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Abstract—Since Representational State Transfer (REST)
architecture was proposed by Fielding in early 1990s for
distributed hypermedia systems, it has become a popular
architectural style of choice in various computing
environments. However, REST was not originally designed to
support enterprise requirements, in particular the
accountability requirements that are crucial for the business
services offered through the Software as a Service (SaaS) and
Cloud Computing environments. In this paper, we propose an
Accountable State Transfer (AST) architecture to bridge the
accountability gap in REST. With AST, service participants
can be held accountable for each representational state
transfer during service consumption. A formal service contract
model with a hybrid reasoning mechanism and a novel
accountable state transfer protocol are designed as the
mechanisms underpinning the AST architecture. Moreover,
we implement a Credit Check service prototype based on AST,
demonstrating the practicality of such architecture. Inheriting
REST’s scalability, AST architecture provides the much
needed accountability capabilities for the virtual service
delivery environment.
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L INTRODUCTION

REST architecture was originally designed by Fielding
in early 1990s to support the high performance and
scalability requirements of the hypermedia environment [1].
Since then, its application has gone beyond the original
environment and made further inroads into the e-business
arena. Due to its simplicity and scalability, it also emerges
as a strong alternative to SOAP-based Web Services for
building the Service-Oriented Architecture (SOA).

SOA is the key architectural foundation that turns
traditional IT focused services into business services,
enabling dynamic service delivery and consumption. Based
on the principles of SOA, Cloud Computing is emerging as
the latest trend that offers the promise of massive scaling of
service delivery and consumption. While the current focuses
in Cloud computing are mainly in the technology areas such
as virtualization, workload management and Web 2.0 style
of interfaces, the crucial business issue of accountability is
often ignored in the IT industry. Fundamentally, Cloud
computing is just a new business model that provides a
flexible delivery model for transacting business services,
thus the reputations of the service provider and consumer’s
confidences on the services are the key successful factors
for the Cloud computing business model. In a commercial
environment, reputations and confidences are built upon the
accountability of the services. Accountability in this context
means that obligations of service participants are fully
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disclosed; actions can be justified; the disclosed obligations
are faithfully honored, or else liability is assumed by the
misconduct party [2]. In a Cloud computing environment,
service accountability becomes even more critical as the
virtualized environment is inherently less trustworthy.

Traditionally accountability can be best enabled and
enforced by an implicit or explicit legal contract. To enable
accountability in a Cloud computing environment, the
underlying SOA needs to have a formal service contract
construct, plus the ability to monitor the contract execution
and reason the contract state. Currently, neither REST nor
the existing WS-* specifications support the concept of
service contract as well as the performance tracking of that
very contract. REST in particular has a large accountability
gap compared to SOAP-based services, as it was not
originally designed to address the enterprise requirements
such as security, reliability, transaction ability and
manageability. As REST is increasingly becoming a popular
choice for implementing Cloud services, it is imperative to
build accountability mechanisms in the REST architecture.

In this paper, we propose a novel architecture called
Accountable State Transfer (AST), which extends REST
architecture to bridge the accountability gap. Our approach
is innovative as it seamlessly integrates service contract
semantics into the syntactic-based REST service to enable
accountability, yet still retains the RESTful characteristics
and therefore inherits the scalability of REST architecture.
The AST architecture supports accountability by enabling
obligation disclosure; action justification and obligation
tracking for each contracted party plus contract state
reasoning. We also implement a Credit Check prototype
service based on AST to demonstrate its practicality.

The rest of the paper is structured as follows. Section II
reviews the related work. Section III outlines AST’s guiding
principles and architectural decisions. This is followed by
section IV that describes the AST architecture design. A
prototype implementation is discussed in section V. Finally
contributions and future work are summarized in Section VI.

II. RELATED WORK

According to Fielding, REST behaves like a virtual state
machine, where the state transition happens when the user
selecting links, resulting in the next state of the application
being transferred to the user [1]. REST lays down the
foundation for the Web architecture. There are a number of
efforts to extend REST to address certain aspect of
requirements. In [3], the authors suggest the concept of
“Computational Transfer” and propose Computational
REST architecture (CREST). The idea is to use AJAX and



mashups as mechanisms for framing responses as interactive
computations or for “synthetic redirection” and service
composition. CREST is essentially the Web2.0 style of Web
architecture. To strengthen REST’s capability in supporting
enterprise requirements, the authors in [4] extend REST to
induce four properties: events, routes, locks and estimates.
They derive four new REST styles (ARREST, ARREST+E,
ARREST+D and ARRESTED) optimized for each of the
above four types of resources. However, currently REST
and its extensions do not address the accountability
requirements. In particular, they do not support the concept
of service contract and also do not have any ability to
provide justification on the action of state transfer.

