
From Representational State Transfer to Accountable State Transfer Architecture

Joe Zou

IBM Australia

 Macquarie University

Sydney, NSW, Australia

joezou@au1.ibm.com

Jing Mei

Semantic Integration

IBM Research

Beijing, China

meijing@cn.ibm.com

Yan Wang

Department of Computing

Macquarie University

Sydney, NSW, Australia

yanwang@science.mq.edu.au

Abstract—Since Representational State Transfer (REST)

architecture was proposed by Fielding in early 1990s for

distributed hypermedia systems, it has become a popular

architectural style of choice in various computing

environments. However, REST was not originally designed to

support enterprise requirements, in particular the

accountability requirements that are crucial for the business

services offered through the Software as a Service (SaaS) and

Cloud Computing environments. In this paper, we propose an

Accountable State Transfer (AST) architecture to bridge the

accountability gap in REST. With AST, service participants

can be held accountable for each representational state

transfer during service consumption. A formal service contract

model with a hybrid reasoning mechanism and a novel

accountable state transfer protocol are designed as the

mechanisms underpinning the AST architecture. Moreover,

we implement a Credit Check service prototype based on AST,

demonstrating the practicality of such architecture. Inheriting

REST’s scalability, AST architecture provides the much

needed accountability capabilities for the virtual service

delivery environment.

Keywords: REST, SOA, Accountability, AST, service contract

I. INTRODUCTION

REST architecture was originally designed by Fielding

in early 1990s to support the high performance and

scalability requirements of the hypermedia environment [1].

Since then, its application has gone beyond the original

environment and made further inroads into the e-business

arena. Due to its simplicity and scalability, it also emerges

as a strong alternative to SOAP-based Web Services for

building the Service-Oriented Architecture (SOA).

SOA is the key architectural foundation that turns

traditional IT focused services into business services,

enabling dynamic service delivery and consumption. Based

on the principles of SOA, Cloud Computing is emerging as

the latest trend that offers the promise of massive scaling of

service delivery and consumption. While the current focuses

in Cloud computing are mainly in the technology areas such

as virtualization, workload management and Web 2.0 style

of interfaces, the crucial business issue of accountability is

often ignored in the IT industry. Fundamentally, Cloud

computing is just a new business model that provides a

flexible delivery model for transacting business services,

thus the reputations of the service provider and consumer’s

confidences on the services are the key successful factors

for the Cloud computing business model. In a commercial

environment, reputations and confidences are built upon the

accountability of the services. Accountability in this context

means that obligations of service participants are fully

disclosed; actions can be justified; the disclosed obligations

are faithfully honored, or else liability is assumed by the

misconduct party [2]. In a Cloud computing environment,

service accountability becomes even more critical as the

virtualized environment is inherently less trustworthy.

Traditionally accountability can be best enabled and

enforced by an implicit or explicit legal contract. To enable

accountability in a Cloud computing environment, the

underlying SOA needs to have a formal service contract

construct, plus the ability to monitor the contract execution

and reason the contract state. Currently, neither REST nor

the existing WS-* specifications support the concept of

service contract as well as the performance tracking of that

very contract. REST in particular has a large accountability

gap compared to SOAP-based services, as it was not

originally designed to address the enterprise requirements

such as security, reliability, transaction ability and

manageability. As REST is increasingly becoming a popular

choice for implementing Cloud services, it is imperative to

build accountability mechanisms in the REST architecture.

In this paper, we propose a novel architecture called

Accountable State Transfer (AST), which extends REST

architecture to bridge the accountability gap. Our approach

is innovative as it seamlessly integrates service contract

semantics into the syntactic-based REST service to enable

accountability, yet still retains the RESTful characteristics

and therefore inherits the scalability of REST architecture.

The AST architecture supports accountability by enabling

obligation disclosure; action justification and obligation

tracking for each contracted party plus contract state

reasoning. We also implement a Credit Check prototype

service based on AST to demonstrate its practicality.

The rest of the paper is structured as follows. Section II

reviews the related work. Section III outlines AST’s guiding

principles and architectural decisions. This is followed by

section IV that describes the AST architecture design. A

prototype implementation is discussed in section V. Finally

contributions and future work are summarized in Section VI.

II. RELATED WORK

According to Fielding, REST behaves like a virtual state

machine, where the state transition happens when the user

selecting links, resulting in the next state of the application

being transferred to the user [1]. REST lays down the

foundation for the Web architecture. There are a number of

efforts to extend REST to address certain aspect of

requirements. In [3], the authors suggest the concept of

“Computational Transfer” and propose Computational

REST architecture (CREST). The idea is to use AJAX and

mashups as mechanisms for framing responses as interactive

computations or for “synthetic redirection” and service

composition. CREST is essentially the Web2.0 style of Web

architecture. To strengthen REST’s capability in supporting

enterprise requirements, the authors in [4] extend REST to

induce four properties: events, routes, locks and estimates.

They derive four new REST styles (ARREST, ARREST+E,

ARREST+D and ARRESTED) optimized for each of the

above four types of resources. However, currently REST

and its extensions do not address the accountability

requirements. In particular, they do not support the concept

of service contract and also do not have any ability to

provide justification on the action of state transfer.

