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Abstract—In recent years, online social networks with
numerous participants have been used as the means for
rich activities, where trust is one of the most important
indications for participants’ decision making, demanding
the evaluation of the trustworthiness of a target participant
along a certain social trust path from a source participant.
However, there are usually many social trust paths between
participants. Thus, a challenging problem is how to select
the optimal one from massive social trust paths yielding
the most trustworthy trust evaluation result based on
participants trust evaluation criteria.

To address this issue, in this paper, we first propose a new
Multiple QoT Constrained Social Trust Path (MQCSTP)
selection model which considers both adjacent constraints
and end-to-end constraints, based on a novel concept Qual-
ity of Trust (QoT) and a novel complex social network
structure. We then model the MQCSTP selection as the
classical NP-Complete Multi-Constrained Optimal Path
(MCOP) selection problem. For solving this problem, we
propose an effective and efficient heuristic algorithm, called
H MQCSTP. The results of our experiments conducted
on a real dataset of online social networks illustrate that
the proposed method outperforms existing models in both
efficiency and the quality of delivered solutions.
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I. INTRODUCTION

In recent years, social networking websites, such as MyS-
pace1 and Facebook2 have been attracting a large number of
participants. These websites have been used as the means for
diverse activities. For example, according to a survey on 2600
hiring managers in 2008 by CareerBuilder (careerbuilder.com,
a popular job hunting website), 22% of those managers used
social networking sites to investigate potential employees. The
ratio increased to 45% in June 2009 and 72% in January
2010. In addition, Microsoft has developed a dynamic CRM
(Customer Relationship Management) system3, which allows
business professionals to monitor and analyze customers’ con-
versations on social networking sites to improve their products
and services.

Social network consists of nodes representing participants
and links corresponding to real-world interactions or online
interactions between nodes (e.g., A → B and A → C in Fig.
1). One participant can give a trust value to another based on
their interactions. For example, a trust rating can be given by
one participant to the other based on the quality of the movies
recommended by the latter at FilmTrust [6] which is a social

1www.myspace.com
2www.facebook.com
3http://crm.dynamics.com/

Figure 1. Social network

networking site for movie recommendations. As multiple trust
paths may exist between two nonadjacent participants, such as
the trust path A → B → E → M and A → D → M in Fig. 1.
The source participant can evaluate the trustworthiness of the
target participant based on the trust information between the
intermediate participants along the path. This process is called
trust propagation and the path with trust information linking
the source participant and the target one is called a social trust
path [6, 8]. For example, in Fig. 1, if A is an employer and M
is an employee candidate in the social network, A can evaluate
the trustworthiness of M along the social trust paths from A
to M .

In large-scale social networks, there may be over many
thousands of social trust paths between a source participant
and a target participant [11]. Evaluating the trustworthiness
of a target participant along all these social trust paths leads
to huge computation time [2]. A challenging problem is that
among multiple paths, which one is the optimal yielding the
most trustworthy result of trust propagation. In the literature,
Lin et al. [15] propose an optimal social path selection method,
where all links are assigned the same weight and the shortest
path between the source participant and the target participant
is selected as the optimal one. This method neglects trust
information between participants. In another reported work [8],
the path with the maximal propagated trust value is selected
as the most trustworthy social trust path. But these methods
neglect social relationships between adjacent participants (e.g.,
the relationship between an employer and an employee) and
the recommendation roles of a participant (e.g., a supervisor as
a referee in his postgraduate’s job application), both of which
have significant influence on trust propagation [1, 23] and can
be obtained by using data mining techniques in social networks
[21, 25, 28]. In addition, in social networks, a source participant
may have different purposes in evaluating the trustworthiness of
the target participant, such as hiring employees or introducing
products. Therefore, a source participant should be able to set
certain constraints on the above factors in trust propagation,
which can help the source participant select the optimal social
trust path that can yield the most trustworthy trust propagation
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result. However, the above social trust path selection methods
neither consider these important impact factors nor support
these selection criteria.

In our previous work, we have proposed the social trust path
selection models [17, 20] to select one or K optimal social
trust paths. In these models, the above impact factors and the
constraints of these factors are considered. Although their per-
formance is good in path selection, they only support the end-
to-end constraints (i.e., the constraint of the aggregated values
of these factors in a path). But in applications, a source can have
constraints of the social relationship and/or trust between any
two adjacent participants, and/or the recommendation role of
each of the intermediate participants in a path. For example, in
Fig. 1, source A may have constraints of the trust value between
any two adjacent participants and the recommendation role of
each of the intermediate participants in the selected path from
A to M to reflect A’s path selection criteria. We term these
constraints as adjacent constraints, which are not supported
by any existing methods. Therefore, in order to deliver more
reasonable trust evaluation results, it is necessary to consider
these adjacent constraints of impact factors in social trust path
selection.

In this paper, we first present the structure of complex social
networks taking trust, social relationships and recommendation
roles into account, and a concept, Quality of Trust (QoT). We
then propose a Multiple QoT Constrained Social Trust Path Se-
lection (MQCSTP) model which considers both Adjacent QoT
Constraint (AQC) and End-to-End QoT Constraint (EEQC). As
the MQCSTP selection problem can be modeled as a classical
Multi-Constrained Optimal Path (MCOP) selection problem,
which is NP-Complete [10], and the existing approximation
algorithms [3, 10, 14, 30] for solving the MCOP selection
problem can not scale to large realistic social networks and
thus can not deliver good performance, we propose an effi-
cient heuristic algorithm, H MQCSTP for solving MQCSTP
selection problem. Finally, we have conducted experiments on
a real online social network dataset, that is, the Enron email cor-
pus4. Experimental results illustrate H MQCSTP outperforms
existing models in both efficiency and the quality of delivered
solutions..

