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Abstract—Since Representational State Transfer (REST) 

architecture was proposed by Fielding in early 1990s for 

distributed hypermedia systems, it has become a popular 

architectural style of choice in various computing 

environments. However, REST was not originally designed to 

support enterprise requirements, in particular the 

accountability requirements that are crucial for the business 

services offered through the Software as a Service (SaaS) and 

Cloud Computing environments. In this paper, we propose an 

Accountable State Transfer (AST) architecture to bridge the 

accountability gap in REST. With AST, service participants 

can be held accountable for each representational state 

transfer during service consumption. A formal service contract 

model with a hybrid reasoning mechanism and a novel 

accountable state transfer protocol are designed as the 

mechanisms underpinning the AST architecture.  Moreover, 

we implement a Credit Check service prototype based on AST, 

demonstrating the practicality of such architecture. Inheriting 

REST’s scalability, AST architecture provides the much 

needed accountability capabilities for the virtual service 

delivery environment.  
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I.  INTRODUCTION  

REST architecture was originally designed by Fielding 

in early 1990s to support the high performance and 

scalability requirements of the hypermedia environment [1]. 

Since then, its application has gone beyond the original 

environment and made further inroads into the e-business 

arena. Due to its simplicity and scalability, it also emerges 

as a strong alternative to SOAP-based Web Services for 

building the Service-Oriented Architecture (SOA).  

SOA is the key architectural foundation that turns 

traditional IT focused services into business services, 

enabling dynamic service delivery and consumption.  Based 

on the principles of SOA, Cloud Computing is emerging as 

the latest trend that offers the promise of massive scaling of 

service delivery and consumption. While the current focuses 

in Cloud computing are mainly in the technology areas such 

as virtualization, workload management and Web 2.0 style 

of interfaces, the crucial business issue of accountability is 

often ignored in the IT industry. Fundamentally, Cloud 

computing is just a new business model that provides a 

flexible delivery model for transacting business services, 

thus the reputations of the service provider and consumer’s 

confidences on the services are the key successful factors 

for the Cloud computing business model. In a commercial 

environment, reputations and confidences are built upon the 

accountability of the services. Accountability in this context 

means that obligations of service participants are fully 

disclosed; actions can be justified; the disclosed obligations 

are faithfully honored, or else liability is assumed by the 

misconduct party [2]. In a Cloud computing environment, 

service accountability becomes even more critical as the 

virtualized environment is inherently less trustworthy.   

Traditionally accountability can be best enabled and 

enforced by an implicit or explicit legal contract. To enable 

accountability in a Cloud computing environment, the 

underlying SOA needs to have a formal service contract 

construct, plus the ability to monitor the contract execution 

and reason the contract state. Currently, neither REST nor 

the existing WS-* specifications support the concept of 

service contract as well as the performance tracking of that 

very contract. REST in particular has a large accountability 

gap compared to SOAP-based services, as it was not 

originally designed to address the enterprise requirements 

such as security, reliability, transaction ability and 

manageability. As REST is increasingly becoming a popular 

choice for implementing Cloud services, it is imperative to 

build accountability mechanisms in the REST architecture.  

In this paper, we propose a novel architecture called 

Accountable State Transfer (AST), which extends REST 

architecture to bridge the accountability gap. Our approach 

is innovative as it seamlessly integrates service contract 

semantics into the syntactic-based REST service to enable 

accountability, yet still retains the RESTful characteristics 

and therefore inherits the scalability of REST architecture. 

The AST architecture supports accountability by enabling 

obligation disclosure; action justification and obligation 

tracking for each contracted party plus contract state 

reasoning. We also implement a Credit Check prototype 

service based on AST to demonstrate its practicality. 

The rest of the paper is structured as follows. Section II 

reviews the related work. Section III outlines AST’s guiding 

principles and architectural decisions. This is followed by 

section IV that describes the AST architecture design. A 

prototype implementation is discussed in section V. Finally 

contributions and future work are summarized in Section VI.  

II. RELATED WORK 

According to Fielding, REST behaves like a virtual state 

machine, where the state transition happens when the user 

selecting links, resulting in the next state of the application 

being transferred to the user [1]. REST lays down the 

foundation for the Web architecture. There are a number of 

efforts to extend REST to address certain aspect of 

requirements. In [3], the authors suggest the concept of 

“Computational Transfer” and propose Computational 

REST architecture (CREST). The idea is to use AJAX and 



mashups as mechanisms for framing responses as interactive 

computations or for “synthetic redirection” and service 

composition. CREST is essentially the Web2.0 style of Web 

architecture. To strengthen REST’s capability in supporting 

enterprise requirements, the authors in [4] extend REST to 

induce four properties: events, routes, locks and estimates. 