Various definitions on accountability can be found in the

IT literature. Refer to [5] for a detailed review on

accountability literature. In this paper, we adopt Schedler’s

definition of accountability: “A is accountable to B when A

is obliged to inform B about A’s (past or future) actions and

decisions, or justify them and to be punished in the case of

misconduct” [2]. We further distill the essence of

accountability as: obligation disclosure; action justification

based on disclosed obligations and evidence produced; and

resuming liability for non-fulfillment of obligation. In the e-

services context, accountability is driven by the underlying

business contract established between the service provider

and the service consumer, which reflects the business reality

in the traditional commercial services space. Therefore to

support accountability in SOA, we need to introduce the

notion of service contract at the architecture level.

From an accountability solution perspective, the support

for accountability in IT is limited. Currently it is mainly

provided in monitoring systems such as Business Activity

Monitoring (BAM) and IT infrastructure and application

monitoring (ITM). The former focuses on business process

monitoring while the later focuses on QoS or service level-

agreement (SLA) monitoring. While SLA is a kind of

contract, it is normally used to record the non-functional

aspect of obligations of the involved parties rather than the

functional one. Moreover, the current ITM and BAM

solutions do not provide obligation disclosure and action

justification capabilities.

On the other hand, e-Contract is an extensively

researched area in the IT literature. Most of the existing e-

Contract models are either represented by some form of

XML documents or some kind of logic models. One notable

XML contract is IBM’s Trading Partner Agreement (TPA),

which stipulates the general contract terms, conditions,

participant roles, communication and security protocols, and

business process [6]. TPAml had been submitted to OASIS

and used as a basis for developing ebXML Collaboration

Protocol Profile (CPP) and Collaboration Protocol

Agreement (CPA). TPAml and ebXML CPP/CPA are

designed for business to business (B2B) process integration.

As both TPAml and ebXML CPP/CPA require a full stack

of infrastructure and protocol support on both sides, they are

too heavy weight and thus not suitable for REST services. In

[7], Xu proposes a multi-party e-Contract model that maps a

paper-based contract into contract actions and contract

commitments. Xu’s model representation is based on a

First-Order Temporal logic programming model, which is

not accessible to a REST service. In [8], an e-Contract

model based on Modal Action Logic, Deontic Logic and

Subjective Logic is presented. In [9], a Business Contract

Language (BCL) and Formal Contract Language (FCL) are

proposed using Defeasible Logic and Deontic Logic.

Another approach is to derive e-Contract from business

process [10]. Some other e-Contract models include Event

Calculus/ecXML [11], CrossFlow [12], e-Contract based on

Description Logic (DL) [13], SweetDeal (based on RuleML

and DAML+OIL) [14], etc.

While the existing models provide significant

contributions in various aspects of e-Contract literature, they

do not allow seamless integration into REST architecture;

nor provide service contract meta-data during service

invocation. Furthermore, most e-Contract models favour

expressiveness over decidability in order to mimic a legal

business contract.

III. GUIDING ARCHITECTURAL PRINCIPLES

A. RESTful Principles

The key characteristic of the REST architecture is that it

takes a “resource view” of the world. The RESTful

principles described in [1] and elaborated in [3] are:

Table I. RESTFul Principles

P1: Resource can be identified by an URI;

P2: Separation of the abstract resource and its concrete

representations;

P3: Stateless interaction, each interaction contains all the

necessary context information and meta-data;

P4: Small number of operations, with distinct semantics based

on HTTP methods: safe operations (Get, Head, Options,

Trace); non-safe, idempotent operations (Put, Delete); and

non-safe, non-idempotent operation (Post);

P5: Idempotent operations and representation metadata support

cache;

P6: Promote the presence of intermediaries such as proxies,

gateways or filters to alter or restrict request and response

based on metadata.

 Following these principles ensures our AST architecture

retaining REST’s scalability and performance.

B. Service Contract as Foundation for Enabling

Accountability

The key accountability concerns addressed in this paper

are: obligations disclosure; execution status tracking based

on evidence; and the ability to provide justification and

explanation of actions in relation to a pre-established

contract. Compared to the existing accountability models in

IT literature, a key differentiation of our approach is that we

position service contract as the foundation underpinning the

accountability concerns in an SOA environment.

C. Principles for the Service Contract Model

Most of the e-Contract models in literature attempt to

mimic a legal contract. Consequently the underlying logic

model needs to have strong expressiveness power at the

expense of computation completeness and decidability. In

this paper, a key principle is that the logic framework

underlying the service contract model must be

computationally complete and decidable; in the meantime, it

should have enough expressiveness to represent the key

obligations in a traditional contract. Thus our service

contract model does not aim at replicating all the

information in a traditional contract; instead it focuses on

facilitating runtime disclosure, monitoring and management.

We now define its scope used in this paper:

Definition 1: Service contract is an electronic representation of a

traditional contract that captures the essential contractual

information including involved parties, domain specific terms,

obligations for each party, contract execution states and rules that

determine those states.