Various definitions on accountability can be found in the
IT literature. Refer to [5] for a detailed review on
accountability literature. In this paper, we adopt Schedler’s
definition of accountability: “A is accountable to B when A
is obliged to inform B about A’s (past or future) actions and
decisions, or justify them and to be punished in the case of
misconduct” [2]. We further distill the essence of
accountability as: obligation disclosure; action justification
based on disclosed obligations and evidence produced; and
resuming liability for non-fulfillment of obligation. In the e-
services context, accountability is driven by the underlying
business contract established between the service provider
and the service consumer, which reflects the business reality
in the traditional commercial services space. Therefore to
support accountability in SOA, we need to introduce the
notion of service contract at the architecture level.

From an accountability solution perspective, the support
for accountability in IT is limited. Currently it is mainly
provided in monitoring systems such as Business Activity
Monitoring (BAM) and IT infrastructure and application
monitoring (ITM). The former focuses on business process
monitoring while the later focuses on QoS or service level-
agreement (SLA) monitoring. While SLA is a kind of
contract, it is normally used to record the non-functional
aspect of obligations of the involved parties rather than the
functional one. Moreover, the current ITM and BAM
solutions do not provide obligation disclosure and action
justification capabilities.

On the other hand, e-Contract is an extensively
researched area in the IT literature. Most of the existing e-
Contract models are either represented by some form of
XML documents or some kind of logic models. One notable
XML contract is IBM’s Trading Partner Agreement (TPA),
which stipulates the general contract terms, conditions,
participant roles, communication and security protocols, and
business process [6]. TPAml had been submitted to OASIS
and used as a basis for developing ebXML Collaboration
Protocol Profile (CPP) and Collaboration Protocol
Agreement (CPA). TPAml and ebXML CPP/CPA are
designed for business to business (B2B) process integration.
As both TPAml and ebXML CPP/CPA require a full stack
of infrastructure and protocol support on both sides, they are
too heavy weight and thus not suitable for REST services. In

[7], Xu proposes a multi-party e-Contract model that maps a
paper-based contract into contract actions and contract
commitments. Xu’s model representation is based on a
First-Order Temporal logic programming model, which is
not accessible to a REST service. In [8], an e-Contract
model based on Modal Action Logic, Deontic Logic and
Subjective Logic is presented. In [9], a Business Contract
Language (BCL) and Formal Contract Language (FCL) are
proposed using Defeasible Logic and Deontic Logic.
Another approach is to derive e-Contract from business
process [10]. Some other e-Contract models include Event
Calculus/ecXML [11], CrossFlow [12], e-Contract based on
Description Logic (DL) [13], SweetDeal (based on RuleML
and DAML+OIL) [14], etc.

While the existing models provide significant
contributions in various aspects of e-Contract literature, they
do not allow seamless integration into REST architecture;
nor provide service contract meta-data during service
invocation. Furthermore, most e-Contract models favour
expressiveness over decidability in order to mimic a legal
business contract.

II. GUIDING ARCHITECTURAL PRINCIPLES

A. RESTful Principles

The key characteristic of the REST architecture is that it
takes a “resource view” of the world. The RESTful
principles described in [1] and elaborated in [3] are:

Table I. RESTFul Principles

P1: Resource can be identified by an URI;

P2: Separation of the abstract resource and its concrete
representations;

P3: Stateless interaction, each interaction contains all the
necessary context information and meta-data;

P4: Small number of operations, with distinct semantics based
on HTTP methods: safe operations (Get, Head, Options,
Trace); non-safe, idempotent operations (Put, Delete); and
non-safe, non-idempotent operation (Post);

PS: Idempotent operations and representation metadata support
cache;

P6: Promote the presence of intermediaries such as proxies,
gateways or filters to alter or restrict request and response
based on metadata.

Following these principles ensures our AST architecture
retaining REST’s scalability and performance.

B. Service Contract as Foundation for Enabling
Accountability

The key accountability concerns addressed in this paper
are: obligations disclosure; execution status tracking based
on evidence; and the ability to provide justification and
explanation of actions in relation to a pre-established
contract. Compared to the existing accountability models in
IT literature, a key differentiation of our approach is that we
position service contract as the foundation underpinning the
accountability concerns in an SOA environment.