They derive four new REST styles (ARREST, ARREST+E, 

ARREST+D and ARRESTED) optimized for each of the 

above four types of resources. However, currently REST 

and its extensions do not address the accountability 

requirements. In particular, they do not support the concept 

of service contract and also do not have any ability to 

provide justification on the action of state transfer. 

Various definitions on accountability can be found in the 

IT literature. Refer to [5] for a detailed review on 

accountability literature. In this paper, we adopt Schedler’s 

definition of accountability: “A is accountable to B when A 

is obliged to inform B about A’s (past or future) actions and 

decisions, or justify them and to be punished in the case of 

misconduct” [2]. We further distill the essence of 

accountability as: obligation disclosure; action justification 

based on disclosed obligations and evidence produced; and 

resuming liability for non-fulfillment of obligation. In the e-

services context, accountability is driven by the underlying 

business contract established between the service provider 

and the service consumer, which reflects the business reality 

in the traditional commercial services space. Therefore to 

support accountability in SOA, we need to introduce the 

notion of service contract at the architecture level.  

From an accountability solution perspective, the support 

for accountability in IT is limited. Currently it is mainly 

provided in monitoring systems such as Business Activity 

Monitoring (BAM) and IT infrastructure and application 

monitoring (ITM). The former focuses on business process 

monitoring while the later focuses on QoS or service level-

agreement (SLA) monitoring. While SLA is a kind of 

contract, it is normally used to record the non-functional 

aspect of obligations of the involved parties rather than the 

functional one. Moreover, the current ITM and BAM 

solutions do not provide obligation disclosure and action 

justification capabilities. 

On the other hand, e-Contract is an extensively 

researched area in the IT literature. Most of the existing e-

Contract models are either represented by some form of 

XML documents or some kind of logic models. One notable 

XML contract is IBM’s Trading Partner Agreement (TPA), 

which stipulates the general contract terms, conditions, 

participant roles, communication and security protocols, and 

business process [6]. TPAml had been submitted to OASIS 

and used as a basis for developing ebXML Collaboration 

Protocol Profile (CPP) and Collaboration Protocol 

Agreement (CPA). TPAml and ebXML CPP/CPA are 

designed for business to business (B2B) process integration. 

As both TPAml and ebXML CPP/CPA require a full stack 

of infrastructure and protocol support on both sides, they are 

too heavy weight and thus not suitable for REST services. In 

[7], Xu proposes a multi-party e-Contract model that maps a 

paper-based contract into contract actions and contract 

commitments. Xu’s model representation is based on a 

First-Order Temporal logic programming model, which is 

not accessible to a REST service. In [8], an e-Contract 

model based on Modal Action Logic, Deontic Logic and 

Subjective Logic is presented. In [9], a Business Contract 

Language (BCL) and Formal Contract Language (FCL) are 

proposed using Defeasible Logic and Deontic Logic. 

Another approach is to derive e-Contract from business 

process [10]. Some other e-Contract models include Event 

Calculus/ecXML [11], CrossFlow [12], e-Contract based on 

Description Logic (DL) [13], SweetDeal (based on RuleML 

and DAML+OIL) [14], etc.  

While the existing models provide significant 

contributions in various aspects of e-Contract literature, they 

do not allow seamless integration into REST architecture; 

nor provide service contract meta-data during service 

invocation. Furthermore, most e-Contract models favour 

expressiveness over decidability in order to mimic a legal 

business contract.  

III. GUIDING ARCHITECTURAL PRINCIPLES  

A. RESTful Principles   

The key characteristic of the REST architecture is that it 

takes a “resource view” of the world. The RESTful 

principles described in [1] and elaborated in [3] are: 

Table I. RESTFul Principles 

P1: Resource can be identified by an URI;  

P2: Separation of the abstract resource and its concrete 

representations; 

P3: Stateless interaction, each interaction contains all the 

necessary context information and meta-data; 

P4: Small number of operations, with distinct semantics based 

on HTTP methods: safe operations (Get, Head, Options, 

Trace); non-safe, idempotent operations (Put, Delete); and 

non-safe, non-idempotent operation (Post); 

P5: Idempotent operations and representation metadata support 

cache; 

P6: Promote the presence of intermediaries such as proxies, 

gateways or filters to alter or restrict request and response 

based on metadata.  

 Following these principles ensures our AST architecture 

retaining REST’s scalability and performance.  

B. Service Contract as Foundation for Enabling 

Accountability  

The key accountability concerns addressed in this paper 

are: obligations disclosure; execution status tracking based 

on evidence; and the ability to provide justification and 

explanation of actions in relation to a pre-established 

contract. Compared to the existing accountability models in 

IT literature, a key differentiation of our approach is that we 

position service contract as the foundation underpinning the 

accountability concerns in an SOA environment. 



