
Secure Route Structures for The Fast Dispatch
of Large-Scale Mobile Agents

Yan Wang1, Chi-Hung Chi2, and Tieyan Li3

1 Department of Computing, Division of Information and Communication Sciences,
Macquarie University, NSW 2109, Australia

2 Department of Computer Science National University of Singapore 3 Science Drive
2, Singapore 117543

{ywang, chich}@comp.nus.edu.sg
3 Infocomm Security Department, Institute for Infocomm Research, 21 Heng Mui

Keng Terrace, Singapore 119613
litieyan@i2r.a-star.edu.sg

Abstract. For the application of large-scale mobile agents in a dis-
tributed environment, where a large number of computers are connected
together to enable the large-scale sharing of data and computing re-
sources, security and efficiency are of great concern. In this paper, we
present secure route structures and corresponding protocols for mobile
agents dispatched in binary to protect the dispatch route information
of agents. The binary dispatch model is simple but efficient with a dis-
patch complexity of O(log2n). The secure route structures adopt the
combination of public-key encryption and signature schemes and expose
minimal route information to hosts. The nested structure can help to
detect attacks as early as possible.

1 Inroduction

Mobile agents are computational entities that are autonomous, mobile and flex-
ible that can facilitate parallel processing. Very often, a mobile agent acts on
behalf of its owner to migrate through the distributed network, completes the
specified tasks and returns results back to the owner [1–3].

The use of mobile agents in a distributed environment is gaining increasing
attention. For example, in a national scale Grid environment [4–8], a large num-
ber of computers are loosely coupled together to enable the large-scale sharing of
data and computing resources, where agents, especially mobile agents, are nat-
urally the tools for monitoring, managing hosts and deploying jobs. Typically,
a mobile agent can carry a computational job and execute at a host after being
dispatched there. Likewise, in a mobile agent based E-commerce environment
[9], mobile agents can be dispatched as the request of a consumer (end-user)
to visit e-shops for asking offers for a specified product, evaluating these offers
and negotiating with shops. In the above-mentioned environments, an efficient
dispatch model is important and initial dispatch route information should be
protected against potential malicious hosts. Otherwise, some attacks may be

easily mounted breaking the deployment of agents. So, if the owner needs to dis-
patch large-scale mobile agents, the security and efficiency are of great concern
[10, 11].

Tamper-poof devices [12] and secure coprocessors [13] are hardware-based
mechanisms that can be used for protecting mobile agents and hosts. Software-
based approaches involve more work such as using Hiding Encrypted Function
(HEF) [14], using proxy signature [15] and using delegation certificate [16]. How-
ever, these approaches are either limited in certain context or arise other secu-
rity problems. The secure structure for an individual mobile agent is discussed
in [10]. Several secure route structures are presented in [17] for protecting a se-
rially migrating agent. But a serial migrating agent can only satisfy small-scale
applications and it is not adequate for Grid computing or E-commerce where
parallelism is exploited to ensure high performance and fast response. In such a
case, dispatching agents in parallel is essential. However, the secure route struc-
tures for mobile agents become more complicated.

In this paper, we focus on the issue of efficiently dispatching mobile agents
while protecting their routes. We first present a fast binary dispatch model
(FBD), which is able to efficiently dispatch a large number of mobile agents
in parallel. Based on this model, we present several secure route structures and
security enhanced parallel dispatch protocols, which will expose minimal route
information to current hosts. The nested structure of secure route can help to
detect attacks as early as possible. In terms of security and robustness, these
models are improved one by one targeted at preserving the efficiency of the hier-
archical dispatch model while ensuring route security. In this paper, we assume a
secure mobile agent environment employing well-known public key cryptography
[19] and X.509 certification framework [18–20]. In the following, we assume that
there exists a secure environment including the generation, certification and dis-
tribution of public keys. Each host enables an execution environment for mobile
agents and can know the authentic public key of other hosts.