II. RELATED WORK

The studies of social network properties can be traced back to
1960’s when the small-world characteristic in social networks
were validated by Milgram [22], through illustrating that the
average path length between two Americans was about 6 hops
in an experiment of mail sending. In recent years, Mislove
et al. [24] analyzed several popular social networks including
Facebook, MySpace, Flickr and Orkut, and validate the small-
world and power-law (i.e. in a social network, the probability
that a node has degree k is proportional to k−r, r > 1)
characteristics of online social networks by using data mining
techniques.

Trust is a critical factor for the decision-making of partic-
ipants in online social networks [12]. In the studies of trust
propagation in social networks. Golback et al. [6] propose a
trust propagation mechanism, where the trustworthiness of a
target participant is calculated based on averaging trust values
along all social trust paths between a participant and the target
one. In addition, Guha et al. [7] propose a trust propagation
model, where the number of hops in trust propagation is
considered in calculating the propagated trust values of a target

4http://www.cs.cmu.edu/enron/

participants based on all social trust paths between a source
participant and the target one. Furthermore, Bi et al. [3] propose
a trust propagation method in an email based social network,
where each node represents an email sender or receiver who has
a global reputation and local trust values to other participants.
If there are m social trust paths, and n nodes in each social
trust path between a source participant (e.g., A) and the target
one (e.g., M ), and the global reputation value of node i is Ti,
then the propagated trust value between A and M based on

trust path j is EW (j) =
∑ n

i=1 Wi·Ti

n . The weight of node i
is defined as Wi = 2−(hop(i,A)), where A is the truster and
hop(i, A) is the number of hops (direct edges) from node i to
A. The aggregated trust value based on m social trust paths is

LTAM =
∑ m

j=1 W ′
j ·EW (j)

m . In the studies of trust management
of recommendation system in social networks, Walter et al. [26]
propose a trust model in a recommendation system based on
social networks where a participant can give a trust value to a
recommender based on the recommendation behavior. This trust
value is visible and regarded as a reference for other participants
to select recommendations. Jamali et al. [9] propose a random
walk model in a trust-based social network consisting of sellers
and buyers. In their model, a buyer performs several random
walks with a fixed number of hops to find the ratings to a seller.
The degree of confidence of the seller is calculated based on
the number of random walk hops, ratings and the number of
random walk paths.

As pointed in social science theories [1, 23], both social
relationships (e.g., the relationship between a buyer and a
seller) and recommendation roles (e.g., the supervisor as a
referee in a job application) have significant influence on trust
relation establishment, and can be obtained from online social
networks by using data mining techniques [21, 25]. However,
existing models and applications in the field of social networks
neglect these factors. In addition, in these trust management
methods, all social trust paths between a source participants
and the target one are selected to evaluate the trustworthiness
of a target participants, which leads to a huge computation time
[2] and thus do not fit large-scale social networks.

In the literature, there are only a few works addressing the
social path selection problem in social networks. SmallBlue [15]
is an online social network constructed for IBM staff. In this
system, between a source participant and a target participant,
up to 16 social paths with no more than 6 hops are selected
and the shortest one is taken as the optimal path. However,
in this method, some significant influence factors including
trust, recommendation roles and social relationships are not
taken into account in social path selection. Hang et al. [8]
propose a social trust path selection method in online social
networks, where the social trust path with the highest belief
(i.e., the maximum of propagated trust values) is selected as
the optimal one that yields the most trustworthy results of
trust propagation between a source participant and the target
participant. In their model, although trust information is taken
into consideration in social trust path selection, other two
important factors (i.e., social relationship and recommendation
role) are not considered. In addition, the above social trust
path selection methods do not support the selection criteria
specification by source participants in different applications. In
[17, 20], we have proposed the models for one or K optimal
social trust path selection, where the impact factors and end-to-
end constraints are considered. However, all existing methods
including our previous models do not support the adjacent
constraints which is one of the most important path selection
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Figure 2. Complex social network

criteria from a source participant.

III. COMPLEX SOCIAL NETWORKS

The existing first and second generation of online social
network structures can not illustrate the complex social infor-
mation of social networks in real-world [16]. To address this
issue, we first present the complex social network structure,
depicted in Fig. 2. It comprises the attributes of three impact
factors. They are trust, social intimacy degree and role impact
factor, which influence the trustworthiness of trust propagation
and hence the decision making of a source participant. Here we
give a brief introduction about the structure. The more details
can be found in our previous work [19].

1) Trust.: In the context of this paper, trust between partic-
ipants in social networks is defined as “Trust is the belief of
one participant in another, based on their interactions, in the
extent to which the future action to be performed by the latter
will lead to an expected outcome.” Let TAB ∈ [0, 1] denote
the trust value that participant A assigns to participant B. If
TAB = 0, it indicates that A completely distrusts B while
TAB = 1 indicates A completely believes B’s future action
can lead to the expected outcome.

2) Social Intimacy Degree.: As illustrated in social psy-
chology [23], a participant can trust more the participants
with whom he/she has more intimate social relationships than
those with whom he/she has less intimate social relationships.
Let rAB ∈ [0, 1] denote the Social Intimacy Degree (SID)
between participant A and participant B in social networks.
rAB = 0 indicates that A and B have the least intimate
social relationship while rAB =1 indicates they have the most
intimate social relationship.