C. Principles for the Service Contract Model 

Most of the e-Contract models in literature attempt to 

mimic a legal contract. Consequently the underlying logic 

model needs to have strong expressiveness power at the 

expense of computation completeness and decidability. In 

this paper, a key principle is that the logic framework 

underlying the service contract model must be 

computationally complete and decidable; in the meantime, it 

should have enough expressiveness to represent the key 

obligations in a traditional contract. Thus our service 

contract model does not aim at replicating all the 

information in a traditional contract; instead it focuses on 

facilitating runtime disclosure, monitoring and management. 

We now define its scope used in this paper: 

Definition 1: Service contract is an electronic representation of a 

traditional contract that captures the essential contractual 

information including involved parties, domain specific terms, 

obligations for each party, contract execution states and rules that 

determine those states.  

D. Architectural Decisions in  AST Implementation  

In contrast to a lot of existing e-Contract models in the 

literature that only provide theoretical models, a key 

principle of our approach is to ensure the practicality of 

model implementation. To achieve that, trade-offs need to 

be made in implementation decisions. Followings are the 

architectural decisions for our AST architecture:   

Decision 1: Implement service contract as an ontology and store 

service contract execution instances in a knowledge base (KB); 

In addition, add rules to allow reasoning of the contract 

execution state in the KB.  

An ontology describes the concepts in the domain and 

the relationships held between those concepts. Building 

upon an ontology, our service contract model further needs 

rule capability for contract state reasoning. 

Decision 2: Take a resource view on service contract and use 

URI to uniquely identify elements in the service contract. 

Thus the elements in a service contract ontology can be 

referred via URIs during service invocation.  

Decision 3: Separate the service contract and service contract 

execution concepts.  

The rationale behind decision 3 is that in a SaaS or Cloud 

Computing environment, a service can be executed multiple 

times during the valid period of the underlying business 

contract. For example, a Credit Check service contract may 

last for one year; during the year the service can be executed 

for multiple times. Each execution is an execution instance 

of the service contract. The separation of contract and 

contract execution concepts allows contract execution 

tracking, which is not seen in most of the existing e-

Contract model. 

Decision 4: Adopt a hybrid reasoning approach that leverages 

strengths from different formalisms and technologies.   

The last decision applies in the area of designing the 

reasoning mechanism for our service contract KB. We need 

to consider the expressiveness power and computation 

complexity of the underlying formalisms such as OWL-DL 

and SWRL; also take into account the availability of the 

tooling support to make the optimal design decision.  

IV. ACCOUNTABLE STATE TRANSFER ARCHITECTURE 

A. Extending REST to Support Accountability   

In a traditional REST service, both the consumer and the 

provider can not be held accountable for their actions during 

the representational state transfer. At the client side, the 

client consumes the provider’s services by following the 

URL links to get representational states from some 

resources under the provider’s control. But the client does 

not know precisely the linkage between the state transfer 

and the provider’s obligations. The provider also does not 

know exactly why the client makes a particular request. In 

an e-services environment like SaaS or Cloud Computing, 

fundamentally each e-service is linked to a pre-established 

business contract between the service provider and the 

service consumer. Therefore, to establish accountability in 

the REST interaction, it is important to link the interaction 

to a particular contract context. So both the consumer and 

the provider can track the performance of the contract, 

understand the reasons behind each request and response 

w.r.t. that very contract. For example, suppose a SaaS 

provider provides a credit check service by exposing some 

REST interfaces. A service consumer needs to establish a 

binding contract with the service provider before he/she can 

consume the service. Once the contract is established, the 

service consumer can invoke the REST service to check a 

particular customer’s credit score. However under the 

traditional REST, both the service consumer and service 

provider have no ways to know which contract the service is 

related to in runtime, let along tracking the progression 

status and determining which party breaches the contract.  

In order to address the above problem, we extend the 

REST architecture by bringing in the service contract 

context as the meta-data during the interaction between the 

consumer and provider. The contract context information 

includes the name of the service contract, the current 

contract execution instance status and the overall contract 

progression status. In REST, each element of the service 

contract information can be treated as a resource, identified 

by an URI. Therefore the contract context meta-data can be 

simply referred to by URIs in HTTP headers. Also the 

contract progression and performance can be monitored by a 

trusted-third party (TTP). We call this style of the REST 

extension as Accountable State Transfer architecture. 

