain. For instance, as shown in Figures 1.1(b)-(c), ‘free
shipping’ is an SDC in the ‘purchase’ domain. Consider a scenario where the same
item is offered at the same price by different sellers. One seller provides free shipping,
while the other provides shipping with an additional cost. Thus, the offer with free
shipping positively influences Alice’s decision to purchase the item with free shipping.
As for negative impact, a data-driven RS improperly perceives ‘free shipping’ (i.e., an
SDC shown in Figure 1.1(c)) as Alice’s preference in the ‘purchase’ domain. As a
result, the data-driven RS mistakenly recommends an item with free shipping that
Alice does not actually like. This misalignment, referred to as confounding bias [62],
results in biased recommendations

In fact, the confounding biases also exist in cross-domain scenarios. More impor-
tantly, CDCs have both positive and negative impacts on predicting user-item inter-
actions in both domains. For example, as illustrated in Figures 1.1(d)-(e), ‘sales pro-
motion’ is a CDC, because it simultaneously affects ‘purchase’ and ‘add to favorite’
domains. On the one hand, this ‘sales promotion’ CDC has a positive impact. In fact,
while Alice’s true preference is the primary cause of her behaviors in both domains,
‘sales promotion’ is a secondary cause that serves as a catalyst. With a new sales
promotion on dresses #1 and #2, both of which Alice likes but previously found over
her budget, she immediately purchases dress #1 that has become affordable within her
budget. By contrast, since the discounted price of dress #2 is still over her budget,
she adds it to favorite for future consideration, looking forward to a further price re-
duction. On the other hand, this ‘sales promotion’ CDC has a negative impact too.
As depicted in Figure 1.1(e), a data-driven RS improperly perceives ‘sales promotion’

(i.e., a CDC) as Alice’s preference in both domains. As a result, the data-driven RS
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mistakenly recommends dresses #3 and #4 with sales promotion to Alice, but Alice
actually does not like them.

As illustrated by the above examples, both types of observed confounders signifi-
cantly distort the recommendation process by introducing confounding biases in user
preference modeling. These observations reveal a significant limitation as follows.
Limitation 2: Existing dual-target CDR methods fail to account for the influence of
observed confounders, especially CDCs that have been entirely overlooked. This over-
sight results in confounding biases, thereby leading to biased user preference modeling
and suboptimal recommendation results in both domains. Addressing these confound-

ing biases is essential for capturing debiased comprehensive user preferences.

1.1.3 From IID to OOD User Preference Modeling

Even if user preferences are modeled comprehensively and without bias, they may still
fail to generalize well in dynamic real-world environments where data distributions
vary across and within domains. Most existing CDR methods adopt the independent
and identically distributed (IID) assumption, positing that training and testing data
share the same distribution in the target domain [130]. This assumption simplifies
the process of problem formulation and theoretical reasoning, enabling the model to
better generalize knowledge learned from training data to testing data within the target
domain [65].

However, this assumption often fails to hold in real-world CDR scenarios. In CDR,
recommendation performance is affected by two types of distribution shifts in terms of
user preferences, interaction patterns, and item features [167]: cross-domain distribu-
tion shift (CDDS) and single-domain distribution shift (SDDS). (i) CDDS results from
data distribution differences between source and target domains [63]. (i1) SDDS re-
sults from data distribution differences due to temporal and regional variations in target
domain [43], leading to mismatches between training and testing data distributions.

Figure 1.2 illustrates these two types of distribution shifts in CDR. Consider an on-
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Figure 1.2: An illustrative example of the co-existing distribution shifts (i.e., CDDS and
SDDS) in CDR.

line platform that provides reviews for both movie and book domains. To be specific,
in this scenario:
e CDDS: The inherent differences between domains lead to CDDS. In the movie do-
main, users often seek immediate gratification through visually engaging Hollywood
blockbusters (e.g., Avengers and Avatar), while the book domain offers a slower, more
immersive experience, catering to users who value delayed gratification.
e SDDS: In the book domain, regional variations in user preferences result in SDDS.
Users in Hong Kong, which is a highly internationalized and modern metropolitan city,
tend to reflect openness to international cultural influences and favor internationally
renowned literature (e.g., international bestsellers) such as Harry Potter and The Lord
of the Rings. In contrast, users in Beijing, known as China’s cultural and political
center, tend to prefer Chinese classics like Journey to the West and Three Kingdoms.
In such a scenario, reliable book recommendations for users in Beijing require:
(1) Mitigating CDDS by transferring knowledge from movie domain to book domain,

and (2) Mitigating SDDS by generalizing knowledge within book domain from users
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in Hong Kong to users in Beijing. While existing approaches focus on handling ei-
ther CDDS or SDDS in isolation, we observe that beyond learning invariant knowl-
edge under SDDS within book domain, there exists a knowledge transfer path that
can capture invariant knowledge under both CDDS and SDDS (illustrated by the red
arrow). For example, preferences for heroic adventure stories remain invariant under
both CDDS and SDDS. Such invariant preferences learned from movie domain train-
ing data (The Avengers and Avatar) can be transferred to book domain to help make
recommendation (e.g., Journey to the West) for users in Beijing, as these works share
similar narrative patterns of heroic quests and supernatural adventures. This invariant
knowledge transfer path helps improve book domain recommendation performance by
avoiding the potential information loss and error accumulation that could occur when
sequentially applying existing approaches that handle CDDS and SDDS in isolation.
The co-existence of these distribution shifts leads to complex OOD environments in
CDR [18]. These observations reveal a significant limitation as follows.
Limitation 3: Existing CDR methods lack the capability to simultaneously address
these co-existing distribution shifts. This limitation significantly restricts the effec-
tiveness of existing methods in cross-domain OOD recommendation. Learning user
preferences that remain invariant across these distribution shifts is essential for im-
proving recommendation performance under OOD environments in CDR.

To address the abovementioned limitations, this thesis focuses on the four signifi-

cant challenges detailed in the following section.

1.2 Challenges in Cross-Domain Recommendation

1.2.1 Disentangling all Essential Components of User Preferences

To address Limitation 1 regarding incomplete user preference modeling, the first chal-
lenge of this thesis, CH1, can be represented by the following question: How to effec-

tively decouple domain-independent information from domain-specific information, in
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addition to domain-shared information, to capture comprehensive user preferences on
each domain, thereby improving the recommendation performance?

The existing dual-target CDR methods either ignore decoupling the domain-specific
and domain-shared information [44] (Group 1), or directly transfer the domain-shared
information to only fuse with the domain-specific information in each domain, over-
looking the domain-independent information [8] (Group 2). The methods in Group 1
disregard the discrimination between domain-specific and domain-shared information,
which may lead to the negative transfer. The methods in Group 2 do not differentiate
the domain-independent information from domain-specific information and decouple

these two types of information, which results in suboptimal recommendation results.

1.2.2 Accurately Extracting Observed Confounders

As the first step in addressing Limitation 2 regarding the influence of observed con-
founders, the second challenge of this thesis, CH2, can be represented by the following
question: How to effectively extract observed confounders to comprehensively under-
stand user-item interactions?

Even with well-disentangled components for capturing comprehensive user pref-
erences, user-item interactions might also be affected by observed confounders. How-
ever, existing methods face considerable difficulties in effectively extracting these con-
founders. Existing methods for extracting observed confounders primarily fall into two
categories based on their data sources: (1) representation-based extraction from learned
embeddings, and (ii) content-based extraction from textual information.
Representation-based extraction from learned embeddings: Existing methods ei-
ther employ graph clustering strategy [64] and variational information bottleneck [9],
or identify unobserved domain-specific confounders first, and then utilize causal tech-
niques, e.g., inverse propensity score (IPS) estimators [63] and invariant learning
[167], to obtain debiased representations. However, none of them explicitly decou-

ples observed CDCs, and thus it is hard to obtain a comprehensive understanding of
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user-item interactions in each domain.

Content-based extraction from textual information: Recent studies have demon-
strated promising results in utilizing large language models (LLMs) to extract causal
variables from unstructured text [12, 68]. While these successes suggest the potential
of extracting observed confounders from user reviews, LLMs may extract inaccurate
confounders without proper theoretical guidance [1]. Thus, effectively extracting ac-

curate observed confounders from user reviews has not been fully explored.

1.2.3 Effectively Deconfounding Observed Confounders

To further address Limitation 2, the third challenge of this thesis, CH3, can be rep-
resented by the following question: How to preserve the positive impacts of observed
confounders on predicted interactions, while eliminating their negative impacts on
capturing comprehensive user preferences, thereby enhancing the recommendation ac-
curacy? Most existing causal methods [136, 146] tend to eliminate the confounders’
negative impacts, in order to obtain the debiased comprehensive user preferences for
recommendation. However, most of them overlook the confounders’ positive impacts,

and thus limit their efficacy in enhancing the recommendation accuracy [154].

1.2.4 Effectively Addressing Co-Existing Distribution Shifts

To address Limitation 3 regarding the inability to handle co-existing distribution
shifts, the fourth challenge of this thesis, CH4, can be represented by the following
question: How to simultaneously address cross-domain and single-domain distribu-
tion shifts to achieve reliable recommendation under OOD environments in CDR?
For CDDS, existing approaches [33, 108] mainly align shared attributes, user be-
haviors, or auxiliary data between domains to mitigate distribution shifts [164]. In
contrast, to address SDDS, existing approaches either formulate such distribution shift
as a debiasing problem, particularly targeting specific biases such as conformity bias

[181] or popularity bias [178], or leverage causal discovery to jointly model the causal
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structure and invariant user preferences [43]. However, most existing approaches are
constrained to handling SDDS or CDDS in isolation, failing to handle two types of
distribution shifts simultaneously, thereby leading to degraded recommendation per-
formance in CDR.

Moreover, effectively addressing the co-existing distribution shifts requires lever-
aging the invariance principle [6, 92], which focuses on identifying invariant rela-
tionships across distributions, particularly under OOD environments. Recent studies
[43, 65] have proven that such invariant relationships can be effectively represented
through a causal structure between user attributes and preferences, as this structure
remains invariant across distribution shifts. However, this research direction has not

been fully explored.

1.3 Contributions of the Thesis

To address the aforementioned significant challenges in CDR, this thesis proposes a
series of interconnected technical frameworks that systematically evolve from incom-
plete to comprehensive user preference modeling, from biased to debiased user prefer-
ence modeling, and ultimately from IID to OOD user preference modeling. This thesis
has three main contributions: (1) a disentanglement-based CDR framework that, for
the first time, recognizes and then decouples domain-independent information in ad-
dition to domain-shared and domain-specific information, (2) a causal deconfounding
CDR framework that mitigates confounding effects from observed confounders while
preserving their beneficial impacts, and (3) a causal-invariant CDR framework that
maintains recommendation reliability under complex OOD environments. Together,
these contributions establish a robust foundation for reliable CDR systems that can
handle complex real-world scenarios involving incomplete user preference modeling,
confounding effects, and distribution shifts. To better illustrate how these contribu-
tions are structured and interconnected throughout this thesis, Figure 1.3 provides a

visual overview of the logical relationships among the three technical chapters, each
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corresponding to one of the main contributions. The three primary contributions are

detailed as follows:

1. Contribution 1: The first contribution of the thesis is to propose a novel dual-

target CDR framework. To the best of our knowledge, this is the first work in

the literature that explicitly takes domain-independent information into consid-

eration in addition to domain-shared and domain-specific information, and de-

couples it to capture more comprehensive user preferences for CDR. The char-

acteristics and contributions of our proposed model are summarized as follows:

(a)

(b)

()

This thesis proposes a Disentanglement-based framework with Interpolative
Data Augmentation for dual-target Cross-Domain Recommendation, called
DIDA-CDR, which can augment the sparser domain, disentangle three es-
sential components of user preferences and transfer the domain-shared user
preferences of common users across domains, thus enhancing the recom-

mendation accuracy on both domains simultaneously.

This thesis proposes an interpolative data augmentation approach to gen-
erating both relevant and diverse augmented user representations, which
augments the sparser domain and explores the potential common user pref-

erences and thus improves recommendation performance on both domains.

Targeting CHI, this thesis proposes a disentanglement module to effec-
tively decouple the domain-independent and domain-specific user prefer-
ences. The disentanglement module also extracts the domain-shared user
preferences from augmented user representations, which can be transferred
to both domains to provide the valuable information. The attention mech-
anism is then applied to combine the above three essential components of
user preferences to capture more comprehensive user preferences in each
domain, which can improve the recommendation performance on each of

both domains.
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(d)

Extensive experiments conducted on five real-world datasets show that
the proposed DIDA-CDR outperforms the best-performing state-of-the-art
baselines with an average improvement of 8.54% and 11.10% with respect

to HR@10 and NDCG @10, respectively.

2. Contribution 2: The second contribution of the thesis is to propose a novel

causal deconfounding framework via confounder disentanglement for dual-target

CDR. To the best of our knowledge, this is the first work in the literature that

explicitly decouples observed CDCs, and incorporates observed confounders’

positive impacts into debiased comprehensive user preferences for dual-target

CDR. The characteristics and contributions of our framework can be summa-

rized as follows:

(a)

(b)

()

This thesis proposes a Causal Deconfounding framework via Confounder
Disentanglement for dual-target Cross-Domain Recommendation, called
CD2CDR, which can disentangle two types of observed confounders (i.e.,
SDCs and CDCs), eliminate their negative impacts to obtain debiased pref-
erences, and preserve such confounders’ positive impacts, thereby enhanc-

ing the recommendation accuracy in both domains.

Targeting CH2, this thesis proposes a confounder disentanglement mod-
ule to effectively disentangle observed SDCs and CDCs. In this module, a
dual adversarial structure is devised to disentangle SDCs in each domain
and apply half-sibling regression to decouple CDCs, thus obtaining a com-

prehensive understanding of user-item interactions in both domains.

Targeting CH3, this thesis proposes a causal deconfounding module to
deconfound disentangled observed SDCs and CDCs via backdoor adjust-
ment. Specifically, a confounder selection function is designed to mitigate
such observed confounders’ negative effects, thereby recovering debiased

comprehensive user preferences. The observed confounders’ positive ef-



1.3. CONTRIBUTIONS OF THE THESIS 15

(d)

fects are incorporated into such debiased user preferences to enhance the

recommendation accuracy in both domains.

Extensive experiments conducted on seven real-world datasets demonstrate
that the CD2CDR outperforms the best-performing state-of-the-art base-
line with an average increase of 6.17% and 8.23% w.r.t. HR@10 and
NDCG@10, respectively.

3. Contribution 3: The third contribution of the thesis is to propose a new set-

ting of cross-domain OOD recommendation, which simultaneously addresses

two types of distribution shifts through unified modeling. To provide a solution,

this thesis proposes a novel Causal-Invariant Cross-Domain Qut-of-distribution

Recommendation framework, called CICDOR. The characteristics and contri-

butions of our proposed model are summarized as follows:

(a)

(b)

()

This thesis proposes CICDOR, a novel framework that discovers invariant
causal structures across distributions to tackle both CDDS and SDDS for

reliable cross-domain OOD recommendation.

Targeting CHA4, this thesis proposes a dual-level causal preference learn-
ing module. This module first leverages a user preference disentanglement
module to extract domain-specific and domain-shared user preferences.
In addition, dual-level causal structures, represented as Directed Acyclic
Graphs (DAGs), are learned for both domain-specific and domain-shared
levels of modeling. Based on these causal structures, the corresponding
causal-invariant user preferences are inferred at each level, thus tackling

CDDS and SDDS simultaneously under OOD environments in CDR.

Targeting CH2, this thesis proposes an LLM-guided confounder discovery
module. This module first employs an LLM to extract candidate interaction-
related causal variables from user reviews and transform them into struc-

tured data. The structured data are then fed into a conventional causal dis-
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covery method (i.e., the FCI algorithm) to uncover their underlying causal
relationships, with conditional independence tests used to eliminate redun-
dant variables. The observed confounders are first identified by leveraging
the LLM and then stored in the confounder pool. Next, when such remain-
ing variables cannot fully explain the user-item interactions, feedback is
constructed through the LLM to guide the discovery of additional causal
variables, forming an iterative process that continuously refines the con-

founder discovery.

(d) Extensive experiments conducted on two real-world datasets demonstrate
that CICDOR outperforms the best-performing state-of-the-art baseline
model across various OOD settings with an average increase of 6.28% and

9.42% w.r.t. HR@10 and NDCG @10, respectively.

1.4 Roadmap of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 presents a comprehensive literature review organized in two parts. The
first part focuses on research problems, including CDR methods (both single-target
and dual-target), and single-domain OOD recommendation methods, which provide
insights for the novel setting of cross-domain OOD recommendation. The second
part reviews three key techniques employed in this thesis: disentangled representation
learning, causal deconfounding, and causal structure learning.

Chapter 3 presents a novel disentanglement-based framework with interpolative
data augmentation for dual-target CDR, called DIDA-CDR, which can augment the
sparser domain, disentangle three essential components of user preferences and trans-
fer the domain-shared user preferences of common users across domains, thus en-
hancing the recommendation accuracy on both domains simultaneously. This chapter
includes our paper published at RecSys 2023 [188].

Chapter 4 presents a novel causal deconfounding framework via confounder dis-
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entanglement for dual-target CDR, called CD2CDR, which can disentangle two types
of observed confounders (i.e., SDCs and CDCs), eliminate their negative impacts to
obtain debiased preferences, and preserve such confounders’ positive impacts, thereby
enhancing the recommendation accuracy in both domains. This chapter includes our
paper published by ACM TOIS [189] in 2025.

Chapter 5 presents a novel causal-invariant cross-domain out-of-distribution rec-
ommendation framework, called CICDOR, which can discover invariant causal struc-
tures across distributions to tackle CDDS and SDDS for reliable cross-domain OOD
recommendation. This chapter includes our paper submitted to ACM TOIS in 2025.

Finally, Chapter 6 concludes the thesis and highlights promising directions for
future research.

The thesis overview is illustrated in Figure 1.4.
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Chapter 2

Literature Review

In this chapter, we organize the literature review based on the core research problem
of cross-domain recommendation (CDR) and its extension to a novel cross-domain
out-of-distribution (OOD) recommendation problem. Section 2.1 reviews both single-
target CDR and dual-target CDR methods. To the best of our knowledge, there is
no existing method that explicitly addresses the cross-domain OOD recommendation
problem. Thus, Section 2.2 reviews single-domain OOD recommendation methods
to provide theoretical insights into addressing distribution shifts between training and
testing data in recommender systems (RSs).

In addition to the above research problems, we also review three key techniques
employed in this thesis. Specifically, we review: (1) disentangled representation learn-
ing in Section 2.3, which helps to decouple essential components of user preferences
and observed confounders; (2) causal deconfounding in Section 2.4, which mitigates
confounding bias from observed confounders in observational data; and (3) causal
structure learning in Section 2.5, which enables the discovery of invariant causal rela-
tionships among variables from observational data.

This chapter is organized as follows:

* Section 2.1 introduces existing CDR methods, including single-target CDR and
dual-target CDR methods.

 Section 2.2 introduces existing single-domain OOD recommendation methods.

* Section 2.3 introduces related disentangled representation learning methods.

19
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 Section 2.4 introduces related causal deconfounding methods.
 Section 2.5 introduces related causal structure learning methods.

* Section 2.6 presents a summary of existing studies.

2.1 Cross-Domain Recommendation (CDR)

As the core research problem of this thesis, CDR has been widely studied under differ-
ent knowledge transfer paradigms. This section reviews both single-target CDR and

dual-target CDR methods.

2.1.1 Single-Target CDR

CDR aims to transfer valuable information from a relatively data-richer source domain
to a relatively data-sparser target domain to improve recommendation performance,
forming single-target CDR [183]. The existing single-target CDR methods can be
divided into three categories, i.e., (1) content-based transfer methods, (2) embedding-

based transfer methods and (3) rating pattern-based transfer methods [186].

2.1.1.1 Content-Based Transfer

Content-based transfer methods [49] mainly use the various content information, such
as user/item attributes, tags, reviews, etc., to link domains and share their informa-
tion across domains. TagCDCTR [120] extends collaborative topic regression to the
cross-domain setting by leveraging shared tags as semantic bridges between domains,
enabling joint topic learning and collective matrix factorization (MF) to enhance rec-
ommendation performance under data sparsity. By learning semantic relationships
among non-identical tags through word embeddings and clustering, SCT [158] con-
structs a shared feature space that enables knowledge transfer across domains via se-

mantically aligned user and item representations. The method proposed by Kanagawa
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et al. [49] frames CDR for cold-start users as an extreme multi-class classification task
and address it through unsupervised domain adaptation using a Domain Separation

Network (DSN) combined with a denoising autoencoder for item representation.

2.1.1.2 Embedding-Based Transfer

By contrast, embedding-based transfer methods [45, 23] aim to first get embeddings
using various learning techniques, and then transfer them across domains. EMCDR
[87] utilizes Bayesian Personalized Ranking (BPR) model [98] as its MF model and
maps the latent factors of common users/items across different domains for effective
knowledge transfer. DCDCSR [184] integrates the latent factors from both domains
by considering the sparsity degrees of individual users/items in each domain, creating
more accurate benchmark factors to guide the deep neural network to map the la-
tent factors across domains. PTUPCDR [194] generates personalized bridge functions
through a task-optimized meta network, facilitating stable and personalized preference
transfer from the source to the target domain. CUT [58] employs a two-phase train-
ing strategy that first captures user similarities in the target domain and then transfers
source-domain information selectively, leveraging a user transformation module and

contrastive learning to avoid relationship distortion.

2.1.1.3 Rating Pattern-Based Transfer

Different from the embedding-based transfer methods, rating pattern-based transfer
methods [150] typically focus on capturing generalizable user rating patterns in the
source domain, which are then adapted to the target domain to enhance recommen-
dation accuracy. CLFM [28] introduces a cluster-level latent factor model based on
joint nonnegative matrix tri-factorization to capture both shared and domain-specific
rating patterns, enabling flexible control over cross-domain knowledge transfer and
improving recommendation performance through subspace learning. MINDTL [38]

addresses data sparsity in CDR by extracting transferable rating patterns from mul-
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tiple incomplete source domains using an incomplete orthogonal nonnegative matrix
tri-factorization method, and automatically learns source weights to mitigate nega-
tive transfer. DARec [150] employs deep domain adaptation to transfer user rating
patterns across domains without relying on auxiliary information, using adversarial
training and domain classifiers to learn shared and distinct representations from rating

matrices alone.

2.1.2 Dual-Target CDR

In contrast to single-target CDR, dual-target CDR aims to achieve better recommenda-
tion performance on both domains simultaneously, which can be extended to multiple
domains, leading to multi-target CDR [16, 185, 34]. The existing dual-target CDR
approaches can be divided into four categories, i.e., (1) conventional approaches, (2)
disentanglement-based approaches, (3) causal-based approaches, and (4) alignment-

based approaches.

2.1.2.1 Conventional Dual-Target CDR

Conventional approaches primarily utilize two base encoders to transform each do-
main’s interaction data into embeddings, which are then symmetrically incorporated
through various transfer layers [59, 74]. CoNet [44] utilizes cross-connection networks
to achieve knowledge transfer between two domains. DDTCDR [59] employs a la-
tent orthogonal mapping function to transfer user embeddings across domains. PPGN
[172] constructs a cross-domain interaction graph to learn and transfer representations.
BiTGCEF [74] first leverages two base graph encoders to learn user/item embeddings,

and then performs the feature propagation and transfer to fuse user embeddings.

2.1.2.2 Disentanglement-Based Dual-Target CDR

By contrast, disentanglement-based approaches mainly utilize techniques such as vari-

ational autoencoders (VAEs) [8, 188] or introduce supervision signals such as adver-
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sarial learning [117, 109] and contrastive learning [7] to decouple domain-invariant
(shared) user preferences, which remain stable across domains and capture fundamen-
tal behavioral patterns. For instance, VAE-based approaches [126] employ the explicit
reconstruction loss included in the Evidence Lower Bound (ELBO) and extra regu-
larizers as the disentanglement loss to learn desirable disentangled representations.
DisenCDR [8] uses two mutual-information-based regularizers to decouple domain-
shared and domain-specific information, transferring only domain-shared informa-
tion across domains to improve recommendation performance. DIDA-CDR [188]
uniquely decouples domain-independent user preferences, as well as domain-shared
and domain-specific user preferences, to capture more comprehensive user preferences
for recommendation. Other recent works often utilize Graph Convolutional Networks
(GCNs) [121], adversarial learning [15, 179], self-supervised learning [56, 34, 160]
and fixed or flexible combination strategies [183, 185, 140] to disentangle the latent
knowledge, such as domain-shared and domain-specific information. GA-DTCDR
[185] generates more representative user/item embeddings by constructing heteroge-
neous graphs from two domains and applies an element-wise attention mechanism
to combine the embeddings of common users to enhance the recommendation accu-
racy in both domains. CausalCDR [57] incorporates causality into CDR by using
causal embeddings to model the joint distribution of interactions and utilizes an adver-
sarial domain classifier to decouple the domain-specific and domain-shared features.
GDCCDR [72] leverages two distinct contrastive learning-based constraints for fea-
ture disentanglement: one preserves domain-invariant features across domains, and
the other disentangles domain-specific features via mutual information, with meta-
networks supporting the personalized transfer of domain-invariant features. CrossAug
[88] uses intra- and inter-domain data augmentation based on cross-reconstructed rep-
resentations, while utilizing Householder transformations for domain-shared center
alignment to mitigate the domain shift. HJID [19] uses a hierarchical subspace dis-
entanglement method to split user representations into generic shallow and domain-

specific deep subspaces, utilizing a causal data generation graph to decouple domain-
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shared and domain-specific latent factors, thus enhancing robustness against distribu-

tion shifts across domains.

2.1.2.3 Causal-Based Dual-Target CDR

Different from disentanglement-based approaches, causal-based approaches first con-
struct causal graphs to identify confounders [27, 192] that influence both user pref-
erences and user-item interactions [189]. Then, techniques like inverse propensity
weighting (IPW) [100] or causal intervention [122] are applied to debias or decon-
found such confounders, ensuring that the transferred knowledge accurately reflects
true user preferences and strengthens recommendation robustness. SCDGN [64] builds
a cross-domain user-cluster graph and employs a debiasing graph convolutional layer
to extract and transfer unbiased graph knowledge between domains. CDRIB [9] de-
vises two information bottleneck regularizers to simultaneously model user-item inter-
actions within and across domains, aiming to debias the user and item representations.
IPSCDR [63] employs a generalized inverse propensity score (IPS) estimator to miti-
gate selection bias in cross-domain contexts and devises three types of restrictions to
learn propensity scores in the presence of unobserved domain-specific confounders.
CD2CDR [189] designs a dual adversarial structure to decouple single-domain con-
founders (SDCs), leverages half-sibling regression to disentangle cross-domain con-
founders (CDCs), and then utilize backdoor adjustment to mitigate such confounders’

negative effects to obtain debiased comprehensive user preferences.

2.1.2.4 Alignment-Based Dual-Target CDR

In addition, alignment-based approaches mitigate distribution shifts by directly align-
ing user behaviors and shared user-item interaction patterns [177, 144], or mapping
auxiliary features into shared latent spaces [76, 142], thus facilitating effective knowl-
edge transfer. DisAlign [76] combines contrastive learning with two embedding align-

ment methods, i.e., Stein path alignment and proxy Stein path alignment, which aim
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to reduce distribution mismatch between source and target domains. CCDR [142]
leverages a diversified preference network and employs both intra-domain and inter-
domain contrastive learning strategies, where inter-domain tasks are constructed from
user, taxonomy, and neighbor perspectives to facilitate effective transfer. COAST
[176] jointly models cross-domain user—item interactions within a unified graph struc-
ture and aligns overlapping users’ interests through contrastive signals and gradient-
based optimization for better representation consistency. HGCCDR [144] leverages a
fine-grained heterogeneous graph and domain-aware graph augmentation strategies to
model complex user-item interactions, followed by multi-view contrastive learning to

align and integrate domain-specific and domain-invariant user embeddings.