D. Architectural Decisions in AST Implementation

In contrast to a lot of existing e-Contract models in the

literature that only provide theoretical models, a key

principle of our approach is to ensure the practicality of

model implementation. To achieve that, trade-offs need to

be made in implementation decisions. Followings are the

architectural decisions for our AST architecture:

Decision 1: Implement service contract as an ontology and store

service contract execution instances in a knowledge base (KB);

In addition, add rules to allow reasoning of the contract

execution state in the KB.

An ontology describes the concepts in the domain and

the relationships held between those concepts. Building

upon an ontology, our service contract model further needs

rule capability for contract state reasoning.

Decision 2: Take a resource view on service contract and use

URI to uniquely identify elements in the service contract.

Thus the elements in a service contract ontology can be

referred via URIs during service invocation.

Decision 3: Separate the service contract and service contract

execution concepts.

The rationale behind decision 3 is that in a SaaS or Cloud

Computing environment, a service can be executed multiple

times during the valid period of the underlying business

contract. For example, a Credit Check service contract may

last for one year; during the year the service can be executed

for multiple times. Each execution is an execution instance

of the service contract. The separation of contract and

contract execution concepts allows contract execution

tracking, which is not seen in most of the existing e-

Contract model.

Decision 4: Adopt a hybrid reasoning approach that leverages

strengths from different formalisms and technologies.

The last decision applies in the area of designing the

reasoning mechanism for our service contract KB. We need

to consider the expressiveness power and computation

complexity of the underlying formalisms such as OWL-DL

and SWRL; also take into account the availability of the

tooling support to make the optimal design decision.

IV. ACCOUNTABLE STATE TRANSFER ARCHITECTURE

A. Extending REST to Support Accountability

In a traditional REST service, both the consumer and the

provider can not be held accountable for their actions during

the representational state transfer. At the client side, the

client consumes the provider’s services by following the

URL links to get representational states from some

resources under the provider’s control. But the client does

not know precisely the linkage between the state transfer

and the provider’s obligations. The provider also does not

know exactly why the client makes a particular request. In

an e-services environment like SaaS or Cloud Computing,

fundamentally each e-service is linked to a pre-established

business contract between the service provider and the

service consumer. Therefore, to establish accountability in

the REST interaction, it is important to link the interaction

to a particular contract context. So both the consumer and

the provider can track the performance of the contract,

understand the reasons behind each request and response

w.r.t. that very contract. For example, suppose a SaaS

provider provides a credit check service by exposing some

REST interfaces. A service consumer needs to establish a

binding contract with the service provider before he/she can

consume the service. Once the contract is established, the

service consumer can invoke the REST service to check a

particular customer’s credit score. However under the

traditional REST, both the service consumer and service

provider have no ways to know which contract the service is

related to in runtime, let along tracking the progression

status and determining which party breaches the contract.

In order to address the above problem, we extend the

REST architecture by bringing in the service contract

context as the meta-data during the interaction between the

consumer and provider. The contract context information

includes the name of the service contract, the current

contract execution instance status and the overall contract

progression status. In REST, each element of the service

contract information can be treated as a resource, identified

by an URI. Therefore the contract context meta-data can be

simply referred to by URIs in HTTP headers. Also the

contract progression and performance can be monitored by a

trusted-third party (TTP). We call this style of the REST

extension as Accountable State Transfer architecture.

B. Service contract Structure and Service contract

Execution Structure

Definition 1 provides a high-level scope of service

contract. We now list a rigorous definition [15]:

Definition 2: A service contract is a tuple SC = (s, D, P, Op, Oc,

Seq, st, R, T), where:

- s is a non-trivial service offered through Cloud platform;

- D is a finite set of domain specific contract term definitions: D

= {d1, d2, …, dn};

- P is a pair of involved parties (provider pr and consumer pc);

- Op (Provider Obligation) is a finite set of (Action, Evidence)

pair: Op = {(ap1, ep1), (ap2, ep2),…, (apn, epn) }, where Action

Ap = {ap1, ap2, …, apn}, Evidence: Ep = {ep1, ep2, …, epn};

- Oc (Consumer Obligation) is a finite set of (Action, Evidence)

pair: Oc = {(ac1, ec1), (ac2, ec2), …, (ack, eck)};

- In Op and Oc, Action is a tuple: a = (input, output, pre, post),

where input, output∈ D, both pre and post are binary

condition expressions that are evaluated to true;

- Evidence is a finite set of triple: E = {(o1, t1, c1), (o2, t2, c2),

…, (on, tn, cn)}, where oi ∈ D, ti is the creation timestamp of

oi, ci is a binary condition expression, 1 ñ i ñ n;

- Seq is a finite set of sequence of actions, Seq = {s1, s2, …, sn},

where si is a sequence of actions;

 - Contract State st: st∈S, S = {st1, st2, …, stn}, where sti is one

of user defined contract states, for example, initialisation, in

progress, provider breaching contract, etc;

- Rules: R = { r1, r2, … rn }, where rj,(1 [j [n) is a horn clause:

consequent ← antecedent, and

- Time Period T = {contract_start_time, contract_end_time}.

