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Abstract—In recent years, online social networks with
numerous participants have been used as the means for
rich activities, where trust is one of the most important
indications for participants’ decision making, demanding
the evaluation of the trustworthiness of a target participant
along a certain social trust path from a source participant.
However, there are usually many social trust paths between
participants. Thus, a challenging problem is how to select
the optimal one from massive social trust paths yielding
the most trustworthy trust evaluation result based on
participants trust evaluation criteria.

To address this issue, in this paper, we first propose a new
Multiple QoT Constrained Social Trust Path (MQCSTP)
selection model which considers both adjacent constraints
and end-to-end constraints, based on a novel concept Qual-
ity of Trust (QoT) and a novel complex social network
structure. We then model the MQCSTP selection as the
classical NP-Complete Multi-Constrained Optimal Path
(MCOP) selection problem. For solving this problem, we
propose an effective and efficient heuristic algorithm, called
H_MQCSTP. The results of our experiments conducted
on a real dataset of online social networks illustrate that
the proposed method outperforms existing models in both
efficiency and the quality of delivered solutions.
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I. INTRODUCTION

In recent years, social networking websites, such as MyS-
pace! and Facebook? have been attracting a large number of
participants. These websites have been used as the means for
diverse activities. For example, according to a survey on 2600
hiring managers in 2008 by CareerBuilder (careerbuilder.com,
a popular job hunting website), 22% of those managers used
social networking sites to investigate potential employees. The
ratio increased to 45% in June 2009 and 72% in January
2010. In addition, Microsoft has developed a dynamic CRM
(Customer Relationship Management) system®, which allows
business professionals to monitor and analyze customers’ con-
versations on social networking sites to improve their products
and services.

Social network consists of nodes representing participants
and links corresponding to real-world interactions or online
interactions between nodes (e.g., A — B and A — C' in Fig.
1). One participant can give a trust value to another based on
their interactions. For example, a trust rating can be given by
one participant to the other based on the quality of the movies
recommended by the latter at FilmTrust [6] which is a social
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Figure 1. Social network

networking site for movie recommendations. As multiple trust
paths may exist between two nonadjacent participants, such as
the trust path A — B — E — M and A — D — M in Fig. 1.
The source participant can evaluate the trustworthiness of the
target participant based on the trust information between the
intermediate participants along the path. This process is called
trust propagation and the path with trust information linking
the source participant and the target one is called a social trust
path [6, 8]. For example, in Fig. 1, if A is an employer and M
is an employee candidate in the social network, A can evaluate
the trustworthiness of M along the social trust paths from A
to M.

In large-scale social networks, there may be over many
thousands of social trust paths between a source participant
and a target participant [11]. Evaluating the trustworthiness
of a target participant along all these social trust paths leads
to huge computation time [2]. A challenging problem is that
among multiple paths, which one is the optimal yielding the
most trustworthy result of trust propagation. In the literature,
Lin et al. [15] propose an optimal social path selection method,
where all links are assigned the same weight and the shortest
path between the source participant and the target participant
is selected as the optimal one. This method neglects trust
information between participants. In another reported work [8],
the path with the maximal propagated trust value is selected
as the most trustworthy social trust path. But these methods
neglect social relationships between adjacent participants (e.g.,
the relationship between an employer and an employee) and
the recommendation roles of a participant (e.g., a supervisor as
a referee in his postgraduate’s job application), both of which
have significant influence on trust propagation [1, 23] and can
be obtained by using data mining techniques in social networks
[21, 25, 28]. In addition, in social networks, a source participant
may have different purposes in evaluating the trustworthiness of
the target participant, such as hiring employees or introducing
products. Therefore, a source participant should be able to set
certain constraints on the above factors in trust propagation,
which can help the source participant select the optimal social
trust path that can yield the most trustworthy trust propagation
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result. However, the above social trust path selection methods
neither consider these important impact factors nor support
these selection criteria.

In our previous work, we have proposed the social trust path
selection models [17, 20] to select one or K optimal social
trust paths. In these models, the above impact factors and the
constraints of these factors are considered. Although their per-
formance is good in path selection, they only support the end-
to-end constraints (i.e., the constraint of the aggregated values
of these factors in a path). But in applications, a source can have
constraints of the social relationship and/or trust between any
two adjacent participants, and/or the recommendation role of
each of the intermediate participants in a path. For example, in
Fig. 1, source A may have constraints of the trust value between
any two adjacent participants and the recommendation role of
each of the intermediate participants in the selected path from
A to M to reflect A’s path selection criteria. We term these
constraints as adjacent constraints, which are not supported
by any existing methods. Therefore, in order to deliver more
reasonable trust evaluation results, it is necessary to consider
these adjacent constraints of impact factors in social trust path
selection.

In this paper, we first present the structure of complex social
networks taking trust, social relationships and recommendation
roles into account, and a concept, Quality of Trust (QoT). We
then propose a Multiple QoT Constrained Social Trust Path Se-
lection (MQCSTP) model which considers both Adjacent QoT
Constraint (AQC) and End-to-End QoT Constraint (EEQC). As
the MQCSTP selection problem can be modeled as a classical
Multi-Constrained Optimal Path (MCOP) selection problem,
which is NP-Complete [10], and the existing approximation
algorithms [3, 10, 14, 30] for solving the MCOP selection
problem can not scale to large realistic social networks and
thus can not deliver good performance, we propose an effi-
cient heuristic algorithm, H_MQCSTP for solving MQCSTP
selection problem. Finally, we have conducted experiments on
a real online social network dataset, that is, the Enron email cor-
pus*. Experimental results illustrate H_MQCSTP outperforms
existing models in both efficiency and the quality of delivered
solutions..