2.1.3 CDR: A Summary

Single-Target CDR [186] focuses on addressing the data sparsity problem by utiliz-
ing the abundant information available in a data-richer domain to improve the rec-
ommendation performance in a data-sparser domain. The existing single-target CDR
approaches can be divided into three categories: content-based transfer, embedding-
based transfer and rating pattern-based transfer [186]. Content-based transfer [49]
leverages user/item attributes and textual information to establish links across do-
mains. By contrast, embedding-based transfer [45, 23] employs machine learning
techniques to extract user/item embeddings [150] for cross-domain transfer. In ad-
dition, rating pattern-based transfer mainly focus on transferring the learned rating
patterns from the source domain to the target domain.

Although single-target CDR has been extensively studied, it suffers from a fun-
damental limitation: the knowledge transfer is restricted to a unidirectional flow from
the source domain to the target domain. While these methods effectively leverage vari-
ous forms of transferable knowledge such as content, embeddings, and rating patterns,
they overlook the fact that even the data-sparser target domain may contain valuable

information. This oversight prevents leveraging potentially valuable information from
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the target domain that could, in turn, improve the recommendation performance in the
source domain.

By contrast, in recent years, dual-target CDR has been proposed to improve the rec-
ommendation performance on both domains simultaneously by sharing the common
knowledge across domains [186, 152]. The domain-shared information is variously
termed as domain-invariant information [81, 109], domain-common information [15],
or domain-independent information [73, 99] (note that the domain-independent infor-
mation in other works does not have the same meaning as in our work, as discussed in
Chapter 3). Despite the progress made in dual-target CDR research, existing methods
still face three significant limitations. First, they cannot effectively capture comprehen-
sive user preferences because they fail to disentangle all essential components of user
preferences, instead entangling domain-independent information with domain-specific
information. Second, they primarily focus on modeling user preferences while over-
looking that users’ final decisions are also influenced by observed confounders, which
limits their ability to obtain a comprehensive understanding of user-item interactions
in both domains. Third, these approaches either overlook distribution shifts entirely, or
solely focus on addressing cross-domain distribution shifts (CDDS) while neglecting
single-domain distribution shifts (SDDS), limiting their effectiveness in OOD scenar-
10s. These limitations collectively hinder the performance of existing CDR methods

in real-world recommendation tasks.

2.2 Out-of-Distribution (OOD) Recommendation

OOD generalization has emerged as a fundamental research direction in artificial intel-
ligence, with significant developments across various fields such as natural language
processing [5], computer vision [4], and others. Among these fields, RSs face par-
ticularly challenging OOD scenarios due to the inherently dynamic nature of user
behaviors and item distributions. To the best of our knowledge, there is no existing

method that explicitly addresses the cross-domain OOD recommendation problem.
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Therefore, this section only reviews existing single-domain OOD recommendation
methods, which can be broadly categorized into four classes, i.e., (1) disentanglement-
based methods, (2) causal-based methods, (3) invariant learning-based methods and

(4) adaptation-based methods.

2.2.1 Disentanglement-Based OOD Recommendation

Disentanglement-based methods aim to learn disentangled representations that sepa-
rate stable user preferences from dynamic factors. For example, DICE [181] disentan-
gles user behaviors into interest and conformity components, training separate embed-
dings with cause-specific data to capture each factor independently. Moreover, DCCL
[178] employs contrastive learning to disentangle user interests from conformity be-
haviors, integrating item popularity signals to address data sparsity and enhance the

robustness of causal representations.

2.2.2 Causal-Based OOD Recommendation

In contrast, causal-based methods focus on modeling the invariant causal mechanisms
in recommendation scenarios. For instance, COR [123] views user attribute changes
as interventions and formulates OOD recommendation as a post-intervention infer-
ence problem, using a variational framework to model the causal relationships be-
tween user features and interactions. In addition, CausPref [43] learns causal struc-
tures through Directed Acyclic Graphs (DAGs), combining invariant user preference
learning with anti-preference sampling to handle implicit feedback. PopGo [155] im-
proves OOD generalization by mitigating interaction-level popularity shortcuts, using
a learned shortcut model to adjust predictions and emphasize true user preferences over
spurious popularity shortcuts. CausalDiffRec [174] enhances OOD recommendation
by eliminating environmental confounders through backdoor adjustment and learning

environment-invariant graph representations via a causal diffusion process.
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2.2.3 Invariant Learning-Based OOD Recommendation

Different from the above two classes, invariant learning-based methods aim to identify
stable patterns across different environments while eliminating spurious correlations
that may vary across distributions. For example, InvPref [135] identifies heteroge-
neous environments from interaction data to separate invariant user preferences from
variant ones that are affected by environmental factors, i.e., unobserved confounders.
Furthermore, InvCF [156] learns preference representations that remain stable under
popularity shifts, utilizing an auxiliary classifier to separate invariant user preferences

from dynamic popularity factors.

2.2.4 Adaptation-Based OOD Recommendation

In addition, adaptation-based methods focus on enhancing model adaptability to distri-
bution shifts through various adaptation mechanisms. DR-GNN [116] integrates dis-
tributionally robust optimization (DRO) into GNN-based recommendation by treating
GNN as a smoothing regularizer and injecting small perturbations into sparse neigh-
bor distributions to enhance robustness against distribution shifts. DT30R [148] intro-
duces a dual test-time training strategy for OOD recommendation, adapting models to
distribution shifts by learning invariant user preferences and variant user/item features

through self-distillation and contrastive learning.

2.2.5 OOD Recommendation: A Summary

OOD recommendation addresses the critical challenge of maintaining recommenda-
tion quality when facing distribution shifts between training and testing environments.
As reviewed above, existing research has developed four main approaches to tackle
this challenge. Disentanglement-based methods separate stable user preferences from
dynamic contextual factors, enabling models to focus on invariant preference pat-
terns. Causal-based methods identify and model the underlying causal mechanisms

governing user-item interactions, viewing distribution shifts as interventions in causal
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structures. Invariant learning-based methods aim to discover and leverage preference
patterns that remain stable across different environments while eliminating spurious
correlations. Adaptation-based methods enhance model flexibility through various
mechanisms that allow RSs to adapt to changing distributions during inference time.
Despite these advances, existing OOD recommendation methods suffer from two
significant limitations. First, many approaches treat OOD recommendation primar-
ily as a debiasing problem, focusing on specific factors like conformity or popularity
as individual confounders while failing to provide a comprehensive framework for
modeling multiple observed confounders simultaneously. Second, methods that do
consider environmental factors often treat them as unobserved confounders, overlook-
ing the potential impact of observed confounders that could be directly measured and
accounted for. This incomplete consideration of the observed confounders limits the
ability of existing methods to learn truly robust representations for effective OOD rec-

ommendation in complex real-world scenarios.

2.3 Disentangled Representation Learning

Disentangled representation learning has recently attracted increasing attention in RSs
due to its ability to capture independent and interpretable preference factors. By sepa-
rating underlying causes of user behaviors, it enhances both the robustness and gener-
alizability of recommendation models. This section reviews the application of disen-
tangled representation learning in recommendation from three perspectives: First, we
provide an overview of the fundamental principles and applications of disentangled
representation learning in general recommendation scenarios, including its origins in
computer vision and its adaptation to various recommendation tasks. Second, we intro-
duce multi-interest recommendation as a significant application field, focusing on its
core methodologies categorized into interaction-based and auxiliary knowledge-based
approaches. Finally, we review how disentangled representation learning specifically

addresses the unique challenges in multi-interest recommendation, particularly the col-
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lapse issue where interest representations lose diversity during training.

2.3.1 Disentangled Recommendation

Disentangled representation learning is originally introduced in the field of computer
vision [11, 30] and is mainly used to learn visual features such as shape, color and
location features of objects [168]. In addition to computer vision, in recent years,
disentangled representation learning has also been used in RSs [85, 129, 86]. The
main idea of disentangled representation learning is to focus on decomposing the la-
tent factors behind the observed instances in the low-dimension vector space [3, 125].
For recommendation, MacridVAE [85] performs the macro disentanglement and mi-
cro disentanglement based on the user behavior data. DGCF [129] leverages a graph
disentangling module to decouple user embeddings learned from user-item interaction
data into fine-grained user intents. The method proposed by Ma et al. [86] reconstructs
the embedding of future sequence by self-supervised learning to decouple the inten-
tions of users. Moreover, disentangled representation learning has also been applied to
causal recommendation. Existing disentanglement-based methods [130] first decouple
the semantic-aware intent embeddings, and then employ causal intervention [149, 78]

to alleviate the confounding bias.

2.3.2 Multi-Interest Recommendation

Multi-interest recommendation, as a significant branch within the disentangled rec-
ommendation paradigm, specifically aims to identify and disentangle users’ diverse
interest facets. Existing multi-interest recommendation approaches can be categorized
into two main types: interaction-based approaches and auxiliary knowledge-based ap-
proaches [21]. Interaction-based approaches rely solely on user-item interaction data,
typically employing either the capsule network [113, 143] or the attention mechanism
[141, 80] to extract diverse interest representations from users’ interaction patterns in-

stead of using auxiliary knowledge. For instance, REMI [143] enhances multi-interest
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representation learning by introducing an interest-aware hard negative mining strategy
alongside routing regularization, effectively preventing the routing collapse in capsule
networks. By contrast, auxiliary knowledge-based approaches mainly focus on lever-
aging external information such as knowledge graphs [71, 134] and multi-type be-
haviors [90, 61] to guide the learning of multi-interest representations. For example,
CKML [90] is a coarse-to-fine framework that combines knowledge-enhanced inter-
est extraction with dynamic routing-based behavior correlation modeling to capture

behavior-shared and behavior-specific user interests.

2.3.3 Disentangled Representation Learning for Multi-Interest Rec-

ommendation

Disentangled representation learning has also been effectively applied to multi-interest
recommendation [13], where the goal is to identify and separate users’ diverse prefer-
ence facets. One key challenge in this area is the collapse issue, where initially distinct
interest embeddings become increasingly similar during training, resulting in a loss of
diversity and a failure to capture users’ multifaceted preferences. To address this chal-
lenge, researchers have proposed various disentanglement-based strategies, which can
be broadly classified into two groups [21].

The first group of approaches primarily tackles the collapse issue through statis-
tical regularization, aiming to enforce diversity among interest embeddings. Rather
than modeling semantic differences directly, these approaches impose various math-
ematical constraints on the learning process to discourage homogeneity in the repre-
sentation space. For instance, MDSR [13] frames sequential recommendation as a
list generation process, leveraging multi-head attention and dynamic routing to mine
multiple user interests, and promotes diversity through a specially designed decoding
mechanism and training loss to generate balanced recommendation lists. Furthermore,
VALID [114] achieves disentanglement within the regularization framework by itera-

tively refining personalized item clusters via latent attention.
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The second group of approaches mainly handle the collapse issue via representation-
guided refinement, focusing on optimizing the bidirectional relationships between in-
terest embeddings and their corresponding items. For example, DisMIR [86] leverages
disentanglement techniques to separate user intentions within sequential behavior pat-
terns, applying self-supervised learning in the latent space to maintain interest diversity
and prevent representation collapse over time. Moreover, Re4 [163] disentangles user

interests by implementing backward flows from interests to items.

2.3.4 Disentanglement Representation Learning: A Summary

As reviewed above, disentangled representation learning in RSs has evolved to ad-
dress various aspects of user preference modeling, with multi-interest recommenda-
tion emerging as a key application field. These methods share the fundamental goal
of decomposing the latent factors behind observed user behaviors, thereby enhancing
model interpretability, robustness, and effectiveness across recommendation scenarios.

Despite significant advances, several critical limitations persist across this research
field. First, while some recent methods have begun to incorporate causal reasoning,
many existing methods still predominantly focus on achieving representation disen-
tanglement through architectural designs (such as capsule networks or attention mech-
anisms) or statistical techniques, without adequately capturing the underlying struc-
tural dependencies among different components of user preferences. This limitation
constrains their ability to generalize effectively across varying contexts, especially in
cross-domain scenarios. Second, in multi-interest recommendation specifically, exist-
ing methods face significant challenges in addressing the collapse issue, where initially
distinct interest representations become increasingly homogeneous during training,
despite various regularization strategies. Even when diversity is maintained, the rela-
tionship between the disentangled interests and their corresponding item groups often
remains inadequately established. Third, existing methods typically focus on disen-

tangling different components of user preferences, while overlooking the important
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distinction between user preferences and various observed confounders. This incom-
plete consideration limits their effectiveness, particularly when dealing with complex
cross-domain scenarios where single-domain confounders (SDCs) and cross-domain

confounders (CDCs) coexist.

2.4 Causal Deconfounding

Causal deconfounding has emerged as a powerful technique for mitigating confound-
ing biases in various machine learning domains. This section reviews two major appli-
cation fields where such techniques have shown significant impact: RSs and domain
generalization. In RSs, confounders may obscure true user preferences, resulting in
biased recommendations. In domain generalization, they can induce spurious correla-
tions between features and labels, thereby undermining the model’s ability to general-

ize to unseen domains.

2.4.1 Deconfounded Recommendation

In recent years, causal learning [139, 145] has been introduced into RSs due to its
ability to tackle confounding biases caused by confounders, which can be classified
into two types: observed confounders and unobserved confounders. Moreover, these
methods have also been extended to CDR scenarios, where addressing confounding

biases becomes even more crucial for effective knowledge transfer across domains.

2.4.1.1 Deconfounded Recommendation for Observed Confounders

For observed confounders, the existing deconfounded RSs adopt inverse propensity
weighting (IPW) [100] or backdoor adjustment [122] to address the observed specific
confounders, such as item popularity [166] and video duration [154, 42]. DLCE [100]
introduces an unbiased learning framework for estimating the causal effect of recom-

mendations, where inverse propensity scoring (IPS) and empirical risk minimization



2.4. CAUSAL DECONFOUNDING 34

(ERM) with propensity capping are applied to optimize a debiased ranking objective
under finite sample settings. To mitigate the influence of confounders in recommen-
dation, DecRS [122] incorporates a causal graph-based formulation and applies an
efficient approximation of backdoor adjustment, enabling dynamic correction of pre-
diction bias based on user-specific conditions. To better utilize popularity bias in rec-
ommendation, PDA [166] formulates item popularity as a confounder and proposes a
two-stage approach: deconfounding it during training and selectively reintroducing it
at inference via causal intervention. To mitigate duration-induced bias in video recom-
mendation, D2Q [154] formulates a causal framework that distinguishes the intrinsic
and confounding effects of duration, applying group-wise modeling and label adjust-
ment to ensure both debiasing and scalability. To address the confounding effect of
item features, DCR [42] applies do-calculus-based intervention to block the backdoor
path, and incorporates a mixture-of-experts (MoE) model to approximate the inference

over confounder values with reduced computational cost.

2.4.1.2 Deconfounded Recommendation for Unobserved Confounders

For unobserved confounders, the existing deconfounded RSs either add additional as-
sumptions [69, 70] or infer substitutes for confounders [132, 159] to alleviate the con-
founding bias. To address confounding bias arising from biased feedback, DIB [69]
leverages causal analysis and information theory to separate user embeddings into
biased and unbiased parts during training, using only the unbiased part for recommen-
dation at inference time. To overcome the non-identifiability issue in deconfounded
recommendation, iDCF [159] introduces a proximal inference framework that uses
observable proxies to infer latent confounders and correct feedback prediction under
unmeasured confounding. The method proposed by Liang et al. [66] introduce a
causal graph incorporating both implicit and explicit feedback to better model user
preferences, and employ the front-door adjustment to estimate unbiased user-item in-
teractions in the presence of unobserved confounders. To address the influence of

latent confounders on both users and items, MCDCEF [46] models the sets of interacted
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items and users as multi-cause treatment variables and learns substitute confounders

from interaction data.

2.4.1.3 Deconfounded CDR

Moreover, recent research efforts have extended confounder debiasing into CDR sce-
narios, focusing mainly on unobserved confounders. The unobserved confounders can
be further categorized into two classes: domain-specific confounders (e.g., purchase-
guided domain setting) and general confounders (e.g., the display position of items)
[63]. Most of existing approaches tend to remove the negative influences of domain-
specific confounders [63, 167] or general confounders [173, 147]. Grace [167] unifies
CDR and domain generalization through a causal invariant framework that disentan-
gles user preferences into domain-invariant and domain-specific components, using
adversarial learning and a routing mechanism to enhance transferability and adapt-
ability. ARISEN [173] enhances cross-domain sequential recommendation (CDSR)
by aligning user sequences temporally and employing an adaptive representation de-
composition framework based on instrumental variables, guided by mutual informa-
tion for improved causal disentanglement. To enhance CDSR under open-world as-
sumptions, AMID [147] integrates a multi-interest information module that facilitates
cross-domain knowledge transfer for both overlapping and non-overlapping users, and

a doubly robust estimator for bias reduction in performance estimation.

2.4.2 Deconfounded Domain Generalization

Domain generalization [182, 119] aims to train models on labeled data from source
domains to enhance their generalization ability across unseen target domains by learn-
ing domain-invariant feature representations. However, confounders influencing both
features and labels can undermine such representations, preventing models from cap-
turing the true causal effects. In recent years, causal inference techniques [102, 161]

have been employed to address these confounding problems in domain generalization,
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thereby enhancing the model’s ability to generalize accurately across varied domains.
For instance, a line of existing works [79, 169] simply adopts the average value of
all domain features in each domain as the confounder, and employs backdoor adjust-
ment to capture the true causality. Another line of works incorporates interventional
pseudo-correlation augmentation [93] or adversarial training [118] to remove the con-
founders to better generalize to the unseen domain. There is also another line of works
that exploits the instrumental variables [151] or learns substitutes [47] to eliminate the

unobserved confounders and capture the invariant features for domain generalization.

2.4.3 Causal Deconfounding: A Summary

As reviewed above, causal deconfounding has emerged as a powerful method to ad-
dress the confounding biases in both RSs and domain generalization. In RSs, re-
searchers have developed various methods to mitigate the negative impacts of con-
founders. For observed confounders such as popularity and item features, approaches
like IPW and backdoor adjustment have been applied to remove their confounding
effects. For unobserved confounders, researchers have proposed methods that either
introduce additional assumptions or infer substitutes to alleviate the confounding bias.
These deconfounding techniques have also been extended to CDRs, where they ad-
dress both domain-specific confounders and general confounders to facilitate effec-
tive knowledge transfer. Similarly, in domain generalization, causal deconfounding
methods have been employed to mitigate the influence of confounders on feature-label
relationships, enhancing models’ ability to generalize across unseen domains.
Despite these advances, existing methods exhibit several critical limitations. First,
most methods focus primarily on eliminating the negative impacts of confounders,
overlooking the potential positive influences that certain confounders might have on
predicted interactions. This complete removal strategy may discard valuable informa-
tion that could enhance recommendation accuracy. Second, while various techniques

have been developed for single-domain recommendation and domain generalization
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separately, the unique challenge of CDR has not been adequately addressed, particu-
larly the explicit decoupling of observed cross-domain confounders (CDCs). Third,
many methods rely on simplified assumptions about confounders, either treating them

as given (such as using off-the-shelf features) or neglecting domain-variant features.

2.5 Causal Structure Learning

Causal structure learning seeks to uncover causal relationships among variables from
observational data, playing a fundamental role in fields such as healthcare, economics,
and RSs [43]. To achieve this goal, causal discovery provides systematic approaches
to inferring such relationships through statistical analysis [50]. In this section, we cat-
egorize causal structure learning methods into two main classes: conventional causal

discovery methods and LLM-guided causal discovery methods.

2.5.1 Conventional Causal Discovery

Conventional causal discovery methods, which are primarily data-driven, can be broadly
categorized into three groups, i.e., (1) dependency-based methods, (2) function-based
methods, and (3) optimization-based methods. Dependency-based methods rely on
statistical strategies to infer causal structures, but are often limited by the Markov
equivalence class, making it challenging to determine unique causal directions [36]. In
contrast, function-based methods such as LINGAM [103] utilize asymmetries in the
data generation process to identify unique causal structures. In addition, optimization-
based methods like NOTEARS [180] reformulate structure learning as a continuous

optimization problem, using gradient-based techniques to learn causal relationships.

2.5.2 LLM-Guided Causal Discovery

Furthermore, recent advances in Large Language Models (LLMs) have led to a new

paradigm for causal discovery through LLM-guided methods [55, 112]. In contrast
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to conventional causal discovery methods, these methods leverage the semantic un-
derstanding of variable descriptions to infer causal relationships. Existing studies in
this direction primarily follow two streams: one that explores direct causal inference
through LLM prompting [51, 153], and another that integrates LLMs into conventional
causal discovery methods as prior or posterior knowledge to improve their effective-
ness [2, 115]. MAC [55] proposes a multi-agent framework that integrates statisti-
cal causal discovery with LLM-based reasoning, where agents collaboratively select
causal methods and iteratively refine causal structures using both structured data and
metadata. ILS-CSL [2] combines LLM-based inference with data-driven structure
learning in an iterative loop, where LLMs supervise and refine edge predictions, re-

sulting in higher-quality and more consistent causal graphs.

2.5.3 Causal Structure Learning: A Summary

As reviewed above, causal structure learning approaches have evolved from conven-
tional data-driven methods to emerging LLM-guided methods, each offering distinct
advantages in uncovering causal relationships among variables. Conventional meth-
ods, whether dependency-based, function-based, or optimization-based, rely primarily
on statistical patterns and mathematical formulations to infer causal structures from
observational data. These approaches provide rigorous frameworks for causal discov-
ery but often struggle with challenges such as the Markov equivalence class problem.
In contrast, LLM-guided methods leverage the rich semantic understanding and world
knowledge embedded in LLMs, either through direct prompting for causal inference
or by integrating LLMs with conventional statistical techniques. This integration has
shown promising results in improving the quality and consistency of discovered causal
structures, particularly in domains with complex variable relationships.

Despite these advances, several limitations persist across the current research field.
First, conventional methods typically require pre-defined variables or substantial do-

main expertise to properly formulate the causal discovery problem, limiting their appli-
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cability in domains where causal factors are not well understood or easily identifiable.
Second, many LLLM-guided approaches rely heavily on the world knowledge embed-
ded in these models, which may not always align with domain-specific causal mecha-
nisms and can potentially introduce biases from the models’ training data. Third, while
these two types of approaches have shown effectiveness, few attempts have been made
to develop frameworks that seamlessly combine the conventional methods with the
LLMs, particularly for extracting observed confounders from unstructured data such
as user reviews. This gap is especially significant in RSs, where user-generated con-
tent contains valuable information about observed confounders that influence both user

preferences and user-item interactions.

2.6 Summary

This chapter has presented a comprehensive review focusing on two core research
problems: Cross-Domain Recommendation (CDR) and Out-Of-Distribution (OOD)
recommendation. In addition, we have reviewed three key techniques essential to
our thesis: disentangled representation learning, causal deconfounding, and causal
structure learning. Through this systematic analysis, we have identified several critical
limitations in the existing literature that lead to four fundamental challenges addressed
in this thesis.

Firstly, existing CDR methods either fail to properly disentangle domain-specific
and domain-shared preferences or completely overlook domain-independent user pref-
erences, resulting in incomplete user modeling and suboptimal recommendation per-
formance. Addressing this limitation requires advanced disentangled representation
learning techniques to effectively decouple all the essential components of user pref-
erences (CH1).

Secondly, existing CDR methods fail to explicitly decouple comprehensive ob-
served confounders. These observed confounders, often embedded within various

forms of textual information, remain largely underexplored, limiting the comprehen-
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sive understanding of user-item interactions. Addressing this limitation requires devel-
oping effective techniques to accurately extract and properly represent these observed
confounders (CH2).

Thirdly, most existing causal deconfounding methods focus solely on eliminating
the negative impacts of confounders while neglecting their potentially positive effects
on interaction prediction, limiting the recommendation accuracy in real-world scenar-
10s. Addressing this limitation requires developing balanced causal deconfounding
methods that can preserve the positive impacts of confounders as well (CH3).

Finally, recent OOD recommendation studies typically address cross-domain dis-
tribution shifts (CDDS) and single-domain distribution shifts (SDDS) in isolation,
failing to handle scenarios where these two types of shifts co-exist, thus leading to
degraded recommendation performance in CDR. Addressing this limitation requires
leveraging causal structure learning to discover causal relationships that remain invari-

ant across both types of distribution shifts (CH4).



Chapter 3

Domain Disentanglement with
Interpolative Data Augmentation for
Dual-Target Cross-Domain

Recommendation

In recent years, dual-target CDR has been proposed to improve the recommenda-
tion performance on both domains simultaneously by sharing the common knowledge
across domains [186, 152]. However, none of the existing dual-target CDR mod-
els decouples all three essential components needed to capture comprehensive user
preferences. To be specific, the existing methods only decouple two essential compo-
nents, i.e., domain-shared and domain-specific information, and ignore the existence
of domain-independent information. Since domain-independent information has dif-
ferent meanings from the other two types of information, it cannot be ignored when
capturing comprehensive user preferences.

Below we introduce domain-shared, domain-specific and domain-independent in-

formation respectively with examples, and further differentiate them.

(1) Domain-shared Information: There exists some domain-shared information in
both movie domain and music domain, such as ‘Category’. For example, people
who like watching suspense movies (i.e., a category in movie domain) tend to like

listening to suspense music (i.e., a category in music domain), and vice versa. Since
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(i)

(iii)

(iv)

)

the domain-shared information can provide the valuable information for CDRes, it

needs to be first decoupled and then transferred to both domains.

Domain-specific Information: In contrast, there also exists some domain-specific
information in each domain. For example, the user preference for pictures in a movie
(i.e., ‘Frame’ in movie domain) is not applicable in music domain because ‘Frame’ is
unique to movie domain. Thus, such domain-specific information should be decou-
pled too, which helps improve the recommendation performance on its own domain,

but it should not be transferred to another domain to avoid negative transfer [187].

Domain-independent Information: In addition, some domain-independent infor-
mation also exists in each domain, but should not be transferred to other domains.
For instance, ‘Rhythm’ exists in each of movie, music and book domains. However,
in movie domain, it means the use of sound effects, the speed of camera cuts, and the
changes in the pace of movie scenes, etc [104]. In music domain, it means the use of
beats and the speed of songs, etc [37]. In book domain, it means the fluidity of the
writing and the ups and downs of the storyline, etc [29]. In other words, although
‘Rhythm’ is seemingly common in all three domains, it has different meanings in
different domains. Hence, such information is domain-independent and should be
extracted from its own domain for capturing comprehensive user preferences, but

should not be transferred to other domains.

Difference: Different to the domain-independent information, the domain-shared
information (e.g., ‘Category’) extracted from two domains expresses the same mean-
ing in each domain. In addition, the domain-specific information, e.g., ‘Frame’ in
the movie domain, exists only in its own domain. By contrast, although the domain-
independent information, e.g., ‘Rhythm’, exists in each domain, it has different

meanings in different domains.

Summary: Therefore, it is vital to recognize the existence of domain-independent

information and to clearly differentiate it from domain-shared and domain-specific
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information. More importantly, decoupling domain-independent information is cru-
cial for capturing more comprehensive user preferences, otherwise it will cause
suboptimal recommendation results. However, existing dual-target CDR methods
neglect the above insights. Hence, novel dual-target CDR solutions are needed to

incorporate the above insights for capturing more comprehensive user preferences.

Following the above discussions, to target superior dual-target CDR, there is a major
challenge that has been introduced in Section 1.2.1 and expressed by CH1: How to ef-
fectively decouple domain-independent information from domain-specific information,
in addition to domain-shared information, to capture comprehensive user preferences
on each domain, thereby improving the recommendation performance?

Then, this chapter will formulate the target problem of our proposed model. Next,
we elaborate on the basic components of DIDA-CDR. Finally, we conduct extensive
experiments on five real-world datasets to show the significant superiority of DIDA-

CDR over the state-of-the-art methods.