 Definition 2 defines a generic structure for a two-party

service contract. In theory, multi-party service contract can

always be decomposed to multiple two-party service

contracts. As explained in the rationale of architecture

Decision 3 in Section III, we need to define the concept of

service contract execution to capture execution information

in each contract execution instance:

Definition 3: A service contract execution is a tuple SCE = (sc,

E, Op, Oc, se, R), where:

- sc is an individual of service contract SC;

- E is execution information, E = (start_time, complete_time,

timeout_value);

- Op is a set of obligations that are successfully completed by

the provider; (See Definition 2 for obligation definition);

- Oc is a set of obligations that are successfully completed by

the consumer;

- Contract Execution State: se∈SE, SE = {se1, se2, …, sen},

where sei is one of the user defined contract execution states,

for example, in progress, complete, pending, etc;

- Rules: R = {r1, r2, …, rn}, rj,(1 [j [n) is a horn clause:

consequent ← antecedent.

C. The Accountable State Transfer (AST) Architecture

AST architecture introduces two extra components

called sContractMonitor and sContractManager in addition

to the traditional REST architecture components.

sContractMonitor monitors the interactions between the

consumer and the provider, and then feeds events to

sContractManager through a low-coupling queuing

mechanism. sContractManager determines the current

contract execution instance’s status based on the rules

prescribed in the service contract and the events fed from

sContractMonitor. It also maintains a service contract KB

for all the contract execution instances so it can reason the

overall contract status.

AST architecture can be classified into two categories.

One is a centralised AST and the other is a peer-to-peer

AST. In a centralised AST, it can be further categorized to

two styles, one is an in-line TTP AST and the other is an on-

line TTP AST. An in-line TTP AST’s sContractMonitor

acts as a HTTP proxy, seeing through all the interactions

between the consumer and the provider. Based on the

contract meta-data on the HTTP headers and the body

message, it can verify whether the obligations have been

met by checking the prescribed evidence. Then it generates

the assertion events to sContractManager.

sContractManager’s reasoner component determines the

service contract execution status and maintains an up-to-

date service contract execution KB based on the rules

defined in the service contract. Figure 1 illustrates the in-

line TTP AST model.

In an on-line AST Model, the service contract monitor

remotely monitors the consumer and the provider

separately. In a peer-to-peer AST model, each party will

have its own service contract monitor and manager, and

needs an arbitrator reasoner for dispute resolution.

sContractManager

Consumer Provider

sContractMonitor

HTTP Connector: Contract: Contract Execution KB: Service Resource

Figure 1. In-Line TTP AST Architecture

D. AST Protocols and an Example

In order to bring in service contract context information

during REST interactions, the following AST protocols are

proposed for communicating the contract meta-data:

Table II. Accountable State Transfer Protocol

AP1: Refer to service contract during service invocation:

HTTP Header: sContract: sContract_URI;

AP2: Add service contract meta-data to a service request:

HTTP Header: Required-Obligations: action_URI list;

AP3: Add service contract meta-data to a service response:

HTTP Header: Met-Obligations: action_URI list:

AP4: Query on contract execution status:

GET sContract_KB_URI?queryString;

AP5: Notify contract breach or execution abnormality:

POST involvedParty_URI with XML payload indicating

sContract or sContractExecution status.

The HTTP header in AP1 can be used in each REST

interaction to establish linkage to a service contract. AP2’s

HTTP header can be used when the consumer sends out a

request, indicating the request is relating to the provider’s

obligation as specified in the service contract. AP3 can be

used when the provider replies with a response, indicating

that the response is relating to the fulfilled obliged actions.

AP4 enables REST client and server to query the

sContractManager for contract execution status. AP5 allows

sContractManager to notify a client or the server on the

contract execution status.

Now we use an example to illustrate how the AST

works. Suppose a service provider pr (pr∈P) has signed a

contract SC with a consumer pc (pc∈P) to provide a Credit

Check service defined by s for a period of T. The contract

defines the terms relating to Credit Check in a definition set

D. The contract prescribes the provider’s obligation as Op

and the consumer’s obligation as Oc. Op =

{(P_checkCredit, E_creditEvidence), (P_returnError,

E_ErrorEvidence)}. The consumer’s obligation Oc =

{(C_provideInput, E_inputEvidence), (C_payFee,

E_feeEvidence)}. The valid action sequences are defined as

either “C_provideInput, P_checkCredit, C_payFee” or

“C_provideInput, P_returnError”. Also the contract defines

a set of rules R to determine the contract status st (st∈S)

based on the evidence of the fulfilled obligations.

There is no concept of service contract in traditional

REST. Both service provider and service consumer rely on

other means (mostly off-line and manual) to know the

performance status of the contract. With AST, the contract

performance can be tracked while executing the service.

Moreover, both client and server understand the “why”

behind the request and response (representational state

transfer) from a service contract perspective. For example,

when the consumer invokes the Credit Check service, he/she

issues the following request with the Http headers below:

GET
/credit_chk.jsp?fname=jon&lname=bond&id=102
435 HTTP 1.1
Host www.creditcheck.com
HTTP headers:
sContract:
http://sContractManager.com/creditcheck.owl
Required-Obligations: #P_checkCredit,
#P_returnError

With these HTTP headers, the consumer links the request to

a pre-established contract, also states that the request is

related to the provider’s obligations P_checkCredit and

P_returnError as prescribed in the contract.

