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Abstract A useful general concept of bialgebroid seems to be resolving itself in recent
publications; we give a treatment in terms of modulesand enriched categories. Generalizing this
concept, we define the term "quantum category"in a braided monoidal category with equalizers
distributed over by tensoring with an object. The definition of antipode for a bialgebroid is less
resolved in the literature. Oursuggestionis that the kind of dualization occurringin Barr's star-
autonomous categories is moresuitable than autonomy (= compactness= rigidity). This leads to
our definition of quantum groupoid intended as a "Hopf algebra with several objects".

1. Introduction

This paper has several purposes. We wish to introduce the concept of quantum
category. We also wish to generalize the theory of *-autonomous categories in the sense
of [Bal]. The connection between these two concepts is that they lead to our notion of
quantum groupoid.

It was shown by [Se] that *-autonomous categories provide models of the linear
logic described in [Gi]. This suggests an interesting possibility of interactions between
computer science and quantum group theory. Perhaps it will be possible, in future
papers, to exploit the dichotomy between categories as structures and categories of
structures. For example, what is the quantum category of finite sets, or the quantum
category of finite dimensional vector spaces?

It is well known that ordinary categories are not models of an ordinary algebraic
(Lawvere) theory; rather, they are models of a finite-limit theory, requiring operations to
be defined in stages since some of them are defined on finite limits of earlier operations.
Quantum categories, in a braided monoidal category with equalizers distributed over by
tensoring, similarly involve operations defined on objects created by tensoring and
taking equalizers of previously defined objects and operations.

The section headings are as follows:
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Before looking at quantum categories we will develop, in this introduction, a
definition of "category" which suggests the definition of "quantum category". We will
then relate this definition to the literature.

We use the terminology of Eilenberg-Kelly [EK] for monoidal categories and
monoidal functors; so we use the adjective "strong monoidal" for a functor which
preserves tensor and unit up to coherent natural isomorphisms. A comonoidal category

would have, instead of a tensor product, a tensor coproduct A —— AX A4 and a counit

with appropriately coherent constraints; this concept is not so interesting for ordinary

categories but becomes more so for enriched categories. Comonoidal functors would go

between comonoidal categories. So, for monoidal categories A4 and X, like [McC], we

use the term opmonoidal functor for a functor

F:A1—>sX
equipped with a natural family of morphisms 6, p:F(A®B)——FA®FB and a

morphism €:FI——1 that are coherent.

For any set X, consider the monoidal category Set/XxX of sets over XxX with

the tensor product defined by
(AL xx X] @ (B—1s X x X = (PR X x )

where P is the pullback of t:A——X and u:B——X with projections p:P——A

and q:P——>B. The objects of Set/XxX are directed graphs with vertex-set X and
the monoids are the categories with object-set X; this is well known (see [ML])and easy.

Less well known, but also easy, is the fact that category structures on the graph

A—"Y ,XxX amount to monoidal structures on the category Set/ A of setsover A

together with a strong monoidal structure on the functor
T - Set/ A——Set/ XxX
defined on objects by composing the function into A with (s,t).
To see this, notice that every object of a slice category Set/C is a coproduct of
elements c:1—— C of C (here 1 isa chosen set with precisely one element) so that

any tensor product on Set/C, which preserves coproducts in each variable, will be
determined by its value on elements (which may not be another element in general).

The tensor product on Set/XxX is such, and its value on elements is given by



(x,y)®(u,v)=(x,v) when y=u (which is in fact another element) but is the unique

function @ ——XxX when y=#u. Since Xy, is conservative and coproduct

preserving, and is to be strong monoidal, the tensor product on Set/ A preserves
coproducts in each variable. An object of Set/ A has the same source set as its value
under X .. So, for elements a and b of A, the tensor product a®b is an element of
A if and only if t(a)=s(b); in this case, s(a®b)=s(a) and t(a®b)=t(b); otherwise,

a®bDb isthe unique function & —— A. The unit for the monoidal category Set/XxX

is the diagonal X —— XxX, so the unit for Set/A has the form i:X——> A with
s(i(x)) =t(i(x))=x for all xeX. Thus we have a reflexive graph X, A, s, t,i with a
composition operation. We leave the reader to check that the associativity and unity

constraints of the monoidal category Set/ A give associativity for the composition and

that each i(x) is an identity.
Conversely, suppose we have a category A with underlying graph A—EY X xX.

Notice that Set/ A is canonically equivalent to the category [A,Set] of functors from
the discrete category A to Set. We can define a promonoidal structure (in the sense of
[Dal]) on A by

1 when c is the composite of a and b;
and

P(a,b;c) :{

%] otherwise;

1 when a is an identity;
J(a)=

%) otherwise.

Then [A,Set] becomes a monoidal category under convolution; this transports to a
monoidal structure on Set/ A for which X is strong monoidal.

When our category A is actually a groupoid (that is, every arrow is invertible),
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there is a bijection S:A——> A defined by Sa=a". We draw attention to the

isomorphisms
P(a, b; Sc) = P(b, c; Sa),

noting here that S is its own inverse and that the diagram
A——A
(s,t)i i(s,w
Xx X ?X x X

commutes, where the lower S is the switch map — which is inversion for X as a

chaotic category (meaning, the category whose object set is X and each homset has



exactly one element). We will relate this kind of "antipode" structure to *-autonomy.