3) Role Impact Factor.: Rich activities of participants in
social networks can be categorized into different domains (e.g.,
hiring employees or product sale) based on their characteristics
[27]. As illustrated in social psychology [1], in a certain domain
of interest, recommendations from a domain expert are more
credible than that from a beginner. Let ρA ∈ [0, 1] denote the
Role Impact Factor (RIF), illustrating the impact of participant
A’s recommendation role on trust propagation in a certain
domain. ρA = 1 indicates that A is a domain expert while
ρA =0 indicates that A has no knowledge in the domain.

Though it is difficult to build up comprehensive social
relationships and role hierarchies in all domains, it is feasible
to build them up in a particular application. For example, in the
work by Mccallum et al. [21], through mining the subjects and
contents of emails in Enron Corporation4, the social relation-
ship between each email sender and receiver can be discovered
and their roles can be obtained. Then the corresponding SID and
RIF value can be calculated based on probabilistic models. In
addition, in academic social networks formed by large databases
of Computer Science literature (e.g, DBLP or ACM Digital
Library), the social relationships between two scholars (e.g.,

co-authors or supervisor and his/her students) and the role of
scholars (e.g., professor in the field of data mining) can be
mined from publications and their homepages. The SID and
RIF values can be calculated by applying the PageRank model
[25]. The detailed mining method is out of the scope of this
paper.

IV. MULTIPLE QOT CONSTRAINED SOCIAL TRUST PATH

SELECTION

A. Quality of Trust (QoT)
In Service-Oriented Computing (SOC), QoS consists of a

set of attributes, used to illustrate the ability of services to
guarantee a certain level of performance [5]. Similar to the
QoS, we present a concept, Quality of Trust [19].
Definition 1: Quality of Trust (QoT) is the ability to guarantee
a certain level of trustworthiness in trust propagation along a
social trust path, taking trust (T ), social intimacy degree (r),
and role impact factor (ρ), as attributes.

B. QoT Constraint
Activities in social networks can be divided into different

domains [19], such as hiring employees or product sale. In
different domains, a source participant can have different prefer-
ences in evaluating the trustworthiness of the target participant.
Therefore, a source participant should be able to set certain con-
straints of QoT attributes, which can help the source participant
select the optimal social trust path, satisfying the requirements
in different domains. For this purpose, a source participant
can specify two types of QoT constraints, i.e., Adjacent QoT
Constraint (AQC) and End-to-End QoT Constraint (EEQC).

1) Adjacent QoT Constraint (AQC): Adjacent QoT Con-
straint (AQC) is the constraint of QoT attributes (i.e., T , r
and ρ) between any two adjacent participants in a social trust

path. Let Q
μ(AQC)
AM (μ ∈ {T, r, ρ}) denote the adjacent QoT

constraint for the path between the source participant A and

the target participant M . Q
μ(AQC)
AM > λμ (0 < λμ < 1) means

that the value of QoT attribute μ between any two adjacent
participants should be larger than λμ in a selected social trust
path. In our model, a source participant can specify different
AQCs for social trust path selection in different domains. For
example, in hiring employees, A, a retailer manager specifies

AQCs as Q
T (AQC)
AM > 0.3, Q

r(AQC)
AM > 0.3 and Q

ρ(AQC)
AM >

0.8. But when looking for new customers for selling products,

A can specify Q
r(AQC)
AM > 0.8, if he/she believes the social

relationships between participants are more important.
2) End-to-End QoT Constraint (EEQC): In service invoca-

tions, service consumer can set multiple end-to-end constraints
for the attributes of QoS to satisfy their requirements (e.g.,
cost, delay and availability) of services. Different requirements
have different constraints (e.g., total cost<$20, delay<5s and
availability>70%). In our model, a source participant can set
multiple end-to-end constraints for QoT attributes (i.e., T r
and ρ) as the requirements of trust propagation in a social trust

path. Let Q
μ(EEQC)
AM (μ ∈ {T, r, ρ}) denote the End-to-End

QoT Constraint (EEQC) between the source participant A and

the target participant M . Q
μ(EEQC)
AM > λμ (0 < λμ < 1)

means the value of QoT attribute μ between A and M should
be larger than λ in a selected social trust path. Similar with
AQC, a source participant can also specify different EEQCs
for social trust path selection in different domains. For example,

in hiring employees, A can set EEQCs as Q
T (EEQC)
AM > 0.3,

Q
r(EEQC)
AM > 0.3 and Q

ρ(EEQC)
AM > 0.8. But when look-

ing for new customers for selling products, A can specify
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Q
r(EEQC)
AM > 0.8, if he/she believes the social relationships

between participants are more important.

C. QoT Attribute Aggregation
When specifying end-to-end QoT constraints of social trust

path selection, we need to know the aggregated value of each
QoT attribute in a social trust path.

1) Trust Aggregation: If there are n participants a1, ..., an

in order in a social trust path (denoted as p(a1, ..., an)), the
aggregated trust value is calculated based on Eq (1). This
strategy has been widely used in the literature as a feasible
trust aggregation method [26].

Tp(a1,...,an) =
∏

(ai,ai+1)∈p(a1,...,an)

Tai ai+1 (1)

Different from existing works [8, 15], this aggregated trust
value will be combined with social intimacy degree and role
impact factor to identify the optimal social trust path that yields
the most trustworthy result of trust propagation,

2) Social Intimacy Degree Aggregation: Firstly, social in-
timacy between participants is attenuated with the increasing
number of hops between them in a social trust path [13]. In
addition, in the real-world, the intimacy degree is attenuated
fast when it is approaching one. In contrast, the intimacy degree
is attenuated slowly when it is approaching zero [23]. Namely,
the attenuation of social intimacy degree is non-linear in social
networks. The aggregated r value in path p(a1, ..., an) can
be calculated by Eq.(2) whose function image is a hyperbolic
curve, fitting the characteristic of social intimacy attenuation.

rp(a1,...,an) =

∏
(ai,ai+1)∈p(a1,...,an) rai ai+1

θα
(2)

where θ is the number of hops of path p(a1, ..., an), α ≥ 1 is
used to control the attenuation speed.