B. Service contract Structure and Service contract 

Execution Structure  

Definition 1 provides a high-level scope of service 

contract. We now list a rigorous definition [15]: 



Definition 2: A service contract is a tuple SC = (s, D, P, Op, Oc, 

Seq, st, R, T), where: 

- s is a non-trivial service offered through Cloud platform;  

- D is a finite set of domain specific contract term definitions: D 

= {d1, d2, …, dn}; 

- P is a pair of involved parties (provider pr and consumer pc); 

- Op (Provider Obligation) is a finite set of (Action, Evidence) 

pair: Op = {(ap1, ep1), (ap2, ep2),…, (apn, epn) }, where Action 

Ap = {ap1, ap2, …, apn}, Evidence: Ep = {ep1, ep2, …, epn};  

- Oc (Consumer Obligation) is a finite set of (Action, Evidence) 

pair: Oc = {(ac1, ec1), (ac2, ec2), …, (ack, eck)};  

- In Op and Oc, Action is a tuple: a = (input, output, pre, post), 

where input, output∈ D, both pre and post are binary 

condition expressions that are evaluated to true;  

- Evidence is a finite set of triple: E = {(o1, t1, c1), (o2, t2, c2), 

…, (on, tn, cn)}, where oi ∈ D, ti is the creation timestamp of 

oi, ci is a binary condition expression, 1 ñ i ñ n;  

- Seq is a finite set of sequence of actions, Seq = {s1, s2, …, sn}, 

where si is a sequence of actions; 

 - Contract State st: st∈S, S = {st1, st2, …, stn}, where sti is one 

of user defined contract states, for example, initialisation, in 

progress, provider breaching contract, etc; 

- Rules: R = { r1, r2, … rn }, where rj,(1 [ j [ n) is a horn clause: 

consequent ← antecedent, and  

- Time Period T = {contract_start_time, contract_end_time}. 

 Definition 2 defines a generic structure for a two-party 

service contract. In theory, multi-party service contract can 

always be decomposed to multiple two-party service 

contracts. As explained in the rationale of architecture 

Decision 3 in Section III, we need to define the concept of 

service contract execution to capture execution information 

in each contract execution instance: 

Definition 3: A service contract execution is a tuple SCE = (sc, 

E, Op, Oc, se, R), where:  

- sc is an individual of service contract SC; 

- E is execution information, E = (start_time, complete_time, 

timeout_value); 

- Op is a set of obligations that are successfully completed by 

the provider; (See Definition 2 for obligation definition); 

- Oc is a set of obligations that are successfully completed by 

the consumer;  

- Contract Execution State: se∈SE, SE = {se1, se2, …, sen}, 

where sei is one of the user defined contract execution states, 

for example, in progress, complete, pending, etc;  

- Rules: R = {r1, r2, …, rn}, rj,(1 [ j [ n) is a horn clause: 

consequent ← antecedent. 

C. The Accountable State Transfer (AST) Architecture      

AST architecture introduces two extra components 

called sContractMonitor and sContractManager in addition 

to the traditional REST architecture components. 

sContractMonitor monitors the interactions between the 

consumer and the provider, and then feeds events to 

sContractManager through a low-coupling queuing 

mechanism. sContractManager determines the current 

contract execution instance’s status based on the rules 

prescribed in the service contract and the events fed from 

sContractMonitor. It also maintains a service contract KB 

for all the contract execution instances so it can reason the 

overall contract status.  

AST architecture can be classified into two categories. 

One is a centralised AST and the other is a peer-to-peer 

AST. In a centralised AST, it can be further categorized to 

two styles, one is an in-line TTP AST and the other is an on-

line TTP AST. An in-line TTP AST’s sContractMonitor 

acts as a HTTP proxy, seeing through all the interactions 

between the consumer and the provider. Based on the 

contract meta-data on the HTTP headers and the body 

message, it can verify whether the obligations have been 

met by checking the prescribed evidence. Then it generates 

the assertion events to sContractManager. 

sContractManager’s reasoner component determines the 

service contract execution status and maintains an up-to-

date service contract execution KB based on the rules 

defined in the service contract. Figure 1 illustrates the in-

line TTP AST model.  

In an on-line AST Model, the service contract monitor 

remotely monitors the consumer and the provider 

separately. In a peer-to-peer AST model, each party will 

have its own service contract monitor and manager, and 

needs an arbitrator reasoner for dispute resolution. 

sContractManager

Consumer Provider

sContractMonitor

HTTP Connector: Contract: Contract Execution KB: Service Resource

 

Figure 1. In-Line TTP AST Architecture 

D. AST Protocols and an Example   

In order to bring in service contract context information 

during REST interactions, the following AST protocols are 

proposed for communicating the contract meta-data: 

Table II. Accountable State Transfer Protocol 

AP1: Refer to service contract during service invocation: 

HTTP Header:  sContract: sContract_URI;  

AP2: Add service contract meta-data to a service request: 

HTTP Header: Required-Obligations: action_URI list; 

AP3: Add service contract meta-data to a service response: 

HTTP Header: Met-Obligations: action_URI list: 

AP4: Query on contract execution status: 

GET sContract_KB_URI?queryString; 

AP5: Notify contract breach or execution abnormality:  

POST involvedParty_URI with XML payload indicating 

sContract or sContractExecution status. 