The rest of this paper is organized as follows: Section 2 first previews the
BBD model, a basic binary dispatch model. Then it presents FBD model, a fast
binary dispatch model. Two secure route structures based on FBD are presented
in Section 3. The security properties of two route structures are also compared
in this section. The complexities of the route generation of different structures
are analyzed in Section 4. Finally, Section 5 concludes this work.

2 A Fast Binary Dispatch Model (FBD)

When there are n mobile agents, a serial dispatch model is to dispatch them one
by one. But it is not efficient since the dispatch complexity is O(n).

In [21, 22], we proposed the basic binary dispatch (BBD) model. It is a typical
parallel dispatch model where each parent agent can dispatch two child agents
resulting in a binary dispatch tree structure with the dispatch complexity of
O(log2n). We term an agent as a Master Agent (e.g. A0 in Figure 1) if it is
created at the home host (e.g. H0) and is responsible for dispatching a pool of

mobile agents to remote hosts. We call an agent a Worker Agent (WA) if its sole
responsibility is to perform simple tasks assigned to it, e.g. accessing local data.
If a WA also dispatches other worker agents besides performing the task of local
data accessing, it is called a Primary Worker Agent (PWA).

A15 A16
4T 5T

A15 A16 A14
4T 5T 5T

 A0

A7(3T) A8(4T) A9(4T) A10(5T) A11(4T) A12(5T) A13(5T) A14(6T)

 A3(2T) A4(3T) A5(3T) A6(4T)

 A1(T) A2 (2T)

(a) A possible binary dispatch for 6T

Master Agent PWA WA

 A0

A7(3T) A8(4T) A9(4T) A10(5T) A11(4T) A12(5T) A13(5T) A14(6T)

 A3(2T) A4(3T) A5(3T) A6(4T)

 A1(T) A2 (2T)

(b) An optimized binary dispatch for 5T

Fig. 1. FBD dispatch tree with 16 mobile agents

While the BBD model [21, 22] is efficient, it has a drawback. For example, if
there are 16 mobile agents, 8 mobile agents arrive at their destinations and start
their local tasks at 4T and other 8 mobile agents do at 5T. Here we distinguish
the tasks of a PWA by dispatch tasks and local tasks. Agent A1 arrives at its
destination at 1T but it can only start its local data access task at 4T since it
has to dispatch other agents. The start time is the same with agents A2 to A8.
So do other PWAs. In other words, half of the n agents can start their tasks at
time (log2n)T and the other half at time (log2n + 1)T .

As shown in Figure 1, in the FBD model, a PWA is only responsible for
dispatching 1 or 2 child agents before starting its local task. No virtual dispatch
is necessary. But to obtain fast dispatch performance, partial adjustment is nec-
essary. As shown in Figure 1, one node should be moved to the left branch so

that the overall dispatch time is within (log2n + 1)T (see Figure 1b). It is the
same with 32 or n (when n = 2h, h is an integer) agents.

We can observe in Figure 1b that A1 starts its local task at 3T no matter
how many descendent agents it has. It is 4T for A2 and A3, and 5T for A4 and
A5 etc. The latest one is (log2n + 1)T when having n agents altogether. The
final one is the same with BBD model. That means that the starting times of
all agents disperse equally from 3T to (log2n+1)T but the dispatch complexity
remains O(log2n). This significantly benefits the efficiency when the number of
mobile agents is large.

For the implementation strategy of both BBD and FBD models, in IBM Java-
based Aglets system [1], if all agents have the same type of tasks with different
arguments, a clone-based strategy can be adopted. This can reduce the network
bandwidth. Otherwise, all agent classes can be packaged in a JAR file that can
be attached with a dispatched agent. A new agent instance can be created from
it. For both strategies, the common feature is that when a new agent is created,
arguments can be encapsulated before it is dispatched. Here in this paper, we
focus on the generic route structures and ignore implementation details.