C. Principles for the Service Contract Model

Most of the e-Contract models in literature attempt to
mimic a legal contract. Consequently the underlying logic
model needs to have strong expressiveness power at the
expense of computation completeness and decidability. In
this paper, a key principle is that the logic framework
underlying the service contract model must be
computationally complete and decidable; in the meantime, it
should have enough expressiveness to represent the key
obligations in a traditional contract. Thus our service
contract model does not aim at replicating all the
information in a traditional contract; instead it focuses on
facilitating runtime disclosure, monitoring and management.
We now define its scope used in this paper:

Definition 1: Service contract is an electronic representation of a
traditional contract that captures the essential contractual
information including involved parties, domain specific terms,
obligations for each party, contract execution states and rules that
determine those states.

D. Architectural Decisions in AST Implementation

In contrast to a lot of existing e-Contract models in the
literature that only provide theoretical models, a key
principle of our approach is to ensure the practicality of
model implementation. To achieve that, trade-offs need to
be made in implementation decisions. Followings are the
architectural decisions for our AST architecture:

Decision 1: Implement service contract as an ontology and store
service contract execution instances in a knowledge base (KB);
In addition, add rules to allow reasoning of the contract
execution state in the KB.

An ontology describes the concepts in the domain and
the relationships held between those concepts. Building
upon an ontology, our service contract model further needs
rule capability for contract state reasoning.

Decision 2: Take a resource view on service contract and use
URI to uniquely identify elements in the service contract.

Thus the elements in a service contract ontology can be
referred via URIs during service invocation.

Decision 3: Separate the service contract and service contract
execution concepts.

The rationale behind decision 3 is that in a SaaS or Cloud
Computing environment, a service can be executed multiple
times during the valid period of the underlying business
contract. For example, a Credit Check service contract may
last for one year; during the year the service can be executed
for multiple times. Each execution is an execution instance
of the service contract. The separation of contract and
contract execution concepts allows contract execution
tracking, which is not seen in most of the existing e-
Contract model.

Decision 4: Adopt a hybrid reasoning approach that leverages
strengths from different formalisms and technologies.

The last decision applies in the area of designing the
reasoning mechanism for our service contract KB. We need
to consider the expressiveness power and computation
complexity of the underlying formalisms such as OWL-DL
and SWRL; also take into account the availability of the
tooling support to make the optimal design decision.

IV. ACCOUNTABLE STATE TRANSFER ARCHITECTURE

A. Extending REST to Support Accountability

In a traditional REST service, both the consumer and the
provider can not be held accountable for their actions during
the representational state transfer. At the client side, the
client consumes the provider’s services by following the
URL links to get representational states from some
resources under the provider’s control. But the client does
not know precisely the linkage between the state transfer
and the provider’s obligations. The provider also does not
know exactly why the client makes a particular request. In
an e-services environment like SaaS or Cloud Computing,
fundamentally each e-service is linked to a pre-established
business contract between the service provider and the
service consumer. Therefore, to establish accountability in
the REST interaction, it is important to link the interaction
to a particular contract context. So both the consumer and
the provider can track the performance of the contract,
understand the reasons behind each request and response
w.r.t. that very contract. For example, suppose a SaaS
provider provides a credit check service by exposing some
REST interfaces. A service consumer needs to establish a
binding contract with the service provider before he/she can
consume the service. Once the contract is established, the
service consumer can invoke the REST service to check a
particular customer’s credit score. However under the
traditional REST, both the service consumer and service
provider have no ways to know which contract the service is
related to in runtime, let along tracking the progression
status and determining which party breaches the contract.

In order to address the above problem, we extend the
REST architecture by bringing in the service contract
context as the meta-data during the interaction between the
consumer and provider. The contract context information
includes the name of the service contract, the current
contract execution instance status and the overall contract
progression status. In REST, each element of the service
contract information can be treated as a resource, identified
by an URI. Therefore the contract context meta-data can be
simply referred to by URIs in HTTP headers. Also the
contract progression and performance can be monitored by a
trusted-third party (TTP). We call this style of the REST
extension as Accountable State Transfer architecture.