Now suppose we have a category A : A—5Y sXxX  and suppose we regard
Set/ A as monoidal in the manner described above. The functor X, has a right
adjoint (s,t)" defined by pulling back along (s,t). The strong monoidal structure on

X (s 1) is obviously both monoidal and opmonoidal; the opmonoidal structure transforms

to a monoidal structure on the right adjoint (s,t)° in such a way that the unit and

counit for the adjunction are monoidal natural transformations. The composite of

monoidal functors is monoidal; so the endofunctor G, = Zis,t) (s,t)* is also monoidal.
The adjunction also generates a comonad structure on G, in such a way that the
counit and comultiplication are monoidal natural transformations; we have a monoidal

comonad G, on Set/XxX. Remember the term "monoidal comonad"!
It is also important to notice that (s,t)° has a right adjoint Il,; so the

endofunctor G, has a right adjoint (s,t)" Il ). By Beck's Theorem (see [ML] for
example), X, is comonadic since it is obviously conservative (that is, reflects
isomorphisms) and preserves equalizers. On the other hand, any monoidal comonad
on a monoidal category leads to a monoidal structure on the category of Eilenberg-Moore

coalgebras in such a way that the forgetful functor is strong monoidal (see [Mo]or [McC]
for example). Any cocontinuous endofunctor of Set/XxX has the form X (s,t)" for

some graph ALY XX Assembling all this, we obtain:

Proposition 1.1 Categories with underlying graph A—CY X %X are in bijection

with monoidal comonad structures on the endofunctor X (s, t)" of Set/XxX.

Let us compare the combinatorial context of Proposition 1.1 with the linear algebra

context. Szlachédnyi [Szl] has shown that, for a k-algebra R, the Xxg-bialgebras of

Takeuchi [Tak] are opmonoidal monads on the monoidal category VectE®Ro of left R-,

right R-bimodules over R where the underlying endofunctor of the monad is a left
adjoint. These xg-bialgebras of Takeuchi have been convincingly proposed (see [Xu],
[Lu], [Sch2]) as the good concept of "bialgebroid" based on R (that is, with "object of
objects R").

Here we face the usual dilemma. Given ak-bialgebra H, is it better to consider the
category of modules for the underlying algebra with the monoidal structure coming
from the comultiplication, or, the category of comodules for the underlying coalgebra
with the monoidal structure coming from the multiplication? Our preference is

definitely the latter since the obvious linearization of the group case leads to this
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decision; also see [JS2]. When H is finite dimensional (as a vector space over a field k)
there is essentially no difference. We feel that the functor from the category of sets to the
category of k-vector spaces should provide the mechanism for regarding classical
categories as quantum categories. For this we need to dualize the Xxg-bialgebras of
Takeuchi to be based on a k-coalgebra C rather than a k-algebra R ; indeed, Brzezinski-
Militaru [BM] have already made this dualization of the x-bialgebras of Takeuchi based
on a k—coalgebra C rather than a k-algebra R. We take this as our concept of quantum
category; it involves a monoidal comonad. Actually, our general setting of a monoidal
bicategory formalizes this duality.

The basicexamples of quantum groups are Hopf algebras with braidings (also called
quasitriangular elements or R-matrices) or cobraidings, depending how the dilemma is
resolved. Indeed, these basic quantum groups are cotortile bialgebras (see [JS2]). We
leave it to a future paper to define and discuss braidings and twists on quantum
categories.

So what is a quantum groupoid? It should be a quantum category with an

"antipode". We first develop a notion of antipode for the Xxg-bialgebras of Takeuchi.
We are influenced by the chaotic example R° ®R itself where we believe the antipode

should be the switch isomorphism (R°®R)°—— R°®R. This is not a dualization in

the sense of [DMS] but a dualization of the kind that arises in Barr's *-autonomous
monoidal categories [Bal].

Consequently we are led to study *-autonomy for enriched categories. In fact, we
define #-autonomous promonoidal 7 categories and show this notion is preserved

under convolution. There is always the canonical promonoidal structure on AP ® 4
(see the concluding remarks of [Dal]) which is #*-autonomous (as remarked by Luigi
Santocanale after the talk [Da4])and leads under convolution to the tensor product of
bimodules. The Chu construction as described in [Ba3] and [St4]is purely for ordinary
categories: it needs the repetition and deletion of variables that are available in a
cartesian closed base category such as Set. We vastly extend the notion of #-autonomy
to include enriched categories and other contexts. We provide a general star-
construction which leads to the Chu construction as a special case.

Equipped with this we can define when a Takeuchi xg-bialgebra is "Hopf". Then,
by dualizing from k-algebras to k-coalgebras, we define quantum groupoids to be *-

autonomous quantum categories.



2. Ordinary categories revisited

Let us consider Proposition 1.1 from a slightly different viewpoint. A left adjoint (or
cocontinuous) functor F: Set/X —— Set/Y between slice categories is determined by

its restriction to the elements x:1—— X of X, and so, by a functor

X——Set / Y —=5[Y,Set],
where we regard the sets X and Y as discrete categories and write [4,B] for the
category of functors and natural transformations from A to B. However, the functors
X——[Y,Set] are in bijection with functors S : XxY—— Set which we think of as
matrices
S =(s(xy) )(x,y)eXXY :

This gives us an equivalent (actually "biequivalent") way of looking at the 2-
category whose objects are (small) sets, whose morphisms F : X——Y are
cocontinuous functors Set/ X ——Set/Y, and whose 2-cells are natural

transformations; however, rather than a 2-category we only have a bicategory which we

call Mat(Set) (compare [BCSW] for example). Again, the objects are sets, the morphisms

S: X ——Y are matrices, and the 2-cells 6 : S = T are matrices of functions

0 =(6(x;y):5(x;y)—>T(x; ;
( (x;y):S(x;y) (x y))(X’y)EXXY
vertical composition of 2-cells is defined by entrywise composition of functions,

horizontal composition of morphisms S : X——Y and T: Y——> Z is defined by

matrix multiplication

(ToS)(x;2) = D, S(x;y)xT(y;z),
yeY

and horizontal composition is extended in the obvious way to 2-cells. We write X :

X——X for the identity matrix (or Kronecker delta):
1 for x=v,
X(x;y) = { g

& otherwise.