When the server responds, it adds the HTTP headers to

further explain the response in relation to the contract:

HTTP/1.1 200 OK
HTTP headers:
sContract:
http://sContractManager.com/creditcheck.owl
Met-Obligations: #P_checkCredit
Required-Obligations: #C_payFee

V. IMPLEMENTATION OF AST ARCHITECTURE

A. Languages for Specifying the Service Contract Model

The ontology underpinning our service contract model

can be specified using Web Ontology Language (OWL),

which is recommended by W3C as the standard for

representing ontologies on the Web. OWL provides three

sub-languages with increasing level of expressiveness:

OWL-Lite (corresponding to SHIF (D) [16]); OWL-DL

(corresponding to SHOIN(D) [16]); and OWL-Full which is

an extension to Resource Definition Framework (RDF).

Both OWL-Lite and OWL-DL provide computation

completeness and decidability [17], whereas OWL-Full has

maximum expressiveness but no computational guaranteed.

As per the guiding principles in section III, OWL-DL is

chosen to specify our service contract model since it has the

better trade-off between expressiveness and decidability.

Other benefit of using OWL-DL is that the consistency of

the service contract can be validated using proven DL

reasoners such as RACER, KAON2, PELLET, etc.

However, OWL-DL has limitations. In particular it has the

well known “hasUncle” problem; i.e. it is impossible for

OWL-DL to describe the role chain of hasParent and

hasBrother leading to the hasUncle role. To address this

limitation, we leverage Semantic Web Rule Language

(SWRL) for defining rules to do contract state reasoning on

top of OWL-DL. SWRL is a W3C submission, extending

OWL-DL axioms with a set of horn clause rules. It is

basically a combination of OWL-DL and OWL-Lite with

the unary/binary Datalog sublanguages of the Rule Markup

Language (RuleML) [18].

While OWL-DL is decidable, SWRL is proven not

decidable [17]. To solve this problem, we further restrict

SWRL to DL-Safe rule. A rule r is called DL-Safe if each

variable in r occurs in a non-DL-atom in the rule body. A

program P is DL-Safe if all its rules are DL-Safe (see [17]

for details). The DL-Safe restriction is exposed to ensure

that the variables in the rule body are bound to only

explicitly existing individuals in the KB. Our model

complies with the DL-Safe restriction, which means that

anonymous individuals are disregarded in reasoning on

rules.

B. Service Contract Representation

We now formally define the representation for our

service contract model.

Definition 4: The service contract execution knowledge base

Ksc can be defined using DL’s Tbox T, Abox A, adding the

SWRL DL-Safe rules H, thus Ksc = (T, A, H), where:

• A TBox T consists of a finite set of concept inclusion

axioms of the form C b D, a finite set of role inclusion

axioms of the form R b S and transitivity axioms Trans(R),

where C and D are concepts, R and S are roles;

• An ABox A consists of a finite set of concept and role

assertions and individual equalities/inequalities C(a), R(a,

b), a = b, and a g b, respectively;

• A horn rule set H consists of a finite set of horn axioms. A

horn axiom consists of an antecedent (body) and a

consequent (head) in the form of: a ← a1.a2.….an, where

a, ai (0 [i [n) are atoms in rules that can be of the form

C(x), P(x, y), Q(x, z), sameAs(x, y) or differentFrom(x, y),

and C is an OWL concept; P is an object-valued property; Q

is a data-valued property; x, y are either variables or

individuals; and z is either a variable or a data value.

Variables x, y, z must be bound to named individuals in the

KB to satisfy the DL-Safe rule criteria.

C. Service contract Ontology and Axioms

Based on OWL-DL and DL-Safe criteria, we define a

service contract model that captures the fundamental aspect

of a service contract. Figure 2 shows a simplified version of

the ontology. A scContract class has contract term

definitions (Defintions class); it involves Party class, which

has subclasses of Provider and Consumer. Each party has

Obligation which consists of multiple Action and Evidence

pairs. A domain specific contract class like

CreditCheckContract inherits from the generic scContract

class. Such domain specific contract instance may be

executed multiple times. Each execution is an instance of

scContractExecution class. The scContractExecution

instance executes Obligations as defined in the scContract

and produces Evidence instances. If each Action instance

can be proven by the respective Evidence instance, then the

obligation is fulfilled. Otherwise either Provider or

Consumer may breach the contract depending on the

specific contract rules, which can be defined as the axioms

for a domain specific service contract model. A detailed

analysis on our model’s action semantics and the model

validation technique using Coloured Petri-Nets are

documented in [15].

scContract

scContractExecution

Party

Obligation

ContractState

ContractExecutionState

Action

Evidence

ServiceConsumer

ServiceProvider

Definitions

isa hasProperty

EvidenceObject

TimeStamp

EvidenceCondition

ProviderObligation

ConsumerObligation

Input

Output

Precondition
Postcondition

ConditionExpression

Role

Consumer

Provider
p1:Service

Parameter

ActionSequence

Figure 2. A Simplified Version of the Service Contract Ontology

We here list some axioms that determine the contract

state for our generic service contract model. For domain

specific service contracts, these axioms can be extended;

overwritten or new axioms can be developed based on the

specific terms and conditions of the underlying contract.