The HTTP header in AP1 can be used in each REST 

interaction to establish linkage to a service contract. AP2’s 

HTTP header can be used when the consumer sends out a 

request, indicating the request is relating to the provider’s 

obligation as specified in the service contract. AP3 can be 



used when the provider replies with a response, indicating 

that the response is relating to the fulfilled obliged actions. 

AP4 enables REST client and server to query the 

sContractManager for contract execution status. AP5 allows 

sContractManager to notify a client or the server on the 

contract execution status.  

Now we use an example to illustrate how the AST 

works. Suppose a service provider pr (pr∈P) has signed a 

contract SC with a consumer pc (pc∈P) to provide a Credit 

Check service defined by s for a period of T. The contract 

defines the terms relating to Credit Check in a definition set 

D. The contract prescribes the provider’s obligation as Op 

and the consumer’s obligation as Oc. Op = 

{(P_checkCredit, E_creditEvidence), (P_returnError, 

E_ErrorEvidence)}. The consumer’s obligation Oc = 

{(C_provideInput, E_inputEvidence), (C_payFee, 

E_feeEvidence)}. The valid action sequences are defined as 

either “C_provideInput, P_checkCredit, C_payFee” or 

“C_provideInput, P_returnError”. Also the contract defines 

a set of rules R to determine the contract status st (st∈S) 

based on the evidence of the fulfilled obligations.  

There is no concept of service contract in traditional 

REST. Both service provider and service consumer rely on 

other means (mostly off-line and manual) to know the 

performance status of the contract. With AST, the contract 

performance can be tracked while executing the service. 

Moreover, both client and server understand the “why” 

behind the request and response (representational state 

transfer) from a service contract perspective. For example, 

when the consumer invokes the Credit Check service, he/she 

issues the following request with the Http headers below: 

GET 
/credit_chk.jsp?fname=jon&lname=bond&id=102
435 HTTP 1.1 
Host www.creditcheck.com 
HTTP headers:  
sContract: 
http://sContractManager.com/creditcheck.owl 
Required-Obligations: #P_checkCredit, 
#P_returnError 

With these HTTP headers, the consumer links the request to 

a pre-established contract, also states that the request is 

related to the provider’s obligations P_checkCredit and 

P_returnError as prescribed in the contract.  

When the server responds, it adds the HTTP headers to 

further explain the response in relation to the contract: 

HTTP/1.1 200 OK 
HTTP headers:  
sContract: 
http://sContractManager.com/creditcheck.owl 
Met-Obligations: #P_checkCredit 
Required-Obligations: #C_payFee 

V. IMPLEMENTATION OF AST ARCHITECTURE  

A. Languages for Specifying the Service Contract Model 

The ontology underpinning our service contract model 

can be specified using Web Ontology Language (OWL), 

which is recommended by W3C as the standard for 

representing ontologies on the Web. OWL provides three 

sub-languages with increasing level of expressiveness: 

OWL-Lite (corresponding to SHIF (D) [16]); OWL-DL 

(corresponding to SHOIN(D) [16] ); and OWL-Full which is 

an extension to Resource Definition Framework (RDF). 

Both OWL-Lite and OWL-DL provide computation 

completeness and decidability [17], whereas OWL-Full has 

maximum expressiveness but no computational guaranteed. 

As per the guiding principles in section III, OWL-DL is 

chosen to specify our service contract model since it has the 

better trade-off between expressiveness and decidability. 

Other benefit of using OWL-DL is that the consistency of 

the service contract can be validated using proven DL 

reasoners such as RACER, KAON2, PELLET, etc. 

However, OWL-DL has limitations. In particular it has the 

well known “hasUncle” problem; i.e. it is impossible for 

OWL-DL to describe the role chain of hasParent and 

hasBrother leading to the hasUncle role. To address this 

limitation, we leverage Semantic Web Rule Language 

(SWRL) for defining rules to do contract state reasoning on 

top of OWL-DL. SWRL is a W3C submission, extending 

OWL-DL axioms with a set of horn clause rules. It is 

basically a combination of OWL-DL and OWL-Lite with 

the unary/binary Datalog sublanguages of the Rule Markup 

Language (RuleML) [18].  

While OWL-DL is decidable, SWRL is proven not 

decidable [17]. To solve this problem, we further restrict 

SWRL to DL-Safe rule. A rule r is called DL-Safe if each 

variable in r occurs in a non-DL-atom in the rule body. A 

program P is DL-Safe if all its rules are DL-Safe (see [17] 

for details). The DL-Safe restriction is exposed to ensure 

that the variables in the rule body are bound to only 

explicitly existing individuals in the KB. Our model 

complies with the DL-Safe restriction, which means that 

anonymous individuals are disregarded in reasoning on 

rules. 