3) Role Impact Factor Aggregation: As the recommendation
roles do not have the property of transitivity [1], in this paper,
we average the RIF values of intermediate recommending
participants in a social trust path p(a1, ..., an) as the aggregated
value based on Eq. (3).

ρp(a1,...,an) =
∑n−1

i=2 ρai

n − 2
(3)

D. Utility Function
In our model, we define the utility (denoted as F ) as the

measurement of the trustworthiness of social trust paths. The
utility function takes the QoT attributes T , r and ρ as the
arguments in Eq. (4).

Fp(a1,...,an) =ωT ∗ Tp(a1,...,an)+ωr ∗ rp(a1,...,an)+ωρ ∗ρp(a1,...,an)

(4)
where ωT , ωr and ωρ are the weights of T , r and ρ respectively;
0 < ωT , ωr, ωρ < 1 and ωT + ωr + ωρ = 1.

The goal of optimal social trust path selection is to select
the path that satisfies multiple adjacent and end-to-end QoT
constraints, and yields the best utility with the weights specified
by the source participant.

V. SOCIAL TRUST PATH SELECTION ALGORITHM
The optimal social trust path selection with multiple adjacent

and end-to-end QoT constraints can be modelled as the classical
Multi-Constrained Optimal Path (MCOP) selection problem
which is an NP-Complete problem [10]. In this section, we
first analyze some existing approximation algorithms for the

MCOP selection problem and then propose an efficient heuristic
algorithm, H MQCSTP, for Multiple QoT Constrained Social
Trust Path selection.

A. Existing Approximation Algorithms for MCOP
In the literature, several algorithms have been proposed to

solve the MCOP selection problem.
Korkmaz et al. propose a heuristic algorithm, H MCOP [10].

In this algorithm, both multi-constraint values and QoS attribute
values are aggregated based on Eq. (5).

gλ(p) � (
q1(p)
Q1

)λ + (
q2(p)
Q2

)λ + ... + (
qm(p)
Qm

)λ (5)

where λ ≥ 1; qi(p) is the aggregated value of the ith QoS
attribute of path p; Qi is the ith QoS constraint of path p.

Firstly, H MCOP adopts Dijkstra’s shortest path algorithm
[4] to find the path with the minimum gλ from the target to the
source when λ=1, and stores qv

i which is the aggregated value
of the ith QoS attribute from the target node to intermediate
node v. Secondly, from Eq. (5), if any QoS attribute does
not satisfy the corresponding QoS constraint in path p, then
gλ(p) > m, indicating that no feasible solution exists in the
network. This process investigates whether a feasible solution
exists in the network. If gλ(p)≤m, the algorithm further adopts
Dijkstra’s shortest path algorithm to search the path with the

minimum cost and calculates qv′
i which is the aggregated value

of the ith QoS attribute from the source node to intermediate
node v. In this process, the aggregated ith QoS attribute value

of each node is calculated as qv′
i + qv

i . If qv′
i + qv

i satisfies
the QoS constraint Qi, then the algorithm continues to search
the path with the minimum cost from v to the target node.
Otherwise, it stops searching the path with the minimum cost
and consequently starts searching the path with the minimum
gλ (λ > 1). In this process, if the identified path with the
minimum cost is a feasible solution, it is the optimal one.

H MCOP is one of the most promising algorithms in solving
the MCOP selection problem as it outperforms prior existing
algorithms in both efficiency and the quality of delivered
solutions [10]. Consequently, based on it, in the field of
Service-Oriented Computing (SOC), Yu et al. [30] propose
an approximation algorithm, MCSP K, which keeps only K
paths from a source node to each intermediate node, aiming
to reduce the search space and execution time. In their service
candidate graph, each node represents a service and all services
are categorized into different service sets based on their func-
tionality. Any two nodes selected from two adjacent service
sets have a link with each other and thus all the paths from a
source node to an intermediate node can be enumerated when
necessary, avoiding an exhaustive searching. But if a network
does not have such a typical structure, MCSP K has to search
all paths from a source to each intermediate node and hence
the time complexity becomes exponential. Therefore, it does
not fit large-scale social networks.

Some other algorithms [31, 32] adopt the integer linear
programming method to solve the service selection problem
with multi-QoS constraints. But in [30] they have been proved
having low efficiency in finding a near-optimal solution in large-
scale networks.

B. H MQCSTP
In this section, we propose an efficient heuristic algorithm

H MQCSTP which contains some novel heuristic search strate-
gies for selecting the optimal social trust path with multiple
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Table I
NOTATIONS USED IN PSEUDOCODE

Notations Representation

Dist(v).r and Dist(v).ρ The aggregated QoT attribute values of the identified social trust

path from vt to v in the Backward Search procedure.

Dist(v).δ The δ value of the identified social trust path from vt to v in the

Backward Search procedure.

M An adjacency matrix that represents the sub-network between vs to vt .

M(vx, vy).r, M(vx, vy).ρ The SID between vx and vy , and the RIF of vy .

ps and pt The paths identified by the Backward Search procedure and the

Forward Search procedure respectively.

prex An array stores the ordered nodes in the shortest path from vt to each

node in the Backward Search procedure.

prey An array stores the ordered nodes in the shortest path from vs to each

node in Forward Search procedure, e.g., prex(v′′) = v′ represents

in the shortest path from vt to v′′ , v′ is the preceding node of v′′ .

