Consequences of splitting idempotents

Ross Street

Macquarie University, NSW 2109 AUSTRALIA email: street@math.mq.edu.au November 1996

This note analyses ideas related to an apparently little known result of John Isbell [I]. The result is stated as Corollary 6 below.

A terminal object in a category X is defined to be a limit for the unique functor from the empty category into X. However, it is easily seen that a terminal object is also a colimit of the identity functor of X. The brings us to our first consequence of idempotents splitting.

Proposition 1 If $\tau: 1_X \Rightarrow K$ is a cocone over the identity functor of the category X (that is, τ is a natural transformation from 1_X to the constant functor at the object K) and if all idempotents on K split then X has a terminal object.

Proof The cocone property means that, for each object X of \mathcal{X} , we have an arrow $\tau_X \colon X \longrightarrow K$ and note $\tau_X h = \tau_Y$ for all arrows $h \colon Y \longrightarrow X$. In particular, taking $h = 1_K$, we see that $e = \tau_K$ is an idempotent on K. So there exist $r \colon K \longrightarrow T$, $i \colon T \longrightarrow K$ with $r \colon i = 1_T$ and $i \: r = e$. Then T is a terminal object. For, for any X, we have $r \: \tau_X \colon X \longrightarrow T$, and, if $f \colon X \longrightarrow T$, then $f = r \: i \: r \: i \: f = r \: \tau_K \: i \: f = r \: \tau_X \:$. **Q.E.D.**

Corollary 2 If idempotents split in X and $J: \mathcal{D} \longrightarrow X$ is a weakly dense functor admitting some cocone over it then X has a terminal object.

Proof Since J is weakly dense, 1_{χ} is a weak¹ left Kan extension of J along J. We are told there is a cocone $J \Rightarrow K$, and, hence, since K is constant, this can be regarded as a natural transformation $J \Rightarrow KJ$. By the weak Kan property, this gives a natural transformation $1_{\chi} \Rightarrow K$. **Q.E.D.**

Beware that a weakly terminal object in X is not sufficient for a cocone over 1_X .

From now on we deal with two functors

$$I: \mathcal{A} \longrightarrow \mathcal{X}, R: \mathcal{X} \longrightarrow \mathcal{A}$$

and a natural transformation

$$\eta : 1_{\mathcal{A}} \Rightarrow RI : \mathcal{A} \longrightarrow \mathcal{A}.$$

Proposition 3 If η is invertible and idempotents split in X then idempotents split in A.

¹ We use "weak" in the sense of Peter Freyd: drop the uniqueness property from the definition of the concept being qualified.

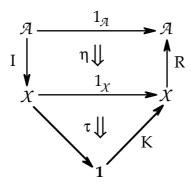
Proof Let e be an idempotent on A in \mathcal{A} . Then Ie is an idempotent on IA in \mathcal{X} . So there exist $r: IA \longrightarrow X$, $i: X \longrightarrow IA$ with $ri = 1_X$ and ir = e. Put $s = (Rr) \eta_A: A \longrightarrow RX$ and $j = \eta_A^{-1} Ri$. Then

$$\begin{split} s \; j &= (Rr) \; \eta_A \; \eta_A^{-1} \; Ri = R(r \; i) = R1_X = 1_{RX} \; \; \text{and} \\ j \; s &= \; \eta_A^{-1} \; (Ri) \; (Rr) \; \eta_A = \; \eta_A^{-1} \; (Re) \; \eta_A = \; \eta_A^{-1} \; \eta_A \; e = e. \end{split}$$

So s, j provide a splitting for e. **Q.E.D.**

Theorem 4 If idempotents split in \mathcal{A} and X has a terminal object then \mathcal{A} has a terminal object.

Proof Let K denote a terminal object for X; we then have a (universal) cocone $\tau: 1_X \Rightarrow$ K. The pasting composite



gives a cocone over 1_x with vertex RK. So the result follows from Proposition 1. **Q.E.D.**

Proposition 5 Suppose idempotents split in \mathcal{A} and suppose $J: \mathcal{D} \longrightarrow \mathcal{S}et$, $S: \mathcal{D} \longrightarrow \mathcal{A}$ are functors. If $\eta S: S \Rightarrow RIS$ is invertible and the J-weighted limit $\lim(J, IS)$ of IS exists in X then the J-weighted limit $\lim(J, S)$ of S exists in A.