B. Service contract Structure and Service contract
Execution Structure

Definition 1 provides a high-level scope of service
contract. We now list a rigorous definition [15]:



Definition 2: A service contract is a tuple SC = (s, D, P, Op, Oc,
Seq, st, R, T), where:

- s is a non-trivial service offered through Cloud platform;

- D is a finite set of domain specific contract term definitions: D
= {dh dZ, cees dn},

- P is a pair of involved parties (provider pr and consumer pc);

- Op (Provider Obligation) is a finite set of (Action, Evidence)
pair: Op = {(ap;, ep)), (ap,, ep>),..., (ap,, ep,) }, where Action
Ap ={ap;, ap,, ..., ap,}, Evidence: Ep = {ep;, ep,, ..., ep,};

- Oc (Consumer Obligation) is a finite set of (Action, Evidence)
pair: Oc = {(ac,, ec;), (ac, ecy), ..., (acy, ecy) };

- In Op and Oc, Action is a tuple: a = (input, output, pre, post),
where input, outpute D, both pre and post are binary
condition expressions that are evaluated to true;

- Evidence is a finite set of triple: E = {(0;, t;, ¢;), (02, t2, C3),
eeus (04, 1y, €) ), Where 0; € D, t; s the creation timestamp of
0;, ¢; is a binary condition expression, / <i<n;

- Segq is a finite set of sequence of actions, Seq = {s;, s, ..., S,},
where s; is a sequence of actions;

- Contract State st: ste S, S = {st;, st», ..., st,}, where st; is one
of user defined contract states, for example, initialisation, in
progress, provider breaching contract, etc;

-Rules: R={ry, 13 ... 1, }, where r;,({ <j<n) is a horn clause:
consequent «— antecedent, and
- Time Period T = {contract_start_time, contract_end_time}.

for all the contract execution instances so it can reason the
overall contract status.

AST architecture can be classified into two categories.
One is a centralised AST and the other is a peer-to-peer
AST. In a centralised AST, it can be further categorized to
two styles, one is an in-line TTP AST and the other is an on-
line TTP AST. An in-line TTP AST’s sContractMonitor
acts as a HTTP proxy, seeing through all the interactions
between the consumer and the provider. Based on the
contract meta-data on the HTTP headers and the body
message, it can verify whether the obligations have been
met by checking the prescribed evidence. Then it generates
the assertion events to sContractManager.
sContractManager’s reasoner component determines the
service contract execution status and maintains an up-to-
date service contract execution KB based on the rules
defined in the service contract. Figure 1 illustrates the in-
line TTP AST model.

In an on-line AST Model, the service contract monitor
remotely monitors the consumer and the provider
separately. In a peer-to-peer AST model, each party will
have its own service contract monitor and manager, and
needs an arbitrator reasoner for dispute resolution.

Definition 2 defines a generic structure for a two-party
service contract. In theory, multi-party service contract can
always be decomposed to multiple two-party service
contracts. As explained in the rationale of architecture
Decision 3 in Section III, we need to define the concept of
service contract execution to capture execution information
in each contract execution instance:

Definition 3: A service contract execution is a tuple SCE = (sc,
E, Op, Oc, se, R), where:

- sc is an individual of service contract SC;

- E is execution information, E = (start_time, complete_time,
timeout_value);

- Op is a set of obligations that are successfully completed by
the provider; (See Definition 2 for obligation definition);

- Oc is a set of obligations that are successfully completed by
the consumer;

- Contract Execution State: see SE, SE = {se,, se;, ..., se,},
where se; is one of the user defined contract execution states,
for example, in progress, complete, pending, etc;

- Rules: R = {r), r2, ..., 1}, r;,(I £ j < n) is a homn clause:
consequent < antecedent.

C. The Accountable State Transfer (AST) Architecture

AST architecture introduces two extra components
called sContractMonitor and sContractManager in addition
to the traditional REST architecture components.
sContractMonitor monitors the interactions between the
consumer and the provider, and then feeds events to
sContractManager through a low-coupling queuing
mechanism. sContractManager determines the current
contract execution instance’s status based on the rules
prescribed in the service contract and the events fed from
sContractMonitor. It also maintains a service contract KB

sContractManager

;7

sContractMonitor
© 0 0
HTTP Connector: (D Contract: Contract Execution KB:@ Service

Provider

Resource

Figure 1. In-Line TTP AST Architecture

D. AST Protocols and an Example

In order to bring in service contract context information
during REST interactions, the following AST protocols are
proposed for communicating the contract meta-data:

Table II. Accountable State Transfer Protocol

AP1: Refer to service contract during service invocation:
HTTP Header: sContract: sContract_URI;

AP2: Add service contract meta-data to a service request:
HTTP Header: Required-Obligations: action_URI list;

AP3: Add service contract meta-data to a service response:
HTTP Header: Met-Obligations: action_URI list:

AP4: Query on contract execution status:
GET sContract_KB_URI?queryString;

APS: Notify contract breach or execution abnormality:
POST involvedParty_URI with XML payload indicating
sContract or sContractExecution status.