Sx and Sy The sets of expanding node candidates in Backward Search and

Forward Search respectively.

v.F The utility of the identified social trust path from vs to v in the

Forward Search procedure.

v.r and v.ρ The aggregated QoT attribute values of the identified social trust path

from vs to v in the Forward Search procedure.

adjacent and end-to-end QoT constraints in complex social
networks.

In H MQCSTP, we first adopt the Backward Search proce-
dure from the target (denoted as vt) to the source (denoted
as vs) to investigate whether there exists a potential solution
which satisfies the EEQCs in the sub-network between vs and
vt, and record the aggregated QoT attributes (i.e., r and ρ)
of the identified path from vt to each intermediate node v. If
a potential solution exists, we then adopt the Forward Search
procedure to search the sub-network from vs to vt to deliver a
near-optimal solution.

In social trust path selection, if a path satisfies multiple
end-to-end QoT constraints, it means that each aggregated
QoT attribute (i.e., r or ρ) of that path should be larger than
the corresponding end-to-end QoT constraint. Therefore, we
propose an objective function in Eq. (6) to investigate whether
the aggregated QoT attributes of a path can satisfy the end-
to-end QoT constraints. From Eq. (6), we can see that if any
aggregated QoT attribute of a social trust path does not satisfy
the corresponding end-to-end QoT constraint, then δ(p) > 1.
Otherwise δ(p) ≤ 1.

δ(p)�max{( 1 − Tp

1 − Q
T (EEQC)
p

),(
1 − rp

1 − Q
r(EEQC)
p

),(
1 − ρp

1 − Q
ρ(EEQC)
p

)}
(6)

Backward Search: In the backward search from vt to vs,
H MQCSTP identifies the path ps from vt to vs with the
minimal δ based on the Dijkstra’s shortest path algorithm [4]. In
the searching process, at each node vk (vk �= vt), the path from
vt to vk with the minimal δ (denoted as pk) is identified and rpk

and ρpk
are recorded. According to the following Theorem 1,

the Backward Search procedure can investigate whether there
exists a potential solution that satisfies the EEQCs in the sub-
network.

Theorem 1: In the Backward Search procedure, the process
of identifying the path with the minimal δ can guarantee to find
a potential solution if one exists in a sub-network.

Proof: Let ps be a path from vt to vs with the minimal δ,
and p∗ be a potential solution that satisfies the end-to-end QoT
constraints. Then, δ(ps) ≤ δ(p∗). Assume ps is not a potential

solution, then ∃ϕ ∈ {r, ρ} that ϕps
< Q

ϕ(EEQC)
vs,vt . Hence,

δ(ps) > 1. Since p∗ is a potential solution, then δ(p∗) ≤ 1 and
δ(ps) > δ(p∗). This contradicts δ(ps) ≤ δ(p∗). Therefore, ps

is a potential solution. �
The Backward Search procedure can always identify the path

with the minimal δ. If δmin > 1, it indicates that there is no
feasible solution in the sub-network. If δmin ≤ 1, it indicates
that there exists at least one potential solution which satisfies
EEQCs and the identified path is the potential one.

Forward Search: If there exists a potential solution in the

sub-network, a heuristic forward search is executed from vs to
vt. This process adopts the information provided by the above
Backward Search to identify whether there is another path
pt which satisfies both AQCs and EEQCs. In this procedure,
H MQCSTP first searches the path with the maximal F value
from vs. Assume node vm ∈ {neighboring nodes of vs}
is selected based on the Dijkstra’s shortest path algorithm.
H MQCSTP calculates the aggregated QoT attribute values of
the path from vs to vm (denoted as path pm). Let p′m denote
the path from vm to vt identified in the Backward Search
procedure, then a foreseen path from vs to vt via vm (denoted
as pfm = pm +p′m) can be identified. Let h denote the number
of hops of path pfm. The aggregated QoS attribute values of
pfm can be calculated as rpfm

= (rpm
∗ rp′

m
)/hα (α ≥ 1 is

the argument for controlling the attenuation speed of r) and
ρpfm

= (ρpm + ρp′
m

)/(h − 1). According to whether pfm is
feasible, H MQCSTP adopts the following searching strategies.

Situation 1: If each QoT attribute between vs and vm,
and each aggregated QoT attribute of pfm can satisfy the
corresponding AQC and EEQC, then H MQCSTP chooses
the next node from vm with the maximal F value which is
calculated based on the Dijkstra’s shortest path algorithm.

Situation 2: If any QoT attribute between between vs and
vm, or any aggregated QoT attribute of pfm does not satisfy
the corresponding AQC or EEQC, then H MQCSTP does not
search the path from vm and the link vs → vm is deleted
from the sub-network. Subsequently, H MQCSTP performs the
Forward Search procedure to search the path from vs in the
sub-network without the link vs → vm.

The following Theorem 2 illustrates that if the social trust
path ps identified by the Backward Search procedure is a
feasible solution which satisfies both ACQs and EEQCs, the
social trust path pt identified by the Forward Search procedure
can not be worse than ps. Namely, F(pt) ≥ F(ps).

Theorem 2: With a social trust path ps identified by the
Backward Search procedure and a social trust path pt identified
by the Forward Search procedure in H MQCSTP, if ps is a
feasible solution, then pt is feasible and F(pt) ≥ F(ps).