3 Two Secure Route Structures

In this section, we will discuss possible solutions of secure route structure and
dispatch protocol based on the FBD model.

The structure of an agent can be described as follows:
{Cer0/id0, S, C, D}
Cer0 is the certificate of its sender, which should be a registered host in a

PKI (Public Key Infrastructure) environment. With it, a receiver could verify the
ownership of a coming agent. Without loss of generality, for simplicity, Cer0 can
be replaced by the unique id of the sender. S is the state of an agent represented
by a set of arguments. A route is part of it. C is the code of the agent and D is
the results obtained after execution. It can be sent back through messages.

In the FBD model, if no secure route structure is provided, a host where a
PWA resides can know all addresses of the hosts where the PWA’s descendant
agents should go. Attacks can be easily mounted without being detected.

In this section, to propose several secure route structures, we adopted the
combination of public-key encryption and signature schemes. In our protocol, all
routes are generated by master agent A0 at home host H0 before any dispatch
is performed. Routes are encrypted by public keys of corresponding hosts that
will be visited. A carried encrypted route can be decrypted with the assistance
of the destination host. The host also helps to dispatch child agents when a
PWA arrives there. The agent can verify the validity of plaintext using included
signature. The host can delete a used route after the corresponding dispatch is
successful.

In the following context, we assume the following scenario. A host (say, home
host H0 here) needs to dispatch a pool of mobile agents to other hosts for
execution. After generating corresponding secure routes, the master agent A0

dispatches 2 PWAs by FBD, encapsulating secure routes to them and then
waits for returned results. To simplify, we also suppose that agent Ai should be
dispatched to host Hi where once arriving, Ai should deploy its subsequent child
agents if it is a PWA or complete its local task if it is a WA. In our description,
h̄ denotes the one-way hash function. PA denotes the public key of participant
A while SA denotes A’s secret key.

Also we will examine if these secure route structures can be used to detect
the attacks as follows.

ATK1 : route forging attack (forge a route)
ATK2 : route delete attack (delete a unused route)
ATK3 : dispatch skip attack (skip a predefined dispatch)
ATK4 : replay attack (dispatch a forged agent to a visited host)
ATK5 : wrong dispatch attack (dispatch an agent to a wrong host)
ATK6 : dispatch disorder attack (break the predefined dispatch order)

3.1 Secure Route Structure (I)

During the process of dispatching, a PWA resides at the same host without any
migration. Its task is to dispatch one or two child agents and then complete its
local task.

The secure route structure is as follows:
Secure Route Structure (I)
(i) For a PWA A at current host CH,
r(A)=PCH [isPWA, ip(LH), r(LA), ip(RH), r(RA), ip(H0), t, SH0(h̄(isPWA,

ip(PH), ip(CH), ip(LH), r(LA), ip(RH), r(RA), ip(H0), id(H0), t))]
(ii) For a WA A at current host CH,
r(A)=PCH [isWA, ip(H0), SH0(h̄(isWA, ip(PH), ip(CH), ip(H0), id(H0), t))]
where
- r(A) denotes the route obtained at host H that is encrypted by the public

key of H, say PH ;
- isPWA or isWA is the token showing the current agent is a PWA or a WA;
- ip(H) denotes the address of host H ;
- CH is the current host; LH and RH are the left child host and right child

host and PH is the parent host of CH ; H0 is the home host;
- LA is the left child agent of A and RA is the right one;
- if current agent has only one child agent, ip(RH) and r(RH) are NULL;
- id(H0) denotes the unique identification of H0; here for simplification, we

use it to represent the ownership;
- t is the unique timestamp when the route is generated at H0 and it is

unique in all routes;
In route structure (I), the route of an agent is encrypted by the public key

of its destination host. The route is encapsulated when it is dispatched by its
parent agent. Starting the binary dispatch process with secure routes, the master
agent A0 dispatches two PWAs to different hosts, each being encapsulated with
an encrypted route for future dispatch task. When an agent has successfully

arrived at the current host CH, it should send back a feedback message to its
parent host PH confirming the successful dispatch as follows:

PPH [ip(CH), tR, SH0(h̄(. . .), SCH(ip(CH), tR, SH0(h̄(. . .))]
This message is encrypted by the public key of home host including the

signature by H0 included in the dispatched agent’s route. tR is the time when
the agent is received.