B. Service Contract Representation  

We now formally define the representation for our 

service contract model. 

Definition 4: The service contract execution knowledge base 

Ksc can be defined using DL’s Tbox T, Abox A, adding the 

SWRL DL-Safe rules H, thus Ksc = (T, A, H), where:  

• A TBox T consists of a finite set of concept inclusion 

axioms of the form C b D, a finite set of role inclusion 

axioms of the form R b S and transitivity axioms Trans(R), 

where C and D are concepts, R and S are roles;  

• An ABox A consists of a finite set of concept and role 

assertions and individual equalities/inequalities C(a), R(a, 

b), a = b, and a g b, respectively; 

• A horn rule set H consists of a finite set of horn axioms. A 

horn axiom consists of an antecedent (body) and a 

consequent (head) in the form of: a ← a1.a2.….an,  where 

a, ai (0 [i [ n) are atoms in rules that can be of the form 

C(x), P(x, y), Q(x, z), sameAs(x, y) or differentFrom(x, y), 



and C is an OWL concept; P is an object-valued property; Q 

is a data-valued property; x, y are either variables or 

individuals; and z is either a variable or a data value. 

Variables x, y, z must be bound to named individuals in the 

KB to satisfy the DL-Safe rule criteria.  

C. Service contract Ontology and Axioms  

Based on OWL-DL and DL-Safe criteria, we define a 

service contract model that captures the fundamental aspect 

of a service contract. Figure 2 shows a simplified version of 

the ontology. A scContract class has contract term 

definitions (Defintions class); it involves Party class, which 

has subclasses of Provider and Consumer. Each party has 

Obligation which consists of multiple Action and Evidence 

pairs. A domain specific contract class like 

CreditCheckContract inherits from the generic scContract 

class. Such domain specific contract instance may be 

executed multiple times. Each execution is an instance of 

scContractExecution class. The scContractExecution 

instance executes Obligations as defined in the scContract 

and produces Evidence instances. If each Action instance 

can be proven by the respective Evidence instance, then the 

obligation is fulfilled. Otherwise either Provider or 

Consumer may breach the contract depending on the 

specific contract rules, which can be defined as the axioms 

for a domain specific service contract model. A detailed 

analysis on our model’s action semantics and the model 

validation technique using Coloured Petri-Nets are 

documented in [15].  

scContract

scContractExecution
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Obligation

ContractState

ContractExecutionState

Action

Evidence

ServiceConsumer

ServiceProvider

Definitions
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TimeStamp
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ProviderObligation

ConsumerObligation

Input

Output

Precondition
Postcondition

ConditionExpression

Role

Consumer

Provider
p1:Service

Parameter

ActionSequence

 

Figure 2. A Simplified Version of the Service Contract Ontology 

We here list some axioms that determine the contract 

state for our generic service contract model. For domain 

specific service contracts, these axioms can be extended; 

overwritten or new axioms can be developed based on the 

specific terms and conditions of the underlying contract. 

Table III Partial Generic Contract Axioms 

scContract(?x)  ∧  hasExecutionInstance(?x, false)  → 

inState(?x, INIT) 

(1) 

scContract(?x) ∧executedBy(?x, ?y) ∧ 

isContractExpired(?x, false)→ inState(?x, IN_PROG) 
(2) 

scContractExecution(?x) ∧startsAt(?x, ?y) ∧ 

noEvidenceSupportObligations (?x, ?z) ∧  isTimeOut 

(?x, false)→ inExecutionState(?x, EINIT) 

(3) 

scContractExecution(?x) ∧ execute(?x, ?y)∧  

specifiesObligation(?y, ?z) ∧ mustDo(?z, ?a)  ∧  

verifiedBy(?a, ?b) ∧ produceEvidence(?x, ?b) → 

fulfilledObligations(?x, ?z) 

(4) 

Axiom 1 states that if a scContract instance does not 
have any execution instance, then the scContract is in the 
initial (INIT) state. Axiom 2 states that if the scContract 
instance is executed by some execution instances and the 
contract is not expired, then the service contract state is in-
progress (IN_PROG). Axiom 3 says if the instance of 
scContractExecution starts at a particular time, but no 
evidence produced to prove the fulfilment of obligations, and 
the execution is not time out yet, then the contract execution 
instance is in initial (EINIT) state.  Axiom 4 determines 
whether a particular obligation is fulfilled based on the 
collected evidence.  