Of course Mat(Set) is also biequivalent to the bicategory Span(Set) of spans (in the
sense of Bénabou [Bé]) in the category Set of sets.
In fact, Mat(Set) is an autonomous monoidal bicategory in the sense of the authors

[DS1]. That is, there is a reasonably well behaved tensor product pseudofunctor



Mat(Set) x Mat(Set) —— Mat(Set)

which is simply defined on objects by cartesian product of sets and likewise, by cartesian
product entrywise, on morphisms and 2-cells. Each object Y is actually self-dual since a
matrix XXY—— Z can be identified with a matrix X—— Y xZ. This means that
Y xZ is the internal hom in Mat(Set) of Y and Z (mimicking the factthat in finite-
dimensional vector spaces the vector space of linear functions from V to W is
isomorphic to V*® W). In particular, X x X is the internal endohom of X; and so we
expect it to be a pseudomonoid in Mat(Set) (mimicking the fact that the internal
endohom of an object in a monoidal category is an internal monoid).

Let us be more specific about this pseudomonoid structure on X x X in Mat(Set).

The multiplication

P: ( XxX)x(XxX)—— XxX

is defined by P(y,,x,,v1,X1; X, y) = X(y,X1) X X(y1,%X2) X X(y5,%x). The unit J:1 — XxX

is defined by J(e;x,y) = X(x;y). One easily checks the canonical associativity and unit
isomorphisms

Po(Px(XxX)) = Po((XxX)xDP), Po(Jx(XxX)) = XxX = Po((XxX)x]).
Thinking of the set X x X as a discrete category, we see that P, J and these
isomorphisms form a promonoidal structure on X x X. Noting that, under the

equivalence of categories

[XxX,Set] —=— Set / Xx X,

the convolution monoidal structure for X x X transports across the equivalence to the
monoidal structure on Set/XxX described in the Introduction, the following result

becomes a corollary of Proposition 1.1.

Proposition 2.1 Categories with object set X are equivalent to monoidal comonads

on the internal endohom pseudomonoid X x X in the monoidal bicategory Mat(Set).

It may be instructive to sketch a direct proof of this result. A monoidal comonad G

on X x X comes equipped with 2-cells

0:G——GoG, e:G—— XXX, U:Po(GXxG)——>GoP and n:J—— Go]J,

subject to appropriate axioms. The mere existence of € is quite a strong condition since
X(x;u)x X(y;v) is empty unless x=u and y=v; so G(x,y;u,v) is empty unless x=u
and y =v. This leads us to put

Alx,y) = G(x,y;%,y)
which defines the homsets of our category A. Itis then easy to check that p defines
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composition and m provides the identities for the category A. We note finally that § is
forced to be a genuine diagonal morphism: we are dealing here with the categories of

"commutative geometry".
3. Takeuchi bialgebroids

We are now ready to move from set theory to linear algebra. Let k be any
commutative ring and write 9 for the monoidal category of k-modules; we write ®
for the tensor product of k-modules. Monoids R in 7 will be called k-algebras and we
write VR for the category of left R-modules; we can think of R as a one-object ¥

category [EK] so that ¥R is the category of functors from R to %, From this

viewpoint the k-algebra R°, which is just R with opposite multiplication, is the

opposite T-category of R.

We briefly recall the preliminaries of Morita theory starting with Watts' Theorem
[Wa] characterizing cocontinuous functors between categories of modules. For k-
algebras R and S, a left adjoint (or cocontinuous) functor F : VR —— 95 between
module categories is, up to isomorphism, determined by its restriction to the 7-dense

(see [DK]) full subcategory of ¥R consisting of R itself as a left R-module. This full
subcategory is isomorphic to R°. So the left S-module F(R) =M is also a right R-, left S-

bimodule which we call amodule from R to S and use the arrow notation M: R ——

S . (The factthat R is actually on the left of the arrow and S on the right, rather than
the other way around, has to do with our convention to compose functions in the usual

order.) We also identify M with an object of ¥® ®5.

There is a 2-category whose objects are k-algebras, whose morphisms R —— S are

left adjoint functors F : ¥R ——4/°, and whose 2-cells are natural transformations
between such functors F; the compositions are the usual ones for functors and natural

transformations. This 2-category is biequivalent to the bicategory Mod(?¥) whose

objects are k-algebras, whose morphisms are modules M :R —— S, and whose 2-cells
are 2-sided module morphisms; the horizontal composite NoM: R—— T of M: R

——> S and N :S —— T is the tensor product N®; M of the modules M and N
over S ; vertical composition of 2-cells is the usual composition of module morphisms.

Indeed, like Mat(Set), the bicategory Mod(?) is autonomous monoidal. The



tensor product is that of 7% k-algebras R and S are taken to the k-algebra R®S,
modules M:R——S and M’:R’——S’ are taken to the module M®M':R®R’

——>S®S’, and module morphisms are tensored using the functoriality of M®M’ in
the two variables. The opposite k-algebra S° acts as a dual for S since the category of

modules R®S——T is equivalent to the category of modules R——S°®T.

It follows that R°®R is an internal endohom for R and, as such, is a

pseudomonoid in  Mod(?). The multiplication
P: RR®R)®(R°®R)——>R°®R
is P = R®R®R as a k-module, with the further actions defined by
x®y)(@a®b®c)(y; ®x;®y, ®X,) = (yax;) ® (y1bx,) ® (y,cx)
for a®b®ceP, x®yeR°®R and x;®y; ®x, ®y, eR"O®R®R"®R. The unit
J:k—>R°®R
is just J=R asa k-module, with the further action (x®y)a = yax. One easily checks

that there are canonical isomorphisms

P® (R°*®P) = P®

e
RE®R® (P®R®) and

R°®R®

P® (R®*®]) = R® = P®

e
are J®R®)

R¢®R® (
where we have used the traditional notation R®*=R°®R for this pseudomonoid; the

n_n

e" superscript could be thought to stand for "endo" as well as the usual "envelope".