Proof: Assume that path ps consists of n + 2 nodes
vs, v1, ..., vn, vt. In the Forward Search procedure,
H MQCSTP searches the neighboring nodes of vs and
chooses v1 from these nodes when a foreseen path from vs

to vt via v1 is feasible and the current path from vs to v1

has the maximal F . This step is repeated at all the nodes
between v1 and vn until a social trust path pt is identified.
If at each search step, only one node (i.e., v1, ..., vn) has a
feasible foreseen path, then pt is the only feasible solution in
the sub-network between vs and vt. According to Theorem 1,
then pt = ps. Thus, F(pt) = F(ps). Otherwise, if pt �= ps, It
can lead to F(pt) > F(ps) by maximizing the F value in all
candidate nodes which have feasible foreseen paths based on
the Dijkstra’s shortest path algorithm. Therefore, Theorem 2 is
correct. �

The process of H MQCSTP is as follows.
Step 1: Start the Backward Search procedure. Add vt into

Sx. At each node vx (vx �= vt) in the sub-network, set
Dist(vx).δ = ∞ and Dist(vt).δ = 0. Select the node va

from Sx, where the δ value of the path from vt to va (denoted
as pa) is the minimum out of all δ of the paths from vt to
v∗a (v∗a ∈ Sx) (lines 1-3 in Algorithm 1 and lines 1 to 5 in
Algorithm 2).

Step 2: At each vb ∈ {neighboring nodes of va}, calculate
δ value of the identified social trust path form vt to vb (denoted
as pb). If vb /∈ Sx, add vb into Sx. Otherwise, if the current δ of

628



Algorithm 1: H MQCSTP

Data: M , Q
T (EEQC)
vs,vt

, Q
r(EEQC)
vs,vt

, Q
ρ(EEQC)
vs,vt

, vs , vt
Result: pt , F(pt)
begin1

ps = ∅, pt = ∅2
Backward Search (M , Q

T (EEQC)
vs,vt

, Q
r(EEQC)
vs,vt

, Q
ρ(EEQC)
vs,vt

, vs , vt)3
if δ(ps) > 1 then4

Return no feasible solution5
else6

Forward Search (M , Dist(v).T , Dist(v).r, Dist(v).ρ, Q
T (EEQC)
vs,vt

,7
Q

r(EEQC)
vs,vt

, Q
ρ(EEQC)
vs,vt

, Q
T (AQC)
vs,vt

, Q
r(AQC)
vs,vt

, Q
ρ(AQC)
vs,vt

, vs , vt)

Return pt and F(pt)8
end9

Algorithm 2: Backward Search

Data: M , Q
T (EEQC)
vs,vt

, Q
r(EEQC)
vs,vt

, Q
ρ(EEQC)
vs,vt

, vs , vt
Result: δ(ps), Dist(v).T , Dist(v).r, Dist(v).ρ
begin1

Set vx.δ = ∞ (vx �= vt), vt.δ = 0, Sx = ∅2
Add vt into Sx3
while Sx �= ∅ do4

va.δ = min(v∗
a.δ) (v∗

a ∈ Sx)5
for each vb ∈ adj[va] do6

h is the number of hops of the path from vt to vb7
δ(pb) = max[(1 − vb.T ∗ M(va, vb).T/(1 − QT

st), (1 − vb.r ∗8
M(va, vb).r/hα)/(1 − Qr

st), (1 − (vb.ρ + M(va, vb).ρ))/(h −
1)/(1 − Q

ρ
st)]

if vb /∈ Sx then9
Put vb into Sx10
prex(vb) = va11

else if δ(pb) < Dist(vb).δ then12
Dist(vb).δ = δ(pb)13
Dist(vb).T = va.T ∗ M(va, vb).T14
Dist(vb).r = va.r ∗ M(va, vb).r15
Dist(vb).ρ = va.ρ + M(va, vb).ρ16
Put vb into Sx17
prex(vb) = va18

Remove va from Sx19
ps ← prex(vs) to prex(vt)20
Return ps and δ(ps)21

end22

vb less than the previous δ value recorded at vb, then replace
the stored δ with the current δ and record Tpb

, rpb
and ρpb

at vb. Add vb into Sx and set prex(vb) = va (lines 1-3 in
Algorithm 1 and lines 6 to 18 in Algorithm 2).

Step 3: Remove va from Sx. If Sx �= ∅, then go to Step 1.
Otherwise return ps through searching prex(vs). If δ(ps) ≤ 1,
go to Step 3. Otherwise terminate (i.e., there is no feasible
solution in the sub-network) (lines 4 to 5 in Algorithm 1 and
lines 19 to 22 in Algorithm 2).

Step 4: Start the Forward Search procedure. Add vs into Sy .
At each node vy (vy �= vs) in the sub-network, set vy.F = 0,
and vs.F = ∞. Select the node vi from Sy , where the 1/F
value of the path from vs to vi (denoted as pi) is the minimum
in all 1/F values of the paths from vs to v∗i (v∗i ∈ Sy) (lines
6 to 7 in Algorithm 1 and lines 1 to 5 in Algorithm 3).

Step 5: At each vj ∈ {neighboring nodes of vi}, calculate
F value of the identified path from vs to vj (denoted as pj). If
the current 1/F(pj) is less than the value recorded at node vj ,
then calculate each aggregated QoT attribute value rpj

and ρpj
.

If each QoT attribute between vs and vj , and each aggregated
QoT attribute can satisfy the corresponding AQC and EEQC,
then replace the stored 1/F(pj) with the current 1/F(pj) at
vj and set prey(vj) = vi. Otherwise, set M(vi, vj).r = 0 and
M(vi, vj).ρ = 0 (lines 6 to 7 in Algorithm 1 and lines 6 to 19
in Algorithm 3).