D. Prototype Implementation   

1) Overall Prototype Architecture 

Figure 3 depicts the Credit Check service prototype that 

implements the in-line TTP AST in Figure 1. The main 

components are described below: 

CreditCheck
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CreditCheck
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sContract Monitor
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Figure 3. Prototype in-line TTP AST Implementation 

CreditCheck Client: We used Firefox Poster to simulate a 

Credit Check client. Firefox Poster provides an intuitive 

interface for sending REST requests with user defined 

HTTP Headers.  

sContractMonitor: sContractMonitor is built on a 

RESTful component – Web intermediary. We used IBM’s 

Web Intermediaries Development Kit 4.5 (WBI DK) [19] as 

the underlying Web intermediary platform, creating a 

Monitor plug-in to track the HTTP messages. The messages 

will be sent to sContractManager through JMS.  

CreditCheck Server: A Credit Check server is developed 

and hosted in Websphere sMash [20], which provides an 

environment for developing and hosting REST applications.  

Contract Authoring: Protégé 3.4.3 [21] is used as the 

service contract authoring tool. SWRLtab in Protégé is used 

for SWRL rule authoring.  

Pellet 1.5.2: Pellet 1.5.2 [22] is the DL reasoner that is used 

to classify the terms in service contract and check contract 

consistency at design time.  

sContractManager: sContractManager is implemented in 

a Websphere Application Server (WAS). It consists of 



sContractTranslator, QueryInterface, EventProcessor and 

EvidenceMonitor. sContractTranslator converts the service 

contract from OWL-DL / SWRL to Jess facts / rules using 

XSLT, then sends them to ContractExecutionReasoner. 

EventProcessor picks up the raw monitoring data, storing 

evidence data into an event database. Then 

EvidenceMonitor checks if the evidence is valid, if so, it 

sends assertions to ContractExecutionReasoner. Finally the 

QueryInterface allows contract status query from both the 

client and the server. 

ContractExecutionReasoner: This component receives 

Jess facts or rules, and then invokes Jess71p2 [23] to do 

reasoning, maintaining the contract execution KB in Jess’s 

working memory. 

2) Implementation of Hybrid Reasoning Mechanism 

Based on architectural decision 4 outlined in Section 

III.D, we adopt a hybrid approach to reasoning. In contract 

authoring stage, DL reasoner like Pellet will be used for 

normal TBox and ABox reasoning in design time. After the 

service contract is developed, the OWL-DL ontology will be 

translated to Jess facts via one XSLT file, while the SWRL 

rules will be translated to Jess user-defined rules via another 

XSLT file. Additionally, we need to import pre-defined Jess 

rules, which are transformational implementations for OWL 

semantics [24]. Then the Jess facts and (pre-defined and 

user-defined) rules will be fed into the Jess engine, taking 

advantage of the fast Rete algorithm for contract state 

reasoning at runtime. In our prototype, we created a 

CreditCheckServiceContract based on scContract in Figure 

2. The contract is between service provider CreditBureau 

and consumer MortgageBank. CreditBureau’s obligation is 

to complete actions P_checkCredit or P_returnError if 

exception occurs. MortgageBank’s obligation is to complete 

actions C_provideInput and C_payFee. The actions need to 

be proven by evidences which are also defined in the service 

contract ontology. This contract instance will be executed 

multiple times during the valid contract period. Each 

execution instance is an instance of CreditCheckExecution 

class. In addition to the generic axioms listed in Table III, 

domain specific axioms can be defined to reason Credit 

Check specific execution state. Two example rules used to 

determine if the service participants breach the obligation is 

listed below. Other axioms are omitted due to space limit.  

Table VI Credit Check Specific Axioms 

CreditCheckServiceExecution(?x) ∧ isTimeOut(?x, true)  ∧ fulfilledObligations(?x, OC_ProvideCustomerDetails) ∧ noEvidenceSupportObligations(?x, 

OP_ProvideCreditScore) ∧ 

noEvidenceSupportObligations(?x, OP_ReturnError) → 

inExecutionState(?x, EP_NOPF) 

(5) 

CreditCheckServiceExecution(?x)  ∧ isTimeOut(?x, true)  ∧ fulfilledObligations(?x, OP_ProvideCreditScore)  ∧ 

noEvidenceSupportObligations(?x, OC_PayServiceFee) → 

inExecutionState(?x, EC_NOPF) 

(6) 

Axiom 5 states that if MortgageBank has provided input 

for credit check, but CreditBueau hasn’t provided credit 

score nor returned error; and the execution is timeout, mark 

the current contract execution instance as status EP_NOPF 

(Service Provider Non-Performing obligations). Simular 

rule defined in Axiom 6 to determine consumer non-

performing obligation. Note that the reasoning power is 

limited by the expressiveness of OWL DL and SWRL, so 

normal programming logic is still needed to address the 

limits of DL reasoner and rules engine. For example, the 

predicate isTimeOut in Axiom 5 is very difficult for 

reasoners to decide because that there is no current time 

concept in OWL-DL, nor is provided in the SWRL’s 

temporal built-in. However, it can be easily done in a Java 

program by checking the current time, and producing an 

assertion triple to the Jess engine. So our hybrid approach 

can be simply described as: DL reasoning at design time, 

Jess Rule reasoning at runtime, with input assertions 

produced by a Java program.  