Proof Let Cyl(J,S) be the category whose objects are pairs (A,θ) where A is an object of \mathcal{A} and $\theta: J \Rightarrow \mathcal{A}(A,S)$ is a natural transformation; an arrow $f: (A,\theta) \longrightarrow (B,\phi)$ is an arrow $f: A \longrightarrow B$ in \mathcal{A} such that $\theta = \mathcal{A}(f,1_S)$ ϕ . It is clear that $\lim(J,S)$ is precisely a terminal object of Cyl(J,S). It is clear also that idempotents split in Cyl(J,S) since they do in \mathcal{A} . The category Cyl(J,IS) is defined in the obvious way and it does have a terminal object $\lim(J,IS)$.

Define a functor $I': Cyl(J,S) \longrightarrow Cyl(J,IS)$ by $I'(A,\theta) = (IA,\theta')$ where θ' is the composite

$$J \xrightarrow{\theta} \mathcal{A}(A,S) \xrightarrow{I} \mathcal{X}(IA,IS),$$

and I'f = If. Define a functor $R': Cyl(J, IS) \longrightarrow Cyl(J, S)$ by $R'(X, \xi) = (RX, \xi')$ where ξ' is the composite

$$J \xrightarrow{\xi} \mathcal{X}(X, IS) \xrightarrow{R} \mathcal{A}(RX, RIS) \xrightarrow{\mathcal{A}(RX, \eta_S^{-1})} \mathcal{A}(RX, S),$$

and R'h = Rh. There is a natural transformation $\eta': 1_{Cyl(J,S)} \Rightarrow R'I'$ whose component at (A,θ) is η_A . By Theorem 4, the category Cyl(J,S) has a terminal object. **Q.E.D.**

Corollary 6 If η is invertible and X is complete or cocomplete then so is A.

The following standard result [ML; V.5 Exercise 3, p.116] is a consequence.

Corollary 7 Suppose I is fully faithful and R is a right adjoint for I with unit η . If X is complete or cocomplete then so is \mathcal{A} .

Of course, in the situation of Corollary 7 we know more about the construction of individual limits and colimits in \mathcal{A} since I preserves colimits and R preserves limits.

The existence of a right adjoint to a functor $S: \mathcal{X} \longrightarrow \mathcal{A}$ is equivalent to the existence of a terminal object in the comma categories $S \downarrow A$ for all $A \in \mathcal{A}$. So one might investigate the application of Theorem 4 to adjoint functor theorems. However, we shall relate to adjunction in another way. We begin with a rather silly proof of an interesting observation of Robert Paré [ML; IV.1 Exercise 4, p.84].

Corollary 8 Suppose $S: X \longrightarrow \mathcal{A}$, $T: \mathcal{A} \longrightarrow X$ are functors and $\alpha: ST \Rightarrow 1_{\mathcal{A}}$, $\beta: 1_X \Rightarrow TS$ are natural transformations such that $T\alpha.\beta T = 1_T$. If idempotents split in \mathcal{A} then T has a left adjoint.

Proof Let $[T, \mathcal{A}]/1_{\mathcal{A}}$ denote the comma category of the functors $[X, \mathcal{A}] \longrightarrow [\mathcal{A}, \mathcal{A}]$ given by restriction along T and the functor $\mathbf{1} \longrightarrow [\mathcal{A}, \mathcal{A}]$ which picks out the identity functor $1_{\mathcal{A}}$ of \mathcal{A} . Similarly, we have the slice category $[\mathcal{A}, \mathcal{A}]/1_{\mathcal{A}}$ which, as with all slice categories, has a terminal object. Idempotents split in $[T, \mathcal{A}]/1_{\mathcal{A}}$ since they do in \mathcal{A} and hence in $[X, \mathcal{A}]$.