Step 6: Remove vi from Sx. If Sy �= ∅, then go to Step 5.
Otherwise, return pt through searching array prey(vt) (lines 8
to 9 in Algorithm 1 and lines 20 to 23 in Algorithm 3).

H MQCSTP consumes twice the execution time of Dijk-
stra’s shortest path algorithm [4]. The time complexity of
H MQCSTP is O(NlogN + E), where N is the number of
nodes in the sub-network between vs and vt, and E is the

Algorithm 3: Forward Search

Data: M , Dist(v).T , Dist(v).r, Dist(v).ρ, QT
vs,vt

, Qr
vs,vt

, Q
ρ
vs,vt

, vs , vt
Result: pt , F(pt)
begin1

Set F′ = 1/F , vy.F′ = ∞ (vy �= vs), vs.F′ = 0, Sy = ∅2
Add vs into Sy3
while Sy �= ∅ do4

vi.F′ = min(v∗
i .F′) (v∗

i ∈ Sy)5
for each vj ∈ adj[vi] do6

h′ is the number of the hops of the foreseen path from vs to vt via vj7
tempT = vi.T ∗ M(vi, vj).T ∗ Dist(vj).T8
tempr = vi.r ∗ M(vi, vj).r ∗ Dist(vj).r

tempρ = vi.ρ + M(vi, vj).ρ + Dist(vj).ρ

if (tempT > Q
T (EEQC)
vs,vt

) And (tempr/h′α > Q
r(EEQC)
vs,vt

) And9
(tempρ/(h′ − 1) > Q

ρ(EEQC)
vs,vt

) And M(vi, vj).T > Q
T (AQC)
vs,vt

And M(vi, vj).r > Q
r(AQC)
vs,vt

And M(vi, vj).T > Q
ρ(AQC)
vs,vt

then
if vj /∈ Sy then10

Put vj into Sy11
prey(vj) = vi12

else if F′(pj) < vj.F′ then13
vj.F′ = F′(pj)14
vj.T = vi.T ∗ M(vi, vj).T15
vj.r = vi.r ∗ M(vi, vj).r16
vj.ρ = vi.ρ + M(vi, vj).ρ17
Put vj into Sy18
prey(vj) = vi19

Remove vi from Sy20
pt ← P rey(vt) to P rey(vs)21
Return pt and F(pt))22

end23

number of links in the sub-network. H MQCSTP has the same
time complexity with H MCOP. But our proposed heuristic
algorithm has better searching strategies than H MCOP and
thus outperforms it in both efficiency and the quality of selected
social trust paths (see a more detailed analysis in section VI-B).

VI. EXPERIMENTS

A. Experiment Settings
The Enron email dataset4 has been proved to possess the

small-world and power-law characteristics of social networks
and thus it has been widely used in the studies of social
networks [18, 21, 29]. In addition, as we explained in section
III-3 the social intimate degree between participants and the
role impact factor of participants can be calculated through
mining the subjects and contents of emails in the Enron email
dataset [21]. Therefore, in contrast to other real social network
datasets (e.g., Epinions5 and FilmTrust6), the Enron email
dataset fits complex social network structure better. Thus, to
validate our proposed algorithm, we select the Enron email
corpus4 with 87,474 nodes (participants) and 30,0511 links
(formed by sending and receiving emails) as the dataset for
our experiments.

As we analyzed in section V-A, H MCOP is the most
promising algorithm for the MCOP selection. Based on it,
several approximation algorithms [14, 30] have been proposed
for the quality-driven service selection in the field of SOC.
But they do not fit the structure of large-scale complex social
networks. Thus, to study the performance of our proposed
heuristic algorithm H MQCSTP, we compare it with H MCOP
[10] in both execution time and the utilities of identified
social trust paths (see section VI-B). In our experiments, the
T , R and ρ values are randomly generated. The argument
for controlling the attenuation speed is set as α = 1.5. The
end-to-end QoT constraints specified by a source participant
are set as Q(EEQC) = {QT (EEQC) > 0.05, Qr(EEQC) >
0.001, Qρ(EEQC) > 0.3} and the adjacent QoT constraints
are set as Q(AQC) = {QT (AQC) > 0.1, Qr(AQC) >

5http://epinions.com/
6http://trust.mindswap.org/filmtrust/
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Figure 3. Path utility of sub-networks with 4 and 5 hops
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Figure 4. Path utility of sub-networks with 6 and 7 hops

0.05, Qρ(AQC) > 0.1}. The weights of attributes in the
utility function specified by the source participant are set as
ωt = 0.25, ωr = 0.25 and ωρ = 0.5.

Both H MQCSTP and H MCOP are implemented using
Matlab R2008a running on an IBM ThinkPad SL500 laptop
with an Intel Core 2 Duo T5870 2.00GHz CPU, 3GB RAM,
Windows XP SP3 operating system and MySql 5.1.35 database.