3.1 Problem Statement

This chapter considers the dual-target CDR on two domains D“ and D with a shared
user set, denoted by U (of size m = |U|). The sets of items in D“ and D® are defined
as V4 (of size n* = |V4]) and VP (of size n® = |VB|), respectively. Let R4 €
{0,137 and R® € {0,1}™*"” denote the binary user-item interaction matrices in
D4 and D?, respectively. By aggregating the interaction data in each domain, we first
construct two heterogeneous graphs G4 = (U, V4, Q%) and G® = (U, VP, QP) 10
learn user embeddings E#, EZ and item embeddings E#, EZ in domains D# and D?,
respectively, where Q4 and QP are the edge sets that represent the observed user-item
interactions. By linearly interpolating the user embeddings E#' and EZ, we then gen-
erate augmented user representations E2“9 to augment the sparser domain DZ. Given
two coarse user embeddings E#, EZ and the augmented user representations E2%9,

our goal is to disentangle domain-shared, domain-specific and domain-independent
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user preferences, i.€., Zghq, Lispe, and Z;,q, and then transfer domain-shared user pref-
erences Zgp, to each domain to capture comprehensive user preferences E;, thereby

improving the recommendation performance on both domains.

3.2 The Proposed DIDA-CDR Framework

3.2.1 Framework Overview

To enhance the recommendation accuracy in each of both domains, we propose a novel
disentanglement-based framework with interpolative data augmentation for dual-target
cross-domain recommendation, called DIDA-CDR. This framework contains five ma-
jor components, i.e., (1) Graph Convolution and Propagation Module, (2) Interpola-
tive Data Augmentation Module, (3) User Preference Disentanglement Module, (4)
Information Fusion Module, and (5) Prediction Module. The details of each module
of our proposed DIDA-CDR are illustrated in Figure 3.1. They are briefly introduced
below and described in detail in the following subsections.

(1) Graph Convolution and Propagation. First, we construct two heterogeneous
graphs to extract the high-order user-item interaction relationships using the interac-
tion data in domain A and domain B, respectively. Based on the above graphs, we
apply the graph convolution and propagation layer in the GCN [53] to generate user
and item embeddings.

(2) Interpolative Data Augmentation. Next, we propose an interpolative data aug-
mentation approach to augmenting user embeddings at the representation level. The
interpolative data augmentation approach linearly interpolates user embeddings in do-
mains A and B to generate both relevant and diverse augmented user representations.
(3) User Preference Disentanglement. Thereafter, we propose a disentanglement
module guided by a domain classifier to decouple more accurate domain-specific and
domain-independent user preferences from user embeddings generated by GCNs. This

module also disentangles domain-shared user preferences from augmented user repre-
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Figure 3.1: The details of each module of our proposed DIDA-CDR.

sentations, which are then transferred to both domains to provide valuable information.
(4) Information Fusion. Next, we use three approaches, i.e., concatenation, element-
wise sum, and attention mechanism to incorporate three essential components of user
preferences, i.e., domain-shared, domain-specific and domain-independent informa-
tion, which are decoupled by the disentanglement module, to capture the comprehen-
sive user preferences.

(5) Prediction. Finally, we apply the multi-layer perceptron (MLP) to model the
user-item interaction relationships, endowing the non-linearity to our proposed model.
Based on the MLP, the predicted user-item interaction matrix can be obtained. The
prediction loss between it and the observed user-item interaction matrix, together with
two domain classification losses, constitute the final loss for training.

Overall, our model can be easily extended to a multi-target CDR model. Specifi-
cally, we can disentangle domain-shared user preferences and transfer them to all do-
mains, decouple the domain-specific and domain-independent user preferences from
each domain, and then capture the comprehensive user preferences to improve the

recommendation performance on multiple domains simultaneously.
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3.2.2 Graph Convolution and Propagation

GCNs excel at capturing the relationships between nodes and learning the represen-
tation of graph data, and are well suited for modeling user-item relationships in RSs,
because the user-item interaction data can be easily transformed into the graph struc-
ture. To distill the high-order user-item interaction relationships, we construct two
heterogeneous graphs G and G® for domains A and B, respectively, where nodes
refer to entities (i.e., users and items) and edges refer to interactions. In this paper, we
apply the graph convolution and propagation layer in the GCN to encode the user and
item embeddings according to the user-item interaction matrix R* (or R?). The node
embeddings E{' (or EF) are randomly initialized. Given a graph G“, the propagation

rule is represented as:
. 1.~ 1
Ef = f(D7§RAD7§Ez4,1Wl -+ bl), (3.1

where R4 = R + I is the user-item interaction matrix of graph G* after adding a
self-loop identity matrix I. Disa degree matrix for normalization. W, and b, are
the trainable weight matrix and bias vector in the I** layer respectively, and E{! is the
hidden embedding matrix of graph G* in the [** layer [75]. f(-) denotes the ReLU
activation function.

After | times propagation, we can obtain the global hidden representations E4 by
concatenating multiple embedding matrices from E' to E#*, which can be rearranged
into the user embeddings E:! and item embeddings E# in domain A [172]. Similarly,

we can obtain the user embeddings EZ and item embeddings EZ in domain B.

3.2.3 Interpolative Data Augmentation

Although the user embeddings in both domains are obtained by GCNs, the user em-
beddings learned from the sparser domain are not as accurate as those learned from

the richer domain due to the data imbalance between the two domains. To augment
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the sparser domain and explore the potential user preferences, inspired by the mixup
technique [157], we design an interpolative data augmentation approach, which gener-
ates both relevant and diverse augmented user representations. However, the conven-
tional mixup technique cannot be directly utilized for our task, because the interaction
data cannot be directly mixed at the pixel level like images. Therefore, we propose
to linearly interpolate the embeddings of common users in both domains. The aug-
mentation of common users ensures that augmented user representations maintain the
relevance of user preferences in both domains, i.e., relevant augmented user represen-
tations, while corresponding to adding more interaction data for users in the sparser
domain. In addition, introducing randomness in linear interpolation instead of using
a fixed mixing coefficient can generate diverse augmented user representations, which
can provide richer information for subsequent disentanglement. The formula for inter-

polative data augmentation can be expressed as follows:
E™ = \E? + (1 — \)EZ, (3.2)

where E2“9 denotes the augmented user representations'. Since we aim to generate
more diverse augmented user representations through data augmentation, instead of
using attention-based methods in this module, we propose the interpolative data aug-
mentation approach. A\ € [0, 1] is the mixing coefficient sampled from Beta(a, o), a €
(0, 00). The advantages of adopting a mixing coefficient sampled from Beta(c, o) are
as follows. First, since the user embeddings of the common user in each of the two
domains should be equivalent, the mixing coefficient should be sampled within the
interval [0, 1] and be symmetric around 0.5. Beta distribution Beta(a, o) satisfies this
characteristic. Second, it has been proven to effectively improve the generalization
ability of the model [133]. Meanwhile, A also introduces randomness into our model,
thus weakening the negative transfer that may result from performing a linear interpo-

lation operation with fixed weights.

'The two terms, i.e., embedding and representation, are exchangeable in this paper.
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3.2.4 User Preference Disentanglement

To capture domain comprehensive preferences of users, we utilize disentangled repre-
sentation learning to extract the essential components of user preferences from previ-
ously obtained user embeddings. Inspired by the method introduced in [24], we design
a disentanglement module to decouple the domain-specific and domain-independent
user preferences. Specifically, our disentanglement module adopts a similar archi-
tecture to the encoder of VAE, but it is quite different from VAE. In particular, VAE
only encodes one latent feature, while our disentanglement module aims to better learn
to decouple the domain-specific and domain-independent user preferences. Although
both domain-specific and domain-independent user preferences cannot be transferred
to other domains, they have different meanings, thus their importance in capturing
comprehensive user preferences is different. If they are not distinguished, they are
equally important in capturing comprehensive user preferences, which is inappropri-
ate. By contrast, if they are decoupled, the subsequent information fusion module can
use attention mechanism to learn their weights respectively, thereby capturing more
accurate and comprehensive user preferences. This module can also disentangle the
domain-shared user preferences from the augmented user representations. In this case,
our model can not only extract the domain-shared preferences of common users in
both domains, but also explore the domain-specific personalized user preferences and
domain-independent user preferences, which enhances the comprehensiveness of cap-
turing user preferences, and thus improves the recommendation performance on both
domains. To this end, we feed user embeddings in both domains (see methods intro-
duced in Section 3.2.2) and augmented user representations (see methods introduced
in Section 3.2.3) into this module and perform following processing respectively.
Taking domain A as an example, the user embeddings EZ are first entered into the
disentanglement module, which consists of several fully connected (FC) layers. More
specifically, the first FC layer (see navy blue FC layer in Figure 3.1), followed by the

ReL.U activation function, is utilized to extract general representations. In addition, the
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subsequent FC layers (also see lake blue FC layers in Figure 3.1)) outputs two sets of
latent vectors, each representing different mean and deviation information of the input
user embeddings. Next, following the method introduced in [24], a reparametrization

A

trick is adopted to generate domain-independent Z;, ,

and domain-specific user prefer-

ences Z4

spe*

Similarly, we can obtain the domain-independent Z , and domain-specific

B
spe

user preferences Z__ in domain B, as well as the domain-shared Z?,” and domain-

specific user preferences Zg,? decoupled from augmented user representations.

To ensure that the above essential components of user preferences can be accu-
rately disentangled, we introduce a domain classifier H(-), which includes a single
FC layer to predict the domain probability of user preferences, to guide the disentan-
glement process. In order to supervise the optimization process of disentanglement
module, we further set two domain classification tasks to train our DIDA-CDR. First
of all, the disentanglement module is guided to decouple the domain-specific infor-
mation with stronger domain identification ability, i.e., more accurate domain-specific
user preferences, by minimizing the domain classification loss L,. In other words,
if the decoupled user preferences can be easily recognized by a domain classifier as
belonging to a particular domain, then such user preferences are considered as the
domain-specific information. By contrast, the domain-independent and domain-shared
information are leveraged to confuse the domain classifier, i.e., to make the domain
classifier unable to identify the domain to which they belong, to ensure that they can
be distinguished from the domain-specific information. In other words, if the decou-
pled user preferences are no better than random guesses in identifying the domain to
which they belong when fed into a domain classifier, then such user preferences are
mutually exclusive with the domain-specific information and should be classified as
the domain-independent information. When the input to the disentanglement module
is the augmented user representations containing the user preferences from both do-
mains, the above user preferences refer to the domain-shared information. Specifically,

the domain classification loss L5, can be defined as follows:
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1 A A
ﬁclsl == g Z [£1<Hcls(zspe)7 Ospe)

+ 0(Has(28)), 08
1( l( spe> Spe) (33)

+ A- gl(Hcls(Zaug)a OaugA)

spe spe

+ (1= A) - L(Has(Z38), 058°),

spe spe

where /;(P,O) denotes the cross-entropy loss function. P is the predicted domain
probability of input user preferences and O is the ground truth (GT) domain label. We

define the corresponding GT for domain-specific user preferences Z# , ZZ and Z%%9

spe> “spe spe
A B aug : : A augA
as O, O, and OZd, respectively. All the elements in Og,, and Og¢* are set to 1,

while those in Og)e and OgggB are set to 0. Here, A represents the confidence score
that an augmented user representation belongs to its initial GT, since augmented user
representations are generated by incorporating embeddings of common users in both
domains with a mixing coefficient A [24].

Similarly, we define the corresponding GT for domain-independent user prefer-
ences Z: ,, ZZ , and domain-shared user preferences Z2,¢ as O;! ,, OB , and 0%, re-

ind> “ind ind> ~ind sha’

spectively. We set all the items in O3} ;,, OB ; and 0% as [0.5,0.5] [24]. This ensures
that learned domain-shared and domain-independent user preferences cannot be used
to identify the domain to which they belong, and thus be distinguished from domain-

specific user preferences. Specifically, the loss function is expressed as follows:

1
Les, = 3 Z [l2(Has(Zihg), Oma)

+ 62(Hcl8(zgzd)a Oﬁd) (3.4)
+ KZ(Hcls(Zaug)a Oaug)]a

sha sha

where /5 (P, O) is the Kullback-Leibler divergence loss function.
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Table 3.1: Comparison of information fusion approaches [110].

Formula
Concatenation E! = Zpe, Zing, Zona]
Element-wise sum E; =Zse + Zing + Zspa

Cu - SOfthL.I‘(WS : O-(Wspe : Zspe + Wind . Zind + Wsha . Zsha))

Attention .
Eu - [Zspa Zind, Zsha] -C,

3.2.5 Information Fusion

The domain-shared, domain-specific and domain-independent information are three
essential components of user preferences, which need to be integrated in a reason-
able and efficient way to capture comprehensive user preferences. To this end, in this
paper, we leverage three approaches, i.e., concatenation, element-wise sum, and at-
tention mechanism, to aggregate individual representations into comprehensive user
preferences [110]. The specific operations of these information fusion approaches are

expressed in Table 3.1.

3.2.6 Model Prediction and Training

After the information fusion, we obtain the comprehensive user preferences E; and
we also have the corresponding item embeddings E, generated by GCNs. To give
our model the non-linearity, we adopt a neural network, i.e., MLP, to represent the
user-item interactions. Taking the domain A as an example, the input user embeddings
and item embeddings in domain A for the MLP are defined as S;} = E4* and T# =
EZ, respectively. Moreover, the output embeddings of user u; and item v; of MLP is
expressed as:

SA =S4, =4(...8(6(SA - We) - W), (3.5)

out;

T} = T4, =6(...000(Th, - Wi) - Wi)), (3.6)

out;

where §(-) is the LeakyReLU activation function. Wg , W§ ... and Wq , W4 ...
denote the trainable weight matrices of MLP in various layers, respectively.

Next, the predicted user-item interaction g){]‘- between user u; and item v; in domain
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A can be formulated as follows:

A A
)it = cosine(S:, TY) = SI—TJ 3.7)
Y © ) T sAT Al '

{ J

Furthermore, the prediction loss in domain A is defined as follows:

Loa= Y, 4@y +IS"F + ITY3), (3.8)
yeYATUYA-

where /(y,y) is the cross-entropy loss function. y denotes an observed user-item
interaction, and ¢ is the corresponding predicted user-item interaction. J4* denotes
the set of observed interactions and V4~ is a certain number of negative instances
randomly sampled from the set of unseen interactions in domain A to avoid over-

fitting. ||S#||2 + || T4||% is a regularizer controlled by 7.
Finally, we utilize a multi-task learning mechanism consisting of a prediction task
and two domain classification tasks to optimize our model in domain A. Specifically,

the final loss function is formulated as follows:
EA = £;74rd + M1 - £0l51 + Mo - Eclsg» (39)

where 11; and o denote the weights of domain classification losses L5, and Ls,,

respectively. Similarly, we perform the same optimization process for domain 5.

3.3 Experiments on DIDA-CDR

In order to demonstrate the superiority of our proposed DIDA-CDR and explore the
effectiveness of its various modules, we conduct extensive experiments on five real-

world datasets to answer the following five research questions:

* RQ1. How does our model perform when compared to representative and state-of-

the-art baseline models (see Section 3.3.2.1)?
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Table 3.2: Statistics of three dual-target CDR tasks.

Tasks Datasets #Users #ltems #Interactions Density
Task 1 Douban-Movie 2106 9555 907219 4.508%
Douban-Book 2106 6777 95974 0.672%
Task 2 Douban-Movie 1666 9555 781288 4.908%
Douban-Music 1666 5567 69681 0.751%
Task 3 Amazon-Elec 15761 51447 224689 0.027%

Amazon-Cloth 15761 48781 133609 0.017%

* RQ2. How do various modules (i.e., interpolative data augmentation and user pref-

erence disentanglement) affect the results of our model (see Section 3.3.2.2)?

* RQ3. How do various components of user preferences (i.e., domain-shared, domain-
specific and domain-independent information) contribute to the performance im-

provement of our model (see Section 3.3.2.3)?

* RQ4. How do various information fusion approaches influence the performance of

our models (see Section 3.3.2.4)?

* RQS. How does the performance of our model change with various values of hyper-

parameters (see Section 3.3.2.5)?

3.3.1 Experimental Setting
3.3.1.1 Experimental Datasets and Tasks

In order to verify the recommendation performance of our proposed DIDA-CDR,
we conduct extensive experiments on five real-world datasets, i.e., Douban subsets
(Douban-Movie, Douban-Book and Douban-Music) released in GA-DTCDR [185]
and Amazon subsets (Amazon-Elec and Amazon-Cloth) released in DisenCDR [8].
For these five datasets, we first convert the explicit ratings into implicit feedback, i.e.,
we binarize the ratings into 0 and 1 to indicate whether the user has interacted with the
item or not. Following the methods introduced in [77, 74], we then filter these datasets

to remove users and items with less than 5 interactions. Since the two Amazon subsets
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are filtered out of the cold-start item entry in the test set, following DisenCDR [8], we
perform the same preprocessing operation on the three Douban subsets as well for a
fair comparison. Finally, we divide the above five subsets into three pairs of datasets,
extract the common users in each pair of datasets, and design three dual-target CDR

tasks in a scenario where users completely overlap, which can be listed as follows:

e Task 1: Douban-Movie (richer) <+ Douban-Book (sparser)
» Task 2: Douban-Movie (richer) <+ Douban-Music (sparser)

* Task 3: Amazon-Elec (richer) <+ Amazon-Cloth (sparser)

The details of the above three tasks and corresponding datasets are shown in Table 3.2.

3.3.1.2 Parameter Settings

For the graph convolution and propagation module in Figure 3.1, the layer structure of
GCNis ‘k — £’ and for the disentanglement module, the layer structure is ‘2k — £’. In
the prediction module, the layer structure of user branch MLP is ‘k — 2k — £’, and the
layer structure of item branch MLP is ‘2k — 2k — k’. k is the embedding dimension.
We vary k in the range of {64,128}, but in order to balance the trade-off of recom-
mendation accuracy and model training time, we finally set k to 64. The parameters of
all these layers are initialized as the Gaussian distribution X ~ A(0,0.01). For each
observed user-item interaction, following GA-DTCDR [185], we randomly sample 7
unseen interactions as negative instances. For a fair comparison, we leverage the grid
search to tune the choice of parameters of all models. For the baseline models, we tune
them based on the best parameter settings listed in their original papers. Specifically,
we choose the learning rate from {0.01,0.005,0.001,0.0005,0.0001}, and search the
regularization coefficient in the range of {0.001, 0.0001,0.00001}. In addition, we ap-
ply the Adam [52] to optimize all the models, and the batch size is 1024. We train
our model and other baseline models with 100 epochs in order to guarantee the con-

vergence. Moreover, we investigate the number of GCN layers [ in {1,2, 3,4}, a of
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Beta(a, ) in {0.1,0.5,1,2, 5} and the weights of domain classification losses ji1, fi2
in {0.1,0.3,0.5,0.7, 1,3, 5,10}, and analyze their impact on the recommendation per-
formance of our model in Section 3.3.2.5. In the experiments, we set | = 2, a = 1, and
(1 = o = 1 by default and we resample the mixing coefficient A once for training

each batch of data.

3.3.1.3 Evaluation Metrics

Since the leave-one-out method is ubiquitous in baseline models, such as GA-DTCDR
[185] and BiTGCEF [74], we also employ it to evaluate the recommendation perfor-
mance of our proposed DIDA-CDR and baseline models. In other words, we utilize
the last interaction record of each test user to form the test set, while all the other
interaction records are used as the training set. Following the methods introduced in
[54, 8], for each test user-item interaction, we randomly sample 999 items that the test
user has not interacted with as negative items, and then predict 1000 candidate scores
for ranking. The leave-one-out method contains two main metrics, i.e., Hit Ratio (HR)
and Normalized Discounted Cumulative Gain (NDCG) [127], which are widely-used
ranking evaluation metrics [187, 77]. In the experiments, we employ them to evaluate
the performance of the top-10 ranking results. For a fair evaluation, we perform all

experiments 5 times and present the average results.

3.3.1.4 Comparison Methods

We select a total of nine representative and state-of-the-art baseline models to com-
pare with our proposed DIDA-CDR. These nine baseline models can be divided into
four categories, i.e., (1) Single-Domain Recommendation (SDR), (2) Single-Target
Cross-Domain Recommendation (CDR), (3) Conventional Dual-Target CDR, and (4)
Disentanglement-Based Dual-Target or Multi-Target CDR. For a clear comparison, in
Table 3.3, we elaborate on the embedding strategies and transfer strategies of the above

nine baseline models and our proposed DIDA-CDR.
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3.3.2 Experimental Results and Analysis
3.3.2.1 Performance Comparison (for RQ1)

Table 3.4 presents the performance comparison? of various approaches for three dual-
target CDR tasks according to HR@10 and NDCG@10. Note that since single-target
CDR baselines aim to improve the recommendation performance on the sparser do-
main, we train them on both domains and then only present their experimental results
on the sparser domain. From Table 3.4, we have the following observations: (1) Our
proposed DIDA-CDR improves other baseline models on sparser domain by a large
margin. Specifically, on sparser domain, it outperforms the best-performing baseline
model with an average improvement of 9.55% in terms of HR@10 and 11.98% in
terms of NDCG@10. This is because we adopt the interpolative data augmentation,
which effectively generate both relevant and diverse augmented user representations to
augment the sparser domain, and therefore significant improvements in recommenda-
tion performance can be obtained on the sparser domain; (2) Disentanglement-based
dual-target CDR models improve conventional dual-target CDR models by an aver-
age of 14.98% in terms of HR@ 10 and 20.94% in terms of NDCG@ 10, which shows
that decoupling and then transferring the domain-shared information to both domains
is an efficient way for dual-target CDR; (3) Compared with other disentanglement-
based dual-target CDR baselines, our model can achieve better recommendation per-
formance over them. Specifically, our proposed DIDA-CDR achieves an average in-
crease of 8.54% in terms of HR@10 and 11.10% in terms of NDCG @ 10, compared to
the best-performing disentanglement-based dual-target CDR baseline. This is because
our model particularly takes domain-independent user preferences into consideration,
and the disentanglement module can more effectively disentangle all essential compo-

nents of user preferences, thus capturing more comprehensive user preferences.

Due to space limitation, we only show the results when k = 64 in Table 3.4. For the results under
other values of £ that are omitted, similarly, our model also has a significant improvement over other
baseline models.
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Table 3.4: Performance comparison (%) of different approaches for three dual-target CDR
tasks according to HR@10 and NDCG @10 [185]. While the results of best-performing base-
lines are underlined, the best results are marked in bold (* indicates p < 0.05, paired t-test of
our proposed DIDA-CDR vs. the best-performing baselines) [195].

Conventional Dual-Target

Datasets SDR Baselines Single-Target CDR Baselines CDR Baselines
NGCF LightGCN BPRﬁiAF,C DR BPR_DCDCSR PPGN BiTGCF

HR NDCG| HR NDCG| HR NDCG | HR NDCG | HR NDCG| HR NDCG
Douban-Movie | 10.26  5.37 | 10.53  5.49 - - - - 1203 642 | 1211 6.46
Douban-Book | 7.31 4.08 7.35 415 | 625 393 6.74 4.02 1052 478 | 10.58 493
Douban-Movie | 9.16  4.23 924 425 - - - - 10.09 435 | 10.14 441
Douban-Music | 6.11 3.87 6.36 399 | 508 345 5.97 3.79 7.24 4.03 7.32 4.10
Amazon-Elec | 20.22 11.97 | 20.03 10.94 - - - - 22.06 1244 | 21.79 1231
Amazon-Cloth | 10.95  6.01 1138 610 |9.87 533 1090  5.86 13.04 691 13.16  6.88

Disentanglement-Based Dual-Target

o or Multi-Target CDR Baselines Disentanglement-Based Dual-Target CDR (our) Improvement
. DIDA-CDR DIDA-CDR DIDA-CDR (DIDA-CDR vs.
GA-DTCDR DR-MTCDR DisenCDR Fixed Base "ELBO DIDA-CDR best baselines)

HR NDCG| HR NDCG| HR NDCG| HR NDCG| HR NDCG| HR NDCG| HR NDCG HR NDCG
Douban-Movie | 1225 6.51 | 14.74 7.89 |15.09 8.02 |16.12 897 |1298 6.51 | 1574 851 |16.66* 9.16% | 10.40% 14.21%
Douban-Book | 10.71 506 | 1266 745 |1240 727 |13.08 7.82 | 1041 552 |1280 7.69 |13.79* 8.18* | 893% 9.80%
Douban-Movie | 10.35 4.57 | 11.27 574 |12.13 595 |1276 623 | 1045 499 | 1255 6.18 |13.01* 6.60% | 7.25% 10.92%
Douban-Music | 742 4.19 849 473 892 5.02 9.54 549 836 424 936 537 9.97*  5.79* | 11.77% 15.34%
Amazon-Elec | 23.87 13.20 | 22.34 1298 |23.77 13.61 |24.68 13.83 |22.03 1297 |24.14 13.72 | 25.05% 14.36* | 494% 5.51%
Amazon-Cloth | 13.94  7.09 | 14.13 759 |1546 842 |16.01 894 |1297 693 |1576 8.63 |16.69* 9.33 796% 10.81%

3.3.2.2 Ablation Study (for RQ2)

To show the contribution of each proposed component to the improvement of overall
performance, we modify our proposed model to form three variants and conduct an
ablation study for three dual-target CDR tasks.

Impact of Interpolative Data Augmentation. We construct a variant of DIDA-CDR,
namely DIDA-CDR _Fixed, by replacing the interpolative data augmentation module
with a fixed mixing strategy. In fact, we conducted experiments to select the best-
performing mixing coefficient, i.e., 0.5, from {0.1,0.3,0.5,0.7,0.9} to implement the
above variant. From Table 3.4, we can observe that with the interpolative data aug-
mentation, our proposed DIDA-CDR outperforms DIDA-CDR Fixed with an average
improvement of 3.7%. This demonstrates that the interpolative data augmentation can
not only augment the sparser domain by introducing randomness to increase the diver-
sity of augmentation, but also generate representative augmented user representations
by effectively mixing user embeddings for subsequent disentanglement. Meanwhile,
the introduction of randomness also weakens the possible negative transfer caused by

the linear interpolation operation with fixed weights, which can also be seen from the
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experimental results.

Impact of User Preference Disentanglement. Furthermore, another variant, namely
DIDA-CDR Base, directly feeds the generated user embeddings to the information
fusion module and does not include the disentanglement module, thus the variant only
includes the prediction loss £,,4, that is ;1; = po = 0. From Table 3.4, we can observe
that without the disentanglement module, the recommendation performance of DIDA-
CDR_Base would degrade to be comparable to that of the conventional dual-target
CDR baselines, and weaker than that of disentanglement-based ones. This shows that
the disentanglement module can indeed help the model perform more effective cross-
domain knowledge transfer without negative transfer by decoupling domain-shared,
domain-specific, domain-independent information and transfering only domain-shared
information, thus improving the performance of cross-domain recommendations.
Impact of Domain Classifier. In addition, following DisenCDR [8], we modify the
disentanglement module in our model, i.e., replace our domain classification losses
with the standard ELBO, to form another variant, namely DIDA-CDR_ELBQO. From
Table 3.4, we can observe that our DIDA-CDR outperforms DIDA-CDR_ELBO with
an average improvement of 5.98%. This demonstrates that the proposed disentangle-
ment module can indeed collaborate well with the domain classifier to decouple more
accurate essential components of user preferences, especially the domain-independent
information, to capture comprehensive user preferences, thus enabling the model to

achieve better recommendation performance through superior disentanglement.

3.3.2.3 Impact of Various Components of User Preferences (for RQ3)

To demonstrate that all three components of user preferences, i.e., domain-share, domain-
specific and domain-independent information, are essential and effective for recom-
mendation, and do not require transfer of domain-independent user preferences, we
compare DIDA-CDR with its four variants, including DIDA-CDR (w/o sha.), DIDA-
CDR (w/o spe.), DIDA-CDR (w/o ind.) and DIDA-CDR (transfer ind.). Figures

3.2(a)-(b) show the performance comparison between our model and the above four
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Figure 3.2: (a)-(b): Performance comparison between our model and its four variants. (c)-(d):
Performance comparison of adopted information fusion approaches.

variants®. The differences between various variants and the impact of each component
of user preferences are elaborated in the following subsections.