The HTTP header in AP1 can be used in each REST
interaction to establish linkage to a service contract. AP2’s
HTTP header can be used when the consumer sends out a
request, indicating the request is relating to the provider’s
obligation as specified in the service contract. AP3 can be




used when the provider replies with a response, indicating
that the response is relating to the fulfilled obliged actions.
AP4 enables REST client and server to query the
sContractManager for contract execution status. AP5 allows
sContractManager to notify a client or the server on the
contract execution status.

Now we use an example to illustrate how the AST
works. Suppose a service provider pr (pre P) has signed a
contract SC with a consumer pc (pce P) to provide a Credit
Check service defined by s for a period of 7. The contract
defines the terms relating to Credit Check in a definition set
D. The contract prescribes the provider’s obligation as Op
and the consumer’s obligation as Oc. Op =
{(P_checkCredit, E_creditEvidence), (P_returnError,
E_ErrorEvidence)}. The consumer’s obligation Oc =
{(C_providelnput, E_inputEvidence), (C_payFee,
E_feeEvidence)}. The valid action sequences are defined as
either “C_providelnput, P_checkCredit, C_payFee” or
“C_providelnput, P_returnError”. Also the contract defines
a set of rules R to determine the contract status st (sr€S)
based on the evidence of the fulfilled obligations.

There is no concept of service contract in traditional
REST. Both service provider and service consumer rely on
other means (mostly off-line and manual) to know the
performance status of the contract. With AST, the contract
performance can be tracked while executing the service.
Moreover, both client and server understand the “why”
behind the request and response (representational state
transfer) from a service contract perspective. For example,
when the consumer invokes the Credit Check service, he/she
issues the following request with the Http headers below:

GET
/credit_chk. jsp?fname=jon&lname=bond&id=102
435 HTTP 1.1
Host www.creditcheck.com
HTTP headers:
sContract:
http://sContractManager.com/creditcheck.owl
Required-Obligations: #P_checkCredit,
#P_returnError
With these HTTP headers, the consumer links the request to
a pre-established contract, also states that the request is
related to the provider’s obligations P_checkCredit and
P_returnError as prescribed in the contract.

When the server responds, it adds the HTTP headers to

further explain the response in relation to the contract:
HTTP/1.1 200 OK
HTTP headers:
sContract:
http://sContractManager.com/creditcheck.owl

Met-Obligations: #P_checkCredit
Required-Obligations: #C_payFee

V. IMPLEMENTATION OF AST ARCHITECTURE

A. Languages for Specifying the Service Contract Model

The ontology underpinning our service contract model
can be specified using Web Ontology Language (OWL),

which is recommended by W3C as the standard for
representing ontologies on the Web. OWL provides three
sub-languages with increasing level of expressiveness:
OWL-Lite (corresponding to SHIF (D) [16]); OWL-DL
(corresponding to SHOIM®D) [16] ); and OWL-Full which is
an extension to Resource Definition Framework (RDF).
Both OWL-Lite and OWL-DL provide computation
completeness and decidability [17], whereas OWL-Full has
maximum expressiveness but no computational guaranteed.
As per the guiding principles in section III, OWL-DL is
chosen to specify our service contract model since it has the
better trade-off between expressiveness and decidability.
Other benefit of using OWL-DL is that the consistency of
the service contract can be validated using proven DL
reasoners such as RACER, KAON2, PELLET, etc.
However, OWL-DL has limitations. In particular it has the
well known ‘“hasUncle” problem; i.e. it is impossible for
OWL-DL to describe the role chain of hasParent and
hasBrother leading to the hasUncle role. To address this
limitation, we leverage Semantic Web Rule Language
(SWRL) for defining rules to do contract state reasoning on
top of OWL-DL. SWRL is a W3C submission, extending
OWL-DL axioms with a set of horn clause rules. It is
basically a combination of OWL-DL and OWL-Lite with
the unary/binary Datalog sublanguages of the Rule Markup
Language (RuleML) [18].

While OWL-DL is decidable, SWRL is proven not
decidable [17]. To solve this problem, we further restrict
SWRL to DL-Safe rule. A rule r is called DL-Safe if each
variable in r occurs in a non-DL-atom in the rule body. A
program P is DL-Safe if all its rules are DL-Safe (see [17]
for details). The DL-Safe restriction is exposed to ensure
that the variables in the rule body are bound to only
explicitly existing individuals in the KB. Our model
complies with the DL-Safe restriction, which means that
anonymous individuals are disregarded in reasoning on
rules.