II. RELATED WORK

The studies of social network properties can be traced back to
1960’s when the small-world characteristic in social networks
were validated by Milgram [22], through illustrating that the
average path length between two Americans was about 6 hops
in an experiment of mail sending. In recent years, Mislove
et al. [24] analyzed several popular social networks including
Facebook, MySpace, Flickr and Orkut, and validate the small-
world and power-law (i.e. in a social network, the probability
that a node has degree k is proportional to k=", r > 1)
characteristics of online social networks by using data mining
techniques.

Trust is a critical factor for the decision-making of partic-
ipants in online social networks [12]. In the studies of trust
propagation in social networks. Golback et al. [6] propose a
trust propagation mechanism, where the trustworthiness of a
target participant is calculated based on averaging trust values
along all social trust paths between a participant and the target
one. In addition, Guha et al. [7] propose a trust propagation
model, where the number of hops in trust propagation is
considered in calculating the propagated trust values of a target
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participants based on all social trust paths between a source
participant and the target one. Furthermore, Bi et al. [3] propose
a trust propagation method in an email based social network,
where each node represents an email sender or receiver who has
a global reputation and local trust values to other participants.
If there are m social trust paths, and n nodes in each social
trust path between a source participant (e.g., A) and the target
one (e.g., M), and the global reputation value of node 7 is 7;,
then the propagated trust Valge between A and M based on
trust path j is Ew(j) = w The weight of node
is defined as W; = 2= (hop(6:4)) where A is the truster and
hop(i, A) is the number of hops (direct edges) from node 4 to
A. The aggregated trust value based on m social trust paths is
j=1

LT Ay = #W(J) In the studies of trust management
of recommendation system in social networks, Walter et al. [26]
propose a trust model in a recommendation system based on
social networks where a participant can give a trust value to a
recommender based on the recommendation behavior. This trust
value is visible and regarded as a reference for other participants
to select recommendations. Jamali et al. [9] propose a random
walk model in a trust-based social network consisting of sellers
and buyers. In their model, a buyer performs several random
walks with a fixed number of hops to find the ratings to a seller.
The degree of confidence of the seller is calculated based on
the number of random walk hops, ratings and the number of
random walk paths.

As pointed in social science theories [1, 23], both social
relationships (e.g., the relationship between a buyer and a
seller) and recommendation roles (e.g., the supervisor as a
referee in a job application) have significant influence on trust
relation establishment, and can be obtained from online social
networks by using data mining techniques [21, 25]. However,
existing models and applications in the field of social networks
neglect these factors. In addition, in these trust management
methods, all social trust paths between a source participants
and the target one are selected to evaluate the trustworthiness
of a target participants, which leads to a huge computation time
[2] and thus do not fit large-scale social networks.

In the literature, there are only a few works addressing the
social path selection problem in social networks. SmallBlue [15]
is an online social network constructed for IBM staff. In this
system, between a source participant and a target participant,
up to 16 social paths with no more than 6 hops are selected
and the shortest one is taken as the optimal path. However,
in this method, some significant influence factors including
trust, recommendation roles and social relationships are not
taken into account in social path selection. Hang et al. [§]
propose a social trust path selection method in online social
networks, where the social trust path with the highest belief
(i.e., the maximum of propagated trust values) is selected as
the optimal one that yields the most trustworthy results of
trust propagation between a source participant and the target
participant. In their model, although trust information is taken
into consideration in social trust path selection, other two
important factors (i.e., social relationship and recommendation
role) are not considered. In addition, the above social trust
path selection methods do not support the selection criteria
specification by source participants in different applications. In
[17, 20], we have proposed the models for one or K optimal
social trust path selection, where the impact factors and end-to-
end constraints are considered. However, all existing methods
including our previous models do not support the adjacent
constraints which is one of the most important path selection



criteria from a source participant.

III. COMPLEX SOCIAL NETWORKS

The existing first and second generation of online social
network structures can not illustrate the complex social infor-
mation of social networks in real-world [16]. To address this
issue, we first present the complex social network structure,
depicted in Fig. 2. It comprises the attributes of three impact
factors. They are trust, social intimacy degree and role impact
factor, which influence the trustworthiness of trust propagation
and hence the decision making of a source participant. Here we
give a brief introduction about the structure. The more details
can be found in our previous work [19].

1) Trust.: In the context of this paper, trust between partic-
ipants in social networks is defined as “Trust is the belief of
one participant in another, based on their interactions, in the
extent to which the future action to be performed by the latter
will lead to an expected outcome.” Let Typ € [0,1] denote
the trust value that participant A assigns to participant B. If
Tap = 0, it indicates that A completely distrusts B while
Tap = 1 indicates A completely believes B’s future action
can lead to the expected outcome.

2) Social Intimacy Degree.: As illustrated in social psy-
chology [23], a participant can trust more the participants
with whom he/she has more intimate social relationships than
those with whom he/she has less intimate social relationships.
Let rap € [0,1] denote the Social Intimacy Degree (SID)
between participant A and participant B in social networks.
rap = 0 indicates that A and B have the least intimate
social relationship while r 45 =1 indicates they have the most
intimate social relationship.