Impact of Domain-Shared User Preferences. DIDA-CDR (w/o sha.) extracts the
domain-shared user preferences from both domains, but does not transfer them to any
domain. From Figures 3.2(a)-(b), we can see that our proposed DIDA-CDR outper-
forms DIDA-CDR (w/o sha.) with an average improvement of 17.21%. This is be-
cause the domain-shared user preferences are valuable information, which plays an

important role in cross-domain recommendation and can improve the recommenda-

*Due to space limitation, we only show the results on Task 1 in Figure 3.2, i.e., only the results on
the pair of datasets consisting of Douban-Movie and Douban-Book are presented, and similar trends
can be observed for results on the other omitted tasks. Similarly, Figure 3.3 and Figure 3.4 only shows
the results on Task 1 for the same reason above.
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tion performance on both domains simultaneously.

Impact of Domain-Specific User Preferences. DIDA-CDR (w/o spe.) does not
consider the domain-specific user preferences when making recommendations. From
Figures 3.2(a)-(b), we can observe that our proposed DIDA-CDR outperforms DIDA-
CDR (w/o spe.) with an average improvement of 36.12%. This is because the domain-
specific user preferences are inherent personalized preferences of users in each do-
main. If it is not considered when making recommendations, the recommendation
performance of our model will be significantly reduced.

Impact of Domain-Independent User Preferences. DIDA-CDR (w/o ind.) in-
cludes the domain-shared and domain-specific user preferences, but does not include
the domain-independent user preferences when capturing comprehensive user prefer-
ences; DIDA-CDR (transfer ind.) disentangles the domain-independent user prefer-
ences and then transfer them to another domain. It can be seen from Figures 3.2(a)-(b)
that our proposed DIDA-CDR outperforms DIDA-CDR (w/o ind.) and DIDA-CDR
(transfer ind.) with an average improvement of 12.40% and 26.04%, respectively. In
view of this, we make the following qualitative analysis. The domain-independent user
preferences seemingly exist in each domain, but actually have different meanings. If
they are not included when capturing user preferences, the captured user preferences
are incomplete, resulting in the degraded recommendation performance of the model.
Moreover, if the domain-independent information is transferred to other domains, it

will provide the useless information and cause the performance degradation.

3.3.2.4 Impact of Various Information Fusion Approaches (for RQ4)

After we obtain three essential user preference components, we compare various in-
formation fusion approaches, i.e., concatenation, element-wise sum, and attention, to
fuse them into comprehensive user preferences. The performance comparison of three
used information fusion approaches is presented in Figures 3.2(c)-(d). We find that
when our model utilizes the attention mechanism for information fusion, it improves

the variants using concatenation and summation by an average of 28.37% and 20.69%,
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Figure 3.3: (a)-(b): Impact of the number of GCN layers. (¢)-(d): Impact of «.

respectively. This is because the attention mechanism can not only capture the rela-
tionship between various components, but also selectively highlight the key informa-
tion and weaken the redundant information by learning weights. In this paper, the
attention mechanism measures the importance of domain-shared, domain-specific and
domain-independent information to comprehensive user preferences through weights,
and weakens redundant information between domain-shared and domain-independent

user preferences, thus enabling our model to achieve better recommendation results.

3.3.2.5 Parameter Sensitivity (for RQS)

Impact of /. Stacking too many layers when training a deep GCN is prone to over-
smoothing [60]. In order to explore this effect, we investigate the number of GCN
layers [ in the range of {1,2, 3,4} in the experiments and report the experimental re-
sults in Figures 3.3(a)-(b). It can be observed that 2-layer GCN is significantly better

than 1-layer GCN, which indicates that stacking a moderate number of layers is bene-
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ficial for mining higher-order user-item relationships. However, the recommendation
performance of our proposed DIDA-CDR drops on some datasets when [ = 3 and
degrades even more when [ = 4. The reason may be that when the number of lay-
ers is greater than 3, the problem of over-smoothing occurs, resulting in the fact that
increasing the number of layers at this time will in turn reduce the recommendation
performance of our model.

Impact of a. Beta(a, «) is Uniform distribution when o = 1, Bimodal distribution
when o < 1 and Bell-shaped distribution when v > 1 [10]. In order to explore from
which distribution sampling A can help the recommendation performance of model the
most, we search « in the range of {0.1,0.5,1,2,5}. The performance comparison is
illustrated in Figures 3.3(c)-(d). We can see that the best performance of our proposed
DIDA-CDR is achieved when o« = 1, which presents that A sampled from the Uni-
form distribution can effectively mix the user embeddings in the richer domain and the
sparser domain, thereby effectively alleviating the data imbalance and improving the
recommendation performance of model. In contrast, when o« < 1 or & > 1, sampling
A from Beta(a, ) will result in the performance degradation.

Impact of ;; and ps. To explore the effect of weights of domain classification
losses on the recommendation performance of our DIDA-CDR, we vary p; and po
in {0.1,0.3,0.5,0.7,1,3,5,10}. The results are reported in Figure 3.4. It can be seen
from Figures 3.4(a)-(b) that the contribution of domain classification loss L, to de-
coupling more accurate domain-specific user preferences is small when p1; — 0. When
{1 1s too large, the domain classification loss L5, receives more attention during the
learning process. As a result, the contribution of prediction loss £,,, to the model is
weakened, which reduces the recommendation performance of the model. Similarly,
from Figures 3.4(c)-(d), a similar trend can be observed for the weights 15 of domain

classification loss L;s,. Empirically, we choose p1; = po = 1.
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3.4 Summary

In this chapter, we have proposed a novel Disentanglement-based framework with In-
terpolative Data Augmentation for dual-target Cross-Domain Recommendation, called
DIDA-CDR. DIDA-CDR consists of an interpolative data augmentation approach to
generating both relevant and diverse augmented user representations to augment the
sparser domain and explore the potential user preferences, and a user preference dis-
entanglement module to decouple essential components of user preferences to capture
comprehensive user preferences, all of which help improve the recommendation per-
formance on both domains simultaneously. Also, we have conducted extensive exper-
iments on five real-world datasets to show the significant superiority of DIDA-CDR

over the state-of-the-art methods.



Chapter 4

Causal Deconfounding via Confounder
Disentanglement for Dual-Target

Cross-Domain Recommendation

Building upon the DIDA-CDR framework introduced in Chapter 3, which focuses
on disentangling all essential components of user preferences to capture comprehen-
sive user preferences, this chapter extends the understanding of CDR by addressing
a crucial aspect previously underexplored: the role of observed confounders. In this
chapter, we further reveal that both single-domain and cross-domain confounders also
affect users’ final decisions in addition to their true preferences. To this end, an ef-
fective dual-target CDR should deconfound both observed single-domain and cross-
domain confounders, which includes three tasks, namely, (1) identify and decouple
such observed confounders, (2) preserve their positive impacts on predicted interac-
tions, and (3) eliminate their negative impacts on user preferences [149]. However,
existing dual-target CDR approaches overlook the above observations. Thus, a novel
dual-target CDR model should be proposed to incorporate such insights for compre-
hensively understanding user-item interactions.

To effectively advance dual-target CDR, the following two key challenges need to
be addressed.
CH2. How to effectively extract observed confounders to comprehensively understand

user-item interactions? In the context of dual-target CDR, this challenge can be fur-
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ther specified as: How to effectively decouple observed cross-domain confounders in
addition to single-domain confounders to comprehensively understand user-item in-
teractions in dual-target CDR?
CH3. How to preserve the positive impacts of observed confounders on predicted in-
teractions, while eliminating their negative impacts on capturing comprehensive user
preferences, thereby enhancing the recommendation accuracy?

This chapter first presents the problem definition and analyzes the problem from
a causal perspective. Then, to address the above challenges, CD2CDR is proposed,
including three key phases. Finally, we conduct extensive experiments on seven real-
world datasets. The experimental results demonstrate that our CD2CDR significantly

outperforms the state-of-the-art methods.

4.1 Problem Statement

4.1.1 Problem Definition

The chapter explores a fully overlapping dual-target CDR scenario in the domains D*
and D, with a common user set U/, the size of which is denoted as m = |U|. Let pA
(of size n = |VA|) and VZ (of size n® = [VP|) denote the item sets in the domains
D4 and DB, respectively. The raw feature vector of each item in D (or D?) is defined
as B2 € R (or EB. € R%”), where d* (or d) is the dimensionality of features. The
interaction matrices are denoted as R* € {0,1}*"" and R? € {0,1}"*"” in DA
and DB, respectively.

To improve the performance of dual-target CDR, it is crucial to explicitly con-
sider the impacts of observed confounders. These confounders include single-domain
confounders Cg; and cross-domain confounders C.4, both of which simultaneously
influence user preferences and user-item interactions. Addressing the impacts of these
confounders necessitates significant adjustments to existing dual-target CDR models.

Hence, it would be beneficial to propose a novel deconfounding framework that is
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highly extendable and compatible with most off-the-shelf dual-target CDR models.

For this purpose, since DIDA-CDR [188] is a representative and state-of-the-art dual-

target CDR model, we choose it as the foundation for our problem definition.

DIDA-CDR has effectively decoupled three essential components of user prefer-

ences for modeling comprehensive user preferences E;, thus achieving good recom-

mendation results in each domain. These three components include:

)]

2)

3)

domain-shared user preferences Zgy,,, which have the same meaning in each of both
domains. For instance, users might prefer items in the sports ‘category’, which
is the domain-shared preference covering both the ‘purchase’ and ‘add to favorite’

domains, reflecting consistent preferences across both domains.

domain-specific user preferences Z ., which are unique to one domain. For exam-
ple, in the ‘add to favorite’ domain, users might prefer ‘luxurious’ items that they
cannot afford to purchase but still wish to add them to favorite, while in the ‘pur-

chase’ domain, users might prefer ‘practical’ items that offer good value for money.

domain-independent user preferences Z,,q, which are seemingly common in both
domains but have different meanings in each domain [188]. For instance, in the
‘purchase’ domain, a preference for ‘professional features’ refers to choosing items
that are specialized and match the user’s current skill level or needs. Specifically, a
beginner photography enthusiast might purchase an entry-level professional digital
camera, which can mount different lenses for learning photography, emphasizing
practicality and suitability for immediate use. By contrast, in the ‘add to favorite’
domain, a preference for ‘professional features’ reflects an aspiration for high-end
items with advanced features, such as professional lenses, which are added to fa-
vorite for potential future use when the photography enthusiast’s skills improve.
Unlike domain-specific user preferences that only exist in their corresponding do-
main, domain-independent user preferences exist in both domains but have different

meanings in each domain.
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Legend

Figure 4.1: Causal graphs of dual-target CDR for deconfounding observed SDCs and CDCs.
(a) Original causal graph. (b) Deconfounded causal graph after eliminating such observed con-
founders’ negative effects by blocking backdoor paths via backdoor adjustment, as indicated
by scissors [130].

Based on the above notations, the problem of Causal Deconfounding for Dual-
Target CDR is defined as follows.
Causal Deconfounding for Dual-Target CDR. Given the domain-specific and com-
prehensive user preferences (i.e., Zg,. and E;,) in each domain, the goal of causal de-
confounding for dual-target CDR is to decouple observed single-domain confounders
Csq and cross-domain confounders C.g, eliminate such observed confounders’ nega-
tive effects to obtain debiased comprehensive user preferences, and incorporate these
confounders’ positive effects into such debiased preferences to achieve a comprehen-
sive understanding of user-item interactions, thus enhancing the recommendation ac-

curacy in both domains.
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4.1.2 Causal Graph

A causal graph, i.e., a directed acyclic graph (DAG), where edges represent causal re-
lationships between variables. Taking cross-domain confounders C,; as an example,
as illustrated in Figure 4.1, they affect predicted interactions y via two types of paths:
C. — yand C.y — Zg,, — E; — 3. The first type of path reveals that C.4, even
if not the primary cause, i.e., users’ true preferences, still have a direct positive impact
on predicted interactions. The second type of path indicates that the negative impact
of C_4 on domain-shared user preferences Zy,, induces confounding bias in both do-
mains. Such confounding bias, in turn, skews comprehensive user preferences E;,
because Z,y, is an essential component for capturing E? [188]. If the backdoor path
Ceq — Zgp, 1s not blocked, C.; will result in capturing biased comprehensive user
preferences, thus yielding inaccurate recommendation results [154]. Similarly, single-
domain confounders C,; also have both positive and negative effects on predicted
interactions and user preferences, respectively, thus the backdoor path Cyq — Zg. in
each domain should be blocked too.

Overall, the causal graph in Figure 4.1 provides a detailed view of how user pref-
erences, observed confounders, and user-item interactions are causally related in dual-
target CDR. In this study, we focus on addressing the confounding bias introduced
by observed confounders in cross-domain settings. Firstly, we effectively decouple
observed single-domain and cross-domain confounders. Secondly, we perform back-
door adjustment to preserve the positive direct effects of such observed confounders
on predicted interactions and eliminate their negative effects on capturing compre-
hensive user preferences. These steps mitigate confounding biases to a large extent,
enable a comprehensive understanding of user-item interactions, and thus improve the

recommendation performance in both domains.
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4.2 The Proposed CD2CDR Framework

4.2.1 Framework Overview

To enhance the recommendation accuracy in both domains, we propose a novel Causal
Deconfounding framework via Confounder Disentanglement for dual-target Cross-
Domain Recommendation, called CD2CDR. As depicted in Figure 4.2, the framework
can be divided into three phases, i.e., Phase 1: User Preference Disentanglement Pre-
Training, Phase 2: Confounder Disentanglement, and Phase 3: Causal Deconfound-
ing and Cross-Domain Recommendation. In Phase 1, we obtain disentangled domain-
independent and domain-specific user preferences in each domain and domain-shared
user preferences by pre-training the backbone introduced in [188]. In Phase 2, we first
extract the SDCs in each domain by bidirectionally transforming domain-specific user
preferences decoupled in Phase 1. Then, we distill confounding factors that jointly in-
fluence comprehensive user preferences in each of both domains as CDCs by adopting
half-sibling regression [101]. In Phase 3, we utilize the backdoor adjustment to de-
confound the observed confounders disentangled in Phase 2. Specifically, we design
a confounder selection function to mitigate negative effects of such confounders on
user preferences, thus recovering debiased comprehensive user preferences. We then
incorporate the observed confounders’ positive effects into such debiased preferences

to predict user-item interactions via a multi-layer perceptron (MLP) in both domains.

4.2.2 Phase 1: User Preference Disentanglement Pre-Training

Accurate disentanglement of user preferences is vital to ensure the robustness of sub-
sequent confounder disentanglement process. Since the method introduced in [188]
excels at decoupling three essential components of user preferences for modeling com-
prehensive user preferences, our CD2CDR adopts it as the backbone for user prefer-
ence disentanglement. To extract more accurate disentangled user preferences, we

consider multi-source content information of users and items, e.g., user reviews and
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Figure 4.2: The structure of our CD2CDR framework.

item details. Taking domain A as an example, for each categorical feature field of
an item (e.g., brand and category), we distill a set of unique features, which are then
encoded into vectors using either one-hot or multi-hot encoding. Next, these encoded
vectors are concatenated to form the raw feature vector for each item. We then trans-
form the raw feature vectors of items E. € R*" into the dense embeddings E4, € R?
as follows:

Ed = WAE! 4.1)

vro

where W4, € R?**da i5 a trainable mapping matrix. dy denotes the dimensionality of
dense embeddings. Then, for a user u;, we collect all the user’s reviews into a user text
document. For an item v;, we collect its title and all reviews on the item into an item
text document. Next, we adopt a pre-trained BERT [17] to map the documents of all
users and items in the training set into user text embeddings E-, and item text embed-
dings E}, respectively. Finally, we concatenate E2, and EZ, to form combined item

embeddings EZ. We then transform EZ, E4 into fixed-size initial user embeddings
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EZ. and initial item embedding E} in domain A as follows:

A
Eui

= 61;4E£t’ E;lz = 5;;4EvAc’ 4.2)
where 62 and 5 are the mapping functions of MLP layers. Similarly, we can ob-
tain initial user embeddings EZ. and initial item embeddings EZ in domain B. We
then leverage such initial embeddings and the interaction matrices as inputs to pre-
train the backbone. Specifically, we aggregate interaction data within each domain to
build two heterogeneous graphs, which allow us to learn coarse user and item embed-
dings for each domain. Next, we apply linear interpolation to the user embeddings of
both domains to generate augmented user representations, augmenting the sparser do-
main. With these coarse user embeddings and augmented user representations, we then
employ a user preference disentanglement module, guided by a domain classifier, to
decouple domain-independent, domain-specific, and domain-shared user preferences,
namely, Z;yq, Zspe, and Zp, (for more information, please refer to [188]). By incor-
porating the above three components of user preferences using attention mechanism

in accordance with DIDA-CDR [188], we obtain comprehensive user preferences E;.

4.2.3 Phase 2: Confounder Disentanglement

Since user-item interactions are also influenced by observed confounders apart from
comprehensive user preferences, we propose to decouple SDCs and CDCs, as detailed

in the following subsections.

4.2.3.1 Single-Domain Confounder Disentanglement

To explore the SDCs, we utilize bi-directional domain transformation to decouple
them from previously obtained domain-specific user preferences. If such SDCs are
not identified and explicitly decoupled, their negative effects on domain-specific user
preferences can hardly be eliminated. By contrast, if they are well disentangled, the

causal deconfounding module can utilize backdoor adjustment to remove the con-
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founding bias, thus obtaining debiased domain-specific user preferences. Inspired by
CycleGAN [190], we devise a dual adversarial structure, which consists of two do-
main transformation generators and two discriminators, to disentangle SDCs in each
domain. Specifically, we aim to learn two generators, i.e., S(-) : D4 — D? and
T(-): DP — DA, to transform domain-specific user preferences in each domain.

Taking domain B as an example, the generator S(-) takes the domain-specific user
A

spe

of common users in D* as inputs to generate ZB =5 (Z4 ) that

preferences Z spe “pe

B

spe: However, if

look similar to domain-specific user preferences in domain B, i.e., Z

B
spe

there are still differences between the simulated preferences y/
ZB

spe’

domain B, but should be considered as SDCs [161]. To ensure that the generator S(-)

and the original ones

such differences are not characteristics of domain-specific user preferences in

is proficient at domain-specific preference simulation, we introduce a discriminator
H?%(-) to recognize which domain the domain-specific user preferences come from. In
the adversarial learning paradigm, the discriminator is expected to improve the ability
to differentiate domain-specific user preferences in each domain to achieve better dis-
criminative performance, while the generator is supposed to generate indistinguishable
simulations of these domain-specific preferences to confuse such discriminator [107].
For training the generator S(-) and the corresponding discriminator H”(-), we adopt

the adversarial loss [31], which can be expressed as follows:

Laan, (S, H”, D4, DP) = Ezp _psllog H(Z5,)]

spe

4.3)
T Egg,pallog(l — HP(S(Z,)))],

spe

where [ is the expectation, and P4, PE denote the feature distribution of domain A and
domain B, respectively. Similarly, for training the generator 7'(-) and the correspond-
ing discriminator H*(-), we adopt the adversarial loss Lgan, (T, H#, DB, D4). How-
ever, relying solely on adversarial loss is insufficient to ensure that a user’s domain-
specific preferences remain aligned with the user’s preferences after transformation.

If transformed domain-specific user preferences no longer reflect the user’s prefer-
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ences, then such transformation becomes meaningless, serving merely to confuse the
discriminator. Hence, the generators should maintain cycle consistency, i.e., Z2  —

spe

S(23,,) = T(S(22,)) ~ L and Z5 . — T(ZE ) — S(T(ZZ,)) ~ 2%, during the

spe spe spe spe spe spe

training process (see L., in Figure 4.2(c)). To this end, we apply a cycle consistency

loss, which is represented as follows:

LeyelS,T) = Eggy pallIT(S(Z50)) = Zigell]
+Bzs, e ||S(T(Z5,)) — Zagell).

4.4)

Moreover, the total objective function for training the generators and discrimina-
tors can be formulated as follows:
Loa(S, T, H", H”) = Laan, (S, H”, D", DP)

4.5)
+ Laan, (T, HA, DB, D) + M\Loye(S, T),

where A controls the importance of cycle consistency loss relative to adversarial losses.
Following the method introduced in [161], upon training completion, we calculate the
differences between the domain-specific user preferences after transformation and the
original ones as candidate SDCs. Even though confounding bias may still exist in the
original domain-specific user preferences, the differences calculation helps to decouple
candidate SDCs. By performing deconfounding on these decoupled confounders, the
impact of such biases can be mitigated to a large extent. The differences are defined
as follows:

Cih=1(z8,)-22,, CB=5(z,)—-125 (4.6)

spe spe? spe spe*

Recall the causal graph in Figure 4.1(a), the negative effects of single-domain con-
founders C,; on domain-specific user preferences Z,. result in confounding bias,
leading to inaccurate estimation of Z,,.. For example, as depicted in Figure 1.1(c),
in the ‘purchase’ domain, a data-driven RS improperly perceives the ‘free shipping’

(i.e., an SDC), as Alice’s ‘purchase’ domain preference, resulting in biased recom-
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mendation. Since our well-trained generator excels at simulating Alice’s ‘purchase’
domain preferences based on her ‘add to favorite’ domain preferences, if there are still
differences as per Eq. (4.6), this indicates such differences are not Alice’s ‘purchase’
domain preferences but rather SDCs independent of her preferences. Such SDCs (e.g.,
‘free shipping’), previously entangled with Alice’s ‘purchase’ domain preferences, are
decoupled through our SDC disentanglement process. Note that this process specifi-
cally targets biased domain-specific user preferences, because unbiased ones are not
entangled with such SDCs. Thus, although this process decouples SDCs from biased
domain-specific user preferences, this does not imply a causal relationship Zg,. — Cq
in the causal graph, because SDCs are not generated by such biased domain-specific
user preferences. To distill representative SDCs and reduce redundancy, we apply K-
means clustering on candidate single-domain confounders Cfd (or Cﬁ) and choose

J24 (or JB) cluster centroids to form the potential SDC subspace C%, (or C5)).

4.2.3.2 Cross-Domain Confounder Disentanglement

In addition to SDCs, it is more important to identify confounding factors that simul-
taneously affect user-item interactions in both domains. Inspired by the method in-
troduced in [161], we employ half-sibling regression to disentangle CDCs from the
previously obtained comprehensive user preferences in both domains. Half-sibling re-
gression excels at capturing the influence of confounding factors that simultaneously
affect multiple observed variables [101], and thus it is well suited for decoupling CDCs
in dual-target CDR. As illustrated in Figure 4.1(a), C.,y — E** and C.q; — E:? in-
dicate that CDCs indirectly influence the comprehensive user preferences in each of
both domains via C.y — Zg,, — EZA and Coy — Zgo — E?B. The core idea of
half-sibling regression is: if E** and CZ, are independent, then predicting E*Z based
on E*4 becomes a method to selectively capture the influence of C.; on E*” (see Fig-
ure 4.2(d)). Similarly, predicting E:* based on E*” serves to capture the influence
of C.; on EZA (for more information, please refer to [101]). Therefore, we can apply

half-sibling regression to decouple C.4 from E*4 and E*Z. Taking the regression from
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domain A to domain B as an example, our goal is to estimate a transformation matrix
WA425 such that:

EZB ~ EZAWAHB’ (4'7)

using ridge regression, and regression results are expressed as:
WAE = [(B)Y) B + ol H(EY) TEL, (4.8)

where o denotes the regularization parameter. We assume that E*4 and CZ, are in-
dependent, because E:* are comprehensive user preferences in domain A, while C5,
are SDCs specific to domain B. When we estimate a transformation matrix W45
to predict E*Z using E*4, the influence of CZ, on E*P will not be captured. This is
because E*4 are independent from CZ,, and as a result, utilizing E?* cannot predict
C2Z, and the influence of CZ, on E*P. By contrast, the influence of C.; on E*Z will be
captured, because C,; simultaneously affect E*4 and E*Z, which means the regres-

sion results will only capture C.;. Hence, the regression results can be identified as

candidate cross-domain confounders:
CAE — ErAWAE, (4.9)

Similarly, we can obtain the regression results from domain B to domain A, denoted
as CgﬁA. For cross-domain confounders, K-means clustering is also employed on the
candidate cross-domain confounders CﬁfB and CgﬁA, with the J.4 cluster centroids

forming the potential CDC subspace C.,.

4.2.4 Phase 3: Causal Deconfounding and Cross-Domain Recom-

mendation

After the confounder disentanglement, we obtain the potential SDC subspaces C, and

CB  and potential CDC subspace C 4. From a causal perspective, if the backdoor paths
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(i.e., Csqg = Zgpe and C.q — Zyp,) are not blocked, the observed confounders C' will
simultaneously influence user preferences Z and user-item interactions Y (see Figure
1.1(a)), and thus cause biased estimation of comprehensive user preferences. To this
end, we perform the do-calculus intervention based on backdoor adjustment [193] to
block the backdoor paths C' — Z and enable our model to more accurately estimate
the direct effect 7 — Y (also see Figure 1.1(a)). Formally, the conventional likelihood

P(Y'|Z) is defined as:
P(Y|2)=Y" P(Y|Zc)P(c|Z), (4.10)

where ¢ denotes a specific confounder selected from the confounder space C. By
applying the do-calculus, we exclude all influences directed towards the intervened

variable (i.e., Z), and then we have:

P(Y|do(Z)) =) | P(Y|do(Z),c)P(cldo(Z))

= ZCP(Y|Z, ¢)P(c).

(4.11)

For brevity, the detailed proof of the transformations P (Y |do(Z),c) = P(Y|Z, c) and
P(c|do(Z)) = P(c) is omitted, which can be found in [95]. In fact, transforming
P(c|do(Z)) into the prior probability of confounders P(c) blocks backdoor paths C' —
Z. As aresult, P(Y|do(Z)) mainly focus on modeling the direct effect 7 — Y.
Specifically, we implement the backdoor adjustment by modeling P(Y'|Z, ¢) with an

interaction prediction network, which is expressed as follows:

P(Y|do(Z)) = E[P(Y|Z,c)] = Ec[f(E,, Eq, )], (4.12)

where f(-) denotes a neural network, namely, MLP, to predict the probabilities of user-
item interactions [41]. E and E, are comprehensive user preferences and pre-trained
item embeddings obtained by the backbone in Phase 1, respectively. In other words,

based on two subspaces of disentangled observed confounders in domain A and do-
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main B, i.e., C4 = C4 U C.q and C® = CB U C.4, we apply backdoor adjustment to
rectify the biased recommendations in each domain using Eq. (4.12). Since the de-
coupled observed confounders are incorporated as part of the input to MLP, the direct
influence of such confounders on user-item interactions C' — Y is also considered.
Moreover, inspired by [161], we devise a confounder selection function to effectively
control decoupled confounders for more accurate deconfounding.

Taking domain A as an example, the confounder selection function can be defined
as follows:

AfxA A

exp(W/EZ - W/ic)
2> exp(WHES - Wic!)’

(4.13)

where ¢’ denotes any confounder selected from confounder subspace C* and - is the dot
product. W2, W4 'W24 W4 are trainable matrices for embedding transformation.

uc?

We then formulate the expectation E.[f(EZ, E,, c)] as follows:

Ec[f(EZ>Ev7C)] = f( ﬁw)

(4.14)
= [IW(BME ) p()ed(E EY )],

where Wy, is the weight matrix of the fully connected (FC) layer and || is the concate-
nation operator. In practice, we assume a uniform distribution for the prior probability
p(c). Inaddition, QZ, = W .(E:A||EA|| Y, p(c)cp(E:A, EZl, ¢) denotes the input for
MLP in domain A. Moreover, the predicted interaction Qé between an user u; and an

item v; in domain A is represented as follows:
957 = O (07 (05 (61(Q1n))---)), (4.15)

where §;! is the mapping function for [-th MLP layer, and there are [ MLP layers
A

including 67, in domain A. Similarly, the predicted interaction §;} in domain B can
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be obtained.