Definition 3.1 A Takeuchi bialgebroid is ak-module R together with an opmonoidal

monad on R® in the monoidal bicategory Mod(V/).

To see that this definition agrees with that of xy-bialgebra as defined by Takeuchi
[Tak] (and developed by [Lu], [Xu], [Sch2], [BM] and [Szl]) we shall be more explicit about

what an opmonoidal monad A on any pseudomonoid E involves.

In any monoidal bicategory ‘B (with tensor product ® and unit k ) we use the

term pseudomonoid (or "monoidal object") for an object E equipped with a binary

multiplication P:E®E ——E and aunit J:k —— E which are associative and unital

up to coherent invertible 2-cells. A monoidal morphism f:E——E’ is a morphism

equipped with coherent 2-cells Po(f®f) = foP and ] = fo]. A monoidal 2-cell is

one compatible with these last coherent 2-cells. With the obvious compositions, this

defines a bicategory MonB of pseudomonoids in ‘B. For example, if B is the cartesian-
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monoidal 2-category Cat of categories, functors and natural transformations then

MonB is the 2-category MonCat of monoidal categories, monoidal functors and
monoidal natural transformations as in [EK].

We write B for the bicategory obtained from B on reversing 2-cells. We put
OpmonB = (MonB%“);
the objects are again pseudomonoids, the morphisms are opmonoidal morphisms, and

the 2-cells are opmonoidal 2-cells. An opmonoidal monad in ‘B is a monad in
OpmonB.
A monoidal morphism f:E——E’ is called strong when the 2-cells ] = fo]

and Po(f®f) = f oP are invertible. The inverses for these 2-cells equip such a strong

f with the structure of opmonoidal morphism.

Now we return to the case of opmonoidal monads in B = Mod(¥). First of all, we
have a module A:E——E. The monad structure consists of module morphisms
LW:A® A—— A and n:E—>A
satisfying the usual conditions of associativity and unitality:

Ho(U®g1y)=po(ly ®gp), HoN®g1y) =1p = po(ly ®M).
The opmonoidal structure consists of module morphisms

satisfying the following conditions:

d®1

A® P®.e (E®P) = A® PO, (POE) — P®.e A®? ® e (POE)
N
d®1 P® o (A®, P)®A)
P® e A®? ®, e (E®P) l 1®(6®1)
N

P®_ e (A®(A®gP)) W P ® e (A®(P Qe A®) = P ® o2 (P ® o2 A®)® A)

§®1
A® PO (E®))—— = PO A¥ ® 6 (E®]) = POLer (A®(A®R])))

1®(1®¢)

A= PQre (A®])
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§®1
A® PO JOE)—— = P®.es A¥ ®6» | ®F) = P®,ex (AR )®A)

= 1®(e®1)
A= P®a (J®A)
L®1
1®8i P® e A%?
®2
A®,P® s A 1®u®

ST~

P® os A® ® er A% = P®Len (A®p AP

pLel1 n®l1 n®l
1®¢ € S €
i l 1®”®X\ i 1 i
A®g] f)] P®E®2 A®? J

Notice in particular that A becomes a k-algebra with multiplication defined by

composing W with the quotient morphism A® A —— A® A and with unit n(1).
Indeed, n:E—— A becomes a k-algebra morphism. Moreover, the structure on A as a

module A:E——E isinduced by n:E——A via eae’=n(e)an(e).

From time to time we will require special properties of bicategories such as Mod(V/).
In particular, at this moment, we need to point out that Mod(?) admits both the Kleisli
and Eilenberg-Moore constructions for monads. For monads in 2-categories rather than
bicategories, the universal nature of these constructions was defined in [Stl]; however,
for the kind of phenomenon for modules we are about to explain, a better reference is
[St2]. To be explicit, a monad in a bicategory B is an object A of B together with a

monoid t in the monoidal category B(A,A) in which the tensor product is horizontal

composition in ‘B. An Eilenberg-Moore object for (A,t) is an object denoted A' for

which there is an equivalence of categories

B(X,A') = B(X,A)"*Y
pseudonatural in objects X of ‘B, where the right-hand side is the category of Eilenberg-
Moore algebras for the monad B(X,t) on the category B(X,A) in the familiar sense of

say [ML]. The existence of Eilenberg-Moore objects is a completeness condition on B;
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that condition on ‘B°P is the Kleisli construction, the notion of monad being invariant
under this kind of duality. That is, a Kleisli object for (A,t) is an object denoted A, for

which there is an equivalence of categories
B(A,,X) ~ B(A,X)EEX)
pseudonatural in objects X of B,
Now we move more explicitly to the bicategory Mod(?). Notice that each k-algebra
morphism f:R——S leads to two modules f,:R——S and f*:S——>R which are

both equal to S as k-modules but with the module actions defined by
sxr = sxf(r) and rys =f(r)ys

for xef,, yef, reR and s €S. What is more, there are module morphisms
R—>f"®f, and f,®zf —>S,

the former defined by f and the latter defined by multiplication in S, forming the unit

and counit of an adjunction in which f* is right adjoint to f,.