3) Role Impact Factor.: Rich activities of participants in
social networks can be categorized into different domains (e.g.,
hiring employees or product sale) based on their characteristics
[27]. As illustrated in social psychology [1], in a certain domain
of interest, recommendations from a domain expert are more
credible than that from a beginner. Let p4 € [0, 1] denote the
Role Impact Factor (RIF), illustrating the impact of participant
A’s recommendation role on trust propagation in a certain
domain. p4 = 1 indicates that A is a domain expert while
pa=0 indicates that A has no knowledge in the domain.

Though it is difficult to build up comprehensive social
relationships and role hierarchies in all domains, it is feasible
to build them up in a particular application. For example, in the
work by Mccallum ez al. [21], through mining the subjects and
contents of emails in Enron Corporation?, the social relation-
ship between each email sender and receiver can be discovered
and their roles can be obtained. Then the corresponding SID and
RIF value can be calculated based on probabilistic models. In
addition, in academic social networks formed by large databases
of Computer Science literature (e.g, DBLP or ACM Digital
Library), the social relationships between two scholars (e.g.,
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co-authors or supervisor and his/her students) and the role of
scholars (e.g., professor in the field of data mining) can be
mined from publications and their homepages. The SID and
RIF values can be calculated by applying the PageRank model
[25]. The detailed mining method is out of the scope of this

paper.

IV. MULTIPLE QOT CONSTRAINED SOCIAL TRUST PATH
SELECTION
A. Quality of Trust (QoT)

In Service-Oriented Computing (SOC), QoS consists of a

set of attributes, used to illustrate the ability of services to
guarantee a certain level of performance [5]. Similar to the
QoS, we present a concept, Quality of Trust [19].
Definition 1: Quality of Trust (QoT) is the ability to guarantee
a certain level of trustworthiness in trust propagation along a
social trust path, taking trust (7), social intimacy degree (),
and role impact factor (p), as attributes.

B. QoT Constraint

Activities in social networks can be divided into different
domains [19], such as hiring employees or product sale. In
different domains, a source participant can have different prefer-
ences in evaluating the trustworthiness of the target participant.
Therefore, a source participant should be able to set certain con-
straints of QoT attributes, which can help the source participant
select the optimal social trust path, satisfying the requirements
in different domains. For this purpose, a source participant
can specify two types of QoT constraints, i.e., Adjacent QoT
Constraint (AQC) and End-to-End QoT Constraint (EEQC).

1) Adjacent QoT Constraint (AQC): Adjacent QoT Con-
straint (AQC) is the constraint of QoT attributes (i.e., T, r
and p) between any two adjacent participants in a social trust
path. Let Q%@QC) (uw € {T, r, p}) denote the adjacent QoT
constraint for the path between the source participant A and

the target participant M. Q’:‘(]@QC) > A, (0 < Ay < 1) means
that the value of QoT attribute p between any two adjacent
participants should be larger than A, in a selected social trust
path. In our model, a source participant can specify different
AQCs for social trust path selection in different domains. For
example, in hiring employees, A, a retailer manager specifies
AQCs as Q4199 > 0.3, Q749 > 0.3 and Q7°7 >
0.8. But when looking for new customers for selling products,
A can specify QTA(JQQC) > 0.8, if he/she believes the social
relationships between participants are more important.

2) End-to-End QoT Constraint (EEQC): In service invoca-
tions, service consumer can set multiple end-to-end constraints
for the attributes of QoS to satisfy their requirements (e.g.,
cost, delay and availability) of services. Different requirements
have different constraints (e.g., total cost<$20, delay<5s and
availability>70%). In our model, a source participant can set
multiple end-to-end constraints for QoT attributes (i.e., 7' r

and p) as the requirements of trust propagation in a social trust

path. Let Qfg(ﬁEQC) (u € {T, r, p}) denote the End-to-End

QoT Constraint (EEQC) between the source participant A and
the target participant M. QZ(]@EQC) > A (0 < A < D)
means the value of QoT attribute 1 between A and M should
be larger than A in a selected social trust path. Similar with
AQC, a source participant can also specify different EEQCs
for social trust path selection in different domains. For example,
in hiring employees, A can set EEQCs as QZ;SV?EQC) > 0.3,

TEERY) 5 0.3 and Q45FYY > 0.8. But when look-
ing for new customers for selling products, A can specify



TA(ﬁEQC) > 0.8, if he/she believes the social relationships

between participants are more important.

C. QoT Attribute Aggregation

When specifying end-to-end QoT constraints of social trust
path selection, we need to know the aggregated value of each
QoT attribute in a social trust path.

1) Trust Aggregation: If there are n participants aj, ..., an,
in order in a social trust path (denoted as p(ai,...,a,)), the
aggregated trust value is calculated based on Eq (1). This
strategy has been widely used in the literature as a feasible
trust aggregation method [26].

I1

(ai,air1)€p(ar,....an)

T,

plar,....an) =

1o, M

it

Different from existing works [8, 15], this aggregated trust
value will be combined with social intimacy degree and role
impact factor to identify the optimal social trust path that yields
the most trustworthy result of trust propagation,

2) Social Intimacy Degree Aggregation: Firstly, social in-
timacy between participants is attenuated with the increasing
number of hops between them in a social trust path [13]. In
addition, in the real-world, the intimacy degree is attenuated
fast when it is approaching one. In contrast, the intimacy degree
is attenuated slowly when it is approaching zero [23]. Namely,
the attenuation of social intimacy degree is non-linear in social
networks. The aggregated r value in path p(aq,...,a,) can
be calculated by Eq.(2) whose function image is a hyperbolic
curve, fitting the characteristic of social intimacy attenuation.