B. Service Contract Representation

We now formally define the representation for our
service contract model.

Definition 4: The service contract execution knowledge base
Ksc can be defined using DL’s Tbox 7, Abox 4, adding the
SWRL DL-Safe rules #, thus Ksc = (7, A4, ), where:

e A TBox T consists of a finite set of concept inclusion
axioms of the form C = D, a finite set of role inclusion
axioms of the form R = § and transitivity axioms Trans(R),
where C and D are concepts, R and S are roles;

® An ABox 4 consists of a finite set of concept and role
assertions and individual equalities/inequalities C(a), R(a,
b),a =b, and a # b, respectively;

® A horn rule set A consists of a finite set of horn axioms. A
horn axiom consists of an antecedent (body) and a
consequent (head) in the form of: a «— a;Aa;A__Aa,, where
a, a; (0 <i < n) are atoms in rules that can be of the form
C(x), P(x, y), O(x, z), sameAs(x, y) or differentFrom(x, y),




and Cis an OWL concept; P is an object-valued property; Q
is a data-valued property; x, y are either variables or
individuals; and z is either a variable or a data value.
Variables x, y, z must be bound to named individuals in the
KB to satisfy the DL-Safe rule criteria.

C. Service contract Ontology and Axioms

Based on OWL-DL and DL-Safe criteria, we define a
service contract model that captures the fundamental aspect
of a service contract. Figure 2 shows a simplified version of
the ontology. A scContract class has contract term
definitions (Defintions class); it involves Party class, which
has subclasses of Provider and Consumer. Each party has
Obligation which consists of multiple Action and Evidence
pairs. A domain specific contract class like
CreditCheckContract inherits from the generic scContract
class. Such domain specific contract instance may be
executed multiple times. Each execution is an instance of
scContractExecution class. The scContractExecution
instance executes Obligations as defined in the scContract
and produces Evidence instances. If each Action instance
can be proven by the respective Evidence instance, then the
obligation is fulfilled. Otherwise either Provider or
Consumer may breach the contract depending on the
specific contract rules, which can be defined as the axioms
for a domain specific service contract model. A detailed
analysis on our model’s action semantics and the model
validation technique wusing Coloured Petri-Nets are
documented in [15].

ActionSequence

Definitions
. ProviderObligation

Figure 2. A Simplified Version of the Service Contract Ontology

We here list some axioms that determine the contract
state for our generic service contract model. For domain
specific service contracts, these axioms can be extended;
overwritten or new axioms can be developed based on the
specific terms and conditions of the underlying contract.

Table III Partial Generic Contract Axioms

scContract(?7x) /\ hasExecutionlnstance(?x, false) — (D
inState(?x, INIT)
scContract(?x) /\executedBy(?x, 7y) /\ )
isContractExpired(x, false)— inState(?x, IN_PROG)
scContractExecution(?x) /\startsAt(?x, 7y) /\ 3)
noEvidenceSupportObligations (?x, 7z) /\ isTimeOut
(?x, false)— inExecutionState(?x, EINIT)

scContractExecution(?x) /\ execute(?x, 7y)/\ 4)
specifiesObligation(y, 7z) /\ mustDo(?z, ?a) /\
verifiedBy(?a, 7b) /\ produceEvidence(?x, 7b) —
SulfilledObligations(?x, 7z)

Axiom 1 states that if a scContract instance does not
have any execution instance, then the scContract is in the
initial (INIT) state. Axiom 2 states that if the scContract
instance is executed by some execution instances and the
contract is not expired, then the service contract state is in-
progress (IN_PROG). Axiom 3 says if the instance of
scContractExecution starts at a particular time, but no
evidence produced to prove the fulfilment of obligations, and
the execution is not time out yet, then the contract execution
instance is in initial (EINIT) state. Axiom 4 determines
whether a particular obligation is fulfilled based on the
collected evidence.