Suppose A:E——E is a monad on the k-algebra E in the bicategory Mod(?).
The multiplication n:A®g A——>A and unit n:E—— A morphisms compose
with the quotient morphism A® A——> A ®g A and the unit k—E,

respectively, to provide the k-module A with a k-algebra structure with n:E—— A

becoming a morphism of k-algebras. Then pu can be regarded as a 2-cell
A

E———"7=E

u
Ncﬁ

A
in Mod(?); itis a right action of the monoid A on n,. Indeed, this is the universal
right action of A on modules out of E; thatis, the above triangle exhibits A as the
Kleisli construction for the monad A on E. Since the homcategories of Mod(V) are

cocomplete and composition with a given module preserves these colimits, the triangle

E—>E

NEA

in which p’ is the mate of u wunder the adjunction 1, — 17, exhibits A as the
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Eilenberg-Moore construction for the monad A on E. Thatis, p’ isthe universal left
action of A on modules into E.

The following result abstracts Proposition 2.16 of [McC].

Lemma 3.2 If the monoidal bicategory B admits the Eilenberg-Moore construction for

monads then so does OpmonB. Furthermore, the forgetful morphism

OpmonB8——B

preserves the Eilenberg-Moore construction.

In particular, this means that OpmonMod(?¥) admits the Eilenberg-Moore
construction. (That the Kleisli construction exists for promonoidal monads was

remarked in Section 3 of [Da2].)

Proposition 3.3 Suppose E isa pseudomonoid in Mod(V) and m:E——A isa k-
algebra morphism. There is an equivalence between the category of opmonoidal monad

structures w,0 ,€ on A:E——E inducing m and the category of pseudomonoid

structures on A for which m"':A——E is a strong monoidal morphism.

Proof In one direction, given the opmonoidal monad A on E inducing the given n,

Lemma 3 lifts the triangle involving W’ to a triangle in OpmonMod(?) where it is

again the Eilenberg-Moore construction. In particular, the adjunction m, = n" lifts to
OpmonMod(‘V ) and so, for general reasons explained in [Kel], n":A——>E is strong

monoidal. In the other direction, any k-algebra morphism m:E——>A always has the

property that 1, is opmonadic in Mod(¥); that is, it supplies the Kleisli construction
for the opmonoidal monad m*®, n. on E generated by the adjunction 1, —n". This

opmonoidal monad has the form A, u,d,¢& mn asrequired. These two directions are

the object functions for an obvious equivalence of categories. QED
It follows that a Takeuchi bialgebroid can equally be defined as consisting of a k-
algebra R, a k-algebra morphism mn:R®*——A, and a pseudomonoid structure on A

for which n" is strong monoidal.

In preparation for interpreting Takeuchi bialgebroids in terms of module categories,
we need to clarify further some monoidal terminology. The concepts are not new but

the terminology is inconsistent in the literature.
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We say that a monoidal V-category 4 is left closed when, for all pairs of objects B,

C, there is an object [B,C],, called the left internal hom of B and C, for which there

are isomorphisms

A(A,[B,C],) = A(A®B,0),

V-natural in A. A right internal hom [B,C] satisfies
A(A,[B,C] ) = AB®A,C).

We call a monoidal T-category closed when it is both left and right closed. (This differs
from Eilenberg-Kelly [EK]who use "closed" for left closed. However, they were mainly

interested in the symmetric case where left closed implies right closed.)

As pointed out in [EK],if A4 and X are closed monoidal, a monoidal 7*functor

F: A—— X, with its (lax) constraints

0g:I——FI and ¢,.op:FA®FB——F(A®B)
subject to axioms, could equally be called a left closed V-functor since these constraints
are in bijection with pairs

¢o:1—>FI and ¢bp,c:F[B,C], —>[FB,FC],
satisfying corresponding axioms. Equally F could be called a right closed V-functor since

the constraints are in bijection with pairs

0g:I——FI and  ¢p.a.c:F[A,C], —[FAFC]
satisfying corresponding axioms. We call a monoidal 7 functor F normal when ¢, is
invertible. As usual we call F strong monoidal when it is normal and each ¢,.5p is

invertible. We define F to be strong left closed when it is normal and each (l)é;B;C is

invertible; it is strong right closed when it is normal and each ¢j.5.c is invertible; and

it is strong closed when it both strong left and strong right closed.

Pseudomonoid structures on A in Mod(?) are equivalent to closed monoidal

structures on the Ttcategory ¥ A~ Mod(V)(k,A) of left A-modules; this is a special case
of convolution in the sense of [Dal]. In fact, since k is a comonoid in Mod(V), we

have a monoidal pseudofunctor
Mod(?")(k,-) : Mod(V) — ¥ —Cat,

which, assuch, takes pseudomonoids to pseudomonoids. Since it is representable by k,

it also preserves Eilenberg-Moore constructions (and all weighted limits for that matter).

This means that when we apply Mod(%)(k,—) to a Takeuchi bialgebroid m:R®*——A,
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we obtain a strong monoidal monadic functor
YA YR

Conversely, given a k-algebra morphism m:R®*——A, a 7 monoidal structure on

YA  and a strong monoidal structure on the functor VYA 9R° we obtain a

Takeuchi bialgebroid structure on 1n:R®*——>A. This is because V A5 9R has both

adjoints and is conservative (= reflects isomorphisms), so is monadic; but being strong

monoidal and colimit preserving, any monoidal structure on ¥ A will be automatically

closed, reflecting the fact that the monoidal V.category V% is closed. Consequently, by

[Dal], the monoidal structure on ¥ is obtained by convolution of a pseudomonoid
structure on A.
By Theorem 5.1 of [Schl] (also see Theorem 3.1 of [BM]) characterizing the xg-

bialgebras of Takeuchi as monoidal structures on ¥* for which 9/ A LY strong
monoidal, we have shown that our Takeuchi bialgebroids are the xg-bialgebras. We

will see this in another way in the next section.

4. The lax monoidal operation Xy

In order to define a bimonoid (or bialgebra) in a monoidal category, the monoidal
category requires some kind of commutativity of the tensor product such as a braiding.
A braiding can be regarded as a second monoidal structure on the category for which the
new tensor is strongly monoidal with respect to the old. The so-called Eckmann-Hilton
argument forces the new tensor to be isomorphic to the old and forces a braiding to
appear (see [JS1]).