The essence of our causal deconfounding module lies in blocking the backdoor
paths C' — Z, allowing the model to concentrate on the direct effects of users’ true
preferences on the predicted interactions Z — Y, and disregard the interference of
observed confounders on these preferences. Specifically, the confounder selection
function assigns different weights to the potential observed confounders, mitigates
the effects of those irrelevant or harmful confounders to the prediction task, and en-
hances the direct effects of beneficial confounders on predicted interactions. There-
fore, this module enables the model to eliminate the negative effects of such observed
confounders to learn debiased comprehensive user preferences, and preserve the pos-
itive effects of these confounders on predicted interactions, thereby achieving a more
comprehensive understanding of user-item interactions in both domains. Finally, we
employ cross-entropy loss to fine-tune the user preference disentanglement backbone
g(-) and the interaction prediction network f(-). To be specific, the final objective

function in domain A can be defined as follows:

g, f* = argmin Z 07,y), (4.16)
9.f yEYA+UYA-

where ¢ and y are the predicted interaction and corresponding observed interaction, re-
spectively. £(7, ) denotes the cross-entropy loss function. Y4+ denotes the observed
interaction set, and )~ corresponds to a specific quantity of negative samples, which
are randomly selected from unseen user-item interaction set in domain A to mitigate
the over-fitting. During the fine-tuning process, g(-) serves as the backbone, with the
original prediction module being replaced by the interaction prediction network f(-).
Likewise, we can obtain the objective function and predicted user-item interaction 5

in domain B.
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4.2.5 Time Complexity Analysis

Our CD2CDR mainly focuses on four modules: (1) Graph Propagation, (2) User
Preference Disentanglement, (3) Confounder Disentanglement, and (4) Causal Decon-
founding and Cross-domain Recommendation. While the first two modules are part of
backbone model [188], the latter two constitute our novel framework. For simplicity
and consistency, we assume that all embedding dimensions are d and the number of
layers in each network structure within each module is L [176]. The time complexity
for each module can be analyzed as follows:

(1) Graph Propagation: Assuming the graph has (m + n) nodes, where m and n are
the number of users and items, respectively. In addition, assuming the average number
of neighboring nodes for each node is N, the time complexity for the graph propa-
gation process per node is O(Nd). The total time complexity for graph propagation,
using a graph convolutional network (GCN) with L layers, is O(L(m +n)Nd). Given
that N < (m + n), this simplifies to O(L(m + n)d).

(2) User Preference Disentanglement: Next, we conduct user preference disentan-
glement using an architecture similar to the VAE encoder. Given that this module is
implemented with an MLP consisting of L layers, the time complexity of user pref-
erence disentanglement is approximately O(Lmd?). The time complexity of domain
classifier can be ignored as it is relatively simple compared to disentanglement module.
(3) Confounder Disentanglement: Then, we perform the confounder disentangle-
ment module, which involves SDC and CDC disentanglement. For SDC disentangle-
ment, we implement a structure similar to CycleGAN, using an MLP with L layers
to decouple candidate SDCs. The time complexity of SDC disentanglement can be
roughly estimated as O(Ld?m). For CDC disentanglement, ridge regression is used
to calculate a transformation matrix W45 for obtaining candidate CDCs. The esti-
mated time complexity is O(md?* + d*). Considering d < m, it simplifies to O(md?).
To identify representative SDCs and CDCs and eliminate redundancy, we perform

K-means clustering on the candidate SDCs and CDCs. Given that the number of clus-
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ter centroids is .J, the time complexity for the K-means clustering is estimated to be
O(mdJ). Thus, the overall time complexity for the confounder disentanglement mod-
ule is O(Ld*m + md? + md.J), which simplifies to O(md(Ld + J)).

(4) Causal Deconfounding and Cross-domain Recommendation: Finally, we uti-
lize the confounder selection function to effectively control the decoupled observed
confounders, achieving more accurate deconfounding with a time complexity of ap-
proximately O(mn.Jd). Subsequently, we concatenate the user embeddings, item em-
beddings, and selected confounders, feeding them into the MLP for prediction. Given
that the prediction module consists of L MLP layers, the time complexity can be esti-
mated as O(Lmnd?). Thus, the overall time complexity for the causal deconfounding
and cross-domain recommendation module is O(mnJd + Lmnd?), which simplifies
to O(mnd(J + Ld)).

Overall, the time complexity of our CD2CDR can be approximated as O (mnd?(J+
L)), where J is the number of cluster centroids, and m and n are the number of users
and items, respectively. This approximation is based on combining the time complex-
ities of all four modules and simplifying by focusing on the dominant terms. The
overall time complexity exhibits a non-linear relationship with the number of users,

items, observed confounders, and embedding dimensions.

4.3 Experiments on CD2CDR

Extensive experiments are conducted on seven real-world datasets to answer the fol-

lowing four research questions:

* RQ1. How does our model perform in comparison with state-of-the-art baseline

models (see Section 4.3.2.1)?

* RQ2. How do different components, namely, confounder disentanglement, causal
deconfounding and cycle consistency loss, influence the recommendation accuracy

of our model (see Section 4.3.2.2)?
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* RQ3. How do different backbone models impact the recommendation accuracy of

our model (see Section 4.3.2.3)?

* RQ4. How do different hyper-parameter settings affect the recommendation accu-

racy of our model (see Section 4.3.2.4)?

4.3.1 Experimental Settings
4.3.1.1 Experimental Datasets

Semantic information, such as item titles containing details about free shipping, sales
promotion, category, and brand, helps to disentangle user preferences and observed
confounders. In e-commerce scenarios, semantic information is easily accessible and
crucial for gaining a more comprehensive understanding of user-item interactions. To
comprehensively evaluate our CD2CDR model, we conduct experiments in two dis-
tinct recommendation scenarios: (1) CDR with fully overlapping user sets and (2)
cross-system recommendation (CSR) with only overlapping items and completely
non-overlapping users.

For the CDR scenario, we select two real-world e-commerce datasets that provide
rich semantic information, ratings, reviews and item metadata, namely, Rec-Tmall'
dataset [39] and Amazon dataset [8]. For Amazon dataset, we choose two relevant
domains, namely, Amazon-Electronics and Amazon-Cloth. Similarly, for Rec-Tmall
dataset, we select three relevant behaviors as business domains, namely, Add to Fa-
vorite, Purchase, and Add to Cart?. In the Tmall-Favorite domain, most users engage
in exploration-oriented behaviors, adding items they find appealing to their favorites
without an immediate intent to purchase. In contrast, the Tmall-Purchase and Tmall-
Cart domains reflect purchase-oriented behaviors, where users are more likely to select

items that match their true preferences and may result in actual purchases. By defining

Thttps://tianchi.aliyun.com/dataset/140281
%For brevity, we refer to these subsets as Tmall-Favorite, Tmall-Purchase, Tmall-Cart, Amazon-
Elec, and Amazon-Cloth, respectively in subsequent discussions.
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Table 4.1: The statistics for three dual-target CDR tasks and a dual-target CSR task.
Tasks Datasets #Users #ltems #Interactions Density
Tmall-Favorite 25,434 99,237 500,876 0.020%

Task#1 1ol Purchase 25434  28.817 55,057  0.008%
Tak sy Tmall-Favorite 39,657 104496 807493 0.019%
Tmall-Cart 39,657 44,172 354499  0.020%
Twks3 Amazon-Elec 15761 51447 224689  0.027%
Amazon-Cloth 15,761 48,781 133,609 0.017%
MovieLens 10,000 93957 1,462,905  1.56%
Task #4

Douban-Movie 2,712 34,8931 1,278,401 1.35%

T There are 4,115 common items between MovieLens and Douban-Movie datasets.
these distinct behaviors as domains, we broaden the concept of domains to encom-
pass varying user intents, thereby enhancing the flexibility of our CDR framework for
broader application scenarios [63].

For the CSR scenario, we utilize two widely-used movie recommendation datasets:
MovieLens 20M [35] and Douban-Movie [185]. These datasets contain ratings and
side information on common movies from different user communities, creating a sce-
nario where user sets are completely non-overlapping while item sets are partially
overlapping. This cross-system setting broadens our experimental scope beyond CDR

to a more challenging CSR scenario that better testifies the effectiveness of CD2CDR.

4.3.1.2 Experimental Tasks

We construct four experimental tasks: three dual-target CDR tasks using e-commerce
datasets and one CSR task using movie datasets. All tasks involve transforming ex-
plicit ratings into implicit feedback. For the CDR scenario, we design three tasks
with fully overlapping user sets: (1) Tmall-Favorite and Tmall-Purchase, (2) Tmall-
Favorite and Tmall-Cart, and (3) Amazon-Elec and Amazon-Cloth. These tasks are
chosen to test the model’s ability to handle diverse recommendations across different
user interactions and preferences in e-commerce settings.

For Task #1, users and items with fewer than 20 interactions are removed from

Tmall-Favorite, and those with fewer than 5 interactions are filtered out from Tmall-
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Purchase. For the Task #2 and Task #3, users and items with fewer than 20 interactions
in Task #2 and those with fewer than 5 interactions in Task #3 are filtered out. In line
with the preprocessing operation taken for the two Amazon subsets in DisenCDR [8],
we also conduct the same operation on three Rec-Tmall subsets to remove the cold-
start item entry for testing.

For the CSR scenario (Task #4: MovieLens and Douban-Movie), we follow the
filtering approach in [150, 183], retaining users and items with at least 5 interactions
in Douban-Movie and extracting a subset of 10,000 users with at least 5 interactions
from MovieLens 20M. We then identify common items across the two datasets, en-
abling knowledge transfer through overlapping items despite having completely non-

overlapping users. The statistics are shown in Table 4.1.

4.3.1.3 Parameter Settings

The settings of our backbone DIDA-CDR are consistent with those listed in its orig-
inal paper [188], including the number of GCN layers, embedding dimension and
information fusion approach, etc. In the interaction prediction network, the struc-
ture is e — 32 — 16 — ¢, where e is the combined size after the mapping of FC
layer in Eq. (4.14), and ¢ is the output size, i.e., the dimension of latent factors.
We vary e in the range of {64,128} and ¢ in the range of {8,16}, and finally set
e = 128 and ¢ = 8. The initial parameters for all the above layers are set follow-
ing a Gaussian distribution X ~ A/(0,0.01). In line with the approach used in GA-
DTCDR [185], for each observed interaction, we randomly select 7 non-interacted
items to serve as negative examples. For a fair comparison, we employ grid search
to fine-tune the parameters of all models. Specifically, we select the learning rate in
{0.01,0.005, 0.001, 0.0005,0.0001}. Moreover, we adopt the Adam optimizer [52]
for all models with a batch size of 1024. In addition, we keep the number of clus-
ter centroids J7, = JB = J.; and vary them in {2, 5, 10,20, 50}. Furthermore, we
investigate the weight of cycle consistency loss A in {0.1,1,2, 5,10}, and the regular-

ization parameter « in {0.1, 1, 10,20, 50}. The influence of the above parameters on
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our CD2CDR is particularly discussed in Section 4.3.2.4.

4.3.1.4 Model Training

Since our CD2CDR can be divided into three phases, we first pre-train the backbone
of our model with 50 epochs® to obtain disentangled user preferences and compre-
hensive user preferences. Next, we train the generators and discriminators in the dual
adversarial structure with 30 epochs to decouple SDCs, apply half-sibling regression, a
computational method inherently without a training process [101], to decouple CDCss,
and then save cluster centroids of both SDCs and CDCs. Finally, we replace the pre-
diction module in the backbone with the interaction prediction network to fine-tune
the overall CD2CDR with 20 epochs.

To enhance the stability of our model training in the dual adversarial structure, in-
spired by [190], we replace the negative log-likelihood objective with a least-squares
loss for the adversarial losses Lgan, (S, H?, D4, DB) and Lgan, (T, HA, DB, D).
This replacement enables the generator to produce higher-quality outputs and im-
proves training stability. The reasons are as follows. Firstly, the least-squares loss
penalizes generated samples far from the decision boundary, guiding the generator
to adjust these samples closer to the boundary. This process reduces the discrep-
ancy between generated and real data distributions, improving the quality of gen-
erated samples. Secondly, the distance-based penalization produces more gradients
to guide the generator’s updates, mitigating the gradient vanishing issue and thereby
stabilizing the generator’s learning process. For further details, please refer to [89].
Taking Lo an, (S, HE, DA, DB) as an example, the generator S(-) is trained to mini-
mize Eza . pa[(H”(S(Z5,.)) — 1)%], while the corresponding discriminator /77(-) is

spe

trained to minimize Ezp _ ps[(H”(Z5,) —1)°| + Eza_pa[H"(S(Z],.))?]. Likewise,
Laan, (T, H*, DB, D4) is optimized in a similar manner. In addition, we adjust the
weight of the cycle consistency loss to balance the adversarial process and the cycle

consistency constraint, ensuring stable convergence of the dual adversarial training.

3The number of training epochs for each phase is chosen in {10, 20, 30, 40, 50}.
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Detailed results of weight adjustment can be found in Sections 4.3.2.2 and 4.3.2.4.
During each epoch, we shuffle and split the training data for both domains into
batches. We then iterate through batches, training on domain A and domain B in
parallel. This approach allows the model to learn from both domains within the same
epoch, ensuring that the model parameters are updated based on information from both
domains. This form of joint learning helps improve the generalization performance
across domains. Note that Eq. (4.5) and Eq. (4.16) are not optimized jointly. Since
observed confounders are no longer entangled with debiased user preferences after
deconfounding, the joint optimization of Eq. (4.5) and Eq. (4.16) for decoupling these
confounders from such preferences becomes redundant. For a fair comparison, other

baselines are trained for 100 epochs to confirm their convergence.

4.3.1.5 Evaluation Metrics

Given the widespread use of leave-one-out approach in baselines, e.g., GA-DTCDR
[185] and DisenCDR [8], we adopt it as well to validate the recommendation accuracy
of our CD2CDR and baselines. Moreover, the test set is created by the final interaction
of each user, while the training set is formed by the remaining interaction records of
each user. In line with the methods introduced in [8, 9], for every interaction in the
test set, we randomly select 999 non-interacted items as negative samples for the test
user, and then predict scores for a total of 1000 items to perform ranking. The leave-
one-out approach mainly uses Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG), which are commonly adopted in ranking evaluations [187]. In our
experiments, these metrics are applied to validate the recommendation accuracy within
top-10 rankings, and all experiments are conducted five times with average results

reported in this chapter.
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4.3.1.6 Comparison Methods

We choose seventeen state-of-the-art baseline models to conduct a comparison against
the proposed CD2CDR. We then categorize the seventeen baseline models into four
groups: (I) Single-Domain Recommendation (SDR), (I) Single-Target CDR, (III)
Disentanglement-Based Dual-Target CDR, and (IV) Debiasing Dual-Target CDR. To
the best of our knowledge, our CD2CDR is the first Deconfounding Dual-Target CDR
model in the literature. Thus, we select three representative Debiasing Dual-Target
CDR approaches as alternatives for Deconfounding Dual-Target CDR baselines. More-
over, although there are some methods that identify unobserved domain-specific con-
founders and even unobserved general confounders, or utilize backdoor adjustment in
the single-domain manner, they are not selected as baseline models. This is because
they focus on different settings, i.e., domain generalization [167, 67], cross-domain
sequential recommendation (CDSR) [173, 147, 162], click-through rate (CTR) pre-
diction [131, 91] and different item groups [166, 122], respectively, from our model.
Furthermore, in Table 4.2, we present an in-depth analysis of embedding strategies and
main ideas of seventeen baselines and our CD2CDR.

Overall, our baselines cover both single-domain and cross-domain recommenda-
tion models. In the experiments, we use our CD2CDR framework to extend all the
above Disentanglement-Based Dual-Target CDR baselines. Experimental results (see
Section 4.3.2.3) demonstrate that CD2CDR is highly extendable and compatible with
most off-the-shelf disentanglement-based dual-target CDR backbones, making it suit-

able for a wide range of recommendation scenarios.
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4.3.2 Experimental Results and Analysis
4.3.2.1 Performance Comparison (for RQ1)

Table 4.3 displays a comparative analysis of the performance* of different methods
across all four tasks using HR@10 and NDCG @10 as evaluation metrics. It is worth
mentioning that Single-Target CDR baseline models are trained in both domains, but
only their results in data-sparser domain are reported, because they are designed to

enhance recommendation accuracy in data-sparser domain. We find from Table 4.3:

(1) Our CD2CDR improves Disentanglement-Based Dual-Target CDR baselines by an
average of 16.73% and 18.40% w.r.t. HR@ 10 and NDCG@ 10, respectively. Among
this type of baselines, BITGCF [74] performs well on the Rec-Tmall dataset, out-
performing GA-DTCDR [185] and DisenCDR [8], but still falls short compared
to CrossAug [88]. CrossAug, which utilizes cross-domain data augmentation and
domain-shared center alignment, achieves competitive performance comparable to
Debiasing Dual-Target CDR baselines. However, our CD2CDR still outperforms
CrossAug by 11.95% and 13.17% w.r.t. HR@10 and NDCG @ 10, respectively. This
is because, in addition to the user preference disentanglement, we adopt the con-
founder disentanglement, which effectively decouples observed SDCs and CDCs.
By decoupling these confounders, we account for the fact that user interactions are
not solely driven by their true preferences but also by observed confounders. Such
confounders’ positive influences can be secondary causes for user-item interactions,
while their negative influences will result in capturing biased comprehensive user
preferences. Effectively decoupling such observed confounders allows us to con-
sider a more comprehensive range of factors affecting user-item interactions, thereby

achieving better recommendation performance in both domains;

(2) Our CD2CDR improves Debiasing Dual-Target CDR baselines by an average of

“We only display experimental results when the embedding dimension d = 64 in Table 4.3 due to
space limitation. For other values of d that are not shown, similarly, our CD2CDR also significantly
outperforms other baselines.
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3)

“4)

13.03% and 14.85% w.r.t. HR@10 and NDCG @10, respectively. This demonstrates
that deconfounding the observed confounders in each of both domains effectively

benefits the prediction of user-item interactions in dual-target CDR;

Our CD2CDR improves the best-performing baseline, i.e., IPSCDR [63], which is
implemented with the same backbone as our model. Specifically, our CD2CDR out-
performs IPSCDR with an average increase of 6.17% and 8.23% w.r.t. HR@10 and
NDCG @10, respectively. This is because our CD2CDR particularly takes observed
CDC:s into consideration and our causal deconfounding module can not only elim-
inate observed confounders’ negative effects on user preferences, but also preserve
their positive effects on predicted interactions, thus gaining a more comprehensive

understanding of user-item interactions;

In the challenging CSR scenario (Task #4) where user sets are completely non-
overlapping, our CD2CDR still shows strong performance, outperforming the best-
performing baseline model by an average of 4.75% and 6.33% w.r.t. HR@10 and
NDCG@10, respectively. This demonstrates that our model adapts effectively to
item-wise knowledge transfer through common items across different systems, and
can extract item embeddings that are not entangled with observed confounders, en-
abling more accurate matching with comprehensive user preferences despite the
absence of user overlap. This evaluation in the cross-system context extends our
experimental scope beyond CDR scenarios, further validating the robustness and

effectiveness of our model in more challenging CSR settings.

4.3.2.2 Ablation Study (for RQ2)

To highlight the significance of each component in enhancing the recommendation

accuracy of our model, we reconstruct our CD2CDR into four variants and perform an

ablation study for all four tasks.

Impact of Confounder Disentanglement. We modify our proposed CD2CDR to

form two variants, namely CD2CDR_Cross and CD2CDR _Single, by removing the
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Table 4.3: Comparative performance analysis (%) of different methods in all four tasks using
HR @10 and NDCG@10 as evaluation metrics [185]. For experimental results, best results are
highlighted in bold and the results of best-performing baseline model are underlined (* denotes

p < 0.05 in the paired t-test between the best-performing baseline model and CD2CDR) [188].

SDR Baselines Single-Target CDR Baselines

Datasets NGCF LightGCN DCCF BPR EMCDR | BPR DCDCSR CUT

HR NDCG | HR NDCG| HR NDCG| HR NDCG | HR NDCG | HR NDCG

Tmall-Favorite | 12.39  6.27 | 12.62 635 | 1254 6.32 - - - - -

Tmall-Purchase | 6.46 401 | 674 406 | 688 421 | 531 356 | 588 373 | 725 434

Tmall-Favorite | 1248 629 | 1281 643 | 1265 6.37 - - - - - -
Tmall-Cart | 10.04 523 | 1085 558 | 1098 58 | 879 487 | 946 511 |1148 6.16

Amazon-Elec | 21.85 1236 |21.73 1161 | 21.57 11.14 | - - - -

Amazon-Cloth | 11.62  6.18 | 12.04 622 | 1223 625 | 10.69 547 |1144 615 |1352 7.1
MovieLens | 13.17 685 | 13.46 7.09 | 1335 7.04 - - - -

Douban-Movie | 1048 538 |10.71 548 | 1083 556 | 972 519 |1036 528 | 1125 6.07

Disentanglement-Based Dual-Target CDR Baselines
Datasets BiTGCF GA-DTCDR DisenCDR CausalCDR
HR NDCG| HR NDCG| HR NDCG | HR NDCG
Tmall-Favorite | 15.68  8.63 14.87 7.82 1534 8.25 1596  8.69
Tmall-Purchase | 9.24 5.06 8.44 4.53 9.01 4.94 9.17 5.03
Tmall-Favorite | 15.80 8.65 | 1491 805 | 1539 853 |1625 9.10
Tmall-Cart 1345 7.13 | 12,66 638 |13.13 6.81 13.56  7.18
Amazon-Elec | 2342 13.65 | 24.79 13.87 | 24.53 14.02 | 25.14 1447
Amazon-Cloth | 1431 7.59 | 1458 7.64 | 1581 856 | 1593 8.65
MovieLens 1528 825 | 1553 854 |19.28 10.53 | 19.87 10.89
Douban-Movie | 11.79  6.19 | 11.96 6.21 1472 7.66 | 1529 8.27

Disentanglement-Based Dual-Target CDR Baselines
Datasets GDCCDR CrossAug HIJID DIDA-CDR
HR NDCG| HR NDCG| HR NDCG| HR NDCG
Tmall-Favorite | 16.24  9.05 | 16.31 9.07 | 1645 9.12 | 1660 9.14
Tmall-Purchase | 9.65 5.19 9.74 5.20 9.88 522 |10.03 5.28
Tmall-Favorite | 16.53  9.13 | 16.66 9.15 | 1679 9.19 | 17.02 9.26
Tmall-Cart 1421 7.56 | 1438 7.59 | 1443 7.60 |14.56 7.71
Amazon-Elec | 25.69 14.58 | 25.73 14.62 | 2594 1471 | 26.12 14.83
Amazon-Cloth | 16.72 9.16 | 1685 924 |17.27 942 |17.775 9.70
MovieLens 20.14 1092 | 2043 1096 |20.64 11.01 |21.08 11.09
Douban-Movie | 1558 8.63 | 1582 8.67 |16.11 8.85 | 1634 9.06

Debiasing Dual-Target CDR Baselines Our Model Improvement

Datasets SCDGN CDRIB IPSCDR CD2CDR (CD2CDR vs.

best baselines)
HR NDCG | HR NDCG | HR NDCG | HR NDCG| HR NDCG
Tmall-Favorite | 1507  8.16 | 150 862 | 17.14 9.8 | 18.01%+ 9.87% | 5.08% 5.22%
Tmall-Purchase | 873 475 | 956 517 | 10.51 539 |11.38% 6.12% | 828% 13.54%
Tmall-Favorite | 15.14 821 | 1622 9.04 | 1743 9.47 | 18.35% 9.98% | 528% 539%
Tmall-Cart | 12.82 648 | 1398 751 | 1505 8.02 |1637% 9.06* | 8.77% 12.97%
Amazon-Elec | 24.69 13.85 | 25.06 14.34 | 26,78 15.19 | 28.11% 16.24* | 497% 691%
Amazon-Cloth | 15.19 824 | 1667 9.18 | 1826 9.93 | 19.62% 10.87* | 7.45% 9.47%
MovieLens | 20.81 11.05 | 19.36 1055 | 2L.74 11.67 | 22.73% 12.56* | 4.55% 7.63%
Douban-Movie | 15.88 8.67 | 1513 817 | 1675 9.8 | 17.59% 9.61*% | 5.01% 4.68%

SDC disentanglement and CDC disentanglement, respectively. From Table 4.4, we can
find that with SDC disentanglement module, CD2CDR outperforms CD2CDR_Cross

with an average improvement of 5.49 %. This shows that the dual adversarial struc-
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Table 4.4: Ablation study of different components in our CD2CDR across three dual-target

CDR tasks and a dual-target CSR task. The best results are highlighted in bold.

CD2CDR _Cross | CD2CDR_Single | CD2CDR_Coarse | CD2CDR_Cycle CD2CDR
HR NDCG | HR NDCG | HR NDCG | HR NDCG | HR NDCG
Tmall-Favorite | 17.25 9.41 17.48 9.56 15.03 8.14 17.86 9.70 18.01 9.87
Tmall-Purchase | 10.67 5.40 10.82 5.53 8.68 4.69 11.22 6.04 11.38  6.12
Tmall-Favorite | 17.64 9.59 17.85 9.69 15.11 8.16 18.23 9.89 18.35  9.98

Tmall-Cart 15.21 8.25 15.56 8.61 12.75 6.43 16.18 9.01 16.37  9.06
Amazon-Elec | 26.83 1523 | 26.97 15.32 | 2448 13.79 2794 1615 | 28.11 16.24
Amazon-Cloth | 18.32 9.96 18.44 10.01 14.76 7.68 19.37 1058 | 19.62 10.87
MovieLens 21.89 1238 | 22.03 12.45 20.23 10.93 22.55 1249 | 2273  12.56
Douban-Movie | 16.91 9.22 17.16 9.40 15.46 8.54 17.38 9.51 17.59 9.61

Datasets

ture can effectively disentangle observed SDCs, and SDCs play an important role in
predicting user-item interactions in each domain. In addition, our proposed CD2CDR
improves CD2CDR Single by an average increase of 4.23%. This indicates that half-
sibling regression is well suited for decoupling observed CDCs, which are essential
factors for achieving a comprehensive understanding of user-item interactions in both
domains. Overall, our confounder disentanglement module can explicitly decouple
more accurate observed confounders, especially the CDCs, thus enable CD2CDR to
obtain better recommendation performance via accurate causal deconfounding.
Impact of Causal Deconfounding. Moreover, another variant, i.e., CD2CDR_Coarse,
directly incorporates decoupled observed confounders with biased comprehensive user
preferences in each domain and does not include the causal deconfounding module.
From Table 4.4, we can observe that without the causal deconfounding module, the
recommendation accuracy of CD2CDR _Coarse drops by 21.35% on average, making
it less effective compared to the Debiasing Dual-Target CDR baselines. This shows
that the causal deconfounding module indeed helps the model control the negative ef-
fects of SDCs and CDCs on user preferences. By recovering debiased comprehensive
user preferences and then incorporating the positive effects of SDCs and CDCs into
such preferences, the module enables the model to obtain the better recommendation
accuracy in both domains.

Impact of Cycle Consistency Loss. In addition, we construct another variant, namely

CD2CDR _Cycle, by removing the cycle consistency loss in the SDC disentanglement
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Figure 4.3: Average time comparison of confounder disentanglement phase across four tasks
for CD2CDR and its variants.

module. From Table 4.4, we can observe that our CD2CDR improves CD2CDR _Cycle
by an average of 1.01%. This demonstrates that the cycle consistency loss effectively
preserves users’ domain-specific preferences during the transformation process, ensur-
ing the transformed preferences accurately reflect the original user preferences rather
than merely confusing the discriminator. By incorporating the cycle consistency loss
to stabilize the adversarial loss, our model can more accurately disentangle SDCs, pro-
viding strong support for explicitly considering the impact of observed confounders on
user preferences and user-item interactions.

Overall, our ablation study demonstrates the importance of each component in our

CD2CDR model. Similar trends are observed in the CSR scenario (Task #4) where
knowledge transfer relies on common items, further confirming the effectiveness of
these components across different systems.
Empirical Analysis of Time Complexity. To comprehensively evaluate the trade-off
between effectiveness and efficiency of our model and its variants, we further conduct
an empirical analysis of their time complexity. Figure 4.3 illustrates the average time
consumption of the confounder disentanglement phase across all four tasks. In Figure
4.3, the time of confounder disentanglement phrase is divided into CDC disentangle-
ment time (implemented via half-sibling regression) and SDC disentanglement time
(implemented through dual adversarial training).