H(a,,a1+1)€p(a1,...,a") Ta; ait1
0(1

where 6 is the number of hops of path p(ay, ...
used to control the attenuation speed.

3) Role Impact Factor Aggregation: As the recommendation
roles do not have the property of transitivity [1], in this paper,
we average the RIF values of intermediate recommending
participants in a social trust path p(ay, ..., a,,) as the aggregated
value based on Eq. (3).

@3]

Tp(ay,...,an) =

Jan), a>11is

-1
_ Z?:z Pa;
n—2

3

pp(al,...,an)

D. Utility Function

In our model, we define the utility (denoted as F) as the
measurement of the trustworthiness of social trust paths. The
utility function takes the QoT attributes 7', r and p as the
arguments in Eq. (4).

‘E’(@«--,fln =W *

where wr,w, and w, are the weights of T, r and p respectively;
0 <wr,wrw, <1land wr +w, +w, =1

The goal of optimal social trust path selection is to select
the path that satisfies multiple adjacent and end-to-end QoT
constraints, and yields the best utility with the weights specified
by the source participant.

LECTION ALG RITHIE{[

V. S,OCEAL TRUST PAT%I S 5
The optimal social trust path selection with multiple adjacent

and end-to-end QoT constraints can be modelled as the classical
Multi-Constrained Optimal Path (MCOP) selection problem
which is an NP-Complete problem [10]. In this section, we
first analyze some existing approximation algorithms for the
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MCOP selection problem and then propose an efficient heuristic
algorithm, H_MQCSTP, for Multiple QoT Constrained Social
Trust Path selection.

A. Existing Approximation Algorithms for MCOP

In the literature, several algorithms have been proposed to
solve the MCOP selection problem.

Korkmaz et al. propose a heuristic algorithm, H_ MCOP [10].
In this algorithm, both multi-constraint values and QoS attribute
values are aggregated based on Eq. (5).

@) (qQ(p) am(P)

" )
@1 Q2 Qm
where A > 1; ¢;(p) is the aggregated value of the i*" QoS
attribute of path p; Q; is the i** QoS constraint of path p.

Firstly, H_MCOP adopts Dijkstra’s shortest path algorithm
[4] to find the path with the minimum g, from the target to the
source when A\=1, and stores g; which is the aggregated value
of the i*" QoS attribute from the target node to intermediate
node v. Secondly, from Eq. (5), if any QoS attribute does
not satisfy the corresponding QoS constraint in path p, then
ga(p) > m, indicating that no feasible solution exists in the
network. This process investigates whether a feasible solution
exists in the network. If g) (p) <m, the algorithm further adopts
Dijkstra’s shortest path algorithm to search the path with the
minimum cost and calculates ql’.’/ which is the aggregated value
of the i*" QoS attribute from the source node to intermediate
node v. In this process, the aggregated i*" QoS attribute value
of each node is calculated as ql-/ +q;. If qfl +q; satisfies
the QoS constraint ();, then the algorithm continues to search
the path with the minimum cost from v to the target node.
Otherwise, it stops searching the path with the minimum cost
and consequently starts searching the path with the minimum
gx (A > 1). In this process, if the identified path with the
minimum cost is a feasible solution, it is the optimal one.

H_MCORP is one of the most promising algorithms in solving
the MCOP selection problem as it outperforms prior existing
algorithms in both efficiency and the quality of delivered
solutions [10]. Consequently, based on it, in the field of
Service-Oriented Computing (SOC), Yu et al. [30] propose
an approximation algorithm, MCSP_K, which keeps only K
paths from a source node to each intermediate node, aiming
to reduce the search space and execution time. In their service
candidate graph, each node represents a service and all services
are categorized into different service sets based on their func-
tionality. Any two nodes selected from two adjacent service
sets have a link with each other and thus all the paths from a
source node to an intermediate node can be enumerated when
necessary, avoiding an exhaustive searching. But if a network
does not have such a typical structure, MCSP_K has to search
all paths from a source to each intermediate node and hence
the time complexity becomes exponential. Therefore, it does
not fit large-scale social networks.

Some other algorithms [31, 32] adopt the integer linear
programming method to solve the service selection problem
with multi-QoS constraints. But in [30] they have been proved
having low efficiency in finding a near-optimal solution in large-
scale networks.

gx(p) & ( Tt ( )

B. H_MQCSTP

In this section, we propose an efficient heuristic algorithm
H_MQCSTP which contains some novel heuristic search strate-
gies for selecting the optimal social trust path with multiple



Table I
NOTATIONS USED IN PSEUDOCODE

Notations Representation

Dist(v).rand Dist(v).p The aggregated QoT atiribute values of the identified social trust

path from v¢ to v in the Backward_Search procedure.

Dist(v).0 The  value of the identified social trust path from vy (0 v in the

Backward_Search procedure.

M An adjacency matrix (hat represents the sub-network between vg (0 vg.