Ah, but what if the second tensor is only a lax multitensor and is only monoidal
with respect to the old monoidal structure? Then there is certainly no need for the two
structures to coincide. However, it is still possible to speak of a bimonoid: there is
sufficient structure to express compatibility between a monoid structure for one tensor
and a comonoid structure (on the same object) for the other tensor. After some
preliminaries about right extensions in bicategories, we shall describe in detail just such
a situation.

On top of the already discussed diverse properties and rich structure enjoyed by
Mod(¥), we also have the property that all right liftings and right extensions exist.
Despite the terminology (from [St1]for example), these concepts are very familiar in the

usual theory of modules.
Suppose M and M’ are modules R——S. We put
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Hom§ (M, M") = Mod(?)(R,S)(M,M");
that is, traditionally, it is the k-module of left S, right R-bimodule morphisms from M

to M’. Now consider three modules as in the triangle

R—>S

RN

Let Homyz(M,N) : S—— T denote the k-module of right R-module morphisms with
right S- and left T-actions defined by (tfs)(m)=tf(sm) for
seS, teT, fe Homg(M,N) and me M.
Let Hom™(L,N): R —— S denote the k-module of left T-module morphisms with right
R- and left S-actions defined by (sgr)(1)= g(1s)r for
reR, seS ge Hom™(L,N) and lelL.

There are natural isomorphisms

Hom{ (L, Homg (M, N)) = Homy(L® M,N) = Homy(M,Hom (L, N)).

1

induced by evaluation morphisms

ev : Homg(M,N)® M ——> N and evy: L®; Hom'(L,N))—> N.
In bicategorical terms, Hompz(M,N) is the right extension of N along M, while
Hom (L, N) is the right lifting of N through L.

We require normal lax monoidal categories in the sense of [DS2] and [DS3]. These

structures have been considered by Michael Batanin; they are the algebras for the

categorical operad defined on page 88 of [Bat]. A lax monoidal structure on a category E

amounts to a sequence of functors

;:Zx...xf—ﬁf
%/_/

n
(thought of as multiple tensor products) together with substitution operations p; in the

direction we will give below in our main example, and a unit m:X—— X, satisfying
1

three axioms. This is called normal when n isinvertible (and so can be replaced by an
identity).

Consider any pseudomonoid E, with multiplication P and unit ], in a monoidal
bicategory B which admits all right extensions (where we have in mind B= Mod(?)).
Then the endohom category End(E) = ‘B(E, E) becomes a lax monoidal category

as follows. We define
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P :E®" —SE
to be the composite

®(n-2) ®(n-3)
P@E®™ g®n-1_ POE™” POE @2 P

E@I‘l

E

for n>2, to bethe identity of n =1, and to be ] when n =0. The coherence conditions
for a pseudomonoid ensure that Py =P,0(P, ®...®P, ) for each partition & :

m;+...+m, = m.

We define the multiple tensor g(Ml,. : .,Mn) of objects M;,. . .,M, of End(E)

to be the right extension of P, (M;®...®M,) along P,; thatis,
®(M;,.. ., M,) = Homge,(P,, P, ®pon (M; ®. . .®M,)).

The lax associativity constraint
u& : g(n?l(Mll, .. "Mlml ), ey l’z (Mnl’ .. '/Mnmn )) —);(Mll, .. '/Mnmn)

for each partition &: m;+...+m, = m is, byusing the right extension property of the

target, induced by the morphism

z(r:l(Mllf . "/M1m1)’ ceoy ; (Mnl/ . ..,Mnmn))oPm%Pm o(M11®. L.® Mnmn)

which, after "conjugation” with P, = P,0(P, ®...®P,, ), is the composite

ol
g(rgl(Mn,...,Mlml),..., & My, My, ))opn o (P, ®...0P, )—Y1

Pn o Igl(Mll’ ""Mlml)’ ooy I: (Ml’ll’ ..-,Mnmn))O(Pml ®®Pmn)5—)

1o(ev®...®
P, o (rgl(Mlll-.-/Mlml)oPm1)®--.®(; (Mnl,...,Mnmn)oPmn) (ev ev)

Pn (Pml o n.ll(Mlll 'Mlml))®®(Pmn o I‘?l (Mnl’ ...,Mnmn ))):—)

Pn O(Pm1 ®...® Pmn )O (Mll ®...® Mnmn) .

]

The three axioms for a lax monoidal category can be verified. Since P;: E——E is the
identity, we see that ;M =M ; so the lax monoidal structure on End(E) is normal.

As an endomorphism category End(E) is also a monoidal category for which the
tensor product is composition. So End(E) is an object of the 2-category MonCat. Now

MonCat is a monoidal 2-category with cartesian product as tensor. We will now see
that End(E) is a lax monoid in MonCat.
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Proposition 4.1 Regard End(E) as a monoidal category under composition. The

functors e : End(E)"——End(E) are equipped with canonical monoidal structures such
that the substitutions Wg are monoidal natural transformations.

Proof The structure in question is the family of morphisms
o (Ny, ..., Ny)oe(M,...My) — ¢ (NjoMy,...,NyoMy)

which, using the right extension property of the target, are induced by the composites

loev

;(Nll""Nn) o I’l(Mll.“,Mn) o Pl’l—>

evol

;(Nl,...,Nn) oP,o(M; ®...0M,)

Poo(N;®...ON,)o(M;®...0M,; ) —— P, o((N;o M) ®...® (N, o M,)).