Define a functor $I:[T,\mathcal{A}]/1_{\mathcal{A}}\longrightarrow [\mathcal{A},\mathcal{A}]/1_{\mathcal{A}}$ by $I(G,\rho:GT\Rightarrow 1_{\mathcal{A}})=(\rho:GT\Rightarrow 1_{\mathcal{A}})$ and a functor $R:[\mathcal{A},\mathcal{A}]/1_{\mathcal{A}}\longrightarrow [T,\mathcal{A}]/1_{\mathcal{A}}$ by $R(\theta:P\Rightarrow 1_{\mathcal{A}})=(PS,\theta.P\alpha:PST\Rightarrow 1_{\mathcal{A}})$. Using the equation $T\alpha.\beta T=1_T$ we see that $G\beta:(G,\rho)\longrightarrow (GTS,\rho.GT\alpha)$ is an arrow of the category $[T,\mathcal{A}]/1_{\mathcal{A}}$; so these $G\beta$ are the components of a natural transformation $\eta:1_{\mathcal{A}}\Rightarrow RI$. By Theorem 4, the category $[T,\mathcal{A}]/1_{\mathcal{A}}$ has a terminal object $(L,\tau:LT\Rightarrow 1_{\mathcal{A}})$. There is a unique arrow $\alpha':(S,\alpha:ST\Rightarrow 1_{\mathcal{A}})\longrightarrow (L,\tau:LT\Rightarrow 1_{\mathcal{A}})$ in $[T,\mathcal{A}]/1_{\mathcal{A}}$ and it is easy to see that L is a left adjoint for T with counit τ and unit $T\alpha'.\beta$. **Q.E.D.**

A functor $T: \mathcal{A} \longrightarrow \mathcal{X}$ is said to be *uniformly continuous with respect to a functor* $J: \mathcal{C} \longrightarrow \mathcal{D}$ when, for all functors $K: \mathcal{C} \longrightarrow \mathcal{A}$, $X: \mathcal{D} \longrightarrow \mathcal{X}$ and all natural transformations $\theta: XJ \Rightarrow TK$, there exist a functor $A: \mathcal{D} \longrightarrow \mathcal{A}$ and natural transformations $\xi: X \Rightarrow TA$, $\alpha: \mathcal{C} \longrightarrow \mathcal{A}$

 $AJ \Rightarrow K$ such that $T\alpha . \xi J = \theta$. For his (unpublished, I believe) "Most General Adjoint Functor Theorem", Peter Freyd defined T to be uniformly continuous when it was uniformly continuous with respect to the functors $C \longrightarrow \mathbf{1}$ with C small. It is easy to see that, if \mathcal{A} admits all right Kan extensions along J and T respects them, then T is uniformly continuous with respect to J.

Proposition 9 If $T: \mathcal{A} \longrightarrow \mathcal{X}$ has a left adjoint then it is uniformly continuous with respect to all functors. If idempotents split in \mathcal{A} and $T: \mathcal{A} \longrightarrow \mathcal{X}$ is uniformly continuous with respect to itself then T has a left adjoint.

Proof Let $S: X \longrightarrow \mathcal{A}$ be the left adjoint for T with unit $\eta: 1 \Rightarrow TS$. Then, for each natural transformation $\theta: XJ \Rightarrow TK$, there is a unique natural transformation $\theta': SXJ \Rightarrow K$ such that $T\theta'.\eta XJ = \theta$. So we satisfy the definition of uniform continuity with A = SX, $\xi = \eta X$ and $\alpha = \theta'$.

For the second sentence of the Proposition, take K to be the identity functor of \mathcal{A} , take X to be the identity functor of \mathcal{X} , and take θ to be the identity natural transformation of T. Since T is uniformly continuous with respect to T, there exist a functor $S: \mathcal{X} \longrightarrow \mathcal{A}$ and natural transformations $\beta: 1 \Rightarrow TS$, $\alpha: ST \Rightarrow 1$ such that $T\alpha \cdot \beta T = 1$. By Corollary 8, T has a left adjoint. **Q.E.D.**

References

[I] John R. Isbell, Structure of categories, Bulletin of the American Math. Society **72** (1966) 619-655.

[ML] Saunders Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5 (Springer-Verlag, Berlin 1971).