As shown in Figure 4.3, CD2CDR _Cross consumes significantly less time com-
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Figure 4.4: (a)-(b): Comparative performance analysis between CD2CDR and its seven vari-
ants with different backbones.

pared to other variants since it only employs half-sibling regression, which inherently
requires no iterative training as mentioned in Section 4.3.1.4. However, this computa-
tional efficiency comes with a performance degradation of 5.49% in recommendation
metrics. In contrast, CD2CDR _Single requires approximately 10 times more com-
putational time since it relies solely on the dual adversarial structure, which demands
multiple training epochs to converge, yet still underperforms our CD2CDR by 4.23%
in recommendation metrics. In addition, CD2CDR_Coarse shows comparable time
consumption to CD2CDR as it uses identical confounder disentanglement processes,
despite suffering a substantial 21.35% performance drop. Notably, CD2CDR_Cycle
consumes more time than our CD2CDR despite removing the cycle consistency loss,
while also showing 1.01% lower performance. The increased time consumption oc-
curs because without the stabilizing effect of cycle consistency loss, the adversarial
training requires more iterations to reach convergence. Moreover, the absence of cy-
cle consistency loss leads to less accurate SDC disentanglement, which explains the
observed performance degradation.

It is worth noting that the confounder disentanglement phase represents only a
fraction of the overall computational cost in the entire training pipeline (as discussed
in Section 4.2.5). Despite the differences in how CD2CDR and its variants implement
confounder disentanglement and causal deconfounding, the major computational cost
for both CD2CDR and its variants typically comes from the shared pretraining phase
and final recommendation phase. As a result, the time differences observed in con-

founder disentanglement have a relatively limited impact on total training time. Based
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on the above analysis, CD2CDR achieves a good balance between effectiveness and
efficiency, providing superior recommendation performance with reasonable compu-

tational requirements.

4.3.2.3 Impact of Different Backbones (for RQ3)

Since our CD2CDR can be easily combined with disentanglement-based dual-target
CDR backbone models, in addition to DIDA-CDR [188], we select all the other repre-
sentative and state-of-the-art models from this group as backbones to form seven vari-
ants, namely, BITGCF_CD2CDR, GA-DTCDR_CD2CDR, DisenCDR_CD2CDR,
Causal CDR_CD2CDR, GDCCDR_CD2CDR, and CrossAug_CD2CDR as well as
HJID_CD2CDR. Our aim is to demonstrate the flexibility and effectiveness of CD2CDR
by integrating it with various representative and state-of-the-art disentanglement-based
dual-target CDR backbone models, thereby highlighting its generalizability and ex-
tendability across diverse CDR scenarios. The performance comparison of CD2CDR
and its seven variants® with corresponding backbones is shown in Figure 4.4. We find
that when our model employs DIDA-CDR as the backbone, it improves the above vari-
ants, namely, BITGCF_CD2CDR, GA-DTCDR_CD2CDR, DisenCDR_CD2CDR,
Causal CDR_CD2CDR, GDCCDR_CD2CDR, and CrossAug_ CD2CDR as well as
HJID_CD2CDR by an average of 7.97%, 16.87%, 11.42%, 7.74%, 5.09%, 4.47%
and 2.34%, respectively. This improvement can be attributed to the ability of DIDA-
CDR to effectively decouple three components of user preferences for modeling more
accurate comprehensive user preferences. Notably, the ability of DIDA-CDR aligns
well with the requirements of our CD2CDR, which relies on this precise disentan-
glement to accurately decouple observed confounders. In addition, our model, when
combined with various backbones, consistently outperforms these backbones in their
original form with an average improvement of 9.05% and 8.04% w.r.t. HR@10 and

NDCG@10, respectively. This not only shows the superior efficacy of CD2CDR in

SOwing to constraints in space, Figure 4.4 and Figure 4.5 solely present the experimental results for
Task #1, with similar trends observed in other unshown tasks.
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improving recommendation performance in both domains, but also shows its general-

izability to various CDR models.

4.3.2.4 Parameter Sensitivity (for RQ4)

Impact of the number of cluster centroids .J. To explore the impact of number of
cluster centroids J on the efficacy of our proposed CD2CDR, we keep J%, = JB = J.4
and vary them in {2,5,10,20,50}. The corresponding experimental results are de-
picted in Figures 4.5(a)-(b). We can observe that as J increases, the recommendation
performance initially improves but gradually plateaus beyond 10. This suggests that
there is a threshold for ./, which may vary in different datasets. Beyond this thresh-
old, additional cluster centroids do not significantly improve the recommendation per-
formance. In other words, once J reaches this threshold, the potential confounders
represented by these cluster centroids are comprehensive enough for effective decon-
founding. With the aim of achieving a balance between model complexity and rec-
ommendation accuracy, we finally set J;}i =J ﬁl = J.q = 10 in the three dual-target
CDR tasks. In particular, the comprehensive confounder disentanglement significantly
contributes to more accurate estimation of Eq. (4.12). More importantly, the experi-
mental results show that our confounder disentanglement module can form effective
confounder spaces, where even basic clustering techniques can easily identify key con-
founders, thereby yielding promising deconfounding results.

Impact of the weight of cycle consistency loss ). To examine the impact of the weight
of cycle consistency loss A on the recommendation performance of our model, we test
A with values from {0.1, 1,2, 5,10}. The experimental results are depicted in Figures
4.5(c)-(d). We can observe that smaller values of A (e.g., 0.1 or 1) allow the adversar-
ial losses to play a dominant role during training, driving the generator to better align
the distributions of domain-specific user preferences across domains. Meanwhile, the
cycle consistency loss still enforces moderate consistency, ensuring the transformation
remains meaningful. In contrast, when \ is set to larger values (e.g., 5 or 10), the cycle

consistency loss becomes overly influential. As a result, the generator focuses primar-
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Figure 4.5: (a)-(b): Impact of the number of cluster centroids J. (c¢)-(d): Impact of the weight
of cycle consistency loss A. (e)-(f): Impact of the regularization parameter c.

ily on minimizing cycle consistency loss, prioritizing outputs that closely resemble the
inputs, rather than using feedback from the discriminator to refine cross-domain trans-
formations. This weakens the discriminator’s ability to guide the generator towards
producing domain-specific user preferences that are indistinguishable from those in
the target domain. Therefore, we select A = 1 to ensure a proper balance between the
optimization of adversarial losses and cycle consistency loss.

Impact of the regularization parameter o. To analyze the impact of the regu-
larization parameter o on decoupling candidate CDCs, we test a with values from
{0.1,1,10,20,50}. The results are shown in Figures 4.5(e)-(f). We can observe that
small values of « (e.g., 0.1) lead to insufficient regularization, making the regression
overly sensitive to noise. By contrast, large « values (e.g., 20 or 50) place too much
emphasis on the regularization term, leading the model to underfit important features
related to the CDCs. This weakens the model’s ability to effectively decouple candi-
date CDCs. As shown in Figures 4.5(e)-(f), when o = 1, our CD2CDR achieves the
best trade-off between stabilizing numerical computations and maintaining the accu-

racy of decoupling candidate CDCs, thereby enhancing the effectiveness of subsequent
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deconfounding in cross-domain settings.

4.4 Summary

In this chapter, we have proposed a novel Causal Deconfounding framework via Con-
founder Disentanglement for dual-target CDR, called CD2CDR. CD2CDR not only
effectively decouples observed single-domain and cross-domain confounders, but also
preserves the positive direct effects of such observed confounders on predicted inter-
actions and eliminates their negative effects on capturing comprehensive user pref-
erences, thereby enhancing the recommendation accuracy in both domains simulta-
neously. Moreover, we have conducted extensive experiments on seven real-world
datasets, which demonstrates that our CD2CDR significantly outperforms the state-

of-the-art methods.



Chapter 5

Causal-Invariant Cross-Domain

Out-of-Distribution Recommendation

While Chapter 3 proposes DIDA-CDR to disentangle essential components of user
preferences, and Chapter 4 proposes CD2CDR to decouple and then deconfound ob-
served confounders, both approaches are developed under the assumption that train-
ing and testing data within each domain are independently and identically distributed
(IID). However, this IID assumption rarely holds in real-world scenarios. In CDR,
the goal is to leverage knowledge from a relatively data-richer source domain to im-
prove recommendation performance in a data-sparser target domain. While traditional
CDR methods primarily focus on addressing distribution shifts between domains, i.e.,
cross-domain distribution shift (CDDS), they often overlook the distribution shifts that
occur within a single domain, i.e., single-domain distribution shift (SDDS). The above
two co-existing distribution shifts lead to out-of-distribution (OOD) environments that
hinder effective knowledge transfer and generalization, ultimately degrading recom-
mendation performance in CDR.

In this chapter, we propose a new setting of cross-domain OOD recommendation,
which simultaneously addresses two types of distribution shifts through unified mod-
eling. In addition to previously introduced challenges CH2 and CH3 (as discussed in
Sections 1.2.2 and 1.2.3), this new setting introduces a critical challenge that has not
been fully explored in the literature. As discussed in Section 1.2.4, this challenge CH4

is formalized as: How to simultaneously address cross-domain and single-domain dis-

99



5.1. PROBLEM STATEMENT 100

tribution shifts to achieve reliable recommendation under OOD environments in CDR?

This chapter first formalizes the new setting of cross-domain OOD recommen-
dation. Then, a novel CICDOR framework that discovers invariant causal structures
across distributions to tackle both CDDS and SDDS for reliable cross-domain OOD
recommendation is proposed. Finally, the detailed framework and experiments are

introduced in the following sections.

5.1 Problem Statement

5.1.1 Notations and Background

This chapter considers a source domain D?® with relatively richer data and a target
domain D' with sparser data. Both domains share a common user set I/ of size m =
|{|. We denote the user reviews in D* and D" as R® and R’, respectively. The item sets
in the source and target domains are V* (of size n® = |V*]) and V' (of size n' = [V!|)
respectively, with corresponding user-item interaction matrices Y* and Y*. Here, each

entry y;; € {0, 1} represents whether user 7 has interacted with item j.

5.1.2 Problem Formulation

In this chapter, we propose a new setting of cross-domain OOD recommendation.

e Input: Data from source domain D* and training data from target domain D?, with
data distributions P*(U, V*) # PL (U, V).

e Output: A cross-domain recommender system that can accurately predict whether
any user i € U interacts with an item j € V' (i.e., g)fj) in the target domain testing data

Dt,, where P (U, V') # P (U, V).
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Figure 5.1: The flowchart of the proposed framework.
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5.2 The Proposed CICDOR Framework

5.2.1 Framework

In this section, we propose a novel Causal-Invariant Cross-Domain Qut-of-distribution
Recommendation framework, called CICDOR. As illustrated in Figure 5.1, CICDOR
is built upon dual-level causal structures and follows the principle of causal invari-
ance to tackle the OOD problem in CDR. Specifically, (1) To simultaneously address
CDDS and SDDS, CICDOR proposes a dual-level causal preference learning mod-
ule that discovers causal structures and infers causal-invariant user preferences at both
domain-specific and domain-shared levels. (2) To ensure accurate causal-invariant
user preference inference, CICDOR proposes an LLM-guided confounder discovery
module. This module identifies interaction-related causal variables from reviews and
further extracts observed confounders for effective deconfounding, thus enabling the
accurate inference of debiased comprehensive causal-invariant user preferences for re-

liable cross-domain OOD recommendation.
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5.2.2 User Preference Disentanglement
5.2.2.1 Embedding Construction

Taking the target domain D' as an example, let u € {0,1}™ and v* € {0,1}" de-
note the one-hot vectors of users and items, respectively [179]. We first transform
user one-hot vectors into k-dimensional attribute embeddings' via Ef,, = W' u,
where W', € RF*™ is a learnable embedding matrix. To enhance the extraction of
disentangled user preferences, we leverage multi-source content information includ-
ing user reviews and item details [185]. Specifically, we collect all reviews written
by user u; into a user document, while for item v;, we collect both its details and
associated reviews into an item document [189]. Next, we employ a sentence trans-
former model to encode these documents, converting them into dense representations.
This process generates user text embeddings Ef, and item text embeddings Ef, for
all users and items in the training set. We then concatenate E!,, and E!, to obtrain
the combined user embeddings Ef . These text embeddings are then projected into
fixed-dimensional spaces through multi-layer perceptron (MLP) layers to create initial
user embeddings Ef; and initial item embedding E!; in the target domain. Likewise,
we can obtain E,,, E7. and EJ; in the source domain as well. Using these initial
embeddings and the corresponding interaction matrices as inputs, we construct two
heterogeneous graphs and then employ the Graph Convolutional Network (GCN) [53]
to generate enriched user embeddings E,, and item embeddings E, that capture both

content semantics and collaborative patterns within each domain.

5.2.2.2 User Preference Disentanglement

In CDR, a crucial challenge is to determine what knowledge should be transferred
across domains [186, 152]. To address this challenge, we disentangle the enriched
user embeddings F, to obtain transferable domain-shared user preferences while pre-

serving domain-specific user preferences that capture unique user behaviors in each

'Unless otherwise specified, all embedding dimension mentioned hereafter is k.
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domain. Inspired by [15], we implement a user preference disentanglement module
with three encoders: one domain-shared encoders and two domain-specific encoders
(all using the two-layer MLP). These encoders collaboratively disentangle user prefer-
ences into domain-shared and domain-specific components.

For effective disentanglement, we employ a domain discriminator implemented as
a fully-connected neural network. This discriminator attempts to identify whether en-
coded user preferences originate from the source or target domain by minimizing a
domain classification loss. Between the domain-shared encoder and discriminator, we
utilize a gradient reversal layer (GRL) [25], which multiplies gradients by a negative
constant during backpropagation. This causes the domain-shared encoder to maxi-
mize the domain classification loss, thereby learning to generate user preferences that
confuse the discriminator. Through this domain adversarial training [26], the domain-
shared encoder effectively extracts transferable common user preferences. To optimize
this disentanglement, we define the domain classification losses using binary cross-

entropy as follows:

sha = T A7s Z log fha 9ha - Z log qha (5 1)

where d denotes the binary domain label (0 for source domain and 1 for target domain)
and d is the discriminator’s predicted probability of the input user preferences belong-
ing to the target domain. Similarly, the domain-specific encoders connect directly to

the discriminator without GRL and are trained to preserve domain-specific features by

t

minimizing the domain classification loss £, and L.

Then, the overall domain disentanglement objective can be expressed as:
Edom = 7(£§ha + ‘Cfpe) (1 - 7)( sha + Ezpe) (52)

where v is a balancing parameter between the source and target domain losses during

disentanglement. The details of user preference disentanglement process can be found
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in [15]. Finally, we can obtain domain-shared user preferences E;, and domain-
specific user preferences E¢ _ and E!

spe spe*

5.2.3 Dual-Level Causal Preference Learning

After obtaining domain-specific and domain-shared user preferences, inspired by CD-
COR [65], we model the causal relationships between user attributes and user pref-
erences, aiming to identify causal structures that remain invariant across distribution
shifts. While CDCOR primarily focuses on learning causal structures at the domain-
shared level to assist the learning of causal relationships in the target domain, it over-
looks a crucial aspect: the invariant causal structure within the target domain itself,
which is fundamental for robust single-domain OOD recommendation. Learning the
domain-specific causal structure effectively addresses SDDS by capturing invariant
causal relationships within the target domain, while the domain-shared causal struc-
ture provides supplementary support for mitigating both SDDS and CDDS. Motivated
by the complementary nature of these two causal structures, we propose a dual-level
causal preference learning module that learns two Directed Acyclic Graphs (DAGs) to
model causal relationships at each level, respectively.

As shown in Figure 5.1, we do not learn the source domain’s domain-specific
causal structure. This design decision is based on two key considerations: (1) our
primary goal is to enhance OOD recommendation performance in target domain, and
source domain is only used to provide auxiliary training signals without requiring
OOD generalization; (2) source domain’s domain-specific user preferences are only
used within its own prediction branch and do not participate in target domain infer-
ence, making causal invariance unnecessary for these representations. This design
reduces model complexity while maintaining essential causal structure learning com-
ponents.

Taking the domain-specific level as an example, we represent its DAG as a weighted

adjacency matrix Ay € R**2?% where A, ; indicates the strength of the causal influ-



5.2. THE PROPOSED CICDOR FRAMEWORK 105

ence from node ¢ to node j. Each node represents one dimension of either user at-
tributes or domain-specific user preferences embedding. The structural causal model

(SCM) can be formulated as follows:
Bspe = A;;eBspe + €, (53)

where € represents the noise term, and By,e = Ef||[El,, € R®", and || denotes the
operation of concatenation. Eq.(5.3) defines how child nodes are determined by their
parent nodes through A,.. When Eq.(5.3) holds, A, represents the causal structure at
the domain-specific level, capturing the invariant relationships between user attributes
and domain-specific user preferences. To learn Ag,., we minimize the following re-
construction loss:

spe spe

N
rec 1 T 2
Ly = N; IB, — ALB|2. (5.4)
To ensure that A, remains acyclic, as required by DAG properties, we optimize the
following loss as a constraint [180]:

L3¢ — Tr(e®A) — k, (5.5)

spe

where Tr(-) computes the trace, o is the element-wise product, and e represents the Eu-
ler’s number. Moreover, to ensure A, aligns with the nature of preference formation,
we introduce two structural constraints: (1) causal influences should only flow from
user attribute nodes to user preference nodes, and (2) user preference nodes cannot
be root nodes [43]. These constraints align with both causal intuition and the char-
acteristics of preference formation. The first constraint reflects that user preferences
are shaped by their inherent attributes, while the second constraint ensures that pref-

erences are always derived from underlying personal attributes rather than emerging
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spontaneously. To enforce such constraints, we optimize following two losses:

ﬁé’fiéh = || Apgr2m,1:4 |15 (5.6)
2k
Lo =" —loglApqlh- (5.7)
i=k+1

Then, we can obtain the domain-specific causal loss, which is expressed as follows:

e + alﬁdag + CE2‘Cpath + Oég,CrOOt + Of4||Aspe||1- (58)

spe spe spe spe spe

Similarly, we can obtain the domain-shared causal loss L. Thus, we formulate the

sha*

dual-level causal loss as follows:

ﬁcau — Ecau + Ecau (5'9)

spe sha*

When training is completed, we can infer domain-specific causal-invariant user
preferences using the learned causal structure Ag,.. During inference, we feed By =
E!,,||0 into Eq.(5.3), where O is a zero vector replacing domain-specific user pref-
erences. From the output I:Ispe, we extract its posterior k-dimensional vector as the
domain-specific causal-invariant user preferences Eg@” in target domain. Since Agp,
captures the invariant causal mechanism of how users’ attributes generate their pref-

erences, the inferred preferences through A, are inherently causal-invariant and thus

more reliable for OOD recommendation. Likewise, we can obtain E™ and E!™

sha *

We then apply an attention mechanism to fuse E?;";” and E' into comprehensive

user preferences EX**", and similarly fuse E;,. and S into B [188].

5.24 LLM-guided Confounder Discovery

To further enhance the reliability of the inferred causal-invariant preferences, we pro-
pose to address the influence of observed confounders during the training phase. User

reviews, which contain rich descriptions of user interactions, provide valuable infor-
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mation about various interaction-related causal variables. LLMs’ strong capabilities
in understanding natural language text make them particularly suitable for extracting
causal variables from unstructured reviews [1, 12]. However, direct extraction of con-
founders from reviews could be imprecise due to LLMs’ potential hallucinations and
the complex nature of causal relationships. To address this challenge, we leverage
COAT [68], which provides a robust framework for extracting causal variables using
LLMs with a systematic causal discovery approach grounded in causal theory. We pro-
pose to extend COAT by extracting observed confounders and working with reviews.
We propose an LLM-guided confounder discovery module that operates in an iter-
ative manner. Specifically, we first use an LLM to propose candidate causal variables
related to user interactions, employ a conventional causal discovery method to refine
these variables, and then carefully extract observed confounders from the refined vari-
able set. We use superscript 7 to denote the 7-th iteration. The module consists of
five key steps. Taking the target domain D' as an example, the complete procedure
is outlined in Algorithm 1, and we elaborate on each step in detail in the following

subsections. Likewise, the same procedure is also applied to the source domain D?.

5.2.4.1 Proposing Candidate Causal Variables

Building upon the factor proposal of COAT framework [68], we adapt the prompt
design to extract causal variables from user reviews. Specifically, in Figure 5.2, we
design a prompt p,,, for an LLM & to induce candidate causal variables that may af-
fect our target variable Y (whether a user interacts with an item in D'). The prompt
contains three components: review samples, task instructions, and output format con-
trol. (i) Review samples: Target domain user reviews R’ are grouped by rating scores
at first. Then a few reviews are sampled from each rating group (denoted as R C RY
due to LLM’s context length limitation. The domain name is included in the prompt
alongside these samples to establish the appropriate context. These review samples,
coming from users who have interacted with items (Y = 1), tend to exhibit distinct

patterns under different ratings, helping capture comprehensive causal variables. The
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Algorithm 1: LLM-GUIDED CONFOUNDER DISCOVERY

1

W N

D-T- I Y|

10

11
12

13
14
15
16
17
18
19
20
21

22

23

24
25

Input: Target domain user reviews R', LLM ®, maximum number of rounds

Tmaz> causal discovery algorithm F, causal feedback operation &.

Output: Target domain confounder subspace C°.

Initialize 7 < 1, Z=° <= (), Z,00 < 0, C)

— 0;

ool

Prepare initial prompt P;lom and randomly select initial review samples RY;
while not converged and T < 7,,,, do

/* Step 1: Proposing Candidate Causal Variables */
27 g, BO);

ZST ¢ zZsTly 2T

/* Step 2: Annotating Reviews into Structured Data */
for each review r; € R do

L for each variable z; € Z™ do

L Gij < (i, 245 Pano);

Form data matrix Q=7 from all annotation vectors;
/* Step 3: Refining Variables via Causal Discovery */

Filter variables from Z<7 U Z 00 Using CI test to obtain ZfST;
g7« F(Z7Tu{Y'});

Extract Markov Blanket 25/, «+ M B(Y") from G7;

Update Z,,,; with filtered variables and variables not in Z;/5;
/* Step 4: Extracting Observed Confounders */

if C” 1 = () then

pool
L Use zero-shot prompting to extract confounders;

else
L Use few-shot prompting with examples to extract confounders;

;)—ool A C;0_0l1 U q)(peﬂﬂt’ ZI\S/ITB)’
/* Step 5: Generating Causal Feedback */
(P s B7) <= E(Z55, B 9y )
T4 7+ 1;

Encode each confounder in C’™%* into embeddings;

pool

Apply K-means clustering to obtain J representative confounders to form C?;
return C’;

domain name is provided to help the LLM & better interpret the context. (ii) 7ask

instructions: To emulate the analytical process of human experts [95], the LLM & is

guided to propose candidate causal variables through three phases: consideration of

potential interaction-related variables, variable filtration to ensure semantic distinct-
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(1) Proposing Candidate Causal Variables

(1) Proposing Candidate Causal Variables

You are an expert in the {domain_name} domain and skilled in
analyzing user reviews to identify high-level causal variables that
influence whether a user interacts with an item.

# Review Samples

## Rating: 5.0

Bag is large and comfortable. Like the color also. I apply a very low
price promotion are excited to buy...

## Rating: 4.0

The slippers are a perfect fit, easy to walk in (no slipping) and they
keep my feet warm. I ususally don't like clogs but these are fine...
## Rating: 3.0

These slippers worked great for a month. Then I had pitch them
because they had holes in them. Don't buy these poor quality
slippers. ..

## Rating: 2.0

Bought for my daughter and we had to return it. Color was very pretty
but it ran small. Otherwise, it would have been fine...

## Rating: 1.0

This was very low quality and fit like a trash bag. I tried it on when I
got it and put it directly in the garbage...

# Tasks: Variable Proposal.
Your output should follow the three phases below.

Phrase 1: Consideration.

Analyze the review samples and identify high-level causal variables
that explain why the user chose to interact with the item.

Hint: Abstract meaningful causal variables from the reviews and
design corresponding criteria to assign them values from [-1, 0, 1]
based on their expression in the review text.

Phrase 2: Variable Filtration.

Evaluate whether each proposed variable is worth retaining,
based on the following criteria:

- Semantic Clarity: The variable captures one concrete, unique
aspect and avoids overlap or redundancy with other variables.
- Interpretability: Its presence or absence can be reasonably
inferred from the review content, even if not all reviews
mention it.

- Causal Relevance: The variable should represent a
meaningful factor that may influence the user’s decision to
interact with the item, rather than a superficial or stylistic
feature.

Phrase 3: Final Output.

In this phase, report the causal variables you have selected after
filtration. For each variable, follow the instructions below:

- Assign a value from [-1, 0, 1] to indicate how it is expressed
in the review.

- For each value, provide a specific criterion based on the
review content that determines when it applies.

- The criterion for value 0 must always be: "Otherwise; or not
mentioned."

# Output Format Control
For each proposed variable, use the following format:

{variable_name}

- 1: {positive_criterion}

- 0: Otherwise; or not mentioned.
- -1: {negative criterion}

Figure 5.2: Illustration of the prompt template for proposing candidate causal variables.

ness and avoid redundancy, and output of filtered variables. Each filtered variable will
be presented with its name and criterion that defines positive cases, negative cases, and
cases otherwise or not mentioned, corresponding to values 1, -1, and 0, respectively.
(1i1) Output format control: The output format control specifies the required format
for presenting the proposed variables and their criteria. The set of variables proposed
in the 7-th round is denoted as Z7 = ®(p] ,, R™). We accumulate variables across

rounds to form an initial candidate variable set Z=" = Z1 U ... U Z".

5.2.4.2 Annotating Reviews into Structured Data

After obtaining candidate causal variables with their criteria, we apply these criteria
to annotate all reviews in R! and transform them into structured data. This two-step
approach (first extracting variable criteria from sample reviews, then annotating all
reviews based on these criteria) offers significant advantages over directly extracting

variables from the entire review set in a single step. It ensures consistent annotation
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standards across all reviews and allows us to progressively accumulate variables across
rounds. For each review r; € R!, we instruct LLM @ to annotate it against each

variable z; € Z <7 based on the variable’s criterion, determining its value:
qij = (I)<Ti7 Zj, pano)7 (510)

where ¢; ; € {—=1,0, 1} is the annotation result, and p,,, is the annotation prompt. The
annotation results for each review r; form a vector q; = [¢; 1, ¢ 2, ---, 4| qu]. These
annotation vectors collectively form a data matrix Q=7 := [q7;d3;...; Qjp:|- As we
discover new variables in additional rounds, the matrix Q<7 can be expanded with
new columns, providing the structured input required for the subsequent conventional

causal discovery method.

5.2.4.3 Refining Variables via Causal Discovery

The candidate causal variables extracted by LLMs may contain inaccuracies, as LLMs
might misinterpret review content or propose variables without true causal relation-
ships with the target variable Y*. To address this challenge, we implement the variable
refinement via causal discovery. Inspired by the method introduced in [68], our re-
finement begins with a filtering process using conditional independence (CI) tests. We
evaluate each variable in the candidate variable set Z<" through an iterative process.
Specifically, for each candidate variable z;, we test whether it maintains a signifi-
cant statistical association with Y when controlling for the set of variables already
identified as relevant in previous iterations of testing. Variables that pass this test are
confirmed as relevant and then retained, forming a filtered variable set Z ST, while oth-
ers are eliminated. The filtering process not only removes irrelevant variables, but also
helps address redundancy by eliminating variables that provide similar information as
previously confirmed ones, thus providing a more reliable foundation for subsequent
causal discovery.