The compatibility of these morphisms with the lax associativity morphisms is readily
verified. QED

A monoid for composition in End(E) is a monad on E in B. We write
MonEnd(E) for the category of monads on E; the morphisms are 2-cells between the
endofunctors of the monads that are compatible with the units and multiplications. It
follows from Proposition 4.1 that the lax monoidal structure on End(E) lifts to the
category MonEnd(E).

The concept of comonoid makes sense in any lax monoidal category.

Proposition 4.2 A Takeuchi bialgebroid can equally be defined as a k-algebra R

together with a comonoid in the lax monoidal category MonEnd(R®).

Proof Both a Takeuchi bialgebroid A : R® —— R® and a comonoid in MonEnd(R®)
start with a monad A : R*®—— R® on R® in Mod(?). To make this a comonoid in

MonEnd(R®) we need a comultiplication 8 : A —— g (A,A) and acounit & :A—— 3

satisfying axioms. By the right extension properties of their targets, these morphisms
are determined by morphisms §: AoP, —> P, o(A®A) and €: APy, —— P, exactly

as for a Takeuchi bialgebroid. The condition that & and ¢" should form a comonoid
translates to the first three diagrams on & and € describing an opmonoidal monad (as
in Section 3) while the conditions that 8" and ¢€” should respect the monad structure
translate to the last four diagrams on & and €. So the comonoid is equivalently a
Takeuchi bialgebroid. QED
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The operation 9 on MonEnd(R®) is precisely the operation X of Takeuchi [Tak];
also compare Section 2 of [Sch2]' whose o :(MxgP)xg N—>Mxz Pxg N, for

example, is our substitution p : Z(Z(M,P), N)H ; (M,P,N) for £:2+1=3. To help

the reader make these identifications explicit, let E = R°= R°®R, take left-E, right E-
bimodules M and N, and recall that P, =R®R®R with the actions explained in

Section 3. There is a canonical isomorphism
P, ® e (M®N) = M®; N
where M®; N = M®N/{(x®1)m)®n ~ m®((1®x)n)). Then we have the following

calculation where the third isomorphism is obtained by evaluating the homorphisms at
1®1®1 € ROR®R.

®(M,N) = Hom_e: (P, , P, ® oo (M®N)) = Hom e (P, M®g N)

In

{ Zmi ®rn; e M®y N Zmi(x®1)®R n; = zmi ®r n;(1®x) Vxe R}
i i i

= M XR N
5. Monoidal star autonomy

In this section we extend the theory of *—autonomous categories in the sense of
Barr (see [Bal], and, for the non-symmetric case, see [Ba3]) to enriched categories in the
sense of Eilenberg-Kelly [EK]. The kind of duality present in a *—autonomous category is
closer than compactness (also called rigidity or autonomy) to what is needed for an
antipode in a bialgebroid or quantum category, and so for a concept of Hopf bialgebroid

or quantum groupoid (see Example 7.4).
A TV-functor F: A—— B is called eso (for "essentially surjective on objects") when

every object of B is isomorphic to one of the form FA for some object A of 4.
A left star operation for a monoidal V-category A is an eso V-functor
S;: A——> AP
together with a ?-natural family of isomorphisms (called the left star constraint)
AA®B,5,C) = A(A,S,(B® Q)).
It follows that A is left closed with [B,C],=S/(B®D) where S/D =C.

! In its basic form the integral notation attributed to Mac Lane in [Sch2] is originally dueto Yoneda; see
page 546 of [Yo]. It was adopted by [DK] for their conceptof "end" and "coend" in the general enriched
context; however, their use of subscriptsand superscripts onthe integral (adopted by [ML]) is the reverse of
[Sch2]. This reversal is reproduced in [BM].
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A right star operation for a monoidal P*category A4 is an eso P*functor
S,: A"—— A4
together with a ¥ natural family of isomorphisms (called the right star constraint)
AA®B,S,C) = A(B,S,(C®A)).
It follows that A is then right closed with [A,C] =S ,(E® A) where SE = C.

A monoidal V-category A4 is called #-autonomous when it is equipped with a left
star operation which is fully faithful. Since it follows that S, isthen an equivalence of
V-categories, we write S, for its adjoint equivalence so that the left star constraint can be
written as

A(A®B,5,C) = AB®C,S,A).
We see from this that S, 1is a right star operation and #*-autonomy can equally be
defined in terms of a fully faithful right star operation. It follows that *-autonomous
monoidal 7-categories are closed, with internal homs given by the formulas
[B,C],=5,(B®S,C) and [A,C] =5,(S,C®A).
Notice that
A(A,SD) = AI®A,S/I) = A(A®IS,I) = A(A,S,]),
so that S;I = S,I (by the Yoneda Lemma). The object S/ is called the dualizing object

and determines the left star operation via [B,S/I] = S,B.

For the reader interested in checking that our *-autonomous monoidal categories
agree with Michael Barr's #-autonomous categories, we recommend Definition 2.3 of
[Ba2] as the appropriate one for comparison. Also see [St3].

A monoidal category is autonomous if and only if there exists a left star operation
S, and a family of 7 natural isomorphisms
S/,(A®B) =SB®S/A.
If A is autonomous then taking the left dual provides a left star operation with

isomorphism as required which a fortiori satisfy the conditions for a strong monoidal V-
functor. To see the less obvious implication, suppose we have an S, and the
isomorphisms. Then [B,C],=S,(B®D)=SD®SB =C®SB where S,D =C, so S,B

is a left dual for B. So every object B has a left dual S,B. However, every object B is
isomorphic to S;D for some D. This implies that D is a right dual for B.