The carried route r(A) can be decrypted with the secret key of CH so that
the agent can know:

- it is a PWA or a WA. This is used to determine if it needs to dispatch child
agents;

- the signature signed at host H0, i.e., SH0(h̄(isPWA, ip(PH), ip(CH), ip(LH),
r(LA), ip(RH), r(RA), ip(H0), t)) for a PWA, or SH0(h̄(isWA, ip(PH), ip(CH),
ip(H0), t)) for a WA.

If it is a PWA, it will also know
- the address ip(LH) of the left child host LH and its route r(LA);
- the address ip(RH) of the right child host RH and its route r(RA);
For any PWA or WA, the route includes the address of H0 (i.e. ip(H0)), the

home host where A0 is residing. With this address, the agent can send its result
back to A0.

Next, we illustrate the dispatch process through an example.
1 When A0 is dispatched to H1, it carries its route r(A1).
2 After the route is decrypted, namely

r={isPWA, ip(H3), r(A3), ip(H4), r(A4), ip(H0), t, SH0(h̄(. . .))}
A1 obtains addresses ip(H3) ip(H4) and ip(H0), routes r(A3) and r(A4).

3 Then A1 dispatches agent A3 to host H3, encapsulating route r(A3) to it.
4 Once arriving H3, A3 sends back a confirmation message as follows:

msg = PH1 [ip(H3), tR3 , SH0(h̄(. . .), SH3(id(H3), ip(H3), tR3 , SH0(h̄(. . .))]
where tR3 is the time when H3 received A3

5 After that A1 dispatches agent A4 to H4 and receives a message from A4.
6 Hereafter A1 will start to complete its local task and return the result to

A0 at H0.
Clearly, under this model, at any layer, only the addresses of the 2 child hosts

are exposed to the current host.
Next, we will examine if route structure (I) and its dispatch protocol can

detect the above-mentioned attacks.
Fist, route structure (I) adopts a nested structure. Each route is encrypted

by the pubic key of the destination host. It does not need the agent to carry any
key.

Second, in each route, a signature by H0 is included which includes the
information of the rest of the route. At a destination, the host could use the
public key of H0 and the public hash function h̄ to check the signature and
verify the data integrity of the route. Since no party knows the private key of
H0, the signature cannot be forged. That means a forged route can be found
by the destination host (ATK1). Even if a sub-route (say, r(LA) or r(RA)) is
deleted by current host, the agent can also check the integrity via a trust third

party (TTP). And deleting a route will cause no results returned to master agent
A0. So a route deletion attack (ATK2) or a dispatch skip attack (ATK3) will
be found.

Meanwhile since t is unique in all routes and signatures, and signatures can-
not be forged, a replay attack can be found by the destination host (ATK4). In
a signature, the dispatch route, i.e. the path from parent host PH to current
host CH and to child host LH or RH, is included also. This can reduce the
redundancy of the route (ip(PH) and ip(CH) appear in the signature only) and
detect a wrong dispatch (ATK5).

But with route structure (I), a PW A could dispatch its right agent first or
dispatch agents after the local task is completed. That means the dispatch order
may not be strictly followed (ATK6). Thus the overall dispatch performance
will be worsened. The reason is that two sub-routes for child agents are obtained
simultaneously when a route is decrypted. Moreover there is no dependency
between two dispatches.