After the initial filtering process, we feed the filtered variable in ZfST and the tar-
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get variable Y into the Fast Causal Inference (FCI) algorithm to discover the causal

structure G7, which can be expressed as follows.
GT=F(Z7Tu{Y"}), (5.11)

where F denotes the FCI algorithm. FCI algorithm [106] is a conventional causal dis-
covery method that accommodates potential confounders, making it well-suited for our
context where causal variables proposed by LLM might be entangled with confounders
[48]. In addition, FCI algorithm offers flexibility regarding different functional forms
of causal relationships (e.g., linear or non-linear), which corresponds well to the di-
verse relationship patterns we need to identify in our causal structure learning [68].

From the discovered causal structure G, we further extract the Markov Blanket
of the target variable, denoted as M B(Yt). This extraction is crucial for our variable
refinement process because it allows us to focus only on the most influential vari-
ables while discarding those that provide redundant or irrelevant information, thereby
achieving the optimal balance between model simplicity and effectiveness for both pre-
diction and causal understanding of user interactions. In the causal structure, M B(Y")
consists of Y’s parents, Y*’s children, and the parents of Y*’s children other than Y
itself [94]. Formally, the Markov Blanket satisfies: Y* 1l Z|M B(Y") for any set Z of
proposed causal variables disjoint from both M B(Y*) and Y itself. This means that
given M B(Y"), no other proposed variable provides any additional information about
Y*. By focusing on the Markov Blanket, our variable refinement process concludes
with the identification of the refined variable set Z;;};, which is the most compact set
of variables necessary and sufficient for reasoning about the target variable Y.

To avoid potentially discarding valuable variables at early stages, we maintain a
variable pool Z,,,, that stores both variables eliminated during the initial CI test filter-
ing and those from ng that are not included in the Markov Blanket. This mechanism
ensures that valuable variables have the opportunity to be reassessed in subsequent

analyses, especially when certain variables might reveal their causal relevance only



5.2. THE PROPOSED CICDOR FRAMEWORK 112

under specific conditioning with other variables.

Overall, this three-step variable refinement process provides theoretical guaran-
tees that complement the initial LLM-based variable proposal. By integrating the FCI
algorithm along with supporting statistical methods, we systematically refine the pro-
posed variables: CI test filtering removes both statistically irrelevant and redundant
variables, the FCI algorithm discovers the underlying causal structure among remain-
ing variables, and Markov Blanket extraction determines the minimal sufficient set for
causal reasoning. This integration ensures that our refined variable set is theoretically
grounded and contains only variables with true causal relationships to the target vari-
able. It provides a reliable foundation for subsequent analyses, unlike approaches that

directly use LLM, which may include inaccuracies.

5.2.4.4 Extracting Observed Confounders

After obtaining the refined variable set Z]\S/;}g through the variable refinement process,
we proceed to extract observed confounders using LLLMs. In the context of RSs, con-
founders are defined as causal variables that simultaneously influence both the treat-
ment (typically manifested as user preferences) and the outcome (represented by user-
item interactions) [189]. If not properly addressed, these confounders will introduce
confounding biases into user preference modeling, thus resulting in the degraded rec-
ommendation performance.

Direct extraction of confounders from raw reviews using LLMs presents several
limitations. Specifically, it risks identifying false confounders without theoretical vali-
dation, remains vulnerable to the hallucination problem of LLLMs, and lacks guarantees
of causal relevance to the target variable. To address these limitations, we propose to
extract confounders from the refined variable set Z3,;, which contains only variables
with theoretically validated causal relationships to the target variable. Inspired by the
method introduced in [1], we develop a Chain-of-Thought (CoT) prompting strategy
instructing the LLM & to analyze each variable in Zj\gjjg in a step-by-step manner.

This strategy is particularly valuable for confounder extraction as determining causal
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(4) Extracting Observed Confounders

(4) Extracting Observed Confounders

You are an expert in causal reasoning and skilled in identifying
observed confounders that influence both user preferences and user-
item interactions in the context of recommender systems.

# Input Data and Context

You are given a refined set of causal variables extracted from user
reviews in the {domain_name} domain. These variables have been
selected based on their potential influence on whether a user interacts
with an item.

Refined variable set: [<variable 1>, <variable 2>, ..., <variable j>]

# Tasks: Confounder Extraction.
Your output should follow the three phases below to identify observed
confounders from the given refined variable set.

Phrase 1: Variable Classification.

For each variable, generate a brief description within the
{domain_name} domain and classify it into one of two categories:
(a) item intrinsic attributes or explicit user preferences

(b) marketing, service, or other external factors

Hint: Variables in category (b) are more likely to be observed
confounders.

Phrase 2: Confounder Reasoning.

For each variable, analyze whether it qualifies as an observed
confounder by evaluating the following two conditions:

- Direct effect: Does the variable directly affect whether users
interact with items?

- Indirect effect: Does the variable also influence user
preferences, which in turn affect user-item interactions?

Hint: A variable must satisfy both conditions to be considered
an observed confounder.

Think step by step and provide your reasoning for each
condition.

Phrase 3: Final Output.
In this phrase, report only those variables that satisfy both the
direct and indirect effect conditions. If no variables satisfy both
conditions, output ‘None’.
# Output Format Control
For each confirmed confounder, use the following format:
{confounder name}
- Description: {confounder_description}
- Reasoning Process:

- Direct effect: {direct_effect reasoning}

- Indirect effect: {indirect effect reasoning}

Figure 5.3: Illustration of the prompt template for extracting observed confounders using zero-
shot prompting.

influence patterns requires complex judgment that benefits from explicit intermediate
reasoning steps.

As illustrated in Figure 5.3, our prompt p.,; comprises three essential components
to facilitate effective confounder extraction using an LLM ®: (i) Input data and con-
text, which provides the LLM & with the refined variable set Z;;,; and the target
domain name, enabling the accurate identification of observed confounders within the
given context. (i1) Task instructions, which guide the LLM @ to first generate a brief
description for each variable in Z]\Sj}g, and then employ CoT reasoning to analyze each
variable systematically. To facilitate efficient reasoning, the analysis includes a pre-
liminary classification of variables into two categories: (a) item intrinsic attributes or
explicit user preferences, and (b) marketing, service, or other external factors. This
classification serves as a heuristic guide, as variables in category (b) are more likely
to be confounders, while those in category (a) typically represent direct components
of user preferences rather than confounders. Following this preliminary classification,
the LLM @ conducts a thorough evaluation of each variable against the confounder cri-
teria: a variable is identified as a confounder only if it both directly affects user-item

interactions and indirectly affects user-item interactions by influencing user prefer-
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ences. (iil) Output format control, which specifies that the LLM & should produce a
structured output containing all identified confounders, each with its description and
the corresponding reasoning process justifying its identification as a confounder.

In our implementation, we initially employ zero-shot prompting using these three
components without examples. After each extraction round, we store newly identified
confounders, along with their descriptions and corresponding reasoning processes, into
a confounder pool C,,,; for subsequent analysis. Formally, at round 7, this process can

be represented as:

;J-OOZ = ;’0—011 U q)(pexb ZJ\S/[TB>7 (512)
where CJ,, = 0 initially, and ®(peat, Z3/p) Tepresents the newly identified con-

founders at round 7. Once C,,, contains at least one confounder, we transition to
few-shot prompting for subsequent rounds, using both a positive example (identified
confounder) and a negative example (non-confounder). This transition involves adding
an example demonstration component to our prompt p.,;, positioned before the input
data and context component. For the positive example, we select the first identified
confounder from C,,,;. For the negative example, we randomly select a variable that
was explicitly determined not to be a confounder. The pairing of these contrasting ex-
amples (few-shot) creates clearer decision boundaries for the LLLM, allowing it to bet-
ter distinguish between confounders and non-confounders based on their causal influ-
ence patterns, rather than relying solely on the confounder definition alone (zero-shot)
or a positive example alone (one-shot). Each example includes the refined variable
set, domain information, variable name, its description, and reasoning process that led
to its determination as a confounder or non-confounder. In addition, we instruct the
LLM & to avoid redundantly identifying confounders that are already present in the
confounder pool Cp;-

After completing all extraction iterations, we transform each confounder in Cp,;
into an embedding. First, we concatenate all textual information of the confounder

(i.e., name, description, and reasoning process). Next, we encode this concatenated
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text using SentenceTransformer (all-MiniLM-L6-v2), chosen for its efficiency, cost-
effectiveness, and comparable performance to other embedding models (such as Ope-
nAl’s text embeddings) [111]. This encoding produces a 384-dimensional embedding,
which we then reduce to k£ dimensions using Principal Component Analysis (PCA),
aligning with our user and item embedding dimensions. To minimize semantic re-
dundancy and extract representative confounders, we apply K-means clustering to all
the confounder embeddings and select .J® cluster centroids to form our confounder

subspace C' [189]. Similarly, we can obtain source domain confounder subspace C*.

5.2.4.5 Generating Causal Feedback

In the previous step, we have extracted observed confounders from the refined vari-
able set ZAS[B However, LLMs typically struggle to propose all relevant variables in
a single iteration [137, 96]. When the proposed variable set is incomplete, the sub-
sequent extraction of observed confounders is inevitably limited as well. To address
this issue, we develop a causal feedback mechanism to guide the LLM & in proposing
additional relevant variables in subsequent iterations, thereby progressively improving
both variable discovery and confounder extraction throughout our iterative pipeline.
To determine whether our refined variable set Z;;; is sufficient for explaining
the target variable Y*, we employ conditional entropy analysis. Conditional entropy
quantifies the reduction in uncertainty about Y* when conditioning on a given set of
variables, providing a statistical measure of information completeness. If our refined
variable set is incomplete, there exists a set of additional variables Z that would further
reduce the uncertainty about Y*. We instruct the LLM ® to propose new variables

% e Z that satisfy:
Hpys (VY 25575) — Hypo (Y| 23575, 2(R) > 0, (5.13)

where H(- | -) represents conditional entropy measured on 27!, which is a subset

of reviews specifically selected for the (7 + 1)-th iteration. When Eq.(5.13) holds,
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it indicates that the current variables are insufficient to fully explain Y, highlighting
the need to discover additional causal variables. Our key insight for identifying these
variables is to focus on reviews where the current variable set 2 ASZB performs poorly in
explaining Y, as they likely contain information about undiscovered causal variables.
We express this selection criterion as R7*! = arg max e Hp (Y| Z57). Following
the method introduced in [68], we frame this as a classification problem to identify
reviews where the current variables fail to provide adequate predictive power. In our
implementation, we use K-means clustering to group reviews based on their repre-
sentations derived from the current variable set Z3,;. After dividing the reviews into
multiple clusters, we compute the conditional entropy for each cluster and select the
one with the highest conditional entropy as R™!. This approach effectively identifies
the subset 2™+ where significant uncertainty about Y* remains despite conditioning
on current variables, providing informative samples to guide the discovery of addi-
tional causal variables in next iteration.

Specifically, we utilize the causal feedback mechanism to generate inputs for the
next iteration of variable proposal. This mechanism can be formalized as:

(oot B = €(2575. B, pLyo), (5.14)

pro

where £ represents the causal feedback operation that: (1) selects the samples R
from the highest conditional entropy cluster using the approach described earlier, and
(2) generates an enhanced prompt p;;;l by modifying p,,, to incorporate such samples
and add feedback instructions. These instructions guide the LLM @ to propose new
causal variables not currently included in Z;7;, facilitating the construction of a more

complete causal variable set in subsequent iterations.
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5.2.5 Causal Deconfounding and Cross-domain OOD Recommen-

dation

After obtaining the confounder subspaces C* and C' through LLM-guided confounder
discovery, it becomes crucial to address the confounding biases introduced by the con-
founders within these subspaces. Without proper handling, such confounding biases
can distort the inference of causal-invariant user preferences, thereby compromising
the effectiveness of cross-domain OOD recommendation. To effectively mitigate these
biases, we adopt the causal deconfounding approach proposed in [189], which lever-
ages backdoor adjustment [193] to estimate the direct causal effect from user prefer-
ences I/ to interactions Y. This approach seamlessly integrates deconfounding into
the recommendation training pipeline by modeling P(Y|E, ¢) with an MLP, allowing

us to estimate the causal effect as follows:

P(Y|do(E)) = Ec[P(Y|E, c)] = Ec[p(E;™, By, )], (5.15)

where P denotes the probability and [E denotes the expectation. ¢(-) represents an
MLP for predicting interaction probabilities [41] and c is the confounder selected from
the corresponding confounder subspace C. E*™ denotes the comprehensive causal-
invariant user preferences, and E, represents the item embeddings. By implementing
backdoor adjustment directly through the prediction process, this approach effectively
blocks the backdoor paths from confounders to user-item interactions, enabling the
inference of debiased causal-invariant user preferences that are critical for reliable
cross-domain OOD recommendation.

Furthermore, inspired by the method introduced in [161], we apply a confounder
selection function to control the deconfounding process by appropriately weighting

the confounders. Taking the target domain D' as an example, we formulate this con-
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founder selection function as:

*tinv t _ exp(WiEztmv : WZCC) GXp(WiEZ : Wf}cc)
¢(Eu 9 E'u? c) - ; )
2) sexp(WiE:iw . Wi /) = 2% exp(WLEL - Wi ¢)
(5.16)

where W!, W!

uc?

W', and W' denote learnable transformation matrices. - de-
notes dot product and ¢’ represents any confounder from C'. Next, the expectation

E [p(E: ™ E! c)] is expressed as:

E[p(E;™ El c)] = o[Wi (B |[EL ) ple)eg(By™ EL c)],  (5.17)

where || denotes concatenation operation, and W;C denotes a weight matrix of fully
connected (FC) layer in the target domain. For practical purposes, the prior probability
p(c) is assumed as a uniform distribution. Moreover, the input of MLP in the target do-
main is O, = Wi (E||EL|| Y, p(c)cy(EX Ef ). Likewise, we can obtain
©: in the source domain as well. Furthermore, we obtain the predicted interaction g]fj

between user u; and item v; within the target domain as follows:

0L = Oout (01(--02(01(©i))..)), (5.18)

where o] represents the transformation operation at the [-th layer of MLP. The MLP
comprises [ layers, with ¢,,,; serving as the final output transformation.
In addition, we employ the cross-entropy loss to formulate the recommendation

loss for the target domain as follows:

Lhe=— > [ylog(@)+ (1 —y)logl -5, (5.19)

yeYHtuYt-
where g represents the predicted interaction probability and y denotes the correspond-
ing ground truth label. The set V' contains all observed positive interactions in the
target domain, while V'~ consists of negative samples randomly selected from unob-

served interactions to mitigate overfitting. Likewise, we can obtain y;; and L7 . in
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source domain.
Finally, we formulate the total loss function as follows:

L = L+ B1L e 4 P2 L 4 B3L2™ + B4]| €22, (5.20)

rec rec

where (2 represents the set of all parameters that are optimized during training. The

hyperparameters 3; through (3, control the contribution of each term.

5.2.6 Time Complexity Analysis

In this section, we analyze the time complexity of our proposed CICDOR framework.
To standardize our analysis, we assume consistent parameters in CICDOR: the num-
ber of network layers L and embedding dimensions k. Below, we assess the time
complexity of each of four functional modules individually.

(1) User Preference Disentanglement: This module consists of two main computa-
tional phases. First, during the embedding construction and graph propagation phase,
we transform users and items into enriched embeddings. Since the text embedding is
precomputed as a one-time preprocessing step, its time complexity can be excluded
from the analysis. Assuming the heterogeneous graph contains (m + n) nodes with an
average of IV neighbors per node, the time complexity of the L-layer GCN operation is
O(L(m + n)Nk), where m and n denote the number of users and items, respectively.
Second, in the user preference disentanglement phase, we employ three MLP-based
encoders along with a domain discriminator. The time complexity of this phase is
dominated by the L-layer MLP operations, approximately O(Lmk?). Combining both
phases and noting that typically N < (m -+ n), the overall time complexity of this
module simplifies to O(L(m + n)k + Lmk?).

(2) Dual-level Causal Preference Learning: This module learns casual structure to
infer causal-invariant user preferences at both domain-specific and domain-shared lev-
els. The time complexity analysis spans both training and inference phases. In the

training phase, learning the causal structure through adjacency matrices involves (i)
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matrix multiplication for reconstruction loss computation with complexity O(mk?),
and (ii) acyclicity constraint calculation with complexity O(k®). Additional regulariza-
tion terms (e.g., sparsity, path constraints) contribute O(k?) complexity but are dom-
inated by the higher-order terms. In the inference phase, inferring causal-invariant
user preferences requires similar matrix multiplication operations with complexity
O(mk?), while the attention-based fusion of preferences from both levels adds O(mk)
complexity. Thus, overall time complexity of this module simplifies to O(mk? + k?).
(3) LLM-guided Confounder Discovery: This module identifies causal variables
and confounders through iterative processing across five key steps. (i) For variable
proposal, the LLM processes review samples to generate candidate causal variables
with complexity O(7s(|Z|)), where To(+) represents the LLM inference cost, and |z
denotes the average input length. (ii) For review annotation, each review is annotated
based on criteria of newly proposed variables, requiring complexity O(| R|| Z|Ts(|Z|)),
where |R| denotes the number of reviews and | Z| denotes the number of extracted
variables. (ii1) For variable refinement, CI test requires correlation matrix computa-
tion with complexity O(|R|| Z]?), the FCI algorithm contributes O(|Z|*), and Markov
Blanket extraction adds O(|Z]?), resulting in a combined complexity of O(|R||Z|*> +
|Z|*). (iv) For confounder extraction, the LLM processes the refined variable set in
one call with complexity O(7¢(|Z|)). (v) For causal feedback, K-means clustering and
conditional entropy calculation require O(|R||Z|J) complexity, where .J is the num-
ber of cluster centroids and [ is the number of clustering iterations. Additionally, after
all iterations, we process extracted confounders through embedding generation, di-
mensionality reduction, and clustering with complexity O(|C|(|Z| + k? + kJI)), where
|C| represents the number of extracted confounders. Considering all steps across 7

iterations, and noting that | Z| < |R

, T < |R||Z|, and computation costs are dom-
inated by LLM inference, the overall time complexity of this module simplifies to
O(IR[|2|Ta(|z]) + 7| RI|Z]).

(4) Causal Deconfounding and Cross-domain OOD Recommendation: This mod-

ule employs backdoor adjustment to mitigate confounding biases and estimate the
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direct causal effects of user preferences on interactions. Computing the selection
weights for each confounder across all user-item pairs has a complexity of O(mnJk).
Subsequently, the process of concatenating user, item, and weighted confounder em-
beddings and passing them through an L-layer MLP contributes an additional com-
plexity of O(Lmnk?). Consequently, the overall time complexity of this module is
O(mnk(J + Lk)).

Overall, the time complexity of our CICDOR framework encompasses two distinct
phases: the LLM-guided confounder discovery with complexity O(|R||Z|Ts(|Z|)),
and the recommendation model training (consisting of the remaining three modules)
with complexity O(mnLk?). These expressions represent the simplified dominant
terms from our detailed module-by-module analysis. The LLM-guided confounder
discovery phase theoretically scales with the number of processed reviews, extracted
variables, and LLM inference cost; however, in common practice, reviews are typically
sampled at a computationally tractable scale to balance between representativeness
and efficiency. Meanwhile, recommendation training phase scales linearly with user-
item interaction space and quadratically with embedding dimensions, which typically

becomes the computational bottleneck in large-scale recommendation scenarios.

5.3 Experiments on CICDOR

To validate the efficacy of our proposed CICDOR framework and its different modules,
we conduct extensive experiments on two real-world datasets to answer the following

research questions:

* RQ1. How does our CICDOR perform when evaluated across existing state-of-the-

art approaches (see Section 5.3.2.1)?

* RQ2. How do various modules within our framework, namely, dual-level causal
preference learning and LLM-guided confounder discovery, influence the OOD rec-

ommendation performance in the target domain? (see Section 5.3.2.2)?
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Table 5.1: Statistics of the datasets.

Datasets Domains #Users #ltems #Interactions Density
Douban Movie (source) 2106 9555 907219 4.508%
Book (target) 2106 6777 95974 0.672%
Douban Movie (source) 1666 9555 781288 4.908%
Music (target) 1666 5567 69681 0.751%

Electronics (source) 15761 51447 224689 0.027%

AMAZON 0y othing (target) 15761 48781 133609 0.017%

* RQ3. How does our CICDOR’s performance vary across different degrees of distri-

bution shift (see Section 5.3.2.3)?

* RQ4. How does adjusting different hyperparameters influence the performance of

our CICDOR (see Section 5.3.2.4)?

5.3.1 Experimental Settings
5.3.1.1 Experimental Datasets and OOD settings

We conduct experiments on two widely used CDR datasets: Douban [185] and Ama-
zon [8]. For clarity, we refer to the specific domains as Douban-Movie, Douban-Book,
Douban-Music, Amazon-Elec, and Amazon-Cloth throughout this paper. Based on
these domains, we construct three source-target domain pairs: (1) Douban-Movie
— Douban-Book, (2) Douban-Movie — Douban-Music, and (3) Amazon-Elec —
Amazon-Cloth, where the first domain in each pair serves as the source domain and
the second as the target domain. Table 5.1 presents the statistics of these domain
pairs. Both datasets contain user-generated ratings and textual reviews. As the orig-
inal ratings are explicit feedback, we convert them into implicit feedback by treating
interactions with ratings of 4 or higher as positive instances. Moreover, we extract
common users in both the source and target domains of each pair, thereby constructing
a fully overlapping user scenario.

Following the existing works [43, 65], we conduct experiments under two OOD

settings in the target domain:
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» User Degree Shift (OOD #1): Users with high interaction degrees often ex-
hibit distinct behavior patterns compared to those with lower degrees. In this
setting, the training set is randomly sampled from the entire dataset, covering
users with varying interaction degrees, while the testing set consists exclusively
of high-degree users. This creates a distribution shift in user interaction degrees,
challenging the model to generalize from the overall user population to a specific

high-degree subset.

* Region Shift (OOD #2): User preferences often differ across different regions.
In this setting, the training set contains randomly sampled users from all re-
gions, while the testing set is composed of users from Beijing. This simulates
a real-world scenario where regional distribution shift occurs between training

and testing data.

For all experiments, we adopt an 8:1:1 split ratio for training, validation, and testing
data. The user degree shift setting is applied to both Douban and Amazon datasets,
while the region shift setting is applied only to the Douban dataset because only this

dataset contains region information.

5.3.1.2 Implementation Details

For the hyperparameters in our causal structure learning component, we adopt the
weights for different terms in the loss function as used in [65]. For the overall model
training, we employ a negative sampling strategy with a 1:3 ratio of positive to negative
samples. In addition, we set the trade-off parameters 5, = 1.0, 53 = 1, 5, = 0.00001
and v = 0.5 for the corresponding loss terms, while setting the number of cluster
centroids J = J* = J' to 10 and the dual-level causal loss weight (35 to 0.5 as our
default configuration.

For the prediction network, we implement a three-layer MLP to process the con-
catenated user, item, and confounder embeddings. Following [189], we set the dimen-

sion after the FC layer k;,, as 128 and the output dimension k,,; as 8, after exploring
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values in ranges {64, 128} and {8, 16}, respectively. For the LLM-guided confounder
discovery module, we sample 1000 users from each dataset and collect up to 5 reviews
per user as input, utilizing gpt-4o-mini as the LLM with API calls determined at zero
temperature to ensure reproducible outputs.]

To find out the optimal hyperparameters, we employ Optuna® with 50 trials for
each model. The search space includes learning rate in {10~%, 1073, 1072}, batch size
in {128, 256, 512}, and embedding dimension k in {32, 64, 128}. Based on these op-
timization results, we use the Adam optimizer [52] for all models. In Section 5.3.2.4,
we present an extensive parameter sensitivity analysis to examine how variations in
the number of cluster centroids J in {2, 5, 10, 20, 50} and the dual-level causal loss
weight 35 in {0.1, 0.25, 0.5, 0.75, 1.0} affect the overall model performance.

5.3.1.3 Model Training

Our CICDOR framework adopts a two-phase training strategy designed to ensure
stable convergence and accurate causal structure learning. This design is based on
the principle that learning reliable causal relationships requires a foundation of high-
quality user representations, as attempting to learn causal structures before the repre-
sentations are well-formed would result in inaccurate or unstable causal structures.

In the first phase, we train the model for 60 epochs? to learn user attributes, domain-
shared and domain-specific user preferences, while simultaneously performing de-
confounding using fixed confounder embeddings extracted via our LLM-guided con-
founder discovery module. This phase generates debiased domain-shared and domain-
specific user preferences, forming debiased comprehensive user preferences.

In the second phase, we continue training for an additional 40 epochs and intro-
duce the dual-level causal loss in Eq. (5.9), which guides the model to learn dual-level
causal structures. Specifically, this phase identifies the causal relationships between

user attributes and the debiased domain-shared and domain-specific user preferences,

2https://optuna.org/
3We select the number of training epochs from the range {20, 40, 60, 80} in each phase.
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respectively. The resulting causal structures capture the invariant causal mechanisms
and enable the inference of causal-invariant user preferences at both the domain-shared
and domain-specific levels. These causal-invariant user preferences maintain consis-
tency across distribution shifts, significantly improving OOD recommendation perfor-
mance. For fair comparison, all baseline methods are also trained for 100 epochs to

ensure complete convergence.

5.3.1.4 Evaluation Metrics

For our evaluation, we adopt two widely used metrics in the evaluation of RSs: Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) [65]. During test-
ing, for each positive user-item interaction, we randomly sample 99 items that the user
has not interacted with as negative samples. The model then ranks this candidate set
of 100 items (1 positive + 99 negative), and we evaluate its performance based on the
position of the positive item within this ranked list. Throughout our experimental anal-
ysis, we focus specifically on the top-10 positions in the ranking results. To ensure the
reliability of our findings, all experiments are conducted five times, and we report the

average performance across these runs.

5.3.1.5 Comparison Methods

We compare our proposed CICDOR with twelve representative and state-of-the-art
baseline models, which can be categorized into four groups: (I) Disentanglement-
based OOD Recommendation, (IT) Causality-based OOD Recommendation, (III) Single-
target Cross-domain Recommendation (CDR), and (IV) Adaptation-based OOD Rec-
ommendation. Given that our work focuses on the novel setting of cross-domain
OOD recommendation, which essentially addresses single-target CDR in OOD en-
vironments, we select representative and state-of-the-art methods from both single-
target CDR and OOD recommendation literature as our baselines. Here, single-target

CDR [183] refers to the paradigm of transferring knowledge from data-richer source
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domain to improve recommendation performance in the data-sparser target domain.
We do not include dual-target CDR methods [186] as baselines, because they aim to
enhance the recommendation accuracy in both domains simultaneously, which differs
from our setting.

Although several approaches explore invariance and generalization principles, we
do not include them in the baseline models as they address different settings from
our cross-domain OOD recommendation scenario. These excluded approaches target
domain generalization [167, 162], sequential recommendation [171, 147], item cold-
start recommendation [124], and recommendation with noisy interaction data [175].

Detailed descriptions of the selected baseline models are provided below.

DICE [181] (I) decouples user interest and conformity by modeling their causal gen-
eration process, learning disentangled embeddings through cause-specific sampling

guided by the collider effect.

DCCL [178] (I) is a model-agnostic framework that addresses OOD problems and
data sparsity by disentangling interest and conformity through contrastive learning

with cause-specific sample augmentation.

CausPref [43] (IT) learns invariant user preferences from implicit feedback via causal
structure learning and enhances robustness to distribution shift through anti-preference

negative sampling.

COR [123] (IT) formulates user feature shift as an intervention and performs causal
inference with a tailored VAE to estimate post-intervention interaction probabilities

for robust OOD recommendation.

InvCF [156] (II) identifies causally invariant preference representations by disen-
tangling them from popularity semantics, enabling consistent generalization in real-

world scenarios with shifting item popularity.

PopGo [155] (IT) improves OOD generalization by mitigating interaction-level pop-

ularity shortcuts, using a learned shortcut model to adjust predictions and emphasize
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true user preferences over spurious popularity shortcuts.

CausalDiffRec [174] (II) enhances OOD recommendation by eliminating environ-
mental confounders through backdoor adjustment and learning environment-invariant

graph representations via a causal diffusion process.

PTUPCDR [194] (III) generates personalized bridge functions via a task-optimized
meta network, facilitating stable and personalized preference transfer from the source

to the target domain.