D. Prototype Implementation

1) Overall Prototype Architecture
Figure 3 depicts the Credit Check service prototype that
implements the in-line TTP AST in Figure 1. The main
components are described below:

Pellet 1.5.2

Reasoner

| Jess71P2

t ] ] oo
) ] Memory
4 enneresl Contract KB
fQu terface
Vidence
Contract ¥
Authoring
Protégé 3.4.3 LI Event DB
sContractManager
Websphere Application Server 6.1

ims

CreditCheck Monitor

Client

P

FireFox 3.011 Poster Web Intermediaries (WBI 4.5) Websphere sMash v1.1.1

Figure 3. Prototype in-line TTP AST Implementation

CreditCheck Client: We used Firefox Poster to simulate a
Credit Check client. Firefox Poster provides an intuitive
interface for sending REST requests with user defined
HTTP Headers.

sContractMonitor: sContractMonitor 1is built on a
RESTful component — Web intermediary. We used IBM’s
Web Intermediaries Development Kit 4.5 (WBI DK) [19] as
the underlying Web intermediary platform, creating a
Monitor plug-in to track the HTTP messages. The messages
will be sent to sContractManager through IMS.
CreditCheck Server: A Credit Check server is developed
and hosted in Websphere sMash [20], which provides an
environment for developing and hosting REST applications.
Contract Authoring: Protégé 3.4.3 [21] is used as the
service contract authoring tool. SWRLtab in Protégé is used
for SWRL rule authoring.

Pellet 1.5.2: Pellet 1.5.2 [22] is the DL reasoner that is used
to classify the terms in service contract and check contract
consistency at design time.

sContractManager: sContractManager is implemented in
a Websphere Application Server (WAS). It consists of



sContractTranslator, Querylnterface, EventProcessor and
EvidenceMonitor. sContractTranslator converts the service
contract from OWL-DL / SWRL to Jess facts / rules using
XSLT, then sends them to ContractExecutionReasoner.
EventProcessor picks up the raw monitoring data, storing
evidence data into an event database. Then
EvidenceMonitor checks if the evidence is valid, if so, it
sends assertions to ContractExecutionReasoner. Finally the
Querylnterface allows contract status query from both the
client and the server.

ContractExecutionReasoner: This component receives
Jess facts or rules, and then invokes Jess71p2 [23] to do
reasoning, maintaining the contract execution KB in Jess’s
working memory.

2) Implementation of Hybrid Reasoning Mechanism

Based on architectural decision 4 outlined in Section
III.D, we adopt a hybrid approach to reasoning. In contract
authoring stage, DL reasoner like Pellet will be used for
normal TBox and ABox reasoning in design time. After the
service contract is developed, the OWL-DL ontology will be
translated to Jess facts via one XSLT file, while the SWRL
rules will be translated to Jess user-defined rules via another
XSLT file. Additionally, we need to import pre-defined Jess
rules, which are transformational implementations for OWL
semantics [24]. Then the Jess facts and (pre-defined and
user-defined) rules will be fed into the Jess engine, taking
advantage of the fast Rete algorithm for contract state
reasoning at runtime. In our prototype, we created a
CreditCheckServiceContract based on scContract in Figure
2. The contract is between service provider CreditBureau
and consumer MortgageBank. CreditBureau’s obligation is
to complete actions P_checkCredit or P_returnError if
exception occurs. MortgageBank’s obligation is to complete
actions C_providelnput and C_payFee. The actions need to
be proven by evidences which are also defined in the service
contract ontology. This contract instance will be executed
multiple times during the valid contract period. Each
execution instance is an instance of CreditCheckExecution
class. In addition to the generic axioms listed in Table III,
domain specific axioms can be defined to reason Credit
Check specific execution state. Two example rules used to
determine if the service participants breach the obligation is
listed below. Other axioms are omitted due to space limit.

Table VI Credit Check Specific Axioms

CreditCheckServiceExecution(?x) /\ isTimeOut(?x, true) (5)
/\ fulfilledObligations(?x, OC_ProvideCustomerDetails)
/\ noEvidenceSupportObligations(?x,
OP_ProvideCreditScore) /\
noEvidenceSupportObligations(?x, OP_ReturnError) —
inExecutionState(?x, EP_NOPF)

CreditCheckServiceExecution(?x) /\ isTimeOut(?x, true) (6)
/\ fulfilledObligations(?x, OP_ProvideCreditScore) /\

noEvidenceSupportObligations(?x, OC_PayServiceFee) —
inExecutionState(?x, EC_NOPF)

Axiom 5 states that if MortgageBank has provided input
for credit check, but CreditBueau hasn’t provided credit
score nor returned error; and the execution is timeout, mark
the current contract execution instance as status EP_NOPF
(Service Provider Non-Performing obligations). Simular
rule defined in Axiom 6 to determine consumer non-
performing obligation. Note that the reasoning power is
limited by the expressiveness of OWL DL and SWRL, so
normal programming logic is still needed to address the
limits of DL reasoner and rules engine. For example, the
predicate isTimeOut in Axiom 5 is very difficult for
reasoners to decide because that there is no current time
concept in OWL-DL, nor is provided in the SWRL’s
temporal built-in. However, it can be easily done in a Java
program by checking the current time, and producing an
assertion triple to the Jess engine. So our hybrid approach
can be simply described as: DL reasoning at design time,
Jess Rule reasoning at runtime, with input assertions
produced by a Java program.