M (v, vy).r. M(vg, vy).p_| The SID between vz and vy, and the RIF of vy

ps and pg The paths identified by the Backward_Search procedure and the

Forward_Search procedure respectively.

prea An array stores the ordered nodes in the shortest path from vz to each
node in the Backward_Search procedure.

prey An array stores the ordered nodes in the shortest path from v g fo each
node in Forward_Search procedure, e.g., preg (v/') = v’ represents
in the shortest path from vy to v/, v/ is the preceding node of v’’.

55 and 5y The sets of expanding node candidates in Backward_Search and
Forward_Search respectively.

v. F The utility of the identified social trust path from vg to v in the
Forward_Search procedure.

v.rand v.p The aggregated QoT attribute values of the identified social trust path

from vg 10 v in the Forward_Search procedure.

adjacent and end-to-end QoT constraints in complex social
networks.

In H_MQCSTP, we first adopt the Backward_Search proce-
dure from the target (denoted as v;) to the source (denoted
as vs) to investigate whether there exists a potential solution
which satisfies the EEQCs in the sub-network between v, and
vt, and record the aggregated QoT attributes (i.e.,  and p)
of the identified path from v; to each intermediate node v. If
a potential solution exists, we then adopt the Forward_Search
procedure to search the sub-network from vy to v, to deliver a
near-optimal solution.

In social trust path selection, if a path satisfies multiple
end-to-end QoT constraints, it means that each aggregated
QoT attribute (i.e., 7 or p) of that path should be larger than
the corresponding end-to-end QoT constraint. Therefore, we
propose an objective function in Eq. (6) to investigate whether
the aggregated QoT attributes of a path can satisfy the end-
to-end QoT constraints. From Eq. (6), we can see that if any
aggregated QoT attribute of a social trust path does not satisfy
the corresponding end-to-end QoT constraint, then d(p) > 1.
Otherwise d(p) < 1.
5(p) Emaaf— 2

B T(EEQC))’(
D

1—-r, 1—-pp
Q;(EEQC))’(l _ g(EEQC) b

Backward_Search: In the backward search from v; to 5)6,)
H_MQCSTP identifies the path pgs from v; to vs with the
minimal § based on the Dijkstra’s shortest path algorithm [4]. In
the searching process, at each node vy, (vi # v;), the path from
vy to vy, with the minimal ¢ (denoted as py,) is identified and 7,
and p,, are recorded. According to the following Theorem I,
the Backward_Search procedure can investigate whether there
exists a potential solution that satisfies the EEQCs in the sub-
network.

Theorem 1: In the Backward_Search procedure, the process
of identifying the path with the minimal § can guarantee to find
a potential solution if one exists in a sub-network.

Proof: Let ps be a path from v; to vs with the minimal J,
and p. be a potential solution that satisfies the end-to-end QoT

constraints. Then, 0(ps) < d(p«). Assume ps is not a potential

solution, then 3¢ € {r,p} that ¢, < Qfs(f{:tEQC). Hence,

d(ps) > 1. Since p, is a potential solution, then d(p,) < 1 and
d(ps) > d(p+). This contradicts d(ps) < d(ps). Therefore, p,
is a potential solution. (]
The Backward_Search procedure can always identify the path
with the minimal 6. If ,,;, > 1, it indicates that there is no
feasible solution in the sub-network. If d,,:;,, < 1, it indicates
that there exists at least one potential solution which satisfies
EEQCs and the identified path is the potential one.
Forward_Search: If there exists a potential solution in the

1 1-—
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sub-network, a heuristic forward search is executed from v, to
vg. This process adopts the information provided by the above
Backward_Search to identify whether there is another path
p: which satisfies both AQCs and EEQCs. In this procedure,
H_MQCSTP first searches the path with the maximal F value
from vs. Assume node v,, € {neighboring nodes of vy}
is selected based on the Dijkstra’s shortest path algorithm.
H_MQCSTP calculates the aggregated QoT attribute values of
the path from v, to vy, (denoted as path p,,). Let p/, denote
the path from v,, to v, identified in the Backward_Search
procedure, then a foreseen path from vy to vy via v,, (denoted
as pym = Pm+P),) can be identified. Let h denote the number
of hops of path p¢,,. The aggregated QoS attribute values of
Pym can be calculated as 7, = (1, * rp )/h™ (@ > 11is
the argument for controlling the attenuation speed of ) and
Ppsm = (Ppn + Ppr. )/ (h — 1). According to whether py,, is
feasible, H_MQCSTP adopts the following searching strategies.

Situation 1: If each QoT attribute between vy and v,,,
and each aggregated QoT attribute of py,, can satisfy the
corresponding AQC and EEQC, then H_MQCSTP chooses
the next node from v, with the maximal F value which is
calculated based on the Dijkstra’s shortest path algorithm.

Situation 2: If any QoT attribute between between vs and
Um, or any aggregated QoT attribute of py,, does not satisfy
the corresponding AQC or EEQC, then H_MQCSTP does not
search the path from v,, and the link vy — v, is deleted
from the sub-network. Subsequently, H_MQCSTP performs the
Forward_Search procedure to search the path from v in the
sub-network without the link vy — v,.

The following Theorem 2 illustrates that if the social trust
path p, identified by the Backward_Search procedure is a
feasible solution which satisfies both ACQs and EEQCs, the
social trust path p, identified by the Forward_Search procedure
can not be worse than py. Namely, F(p;) > F(ps).