CUT [58] (IIT) employs a two-phase training strategy that first captures user similar-
ities in the target domain and then transfers source-domain information selectively,
leveraging a user transformation module and contrastive learning to avoid the rela-

tionship distortion.

CDCOR [65] (III) improves OOD recommendation by transferring cross-domain
knowledge, leveraging a domain adversarial network to extract the shared user pref-
erences and a causal structure learner to model the invariant relationships under dis-

tribution shifts.

DR-GNN [116] (IV) integrates distributionally robust optimization (DRO) into GNN-
based recommendation by treating GNN as a smoothing regularizer and injecting
small perturbations into sparse neighbor distributions to enhance robustness against

distribution shifts.

DT3O0R [148] (IV) introduces a dual test-time training strategy for OOD recommen-
dation, adapting models to distribution shifts by learning invariant user preferences

and variant user/item features through self-distillation and contrastive learning.
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Table 5.2: Quantitative assessment of CICDOR against representative and state-of-the-art
baseline models across two datasets under different OOD settings, measured by HR@10 and
NDCG@10 metrics. The best results appear in bold text, with the best baseline results identi-
fied by underlining. * represents p < 0.05 when CICDOR is compared to the best baseline in

paired t-test [188].

Dataset Douban Amazon
D in: Source — Target Movie — Book Movie — Music Elec — Cloth

Setting 00D #1 OO0D #2 00D #1 OO0D #2 00D #1
Metric HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
Disentanglement-based DICE 0.3146  0.1735 | 0.3406 0.1827 | 0.2825 0.1519 | 0.3047 0.1729 | 0.5311  0.2946
00D R dation DCCL 0.3524  0.1868 | 0.3812 0.2165 | 0.3172  0.1723 | 0.3438 0.1842 | 0.5948  0.3385
CausPref 02911  0.1604 | 0.3164 0.1781 | 0.2601  0.1416 | 0.2840 0.1544 | 0.4873  0.2682
. COR 03115  0.1716 | 0.3423  0.1839 | 0.2758  0.1487 | 0.2996 0.1655 | 0.5184  0.2778

Causality-based

0OD Recommendation InvCF 0.3253  0.1761 | 0.3610 0.1987 | 0.2905 0.1589 | 0.3177 0.1788 | 0.5441  0.3017
PopGo 0.2988  0.1652 | 0.3197 0.1726 | 0.2682  0.1434 | 02913  0.1606 | 0.5022  0.2755
CausalDiffRec 0.3595  0.1981 | 03919 02242 | 0.3246 0.1758 | 0.3581  0.1968 | 0.6089  0.3394
Single-target Cross- PTUPCDR 0.3108  0.1714 | 0.3374 0.1791 | 0.2721  0.1473 | 0.2892 0.1574 | 0.5107 0.2763
domain Recommendation CUT 02967 0.1642 | 0.3248 0.1757 | 0.2653  0.1422 | 0.2865 0.1557 | 0.4965 0.2726
CDCOR 0.3586  0.1974 | 0.3885 0.2196 | 0.3217 0.1745 | 0.3543  0.1956 | 0.6044  0.3381
Adaptation-based DR-GNN 0.3479  0.1845 | 0.3803  0.2162 | 0.3089 0.1704 | 0.3348 0.1785 | 0.5792  0.3258
OOD Rec dation DT30R 03713 0.2068 | 0.4071  0.2289 | 0.3336 0.1778 | 0.3626 0.1993 | 0.6239  0.3570
CICDOR 0.3951*  0.2264* | 0.4298* 0.2493* | 0.3564* 0.1961* | 0.3882* 0.2194* | 0.6584* 0.3867*
w/o dual-level 0.3368  0.1786 | 0.3680 0.2051 | 0.3015 0.1663 | 0.3280 0.1765 | 0.5648  0.3185
Our Model and wi/o specific-level | 0.3675  0.2003 | 0.3994  0.2272 | 0.3326  0.1774 | 0.3593  0.1976 | 0.6140 0.3473
its Variants w/o shared-level | 0.3644  0.1997 | 0.3971 0.2268 | 0.3309 0.1768 | 0.3574 0.1962 | 0.6121  0.3467
w/o confounder | 0.3689  0.2054 | 0.4032 0.2277 | 0.3345 0.1781 | 0.3618 0.1989 | 0.6166  0.3489
w/ direct-LLM | 0.3816  0.2169 | 0.4163 0.2381 | 0.3462 0.1843 | 0.3745 0.2091 | 0.6385 0.3624
w/ gpt2glm 0.3883  0.2194 | 0.4240 0.2425 | 0.3521  0.1937 | 0.3807 0.2163 | 0.6488  0.3742
Improvement (CICDOR vs. best baselines) | 6.41%  948% | 558% 891% | 6.83% 10.29% | 7.06% 10.09% | 5.53% 8.32%

5.3.2 Experimental Results and Analysis

5.3.2.1 Performance Comparison (for RQ1)

Table 5.2 presents the performance evaluation of CICDOR* against various base-

line models across two datasets under different OOD settings, using HR@10 and

NDCG@10 as metrics. It should be noted that while Single-target CDR models are

trained on both domains, we only report their performance in the target domain, as

these models are specifically designed to improve recommendation performance in

the target domain. From Table 5.2, we can observe that:

(1) Our CICDOR demonstrates superior performance compared to Disentanglement-

based OOD Recommendation baselines across various OOD settings, achieving av-
erage improvements of 18.62% and 23.32% w.r.t. HR@10 and NDCG@ 10, respec-
tively. While DICE [181] and DCCL [178] employ factor disentanglement tech-

niques, they are limited to handling only specific types of distribution shifts. In

“Due to page constraints, we only report results with embedding dimension k& = 64, though CIC-
DOR consistently outperforms baseline models across other embedding dimensions as well.
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2)

3)

contrast, our CICDOR can effectively capture the invariant causal structure under-
lying user preferences. This enables us to infer causal-invariant user preferences
for OOD recommendation, resulting in better performance across various types of

distribution shifts;

While existing Causality-based OOD Recommendation methods consider knowl-
edge that remains invariant across different distributions, they overlook the potential
benefits of leveraging cross-domain invariant knowledge to enhance OOD recom-
mendation in the target domain, thus yielding suboptimal results. Our CICDOR
outperforms the best-performing Causality-based OOD Recommendation baseline,
CausalDiffRec [174], by an average of 9.18% and 12.49% with respect to HR@10
and NDCG @10, respectively. The improvements stem from CICDOR’s ability to
utilize source domain data to learn the domain-shared causal structure, enabling the
inference of domain-shared causal-invariant user preferences that can be transferred

to facilitate OOD recommendation in the target domain;

Compared with the best-performing baseline, DT30R [148], our CICDOR achieves
average improvements of 6.28% and 9.42% w.r.t. HR@10 and NDCG@ 10, respec-
tively. These improvements stem from two key innovations. First, our dual-level
causal preference learning module simultaneously captures both domain-shared and
domain-specific causal-invariant user preferences, effectively addressing both CDDS
and SDDS. This approach differs from existing single-target CDR baselines that
either completely overlook SDDS (e.g., PTUPCDR [194] and CUT [58]) or only
partially mitigate it by solely leveraging domain-shared the causal structure while
neglecting the domain-specific causal structure in the target domain (e.g., CDCOR
[65]). Second, our LLM-guided confounder discovery module accurately identifies
and extracts observed confounders from user reviews by leveraging LLM’s knowl-
edge and reasoning capabilities. By deconfounding these observed confounders,
we ensure that the inferred causal-invariant user preferences can reflect users’ true

preferences rather than being influenced by confounding bias. The combination of
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these two complementary modules enables CICDOR to capture debiased compre-
hensive causal-invariant user preferences, resulting in superior cross-domain OOD

recommendation performance across various OOD settings.

5.3.2.2 Ablation Study (for RQ2)

To evaluate the contribution of each component in improving the OOD recommenda-
tion performance of our model, we construct six variants of CICDOR and conduct the
ablation study across various OOD settings on two datasets.

Impact of Dual-level Causal Preference Learning. We construct three variants: w/o
dual-level by removing the entire dual-level causal preference learning module, w/o
specific-level by removing the domain-specific causal structure learning component,
and w/o shared-level by removing the domain-shared causal structure learning com-
ponent. From Table 5.2, we can observe that our CICDOR model outperforms w/o
dual-level with an average improvement of 19.92%. This significant performance
difference demonstrates that the dual-level causal preference learning module is well
suited for addressing distribution shifts in CDR. Without this module, the model lacks
the ability to infer causal-invariant user preferences that remain invariant across dif-
ferent distributions. By learning the underlying causal structures and inferring causal-
invariant user preferences, our CICDOR can achieve superior OOD recommendation
performance in scenarios where both CDDS and SDDS co-exist.

Furthermore, the results show that our CICDOR outperforms w/o specific-level
and w/o shared-level with average improvements of 9.32% and 9.81%, respectively.
These comparable performance differences indicate that both levels of causal struc-
ture learning are essential and contribute almost equally to the model’s overall effec-
tiveness. By learning the domain-specific causal structure in the target domain, CIC-
DOR infers domain-specific causal-invariant user preferences that can mitigate SDDS.
Meanwhile, by learning the domain-shared causal structure, CICDOR infers domain-
shared causal-invariant user preferences that facilitate invariant knowledge transfer

from the source domain, thus effectively addressing CDDS and providing valuable
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support for OOD recommendation in the target domain. The fusion of both levels
of causal-invariant user preferences yields comprehensive causal-invariant user pref-
erences, thereby enabling our CICDOR to obtain better recommendation performance
under various OOD settings.

Impact of LLM-guided Confounder Discovery. We modify CICDOR to form a
variant, namely w/o confounder, by removing the LLM-guided confounder discovery
module. From Table 5.2, we can observe that our CICDOR model outperforms w/o
confounder with an average improvement of 8.53%. This demonstrates that extracting
observed confounders for subsequent deconfounding is crucial for capturing accurate
comprehensive causal-invariant user preferences, thereby achieving better OOD rec-
ommendation performance.

Moreover, we design another variant, namely w/ direct-LLM, by replacing our
LLM-guided confounder discovery module with a simplified approach that directly
uses gpt-4o-mini to extract confounders from user reviews in a single step. We find that
the complete CICDOR model outperforms w/ direct-LLM by an average of 4.36%.
This demonstrates the effectiveness of our module over simply relying on LLM alone.
Without the iterative process involving variable proposal, review annotation, variable
refinement and causal feedback, simply using LLM to extract observed confounders
may generate hallucinations or identify spurious variables as confounders. Our LLM-
guided confounder discovery module addresses this limitation by providing theoretical
guidance through CI test and FCI algorithm, which help filter and refine the variables
before extracting confounders. This process ensures that extracted confounders are
causally valid and accurate, leading to more effective deconfounding and ultimately
better OOD recommendation performance.

In addition, we construct a third variant, w/ gpt2glm, where we replace gpt-4o-
mini with glm-4-9b-chat’ in our LLM-guided confounder discovery module. We can
observe that our CICDOR model achieves an average improvement of 1.98% over w/

gpt2glm. This shows that the capability of LLM affects the accuracy of extracted

>https://huggingface.co/THUDM/glm-4-9b-chat
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Figure 5.4: Performance comparison (HR @ 10) between CICDOR and baselines under differ-

ent degrees of distribution shift: (a) Douban-Movie — Douban-Book OOD #1, (b) Douban-
Movie — Douban-Book OOD #2, and (c) Amazon-Elec — Amazon-Cloth OOD #1.

confounders. In our implementation, we select gpt-4o-mini to balance performance
benefits with economic considerations, as it enables us to extract more accurate con-
founders for deconfounding. After deconfounding, we can capture debiased compre-

hensive causal-invariant user preferences for better OOD recommendation.

5.3.2.3 Stability Analysis (for RQ3)

To investigate our model’s recommendation performance under varying degrees of
distribution shift, we compared CICDOR with the best-performing baseline from each
group across different shift intensities. For user degree shift (OOD #1), we control the
proportion of samples from users with high interaction degrees in the test set, ranging
from 40% to 100%, with the remaining portions filled by samples from users with low
interaction degrees. Similarly, for region shift (OOD #2), we control the proportion of
samples from Beijing users in the test set from 40% to 100%, with non-Beijing user
samples filling the remainder.

As shown in Figure 5.4, the recommendation performance® of all models decreases

®Due to space limitations, Figure 5.4 and Figure 5.5 only show results for Douban-Movie —
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as distribution shift intensifies. However, CICDOR consistently achieves the best per-
formance across all shift ratios. Moreover, CICDOR exhibits the most gradual perfor-
mance decline as distribution shift increases, demonstrating superior stability in OOD
generalization. Both the superior performance and enhanced stability can be attributed
to CICDOR’s ability to learn dual-level invariant causal structures from cross-domain
knowledge, extract accurate observed confounders, and mitigate these confounders’
negative effects on the inferred causal-invariant user preferences. This enables our

CICDOR to produce more accurate recommendations across various OOD settings.

5.3.2.4 Parameter Sensitivity (for RQ4)

Impact of the number of cluster centroids /. We examine how varying the num-
ber of cluster centroids .J affects CICDOR’s recommendation performance by test-
ing J = J* = J" across {2, 5, 10, 20, 50}. Figures 5.5(a)-(c) present the results
across different OOD settings on both Douban and Amazon datasets. We can observe
that the recommendation performance of our CICDOR improves consistently as J in-
creases up to 10, confirming the effectiveness of confounders extracted through our
LLM-guided confounder discovery module. At J = 10, the observed confounders
represented by these cluster centroids provide sufficient information for accurate de-
confounding. Beyond this threshold, performance gains become negligible or even
slightly decrease in some cases, suggesting that additional centroids may introduce
noise rather than capture meaningful confounders. Although our confounder selection
function has the ability to select relevant confounders, an excessive number of poten-
tial confounders appears counterproductive. Balancing model complexity and perfor-
mance, we set J = J¥ = J' = 10 for all experiments. This threshold indicates that
approximately 10 key observed confounders exist in each domain, and our CICDOR
can successfully extract them and then mitigate their negative effects on the inferred

causal-invariant user preferences to improve the OOD recommendation performance.

Douban-Book and Amazon-Elec — Amazon-Cloth. Similar trends are also observed in the Douban-
Movie — Douban-Music experiments.
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Figure 5.5: (a)-(b): Impact of the number of cluster centroids J on Douban-Movie — Douban-
Book. (c¢)-(d): Impact of J and the weight of dual-level causal loss 82 on Amazon-Elec —
Amazon-Cloth. (e)-(f): Impact of 52 on Douban-Movie — Douban-Book.

Impact of the weight of dual-level causal loss 3,. We investigate how the weight
of dual-level causal loss (3, affects our model’s OOD recommendation performance
by varying it across {0.1,0.25,0.5,0.75,1.0}. Figures 5.5(d)-(f) illustrate that CI-
CDOR achieves optimal OOD recommendation performance when 5, = 0.5. This
finding suggests that this specific value creates an ideal balance between the dual-
level causal loss and recommendation loss. At this balanced point, our CICDOR can
effectively learn domain-shared and domain-specific causal-invariant user preferences
while maintaining recommendation accuracy. This balance enables our model to lever-
age invariant knowledge from the source domain to enhance OOD recommendation
performance in the target domain, particularly when both CDDS and SDDS exist.
When £, is either too large or too small, the model struggles to balance recommen-
dation accuracy with OOD generalization capability, leading to suboptimal results.
Based on these observations, we select S, = 0.5 for all our experiments to better

optimize the recommendation losses and dual-level causal loss.
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5.4 Summary

In this chapter, we have proposed a new setting of cross-domain OOD recommenda-
tion, and proposed a novel Causal-Invariant Cross-Domain Out-of-distribution Recom-
mendation framework, called CICDOR. CICDOR consists of a dual-level causal pref-
erence learning module to infer domain-specific and domain-shared causal-invariant
user preferences, and an LLM-guided confounder discovery module to iteratively iden-
tify and refine causal variables from user reviews to extract observed confounders.
Through effective deconfounding of the extracted confounders via backdoor adjust-
ment, CICDOR can obtain debiased comprehensive causal-invariant user preferences
that significantly improve the OOD recommendation performance in the target do-
main. Extensive experiments on two real-world datasets validate the superiority of

CICDOR over state-of-the-art baselines across various OOD settings.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Despite the impressive progress achieved by existing CDR methods, significant chal-
lenges remain in effectively modeling user preferences in complex real-world sce-
narios. This thesis identifies and addresses three critical limitations in existing CDR
methods. First, existing CDR methods primarily focus on domain-shared and domain-
specific user preferences, while overlooking domain-independent user preferences, re-
sulting in incomplete modeling of user preferences. However, even with comprehen-
sive preference modeling, user-item interactions may still be influenced by observed
confounders (e.g., free shipping, sales promotion), which simultaneously affect both
preferences and interactions, thereby introducing confounding bias into user prefer-
ence modeling. In addition to these limitations, most CDR methods are built on the
IID assumption, failing to model causal-invariant user preferences that remain invari-
ant across distributions, and thus struggle to maintain robust recommendation per-
formance under the co-existing CDDS and SDDS in real-world OOD environments.
These limitations collectively impair the effectiveness of existing CDR methods, ne-
cessitating the development of more advanced frameworks that can model user prefer-
ences in a comprehensive, debiased, and causal-invariant manner.

To advance towards more effective CDR, this thesis tackles four key research chal-
lenges derived from the aforementioned limitations. To address the limitation of in-

complete user preference modeling, the first challenge is CH1: ‘How to effectively
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decouple domain-independent information from domain-specific information, in ad-
dition to domain-shared information, to capture comprehensive user preferences on
each domain, thereby improving the recommendation performance?’. To address the
limitation of biased user preference modeling, two additional challenges are identified
as follows. CH2: ‘How to effectively extract observed confounders to comprehen-
sively understand user-item interactions?” And CH3: ‘How to preserve the positive
impacts of observed confounders on predicted interactions, while eliminating their
negative impacts on capturing comprehensive user preferences, thereby enhancing the
recommendation accuracy?’ Furthermore, the inability to model causal-invariant user
preferences across distributions becomes particularly critical in real-world OOD sce-
narios where both cross-domain and single-domain distribution shifts co-exist. These
co-existing distribution shifts significantly hinder invariant user preference modeling
in CDR. Specifically, the fourth challenge is CH4: ‘How to simultaneously address
cross-domain and single-domain distribution shifts to achieve reliable recommenda-
tion under OOD environments in CDR?’

To address the above challenges, we have proposed the following solutions:

* To address CH1 in Chapter 3, we propose a disentanglement module to effec-
tively decouple the domain-independent and domain-specific user preferences.
The disentanglement module also extracts the domain-shared user preferences
from augmented user representations, which can be transferred to both domains
to provide the valuable information. We then apply the attention mechanism
to combine the above three essential components of user preferences to capture
more comprehensive user preferences in each domain, which can improve the
recommendation performance on each of both domains. Chapter 3 introduces
domain-shared, domain-specific and domain-independent information respec-
tively with examples, and further differentiates them. Inspired by these obser-
vations, a novel disentanglement-based framework with interpolative data aug-

mentation for dual-target CDR is proposed. To the best of our knowledge, this
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is the first work in the literature that explicitly takes domain-independent in-
formation into consideration in addition to domain-shared and domain-specific
information, and decouples it to capture more comprehensive user preferences

for cross-domain recommendation.

To address CH2 in Chapter 4, we propose a confounder disentanglement mod-
ule to effectively disentangle observed SDCs and CDCs. In this module, we
devise a dual adversarial structure to disentangle SDCs in each domain and ap-
ply half-sibling regression to decouple CDCs, thus obtaining a comprehensive
understanding of user-item interactions in each of both domains. Subsequently,
to address CH3, we propose a causal deconfounding module to deconfound dis-
entangled observed SDCs and CDCs via backdoor adjustment. Specifically, we
design a confounder selection function to mitigate such observed confounders’
negative effects, thereby recovering debiased comprehensive user preferences.
We then incorporate the observed confounders’ positive effects into such debi-
ased user preferences to enhance the recommendation accuracy in both domains.
Chapter 4 briefly reviews SDCs and then provides an in-depth analysis of CDCs.
Inspired by these observations, a novel causal deconfounding framework via
confounder disentanglement for dual-target CDR is proposed. To the best of
our knowledge, this is the first work in the literature that explicitly decouples
observed CDCs, and incorporates observed confounders’ positive impacts into

debiased comprehensive user preferences for dual-target CDR.

To address CH4 in Chapter 5, we propose a dual-level causal preference learn-
ing module. This module first leverages a user preference disentanglement
module to extract domain-specific and domain-shared user preferences. In ad-
dition, dual-level causal structures, represented as DAGs, are learned for both
domain-specific and domain-shared levels of modeling. Based on these causal
structures, the corresponding causal-invariant user preferences are inferred at

each level, thus tackling CDDS and SDDS simultaneously under OOD environ-
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ments in CDR. To address CH2, Chapter 5 further proposes an LLM-guided
confounder discovery module. This module first employs an LLM to extract
candidate interaction-related causal variables from user reviews and transform
them into structured data. The structured data are then fed into a conventional
causal discovery method (i.e., the FCI algorithm) to uncover their underlying
causal relationships, with conditional independence tests used to eliminate re-
dundant variables. The observed confounders are first identified by leveraging
the LLM and then stored in the confounder pool. Next, when such remaining
variables cannot fully explain the user-item interactions, feedback is constructed
through the LLLM to guide the discovery of additional causal variables, form-
ing an iterative process that continuously refines the confounder discovery. Fi-
nally, a confounder selection function is used to control confounders from the
confounder pool, enabling effective deconfounding via backdoor adjustment,

thereby ensuring accurate causal-invariant user preference inference.

6.2 Future Work

This thesis focuses on dual-target CDR and cross-domain OOD recommendation prob-
lems. To address the abovementioned four challenges, we propose three frameworks
and validate their superiority through extensive experiments. Nevertheless, several im-

portant issues remain unresolved, pointing to promising directions for future research:

 Privacy-Preserving CDR. Most existing CDR approaches assume unrestricted
access to plaintext data across domains, overlooking the critical data isolation
problem in real-world scenarios. This assumption becomes increasingly prob-
lematic as CDRs deal with sensitive user information such as browsing histories,
purchase records, and demographic profiles held by different commercial enti-
ties. Existing privacy-preserving techniques for CDR are limited to simplistic
models and struggle to maintain recommendation quality while ensuring data

protection. A promising research direction involves developing sophisticated
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privacy-preserving frameworks specifically designed for CDR. This could in-
clude exploring federated learning approaches for knowledge transfer without
sharing raw user data, cryptographic protocols for secure collaborative filtering,

and machine unlearning approaches that respect users’ right to be forgotten.

Explainable CDR. Most existing CDR approaches operate as black boxes, pro-
viding little insight into how preferences from one domain influence recom-
mendations in another. This lack of interpretability significantly undermines
user trust, especially when users receive seemingly unrelated recommendations
based on their activities in different domains. Unlike single-domain recommen-
dation explainability, CDR faces unique challenges due to the heterogeneous
nature of cross-domain data and the complex knowledge transfer mechanisms
involved. Existing explanation techniques often treat each domain in isolation,
failing to address the conceptual differences between domains and rarely illu-
minating how user preferences are transferred across domains. A promising
research direction involves developing specialized explanation frameworks for
CDR that can reveal the underlying connections between user behaviors in dif-

ferent domains while maintaining coherent and intuitive explanations.

LLM-Empowered CDR. Despite growing interest in applying LLMs to CDR,
existing approaches often employ simplistic methods, such as using LL.Ms merely
as feature extractors or directly as recommenders. These approaches fail to
effectively bridge LLMs’ comprehensive world knowledge with the domain-
specific expertise embedded in user-item interactions. A promising research
direction involves developing vertical domain-specific LLMs tailored for CDR
scenarios. This could include exploring fine-tuning strategies on domain-specific
data while preserving general reasoning capabilities, enabling models to si-
multaneously capture unique characteristics of individual domains and leverage

common knowledge across them.



Appendix A

The Notations in the Thesis

Table A.1: The Notations in Chapter 3

Notations Explanations
k the dimension of embedding matrix
m the number of users
n the number of items
R the rating matrix
U the set of users
V the set of items
P the predicted domain probability
O the ground truth domain label
E, the graph embedding matrix of users
E, the graph embedding matrix of items
Y/ the domain-shared user preferences
Zgpe the domain-specific user preferences
Zinag the domain-independent user preferences
E; the comprehensive user preferences
Y the user-item interaction
xaug the notation for data augmentation
Eg9 the augmented user representations of common users
WA 4B the notations for domains A and B, e.g., n!
’ represents the number of items on domain A
. the predicted notations, e.g., ;; represents
the predicted interaction of user u; on item v;
a the heterogeneous graph, where ()

is the set of user-item relationships
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Table A.2: The Notations in Chapter 4

Notations Explanations
d the embedding dimension
m the number of users
n the number of items
U the set of users
V the set of items
R € {0, 1}m™*" the interaction matrix
Yij the interaction of user u; on item v;
Uijs Uik the predicted user-item interactions
«A xB the notation for domain A and B, respectively
Zpa the domain-shared user preferences
Zgpe the domain-specific user preferences
Zing the domain-independent user preferences
E; the comprehensive user preferences
E, the item embeddings
C.q the single-domain confounders
C. the cross-domain confounders
S(), T(+) the generator in domain A and B, respectively
H() the discriminator
J the number of cluster centroids
p(c) the uniform distribution for prior probability
A the weight of cycle consistency loss
Q@ the regularization parameter
W the weight matrix
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Table A.3: The Notations in Chapter 5

Notations Explanations
U the set of users
1% the set of items
m the number of users
n the number of items
R the user reviews
Y the interaction matrix
Yij the interaction of user u; on item v;
Uij the predicted user-item interaction
k the embedding dimension
x5, #! the notation for source and target domain, respectively
Em the causal-invariant user preferences
E . the domain-shared user preferences
E;,. the domain-specific user preferences
E. . the user attributes
E; the comprehensive user preferences
E, the item embeddings
A the weighted adjacency matrix, i.e., DAG
) the LLM
pr the prompt used at the 7-th round
F the causal discovery algorithm
13 the causal feedback operation
R the subset of review samples used at the 7-th round
A the set of variables proposed at the first 7-th round
P the filtered variable set at the first 7-th round
B the refined variable set at the first 7-th round
Zpool the variable pool
MB(Y) the Markov Blanket of the target variable Y’
Cpool the confounder pool
C the confounder subspace
g’ the causal structure obtained at 7-th round over ZfST u{Y}
qge{-1,0,1} the annotation result
<r the data matrix of annotated values of
- variables proposed at the first 7-th round
J the number of cluster centroids
p(c) the uniform distribution for prior probability
« the weight of causal structure learning loss
B the weight of different terms of total loss
\%% the weight matrix




Appendix B

The Acronyms in the Thesis

Table B.1: The Acronyms in All the Chapters

Sections Explanations Acronyms
Chapter 1&2&3&4&5&6 Cross-Domain Recommendation CDR
Chapter 2&4 Cross-Domain Sequential CDSR
Recommendation
Chapter 1&5&6 Independept z‘ind Identically D
Distributed
Chapter 1&2&5&6 Out-of-Distribution OOD
Chapter 1&2&3&4&5 Recommender System RS
Chapter 1&2&5&6 Large Language Model LILM
Chapter 3&4&5 Hit Ratio HR
Chapter 3&4&5 Normalized Disgc;?:llted Cumulative NDCG
Chapter 2&3&4&5 Graph Convolutional Network GCN
Chapter 1&2&3&4&5 Variational Autoencoder VAE
Chapter 1&2&4 Inverse Propensity Score IPS
Chapter 3&4&5 Multi-Layer Perceptron MLP
Chapter 1&2&4&6 Single-Domain Confounder SDC
Chapter 1&2&4&6 Cross-Domain Confounder CDC
Chapter 1&2&5&6 Single-Domain Distribution Shift SDDS
Chapter 1&2&5&6 Cross-Domain Distribution Shift CDDS
Chapter 1&2&4&5&6 Directed Acyclic Graph DAG
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