3.2 Secure Route Structure (II)

In the following, an alternative route structure is presented where the route of
the right child agent is included in the route of left child agent. When the left
child agent is dispatched to the left child host, a feedback is returned to the
current agent including the route for the right dispatch. With it, the current
agent can dispatch the right child agent to right child host. Hereby, the dispatch
order could not be broken (ATK6) while the properties against other attacks
remain the same.

Obviously in this route, the structures for left dispatch and right dispatch are
different since a left dispatch should return a predefined route that is included
ahead. For the right dispatch, there is no such a sub-route.

Secure Route Structure (II)
(i) For a PWA A at current host CH, if A is a left child agent of its parent

agent at host PH, the route for A is:
r(A)=PCH [isPWA, ip(LH), r(LA), ip(RH), ip(H0), r(ARS), t, SH0(h̄(isPWA,

ip(PH), ip(CH), ip(LH), r(LA), ip(RH), ip(H0), r(ARS), id(H0), t))]
where
- ARS is the right-sibling agent of A, namely, the right child agent of A’s

parent agent;
- r(RA) is not included in r(A).
(ii) For a PWA A at current host CH, if A is a right child agent of its parent

agent at host PH, the route for A is:
r(A)=PCH [isPWA, KPA, ip(LH), r(LA), ip(RH), ip(H0), t, SH0(h̄(isPWA,

KPA, ip(PH), ip(CH), ip(LH), r(LA), ip(RH), ip(H0), id(H0), t))]
where
- KPA is a switch variable for parent agent PA that is encrypted by the public

key of parent host PH, say PPH ;
(iii) For a WA A at current host CH, if A is a left child agent of its parent

agent at host PH, the route for A is

r(A)=PCH [isWA, r(ARS), ip(H0), t, SH0(h̄(isWA, ip(PH), ip(CH), r(ARS),
ip(H0), id(H0), t))]

where
- ARS is the right-sibling agent of A, namely, the right child agent of A’s

parent agent;
(iv) For a WA A at current host CH, if A is a right child agent of its parent

agent at host PH, the route for A is
r(A)=PCH [isWA, KPA, ip(H0), t, SH0(h̄(isWA, KPA, ip(PH), ip(CH), ip(H0),

id(H0), t))]

(3)
 (1) (4)

(2)

(1)(3) dispatch an agent
(2)(4) send back a message

A1/H1

A3/H3 A4/H4

Fig. 2. Dispatch process of structure (II)

In route structure (II), a PWA arriving at the destination knows that it has
to dispatch 2 child agents and where they should go. But it does not have the
route for the right child agent. Only after its left child agent is dispatched can the
route for the right child agent be returned and hereafter the right dispatch can
be performed. Similar to structure (I), the route for the right agent is encrypted
by the public key of the right child host. So the left child host cannot decrypt
it and don’t know the address where the corresponding agent should go. This
could prevent a forged agent to be dispatched to the right child host by the left
child agent. In terms of the route structure, the route for the right child agent,
say r(RA), is moved from r(A) to the route of left child agent r(LA) (hereby
r(RA) is denoted as r(ARS)). Likewise, in structure (II), a switch variable for
current host CH is included in the route of its right child agent. Here we assume
that each agent has its unique switch variable encrypted by the public key of
its destination host. Only after the right child agent is dispatched can current
agent obtain it to start its local task.

Next, we will illustrate the dispatch process of agent A1 (see Figure 2).
1 When A1 arrives H1, its decrypted route is

r={isPWA, ip(H3), r(A3), ip(H4), ip(H0), t, SH0(h̄(. . .))}
2 A1 will know it is a PWA. Its left child agent is going to H3 with r(A3)

while its right child agent is going to H4 but there is no route for it now.
After A3 is dispatched to H3, A1 obtains r(A4) from a message as follows:

msg=PH1 [ip(H3), r(A4), tR3 , SH0(h̄(. . .)), SH3(ip(H3), ip(H3), r(A4),
tR3 , SH0(h̄(. . .)))]