Theorem 2: With a social trust path p, identified by the
Backward_Search procedure and a social trust path p; identified
by the Forward_Search procedure in H_MQCSTP, if p; is a
feasible solution, then p; is feasible and F(p;) > F(ps).

Proof: Assume that path pg consists of n + 2 nodes
Vg, V1, .ory Up, Ve, In the  Forward_Search  procedure,
H_MQCSTP searches the neighboring nodes of v, and
chooses v; from these nodes when a foreseen path from vy
to vy via vy is feasible and the current path from v, to vy
has the maximal F. This step is repeated at all the nodes
between vy and v, until a social trust path p; is identified.
If at each search step, only one node (i.e., vy, ...,v,) has a
feasible foreseen path, then p; is the only feasible solution in
the sub-network between vy and v;. According to Theorem 1,
then p; = ps. Thus, F(p;) = F(ps). Otherwise, if p; # ps, It
can lead to F(p;) > F(ps) by maximizing the F value in all
candidate nodes which have feasible foreseen paths based on
the Dijkstra’s shortest path algorithm. Therefore, Theorem 2 is
correct. O

The process of H_MQCSTP is as follows.

Step 1: Start the Backward_Search procedure. Add v; into
Sy. At each node v, (v, # wv;) in the sub-network, set
Dist(vy).0 = oo and Dist(v:).0 = 0. Select the node v,
from S, where the ¢ value of the path from v; to v, (denoted
as pg) is the minimum out of all ¢ of the paths from v; to
vy (vi € Sg) (lines 1-3 in Algorithm 1 and lines 1 to 5 in
Algorithm 2).

Step 2: At each v, € {neighboring nodes of v,}, calculate
¢ value of the identified social trust path form v; to v, (denoted
as pp). If v, ¢ S, add vy, into S,.. Otherwise, if the current § of



Algorithm 1: H_ MQCSTP

Algorithm 3: Forward_Search

T(EEQC) Qn(EEQC) ,p(EEQC)
ERLE P WUs, Ut N

Data: M, Q,, Vs, Vg

Result: py, J':(pt)
1 begin
2 ps =0.pp =0
3 Backward_Search (M, Q,”(EE,EQC) Q“EEQO) QP(EEQC) 5. )
4 it 5(ps) > 1 then
5 | Return no feasible solution
6 else
7 Forward_Search (M, Dist(v).T. Dist(v).r, Dist(v).p, QL P RC),

T(A
QLEEQD) g 550, TA20), 142, Q1A 1y 1y

8 Return p; and F(p¢)
9 end

Algorithm 2: Backward_Search

Data: M. QT(EEQC) r(EEQC) QP(EI;JQC) v
Result: §(pg), Dist(v). T D'Lsf('u) r, Dist(v).p

1 begin

2 Set vy .86 = 00 (vy # vg), vg.6 =0, Sy = 0

3 Add vy into Sg

4 while S # 0 do

5 va .8 = min(v}.8) (vi € Sg)

6 for cach vy, € adjlvg] do

7 R is the number of hops of the path from vy to vy

8 5(pp) = maz[(1 — vy, T * M(va, vp).T/(1 — QL) (1 — vy.r =

M (va,vp).r/hY) /(1 = QL) (1 — (vy-p + M(va, vz,) p)/(h —
1)/(1 - Q8]

9 if vj, ¢ Sy then

10 Put vy, into S

11 preg(vy) = vq

12 else if 5(py,) < Dist(vy).6 then

13 Dist(vp,).6 = 5(pyp)

14 Dist(vy).T = vg.T * M(vq, vy).T
15 Dist(vy).7 = vg.7 * M(va,vy).7
16 Dist(vy).p = va.p + M(va,vp).p
17 Put vy, into S

18 preg(vy) = va

19 Remove v from Sy
20 ps — preg(vs) o preg (ve)
21 Return pg and §(ps)
22 end

vp less than the previous 0 value recorded at vy, then replace
the stored 6 with the current § and record T),,, 7p, and pp,
at vp. Add v, into S, and set pre,(vy) = v, (lines 1-3 in
Algorithm 1 and lines 6 to 18 in Algorithm 2).

Step 3: Remove v, from S,. If S, # 0, then go to Step 1.
Otherwise return p, through searching pre,(vs). If d(ps) < 1,
go to Step 3. Otherwise terminate (i.e., there is no feasible
solution in the sub-network) (lines 4 to 5 in Algorithm 1 and
lines 19 to 22 in Algorithm 2).

Step 4: Start the Forward_Search procedure. Add v, into S,,.
At each node v, (vy # v,) in the sub-network, set v,.F =0,
and vs.F = oo. Select the node v; from S,, where the 1/F
value of the path from v, to v; (denoted as p;) is the minimum
in all 1/F values of the paths from vs to v} (vf € Sy) (lines
6 to 7 in Algorithm 1 and lines 1 to 5 in Algorithm 3).

Step 5: At each v; € {neighboring nodes of v;}, calculate
F value of the identified path from v, to v; (denoted as p;). If
the current 1/F (p;) is less than the value recorded at node v;,
then calculate each aggregated QoT attribute value 7, and py, ;.
If each QoT attribute between v, and v;, and each aggregated
QoT attribute can satisfy the corresponding AQC and EEQC,
then replace the stored 1/F(p;) with the current 1/F(p;) at
v; and set pre, (v;) = v;. Otherwise, set M (v;,v;).r = 0 and
M (v, v5).p =0 (lines 6 to 7 in Algorithm 1 and lines 6 to 19
in Algorithm 3).