3) Results and Discussions 

The test environment is based on a PC with a duo-core 

2.4 GHz Intel CPU, 2GB RAM running on Windows XP. 

After completing the design of Credit Check service 

contract in Protégé, the Pellet reasoner is invoked to check 

the consistency of the ontology. It took 1.68 seconds to 

classify the taxonomy and 3.81 seconds to check the 

consistency of the service contract model. Then through 

sContractTranslator, both OWL-DL and SWRL rules are 

translated into Jess facts and rules. It took 1562 milliseconds 

for running sContractTranslator to translate OWL facts to 

Jess facts, generating 1948 asserted triples. Jess took less 

then 1 second to reason the input jess facts and jess rules, 

generating 2621 inferred triples in its working memory.  As 

Jess’ Rete algorithm is linier to the number of rules and 

polynomial to the number of objects [25], when the KB 

grows, we need to scale up the underlying environment to 

cater for the load. Once the translation is done, the 

sContractManager is waiting for event collected by the 

sContractMonitor. Once evidenceMonitor picks up an event, 

it validates if it is an evidence for a particular obligation.  

There is no noticeable performance impact on both 

client and server, mainly due to the decoupling of 

sContractManager and sContractMonitor. The 

sContractMonitor is just a read-only plugin installed in a 

Web proxy; which is a widely adopted pattern in today’s 

internet environment. 

The limitation of translating OWL-DL to Jess facts is 

documented in [26]. In our model, since we only use OWL-

DL reasoner at design time to verify the consistency of 

concepts in the service contract, in addition we apply DL-

Safe restrictions in our model; and we use Jess rule engine 

for run time reasoning, hence our reasoning is sound and 

complete in each reasoning stage. Theoretically, we 

acknowledge the loss of information when combining the 

two reasoning paradigms with interfaces for translating 

OWL-DL to Jess facts. However, the loss information in our 



model is about reasoning on anonymous individuals, and 

such anonymous individuals in rules are disregarded due to 

our adoption of the DL-safe restriction. 

Another interesting issue is about negation. OWL-DL is 

based on an open world assumption and thus can not reason 

“negation as failure”. In our model, we work around this 

problem by defining properties like 

noEvidenceSupportObligations. The evidence monitor 

EvidenceMonitor is responsible to generate a Jess assertion 

on this property if no evidence is found. Therefore we can 

use Jess rule engine to reason non-fulfilled obligations. This 

demonstrates the strengths of our hybrid reasoning approach. 

VI. CONCLUSION AND FUTURE WORK 

REST is increasingly becoming a key architectural style, 

thanks to the growing popularity of the Web 2.0 technology. 

REST services also form a major part of the services offered 

through SaaS or Cloud Computing. Thus building 

accountability mechanism in the REST architecture is 

crucial for the long-term viability of these new business 

models. In this paper, we address the accountability gap in 

REST by proposing an innovative architecture extension 

AST to enable accountability in RESTful services. Our 

contributions can be summarized as: Firstly, we outline the 

architectural principles and decisions for enabling 

accountability in an e-Services environment. Secondly, 

guiding by those principles and decisions, we propose a 

novel AST architecture with an accountable state transfer 

protocol to enable service accountability, yet retaining 

scalability of REST architecture. The new architecture 

seamlessly integrates service contract semantics into the 

traditional syntactic-based REST services. Thirdly we apply 

the formal service contract model in [15] to design a Credit 

Check domain specific service contract with a hybrid 

reasoning mechanism that leverages strengths from 

formalisms like DL, Rules and traditional programming 

language. The hybrid reasoning mechanism provides 

capabilities like temporal reasoning and “negation as 

failure” that are not found in normal DL and SWRL. 

Moreover, it separates reasoning in design-time stage and 

runtime stage, taking into account of both expressiveness 

and computational complexity of the underlying logic 

formalisms. Lastly we provide a prototype implementation 

for a Credit Check service that demonstrates the practicality 

of AST architecture, proving that the new AST architecture 

can be implemented with existing products and 

technologies. All these are not covered by [15]. 

The new architecture allows service obligation 

disclosure, obligation tracking, and action justification in a 

stateless service environment. With such capabilities 

provided at the architectural level, effectively service 

participants can be held accountable for each 

representational state transfer during service consumption.  
Finally we observe that the future work entails applying 

the service contract model to SOAP-based Web Services 
model and Enterprise Service Bus (ESB) solutions. 
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