where tR3 is the time when H3 received A3.
3 Hereby A4 could be dispatched.
4 From the successful dispatch of A4, A1 gets the switch variable KA1 to

start its task and return the result to A0 at H0.
In fact structure (I) has the same dispatch process as shown in Figure 2. But

the returned message is simpler.
Moreover, it is easy to see structure (II) remains the same properties as

structure (I) against attacks ATK1 to ATK5. Due to the special arrangement of
the route r(RA), the dispatch order will be strictly followed so that the dispatch
protocol can prevent dispatch disorder attack (ATK6).

The comparison of the security properties of two structures is listed in Table
1.

Table 1. Security Properties of Two Structures

ATK1 ATK2 ATK3 ATK4 ATK5 ATK6

Route (I) Y Y, by A0 Y, by A0 Y Y N
Route (II) Y Y Y Y Y Y

Y : the attack can be prevented or detected;
N : the attack cannot be prevented or detected.

4 Complexity Comparison of Route Structures

In this section, we analyze the complexity of route generation of different models.
To simplify, we assume that the time to encrypt a message of arbitrary-length
is a constant, say C.

step (1) step (2)

step (3)

Fig. 3. Steps in the route generation of structure (II)

In structure (I), when a branch has m nodes, the route of the root is generated
after two sub-routes are ready, which have m/2-1 and m/2 nodes respectively.





T (n) = 2T (n/2)
T (m) = T (m/2) + T (m/2− 1) + C (2 ≤ m ≤ n/2) (1)
T (1) = C

T (m) = T (m/2) + T (m/2 − 1) + C) < 2T (m/2) + C yields T(m)=O(m). So
T(n) is O(n).

In route structure (II), the route of the right child agent is generated first
(step 1 in Figure 3). Then it is included in the route of the left child agent (step 2
in Figure 3), which is included in the route of the parent agent (step 3 in Figure
3).

If each sub-branch has m/2 nodes, the complexity is




T (n) = 2T (n/2)
T (m) = 2T (m/2) + C (2 ≤ m ≤ n/2) (2)
T (1) = C

So T(n) is O(n).
Though structure (II) seems more complex than structure (I), their route

generation complexities are the same. The complexity comparison of two struc-
tures is listed in Table 2.

Table 2. Complexity Comparison of Two Structures

Route Generation Complexity Dispatch Complexity

Route (I) O(n) O(log2n)
Route (II) O(n) O(log2n)

5 Conclusions

This paper presented two secure route structures and corresponding dispatch
protocols based on a fast binary dispatch (FBD) model ensuring both security
and efficiency. They expose only minimal addresses to a host to perform dis-
patches. With the improvement of security performance in structure (II), the
complexity of route generation remains unchanged.

For practical applications, mobile agents with the same type tasks and phys-
ically close destinations can be put in the same group encapsulated with pre-
encrypted routes. For verifying the integrity of a coming agent, the pure code
can be included in the signature of a route after being hashed to a fixed length
(e.g. 128 bytes by MD5 algorithm) when it is generated at the home host. And
the length of the signature remains unchanged.

Though structure (II) has better properties, once a predefined host is not
reachable, all members predefined in a branch will not be activated. To resolve
this problem, a robustness mechanism should be designed. Furthermore, in our
future work, we will conduct experiments comparing the performance differences
of different protocols.

6 Acknowledgement

This work was partly supported by National University of Singapore. The au-
thors would like to thank the anonymous reviewers for their valuable comments.