3) Results and Discussions

The test environment is based on a PC with a duo-core
2.4 GHz Intel CPU, 2GB RAM running on Windows XP.
After completing the design of Credit Check service
contract in Protégé, the Pellet reasoner is invoked to check
the consistency of the ontology. It took 1.68 seconds to
classify the taxonomy and 3.81 seconds to check the
consistency of the service contract model. Then through
sContractTranslator, both OWL-DL and SWRL rules are
translated into Jess facts and rules. It took 1562 milliseconds
for running sContractTranslator to translate OWL facts to
Jess facts, generating 1948 asserted triples. Jess took less
then 1 second to reason the input jess facts and jess rules,
generating 2621 inferred triples in its working memory. As
Jess’ Rete algorithm is linier to the number of rules and
polynomial to the number of objects [25], when the KB
grows, we need to scale up the underlying environment to
cater for the load. Once the translation is done, the
sContractManager is waiting for event collected by the
sContractMonitor. Once evidenceMonitor picks up an event,
it validates if it is an evidence for a particular obligation.

There is no noticeable performance impact on both
client and server, mainly due to the decoupling of
sContractManager and sContractMonitor. The
sContractMonitor is just a read-only plugin installed in a
Web proxy; which is a widely adopted pattern in today’s
internet environment.

The limitation of translating OWL-DL to Jess facts is
documented in [26]. In our model, since we only use OWL-
DL reasoner at design time to verify the consistency of
concepts in the service contract, in addition we apply DL-
Safe restrictions in our model; and we use Jess rule engine
for run time reasoning, hence our reasoning is sound and
complete in each reasoning stage. Theoretically, we
acknowledge the loss of information when combining the
two reasoning paradigms with interfaces for translating
OWL-DL to Jess facts. However, the loss information in our



model is about reasoning on anonymous individuals, and
such anonymous individuals in rules are disregarded due to
our adoption of the DL-safe restriction.

Another interesting issue is about negation. OWL-DL is
based on an open world assumption and thus can not reason
“negation as failure”. In our model, we work around this
problem by defining properties like
noEvidenceSupportObligations. The evidence monitor
EvidenceMonitor is responsible to generate a Jess assertion
on this property if no evidence is found. Therefore we can
use Jess rule engine to reason non-fulfilled obligations. This

demonstrates the strengths of our hybrid reasoning approach.

VI.  CONCLUSION AND FUTURE WORK

REST is increasingly becoming a key architectural style,
thanks to the growing popularity of the Web 2.0 technology.
REST services also form a major part of the services offered
through SaaS or Cloud Computing. Thus building
accountability mechanism in the REST architecture is
crucial for the long-term viability of these new business
models. In this paper, we address the accountability gap in
REST by proposing an innovative architecture extension
AST to enable accountability in RESTful services. Our
contributions can be summarized as: Firstly, we outline the
architectural principles and decisions for enabling
accountability in an e-Services environment. Secondly,
guiding by those principles and decisions, we propose a
novel AST architecture with an accountable state transfer
protocol to enable service accountability, yet retaining
scalability of REST architecture. The new architecture
seamlessly integrates service contract semantics into the
traditional syntactic-based REST services. Thirdly we apply
the formal service contract model in [15] to design a Credit
Check domain specific service contract with a hybrid
reasoning mechanism that leverages strengths from
formalisms like DL, Rules and traditional programming
language. The hybrid reasoning mechanism provides
capabilities like temporal reasoning and ‘“negation as
failure” that are not found in normal DL and SWRL.
Moreover, it separates reasoning in design-time stage and
runtime stage, taking into account of both expressiveness
and computational complexity of the underlying logic
formalisms. Lastly we provide a prototype implementation
for a Credit Check service that demonstrates the practicality
of AST architecture, proving that the new AST architecture
can be implemented with existing products and
technologies. All these are not covered by [15].

The new architecture allows service obligation
disclosure, obligation tracking, and action justification in a
stateless service environment. With such capabilities
provided at the architectural level, effectively service
participants can be held accountable for each
representational state transfer during service consumption.

Finally we observe that the future work entails applying
the service contract model to SOAP-based Web Services
model and Enterprise Service Bus (ESB) solutions.
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