Step 6: Remove v; from S,. If S, # 0, then go to Step 5.
Otherwise, return p; through searching array pre,(v;) (lines 8
to 9 in Algorithm 1 and lines 20 to 23 in Algorithm 3).

H_MQCSTP consumes twice the execution time of Dijk-
stra’s shortest path algorithm [4]. The time complexity of
H_MQCSTP is O(NlogN + E), where N is the number of
nodes in the sub-network between v and vy, and E is the
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Data: M, Dist(v).T, Dist(v).r, Dist(v).p, QL v Qug vy Qs vg- Vs vt
Result: py, F(py)

1 begin
2 Set /' = 1/F, vy . F' = 00 (vy # vs), vs.F/ =0,Sy =0
3 Add v into Sy
4 while Sy # 0 do
5 vy F' = min(vi.F') (vi € Sy)
6 for cach vj € adj[v;] do
7 his the number of the hops of the foreseen path from v s 1o vy via v ;
8 tempyp = v;. T+ M(vy,v;). T * Dist(v;).T
tempy = vgor x M(vg. vj).r Dist(v;).r
tempp = v;.p + M(v;, vj) P+ DLat(v ).p
9 if (tempp > QI(El,EQC>)An<[(te1np7 /RN > Q 7<EEQC))AH{]
(tempp /(' — 1) > QBEECD)) awa M (v, v5) T > Qf(",‘,?c)
And M (v, v5).0 > QY% WC) And M (v, v).T > QAT then
10 if v g Sy then
11 Put v into Sy
12 prey(vj) = v;
13 else if 7/(p;) < vy .F' then
14 v F = F(py)
15 vj. T = v;. T x M(vg,v;).T
16 LJT—uir*M(ulu)r
17 vji.p=vi.p+ Mvi,v5).p
18 Put v into Sy
19 prey(vj) = v,
20 Remove v, from Sy,
21 pt — Prey(vy) o Prey(vs)
22 Return py and F(py))
23 end

number of links in the sub-network. H_MQCSTP has the same
time complexity with H_MCOP. But our proposed heuristic
algorithm has better searching strategies than H_MCOP and
thus outperforms it in both efficiency and the quality of selected
social trust paths (see a more detailed analysis in section VI-B).

VI. EXPERIMENTS
A. Experiment Settings

The Enron email dataset* has been proved to possess the
small-world and power-law characteristics of social networks
and thus it has been widely used in the studies of social
networks [18, 21, 29]. In addition, as we explained in section
III-3 the social intimate degree between participants and the
role impact factor of participants can be calculated through
mining the subjects and contents of emails in the Enron email
dataset [21]. Therefore, in contrast to other real social network
datasets (e.g., Epinions® and FilmTrust®), the Enron email
dataset fits complex social network structure better. Thus, to
validate our proposed algorithm, we select the Enron email
corpus? with 87,474 nodes (participants) and 30,0511 links
(formed by sending and receiving emails) as the dataset for
our experiments.

As we analyzed in section V-A, H_MCOP is the most
promising algorithm for the MCOP selection. Based on it,
several approximation algorithms [14, 30] have been proposed
for the quality-driven service selection in the field of SOC.
But they do not fit the structure of large-scale complex social
networks. Thus, to study the performance of our proposed
heuristic algorithm H_MQCSTP, we compare it with H_MCOP
[10] in both execution time and the utilities of identified
social trust paths (see section VI-B). In our experiments, the
T, R and p values are randomly generated. The argument
for controlling the attenuation speed is set as & = 1.5. The
end-to-end QoT constramts s%)eciﬁed by a source (part1c1€>ant
are set as QUEFQC) = [QTEEQC) 5 (05, Qr(FEQC) >
0.001, QPIEEQC) - 0.3} and the adjacent QoT constraints
are set as Q(AQC) {QTARE) » 0.1, QTAQY) >

Shttp://epinions.com/
Shttp://trust.mindswap.org/filmtrust/
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Figure 4. Path utility of sub-networks with 6 and 7 hops

0.05, QPARC) > 0.1}. The weights of attributes in the
utility function specified by the source participant are set as
wy = 0.25, w, =0.25 and w, = 0.5.

Both H_ MQCSTP and H_MCOP are implemented using
Matlab R2008a running on an IBM ThinkPad SL500 laptop
with an Intel Core 2 Duo T5870 2.00GHz CPU, 3GB RAM,
Windows XP SP3 operating system and MySql 5.1.35 database.

B. Performance in Social Trust Path Selection
Table II

THE PROPERTIES OF THE SIMPLEST AND THE MOST COMPLEX
SUB-NETWORKS IN EACH GROUP OF HOPS

Hops The simplest sub-network | The most complex sub-network
ID Nodes Links ID Nodes Links
4 1 33 56 25 393 1543
5 1 49 90 25 680 2670
6 1 48 74 25 1300 6396
7 1 40 64 25 1695 11175

In this experiment, in order to evaluate the performance of
our proposed heuristic algorithm in the sub-networks of differ-
ent scales and structures, we first randomly select 100 pairs of
source and target participants from the Enron email dataset®.
We then extract the corresponding 100 sub-networks between
them by using the exhaustive searching method. Among them,
the maximal length of a social trust path varies from 4 to 7 hops
following the small-world characteristic. These sub-networks
are grouped by the number of hops. In each group they are
ordered by the number of nodes of them. Table II lists the
properties of the simplest and the most complex sub-networks
in each group of hops. In the simplest case, the sub-network has
33 nodes and 56 links (4 hops), while in the most complex case,
the sub-network has 1695 nodes and 11175 links (7 hops). With
each sub-network, we repeat the experiment 5 times for each of
H_MQCSTP and H_MCOP. The results are plotted from Fig.
3 to Fig. 6 where the execution time of each of H_MQCSTP
and H_MCOP is averaged based on the 5 independent runs.