References

1. D. B. Lange, and M. Oshima, Programming and Deploying Java Mobile Agents
with Aglets, Addison-Wesley Press, Massachusetts, USA, 1998

2. S. Papastavrou, G. Samaras, and E. Pitoura, Mobile Agents for World Wide Web
Distributed Database Access, IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 12, Issue 5, Sept.-Oct. 2000, pp 802-820

3. D. B. Lange, and M. Oshima, Mobile Agents with Java: The Aglet API, appears
in Mobility: Process, Computers, and Agents (edited by Milojicic, D., Douglis, F.
and Wheeler, R.), Addison-Wesley Press, Reading, Massachusetts, USA, 1999, pp
495-512

4. I. Foster, C. Kesselman, J. Nick, S. Tuecke,The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002

5. I. Foster, The Grid: A New Infrastructure for 21st Century Science. Physics Today,
55(2):42-47, 2002.

6. I. Foster, C. Kesselman, Computational Grids, Chapter 2 of ”The Grid: Blueprint
for a New Computing Infrastructure”, Morgan-Kaufman, 1999.

7. M. Baker, R. Buyya and D. Laforenza, Grids and Grid Technologies for Wide-Area
Distributed Computing, International Journal of Software: Practice and Experi-
ence, Volume 32, Issue 15, Wiley Press, USA, 2002.

8. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. Journal of Network and Computer Applications, 23:187-200,
2001

9. Y. Wang, K.-L. Tan and J. Ren, A Study of Building Internet Marketplaces on the
Basis of Mobile Agents for Parallel Processing, World Wide Web Journal, Kluwer
Academics Publisher, Vol. 5, Issue 1, 2002, pp 41-66

10. V. Varadharajan, Security Enhanced Mobile Agents, in Proceedings of the 7th
ACM conference on Computer and Communications Security, November 1 - 4,
2000, Athens, Greece, ACM Press, pp 200 - 209

11. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A Security Architecture for Com-
putational Grids, Proc. 5th ACM Conference on Computer and Communications
Security Conference, 1998, pp. 83-92

12. U. G. Wilhelm, Cryptographically Protected Objects, Technical Report, Ecole
Polytechnique Federale de Lausanne, Switzerland, 1997

13. E. Palmer, An Introduction to Citadel-a Secure Crypto Coprocessor for Worksta-
tions, in Proceedings of IFIP SEC’94 (Curacao, 1994)

14. T. Sander and C.F. Tschdin, Protecting Mobile Agents Against Malicious Hosts,
Mobile Agents and Security, LNCS Vol. 1419, Springer-Verlag, 1998, pp 44-60

15. P. Kotzanikolaou, M. Burmester, and V.Chrissikopoulos, Secure Transactions with
Mobile Agents in Hostile Environments, ACISP 2000, LNCS 1841, Springer-Verlag,
2000, pp 289-297

16. A. Romao, and M.M. Sliva, Secure Mobile Agent Digital Signatures with Proxy
Certificates, E-Commerce Agents, LNAI 2033, Springer-Verlag, 2001, pp 206-220

17. D. Westhoff, M. Schneider, C. Unger and F. Kenderali, Methods for Protecting
a Mobile Agent’s Route, in Proceedings of the Second International Information
Security Workshop (ISW’99), Springer Verlag, LNCS 1729, 1999, pp 57-71

18. P. Wayner, Digital Copyright Protection, SP Professional, Boston, USA, 1997
19. A. Menezes, P. Oorschot, and S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996
20. CCITT Recommendation X. 509-1989. The Directory-Authentication Framework.

Consultation Committee, International Telephone and Telegraph, International
Telecommunication Union, Geneva, 1989

21. Y. Wang and J. Ren, Building Internet Marketplaces on the Basis of Mobile Agents
for Parallel Processing, in the Procs. of 3rd International Conference on Mobile
Data Management (MDM2002), IEEE Computer Society Press, Jan. 8-11 2002,
Singapore, pp 61-68

22. Y. Wang, Dispatching Multiple Mobile Agents in Parallel for Visiting E-Shops,
in the Proc. of 3rd International Conference on Mobile Data Management
(MDM2002), IEEE Computer Society Press, Jan. 8-11 2002, Singapore, pp53-60