Table III Partial Generic Contract Axioms

scContract(?x) ∧ hasExecutionInstance(?x, false) →

inState(?x, INIT)

(1)

scContract(?x) ∧executedBy(?x, ?y) ∧

isContractExpired(?x, false)→ inState(?x, IN_PROG)
(2)

scContractExecution(?x) ∧startsAt(?x, ?y) ∧

noEvidenceSupportObligations (?x, ?z) ∧ isTimeOut

(?x, false)→ inExecutionState(?x, EINIT)

(3)

scContractExecution(?x) ∧ execute(?x, ?y)∧

specifiesObligation(?y, ?z) ∧ mustDo(?z, ?a) ∧

verifiedBy(?a, ?b) ∧ produceEvidence(?x, ?b) →

fulfilledObligations(?x, ?z)

(4)

Axiom 1 states that if a scContract instance does not
have any execution instance, then the scContract is in the
initial (INIT) state. Axiom 2 states that if the scContract
instance is executed by some execution instances and the
contract is not expired, then the service contract state is in-
progress (IN_PROG). Axiom 3 says if the instance of
scContractExecution starts at a particular time, but no
evidence produced to prove the fulfilment of obligations, and
the execution is not time out yet, then the contract execution
instance is in initial (EINIT) state. Axiom 4 determines
whether a particular obligation is fulfilled based on the
collected evidence.

D. Prototype Implementation

1) Overall Prototype Architecture

Figure 3 depicts the Credit Check service prototype that

implements the in-line TTP AST in Figure 1. The main

components are described below:

CreditCheck
Client

CreditCheck
Server

sContract Monitor

FireFox 3.011 Poster Websphere sMash v1.1.1Web Intermediaries (WBI 4.5)

Websphere Application Server 6.1

Pellet 1.5.2
Jess71P2

jms

working

Memory

Contract KB

Event

Processor

Evidence

Monitor

Event DB

Query Interface

ContractExecution

Reasoner

sContractTranslator

Contract

Authoring
Protégé 3.4.3

sContractManager

Figure 3. Prototype in-line TTP AST Implementation

CreditCheck Client: We used Firefox Poster to simulate a

Credit Check client. Firefox Poster provides an intuitive

interface for sending REST requests with user defined

HTTP Headers.

sContractMonitor: sContractMonitor is built on a

RESTful component – Web intermediary. We used IBM’s

Web Intermediaries Development Kit 4.5 (WBI DK) [19] as

the underlying Web intermediary platform, creating a

Monitor plug-in to track the HTTP messages. The messages

will be sent to sContractManager through JMS.

CreditCheck Server: A Credit Check server is developed

and hosted in Websphere sMash [20], which provides an

environment for developing and hosting REST applications.

Contract Authoring: Protégé 3.4.3 [21] is used as the

service contract authoring tool. SWRLtab in Protégé is used

for SWRL rule authoring.

Pellet 1.5.2: Pellet 1.5.2 [22] is the DL reasoner that is used

to classify the terms in service contract and check contract

consistency at design time.

sContractManager: sContractManager is implemented in

a Websphere Application Server (WAS). It consists of

sContractTranslator, QueryInterface, EventProcessor and

EvidenceMonitor. sContractTranslator converts the service

contract from OWL-DL / SWRL to Jess facts / rules using

XSLT, then sends them to ContractExecutionReasoner.

EventProcessor picks up the raw monitoring data, storing

evidence data into an event database. Then

EvidenceMonitor checks if the evidence is valid, if so, it

sends assertions to ContractExecutionReasoner. Finally the

QueryInterface allows contract status query from both the

client and the server.

ContractExecutionReasoner: This component receives

Jess facts or rules, and then invokes Jess71p2 [23] to do

reasoning, maintaining the contract execution KB in Jess’s

working memory.

2) Implementation of Hybrid Reasoning Mechanism

Based on architectural decision 4 outlined in Section

III.D, we adopt a hybrid approach to reasoning. In contract

authoring stage, DL reasoner like Pellet will be used for

normal TBox and ABox reasoning in design time. After the

service contract is developed, the OWL-DL ontology will be

translated to Jess facts via one XSLT file, while the SWRL

rules will be translated to Jess user-defined rules via another

XSLT file. Additionally, we need to import pre-defined Jess

rules, which are transformational implementations for OWL

semantics [24]. Then the Jess facts and (pre-defined and

user-defined) rules will be fed into the Jess engine, taking

advantage of the fast Rete algorithm for contract state

reasoning at runtime. In our prototype, we created a

CreditCheckServiceContract based on scContract in Figure

2. The contract is between service provider CreditBureau

and consumer MortgageBank. CreditBureau’s obligation is

to complete actions P_checkCredit or P_returnError if

exception occurs. MortgageBank’s obligation is to complete

actions C_provideInput and C_payFee. The actions need to

be proven by evidences which are also defined in the service

contract ontology. This contract instance will be executed

multiple times during the valid contract period. Each

execution instance is an instance of CreditCheckExecution

class. In addition to the generic axioms listed in Table III,

domain specific axioms can be defined to reason Credit

Check specific execution state. Two example rules used to

determine if the service participants breach the obligation is

listed below. Other axioms are omitted due to space limit.