Results (Utility). From Fig. 3 to Fig. 4, we observe that
in any case, our H_MQCSTP does not yield any utility worse
than that of H_MCOP (e.g., S1 in Fig. 3 to Fig. 4) while in
most sub-networks (i.e., 61% of total sub-networks), the utilities
of social trust paths identified by H_MQCSTP are better than
those of H_MCOP (e.g., S2 in Fig. 3 to Fig. 4). The sum of
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utilities computed by H_MQCSTP and H_MCOP in the sub-
networks with each group of hops is listed in Table III. From
Table III, we can see that the sum of utilities of our proposed
heuristic algorithm is 10.87% more than that of H_MCOP in 4
hops sub-networks, 14.88% more in 5 hops, 18.87% more in 6
hops and 16.42% more in 7 hops.

Analysis (Utility). From the above results, we can see
that H_MQCSTP can yield a better social trust path than
H_MCOP in most cases. This is because when a social trust
path with the maximal utility is a feasible solution in a sub-
network, both H_MCOP and H_MQCSTP can identify it as
the optimal solution. Thus, they can identify the same social
trust path with the same utility. However, when the social
trust path with the maximal utility is not a feasible solution,
H_MCOP stops searching the path with the minimum cost
and consequently start searching the social trust path with the
minimum gy (A > 1). This heuristic search strategy can hardly
find a near-optimal solution and sometimes returns an infeasible
one even when a feasible solution exists (e.g., S3 in Fig. 3 to
Fig. 4). In contrast, as illustrated by Theorem 1, H_MQCSTP
can identify a feasible solution if it exists (e.g., S3 in Fig. 3 to
Fig. 4). In addition, as illustrated by Theorem 2, H_MQCSTP
can identify a near-optimal social trust path satisfying both
AQCs and EEQC:s if it exists. Therefore, in this case, the quality
of the social trust path identified by H_MQCSTP is better than
H_MCOP.

Results (Execution Time). From Fig. 5 to Fig. 6, we observe
that the execution time of H_MQCSTP is less than that of
H_MCOP in all sub-networks. The total execution time of each
of H_MQCSTP and H_MCOP in each group of hops is listed
in Table III. From Table III, we can see that the total execution
time of our proposed heuristic algorithm is only 72.22% of
that of H_MCOP in 4 hops sub-networks, 64.24% in 5 hops,
65.04% in 6 hops and 64.19% in 7 hops.

Analysis (Execution Time). From the above results, we can
see that H_MQCSTP is much more efficient than H_MCOP.
The reasons are twofold. Firstly in the Forward_Search pro-
cedure, H_MQCSTP does not calculate gy (A > 1) which
consumes a large amount of execution time when A — oo [10].
Secondly, in the searching process, when any QoT attribute
between any adjacent participants in a selected path from v,
to v, (vy # v;), or aggregated QoT attribute of that path does



Table III
THE COMPARISON OF UTILITY AND EXECUTION TIME

Algorithms The sum of utility The sum of execution time (sec)
4 hops 5 hops 6 hops 7 hops 4 hops 5 hops 6 hops 7 hops
H_MQCSTP 11.2014 9.7113 9.9469 10.1747 245.8564 871.8128 1.9528e+003 | 4.3005e+003
H_MCOP 10.3047 6.5274 6.6006 6.1979 340.4162 1.3571e+003 | 3.0024e+003 | 6.6996e+003
difference 10.87% more 14.88% more 18.87% more 16.42% more | 27.78% less 35.76% less 34.96% less 35.81% less

not satisfy the corresponding AQC or EEQC, node v,, is not
regarded as a candidate to be selected in the next searching
step, which can reduce the search space and thus significantly
save the execution time.

Through the above experiments conducted in sub-networks
with different scales and structures, we can see that overall
H_MQCSTP is superior to H_MCOP in both the execution
time and the quality of selected social trust path.

VII. CONCLUSIONS

In this paper, we have presented a complex social network
structure that takes trust, social relationship and recommen-
dation roles into account, reflecting the real-world situations
better. In addition, we proposed a multiple QoT constrained
social trust path selection model in complex social networks.
Furthermore, for selecting the optimal social trust path with
both AQCs and EEQCs, which is an NP-Complete problem,
we have also proposed H_MQCSTP, an efficient heuristic
algorithm. The results of experiments conducted on a real
dataset of social networks demonstrate that H_MQCSTP sig-
nificantly outperforms existing methods in both execution time
and optimal social trust path selection.

In our future work, we plan to incorporate our models
and algorithms in a new generation of social network based
recommendation systems. In this system, our proposed method
will be applied, for instance, to help a customer identify
the most trustworthy one from all sellers selling the product
preferred by the customer.
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