B. Performance in Social Trust Path Selection

Table II
THE PROPERTIES OF THE SIMPLEST AND THE MOST COMPLEX

SUB-NETWORKS IN EACH GROUP OF HOPS

Hops
The simplest sub-network The most complex sub-network
ID Nodes Links ID Nodes Links

4 1 33 56 25 393 1543

5 1 49 90 25 680 2670

6 1 48 74 25 1300 6396

7 1 40 64 25 1695 11175

In this experiment, in order to evaluate the performance of
our proposed heuristic algorithm in the sub-networks of differ-
ent scales and structures, we first randomly select 100 pairs of
source and target participants from the Enron email dataset4.
We then extract the corresponding 100 sub-networks between
them by using the exhaustive searching method. Among them,
the maximal length of a social trust path varies from 4 to 7 hops
following the small-world characteristic. These sub-networks
are grouped by the number of hops. In each group they are
ordered by the number of nodes of them. Table II lists the
properties of the simplest and the most complex sub-networks
in each group of hops. In the simplest case, the sub-network has
33 nodes and 56 links (4 hops), while in the most complex case,
the sub-network has 1695 nodes and 11175 links (7 hops). With
each sub-network, we repeat the experiment 5 times for each of
H MQCSTP and H MCOP. The results are plotted from Fig.
3 to Fig. 6 where the execution time of each of H MQCSTP
and H MCOP is averaged based on the 5 independent runs.

Results (Utility). From Fig. 3 to Fig. 4, we observe that
in any case, our H MQCSTP does not yield any utility worse
than that of H MCOP (e.g., S1 in Fig. 3 to Fig. 4) while in
most sub-networks (i.e., 61% of total sub-networks), the utilities
of social trust paths identified by H MQCSTP are better than
those of H MCOP (e.g., S2 in Fig. 3 to Fig. 4). The sum of
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Figure 5. Execution time of sub-networks with 4 and 5 hops
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Figure 6. Execution time of sub-networks with 6 and 7 hops

utilities computed by H MQCSTP and H MCOP in the sub-
networks with each group of hops is listed in Table III. From
Table III, we can see that the sum of utilities of our proposed
heuristic algorithm is 10.87% more than that of H MCOP in 4
hops sub-networks, 14.88% more in 5 hops, 18.87% more in 6
hops and 16.42% more in 7 hops.

Analysis (Utility). From the above results, we can see
that H MQCSTP can yield a better social trust path than
H MCOP in most cases. This is because when a social trust
path with the maximal utility is a feasible solution in a sub-
network, both H MCOP and H MQCSTP can identify it as
the optimal solution. Thus, they can identify the same social
trust path with the same utility. However, when the social
trust path with the maximal utility is not a feasible solution,
H MCOP stops searching the path with the minimum cost
and consequently start searching the social trust path with the
minimum gλ (λ > 1). This heuristic search strategy can hardly
find a near-optimal solution and sometimes returns an infeasible
one even when a feasible solution exists (e.g., S3 in Fig. 3 to
Fig. 4). In contrast, as illustrated by Theorem 1, H MQCSTP
can identify a feasible solution if it exists (e.g., S3 in Fig. 3 to
Fig. 4). In addition, as illustrated by Theorem 2, H MQCSTP
can identify a near-optimal social trust path satisfying both
AQCs and EEQCs if it exists. Therefore, in this case, the quality
of the social trust path identified by H MQCSTP is better than
H MCOP.

Results (Execution Time). From Fig. 5 to Fig. 6, we observe
that the execution time of H MQCSTP is less than that of
H MCOP in all sub-networks. The total execution time of each
of H MQCSTP and H MCOP in each group of hops is listed
in Table III. From Table III, we can see that the total execution
time of our proposed heuristic algorithm is only 72.22% of
that of H MCOP in 4 hops sub-networks, 64.24% in 5 hops,
65.04% in 6 hops and 64.19% in 7 hops.

Analysis (Execution Time). From the above results, we can
see that H MQCSTP is much more efficient than H MCOP.
The reasons are twofold. Firstly in the Forward Search pro-
cedure, H MQCSTP does not calculate gλ (λ > 1) which
consumes a large amount of execution time when λ → ∞ [10].
Secondly, in the searching process, when any QoT attribute
between any adjacent participants in a selected path from vs

to vy (vy �= vt), or aggregated QoT attribute of that path does
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Table III
THE COMPARISON OF UTILITY AND EXECUTION TIME

Algorithms
The sum of utility The sum of execution time (sec)

4 hops 5 hops 6 hops 7 hops 4 hops 5 hops 6 hops 7 hops

H MQCSTP 11.2014 9.7113 9.9469 10.1747 245.8564 871.8128 1.9528e+003 4.3005e+003

H MCOP 10.3047 6.5274 6.6006 6.1979 340.4162 1.3571e+003 3.0024e+003 6.6996e+003

difference 10.87% more 14.88% more 18.87% more 16.42% more 27.78% less 35.76% less 34.96% less 35.81% less

not satisfy the corresponding AQC or EEQC, node vy is not
regarded as a candidate to be selected in the next searching
step, which can reduce the search space and thus significantly
save the execution time.

Through the above experiments conducted in sub-networks
with different scales and structures, we can see that overall
H MQCSTP is superior to H MCOP in both the execution
time and the quality of selected social trust path.

VII. CONCLUSIONS

In this paper, we have presented a complex social network
structure that takes trust, social relationship and recommen-
dation roles into account, reflecting the real-world situations
better. In addition, we proposed a multiple QoT constrained
social trust path selection model in complex social networks.
Furthermore, for selecting the optimal social trust path with
both AQCs and EEQCs, which is an NP-Complete problem,
we have also proposed H MQCSTP, an efficient heuristic
algorithm. The results of experiments conducted on a real
dataset of social networks demonstrate that H MQCSTP sig-
nificantly outperforms existing methods in both execution time
and optimal social trust path selection.

In our future work, we plan to incorporate our models
and algorithms in a new generation of social network based
recommendation systems. In this system, our proposed method
will be applied, for instance, to help a customer identify
the most trustworthy one from all sellers selling the product
preferred by the customer.
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