Table VI Credit Check Specific Axioms

CreditCheckServiceExecution(?x) ∧ isTimeOut(?x, true) ∧ fulfilledObligations(?x, OC_ProvideCustomerDetails) ∧ noEvidenceSupportObligations(?x,

OP_ProvideCreditScore) ∧

noEvidenceSupportObligations(?x, OP_ReturnError) →

inExecutionState(?x, EP_NOPF)

(5)

CreditCheckServiceExecution(?x) ∧ isTimeOut(?x, true) ∧ fulfilledObligations(?x, OP_ProvideCreditScore) ∧

noEvidenceSupportObligations(?x, OC_PayServiceFee) →

inExecutionState(?x, EC_NOPF)

(6)

Axiom 5 states that if MortgageBank has provided input

for credit check, but CreditBueau hasn’t provided credit

score nor returned error; and the execution is timeout, mark

the current contract execution instance as status EP_NOPF

(Service Provider Non-Performing obligations). Simular

rule defined in Axiom 6 to determine consumer non-

performing obligation. Note that the reasoning power is

limited by the expressiveness of OWL DL and SWRL, so

normal programming logic is still needed to address the

limits of DL reasoner and rules engine. For example, the

predicate isTimeOut in Axiom 5 is very difficult for

reasoners to decide because that there is no current time

concept in OWL-DL, nor is provided in the SWRL’s

temporal built-in. However, it can be easily done in a Java

program by checking the current time, and producing an

assertion triple to the Jess engine. So our hybrid approach

can be simply described as: DL reasoning at design time,

Jess Rule reasoning at runtime, with input assertions

produced by a Java program.

3) Results and Discussions

The test environment is based on a PC with a duo-core

2.4 GHz Intel CPU, 2GB RAM running on Windows XP.

After completing the design of Credit Check service

contract in Protégé, the Pellet reasoner is invoked to check

the consistency of the ontology. It took 1.68 seconds to

classify the taxonomy and 3.81 seconds to check the

consistency of the service contract model. Then through

sContractTranslator, both OWL-DL and SWRL rules are

translated into Jess facts and rules. It took 1562 milliseconds

for running sContractTranslator to translate OWL facts to

Jess facts, generating 1948 asserted triples. Jess took less

then 1 second to reason the input jess facts and jess rules,

generating 2621 inferred triples in its working memory. As

Jess’ Rete algorithm is linier to the number of rules and

polynomial to the number of objects [25], when the KB

grows, we need to scale up the underlying environment to

cater for the load. Once the translation is done, the

sContractManager is waiting for event collected by the

sContractMonitor. Once evidenceMonitor picks up an event,

it validates if it is an evidence for a particular obligation.

There is no noticeable performance impact on both

client and server, mainly due to the decoupling of

sContractManager and sContractMonitor. The

sContractMonitor is just a read-only plugin installed in a

Web proxy; which is a widely adopted pattern in today’s

internet environment.

The limitation of translating OWL-DL to Jess facts is

documented in [26]. In our model, since we only use OWL-

DL reasoner at design time to verify the consistency of

concepts in the service contract, in addition we apply DL-

Safe restrictions in our model; and we use Jess rule engine

for run time reasoning, hence our reasoning is sound and

complete in each reasoning stage. Theoretically, we

acknowledge the loss of information when combining the

two reasoning paradigms with interfaces for translating

OWL-DL to Jess facts. However, the loss information in our

model is about reasoning on anonymous individuals, and

such anonymous individuals in rules are disregarded due to

our adoption of the DL-safe restriction.

Another interesting issue is about negation. OWL-DL is

based on an open world assumption and thus can not reason

“negation as failure”. In our model, we work around this

problem by defining properties like

noEvidenceSupportObligations. The evidence monitor

EvidenceMonitor is responsible to generate a Jess assertion

on this property if no evidence is found. Therefore we can

use Jess rule engine to reason non-fulfilled obligations. This

demonstrates the strengths of our hybrid reasoning approach.

VI. CONCLUSION AND FUTURE WORK

REST is increasingly becoming a key architectural style,

thanks to the growing popularity of the Web 2.0 technology.

REST services also form a major part of the services offered

through SaaS or Cloud Computing. Thus building

accountability mechanism in the REST architecture is

crucial for the long-term viability of these new business

models. In this paper, we address the accountability gap in

REST by proposing an innovative architecture extension

AST to enable accountability in RESTful services. Our

contributions can be summarized as: Firstly, we outline the

architectural principles and decisions for enabling

accountability in an e-Services environment. Secondly,

guiding by those principles and decisions, we propose a

novel AST architecture with an accountable state transfer

protocol to enable service accountability, yet retaining

scalability of REST architecture. The new architecture

seamlessly integrates service contract semantics into the

traditional syntactic-based REST services. Thirdly we apply

the formal service contract model in [15] to design a Credit

Check domain specific service contract with a hybrid

reasoning mechanism that leverages strengths from

formalisms like DL, Rules and traditional programming

language. The hybrid reasoning mechanism provides

capabilities like temporal reasoning and “negation as

failure” that are not found in normal DL and SWRL.

Moreover, it separates reasoning in design-time stage and

runtime stage, taking into account of both expressiveness

and computational complexity of the underlying logic

formalisms. Lastly we provide a prototype implementation

for a Credit Check service that demonstrates the practicality

of AST architecture, proving that the new AST architecture

can be implemented with existing products and

technologies. All these are not covered by [15].

The new architecture allows service obligation

disclosure, obligation tracking, and action justification in a

stateless service environment. With such capabilities

provided at the architectural level, effectively service

participants can be held accountable for each

representational state transfer during service consumption.
Finally we observe that the future work entails applying

the service contract model to SOAP-based Web Services
model and Enterprise Service Bus (ESB) solutions.

REFERENCES

[1] R.T. Fielding, Architectural Styles and the Design of Network-based

Software Architectures, Dissertation, Doctor of Philosophy, University

of California, Irvine, 2000.

[2] A. Schedler, Self-Restraining State: Power and Accountability in New

Democracies, pp. 13-28. Lynne Reiner Publishers, 1999

[3] J.R. Erenkrantz, M.M. Gorlick and G. Suryanarayana, From

Representations to Computations: The Evolution of Web Architectures,

ESEC/FSE’07, ACM, 2007.

[4] R. Khare and R.N. Taylor, Extending the REpresentational State

Transfer (REST) Architectural Style for Decentralized Systems,

Proceedings of the 26th Intl. Conf. on Software Engineering, 2004.

[5] Kwei-Jay Lin, Joe Zou and Yan Wang, Key Note, Accountability

Computing for e-Society, The International Conference on Advanced

Information Networking and Applications, IEEE, 2010.

[6] A. Dan and et al.: Business-to-Business Integration with TPAML and a

Business-to-Business Protocol Framework, IBM System Journal, 2001

[7] L. Xu, Monitoring Multi-party Contracts for E-business, Dissertation,

Doctor of Philosophy, University of Toronto, 2004

[8] A. Daskalopulu, Logic-Based Tools for the Analysis and

Representation of Legal Contracts, Dissertation, Doctor of Philosophy,

University of London, 1999.

[9] G. Governatori and Z. Milosevic, A Formal Analysis of a Business

Contract, Language, Proc. Int’l J. Cooperative Info. Sys., vol. 15, no. 4,

2006, pp. 659–685, 2006.

[10] M.J. Carlos and et al., Run-Time Monitoring and Enforcement of

Electronic Contracts, Electronic Commerce Research and Applications,

vol. 3, no. 2, 2004, pp. 108–125, 2004.

[11] A.D.H. Farrell and et al., Performance Monitoring of Service-Level

Agreements for Utility Computing Using the Event Calculus, Proc. 1st

Int’l Workshop Electronic Contracting, pp. 17–24, IEEE Press, 2004.

[12] P. Grefen and et al., CrossFlow: Cross-Organizational Workflow

Management in Dynamic Virtual Enterprises, J. Computer Systems

Science and Eng., vol. 15, no. 5, 2000, pp. 277–290

[13] H. Liu and et al., Modeling and Reasoning about Semantic Web

Services Contract using Description Logic, The Ninth International

Conference on Web-Age Information Management, IEEE, 2008.

[14] B. Grosof and T. Poon, SweetDeal: Representing Agent Contracts

with Exceptions Using XML Rules, Proc. 12th Int’l Conf. World Wide

Web, pp. 340–349, ACM Press, 2003.

[15] J. Zou, Y. Wang and K.J. Lin, A Formal Service Contract Model for

SaaS and Cloud Services, paper submitted to SCC 2010, 2010.

[16] I. Horrocksand P.F. Patel-Schneider, Reducing OWL Entailment to

Description Logic Satisability, 2nd International Semantic Web

Conference, Florida, USA, October, 2003.

[17] B. Motik, U. Sattler and R. Studer, Query Answering for OWLDL

with Rules, The SemanticWeb ISWC: 3rd International Semantic Web

Conference, Hiroshima, Japan, 2004

[18] I. Horrocks and P.F. Patel-Schneider, A proposal for an OWL rules

language. In The Thirteenth International World Wide Web

Conference, New York, May ACM Press, 2004.

[19] IBM, Web Intermediaries DK, http://www.almaden.ibm.com/cs/wbi/

[20] IBM, Available at http://www.projectzero.org/

[21] Protégé, Available at http://protege.stanford.edu/

[22] Pellet, Available at http://clarkparsia.com/pellet/download/

[23] Jess, Available at http://www.jessrules.com/download.shtml

[24] J. Mei, E. Paslaru Bontas and Z. Lin, OWL2Jess: A Transformational

Implementation of the OWL Semantics, ISPA Workshops 2005,

LNCS 3759, pp. 599–608, Springer-Verlag Berlin Heidelberg, 2005.

[25] C.L. Forgy, On the Efficient Implementation of Production Systems,

Ph.D. dissertation, Carnegie-Mellon University, 1979.

[26] J. Mei, and E. Paslaru Bontas, Reasoning Paradigms for SWRL-

enabled Ontologies,Protégé With Rules Workshop, Madrid, 2005.