6. Modules and promonoidal enriched categories

An important part of our goal is to extend star autonomy from monoidal categories

to promonoidal categories. In preparation, in this section we shall discuss some basic
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facts about enriched categories and modules between them. Then we will review
promonoidal categories and promonoidal functors in the enriched context. We obtain a

result about restriction along a promonoidal functor.
Let 7 denotes any complete and cocomplete symmetric monoidal closed category.
We write %*Mod for the symmetric monoidal bicategory (in the sense of [DS1]) whose

objects are T;categories and whose hom-categories are defined by

V:Mod(1, B) = [AP @B, V.
The objects M: A——> B of V-Mod(4 , B) are called modules from A to B. The
composite of modules M : A—— B and N:B—— C is defined by the equation

B
(NoM)(A,C) = [ 'N(B,C)®M(A,B);
the integral here is the "coend" in the sense of [DK] (also see [Ke2]). The tensor product
for 7 Mod is the usual tensor product of T categories in the sense of [EK] (also see

[Ke2]); explicitly, an object of A® B is apair (A,B) where A is an object of A4 and B
is an object of B, and the homs are defined by
(A®B)(A,B),(A’,B)) = A(A,A’)® B(B,B’).
Actually %*Mod is autonomous since we have
V:Mod (A®B, C) = ¥:Mod (B, A ®C)
since both sides are isomorphic to [QBOP ®AP®C,V ]

We have reversed the direction of modules from that in [DS1-3] so that a

promonoidal P*category A is precisely a pseudomonoid (monoidal object) of 7*Mod

(rather than A°P being such). The multiplication module P: A® 4——A4 and the
unit module J: I—— 4 are equally %functors

P: AP @AP®A4——9vY and J: A—7,

and we have associativity constraints

JXP(X,C;D)®P(A,B;X) = jYP(A,Y;D)@JP(B,C,-Y)

and unital constraints
X Y
j P(X,A;B)®]X = 4(A,B) = j P(A,Y;B)®]Y,

satisfying the usual two axioms (see [Dal]) which yield coherence. Itis convenient to

introduce the 7 functors
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P,: AP ®... A% ®4—7,

n

for all natural numbers n, which we define as follows:

X
Posi(Ar. o ApysA) = [P AL A)®P(A,. .., Ay X).

We think of P,(Aq,...,A,;A) as the object of multimorphisms from A;,...,A, to A
in 4. For example, when 4 is a monoidal 7*category, we have a promonoidal
structure on A4 with
P (Ay,...,A;A) = A(A;®...®A,,A),
where the multitensor product is, say, bracketed from the left.
It will also be convenient to define a multimorphism structure on a V-category A4
to be a sequence of 7functors

P:A%®..®4P®4—V

n

subject to no constraints. So a promonoidal structure is an example where all the P,

are obtained from the particular ones for n =0, 1,2. A multitensor structureon A is a

multimorphism structure for which each P,(A4,...,A,;-) isrepresentable; so we have

objects ®(Ay,...,A,) of A and a Vnatural family of isomorphisms

P.(Aq,..., A A) = ﬂ(@(Al,...,An),A).

For example, when A is monoidal, we obtain ®(A1,...,An) inductively from the
n

cases n =0, 1, and 2 where it is the unit, the identity functor, and the binary tensor

product, respectively.
Suppose A and E are promonoidal V-categories. A P functor H: £ ——> 4 is
called promonoidal when it is equipped with % natural families of morphisms
d2,0.vw : P(U,V; W) — P(HU,HV;HW) and g,y : JU —> JHU
that are compatible in the obvious way with the associativity and unital constraints. For

any such promonoidal H, we can inductively define 1 natural families of morphisms

(I)H;Ul ..... U,;U :Pn(Ull""UIl;U) %PH(HUl,,HUn,HU)

using the inductive definition of P,. In particular, ¢.y.yv:E(U,V) — AHU,HV) is
the effectof H on homs. We saythat H is promonoidally fully faithful when each

On;u,,..,u, ;U is invertible. We say F is normal when each ¢y is invertible.
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A promonoidal P functor H : £ —— 4 also gives rise in the obvious way to 7

natural families of morphisrns

Saapw: ] P(U,V;W)®A(A,HU) ®A(B, HV) — P(A, B;HW),
ohupc:|  P(UV;W)® A(B,HV)® AHW,C) —P(HU,B;C), and

Ohavic: [ PUV;W)® AA,HU)® AHW,C) —P(A, HV;O).

We need to say a little bit about convolution (see [Dal], [Da3] and [DS3]). For 7~
categories A and X equipped with multimorphism structures, the convolution

multimorphism structure on the V-functor V-category [A4,X] is defined by

Pa(My, -, My;M) = |

A [Pa(Ay, ..., AL A),PA(MA Y, ..., M A ;MA))
17ees n

whenever these ends all exist (for example, when A is small). In the case where X is

multitensored, the convolution is also multitensored by the formula
A, Ay
E(My, .. M )(A) = [ Pa(Ay, - A A)®O(MiA, ... MyA,),

provided the appropriate weighted colimits (expressed here by coends and tensors) exist

in X. In the case where A is promonoidal, if X is cocomplete closed monoidal then so
is [A4,X] (see [Dal]).

Proposition 6.1 Suppose H : E ——> A is a normal promonoidal V-functor. The

restriction V-functor

[H1]:[4,Y] —|[E V]
is a normal monoidal V-functor. It is strong monoidal if and only if each p.p .y IS
invertible. It is strong left (respectively, strong right) closed if and only if each ¢§;U/B,.C

(respectively, 5.4 v.c) is invertible.

Proof The monoidal unital constraint for [H,1] is ¢g,y : JU —— JHU. To obtain the

associativity constraint, we use the Yoneda Lemma to replace

u,v
(MH = NH)W = I P(U,V;W)® MHU ® NHV

by the isomorphic expression

U,V,AB
j P(U,V;W)® A(A,HU)® 4(B,HV) ® MHU ® NHV
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and take the morphism into

A,B
(M*N)HW = J P(A,B;HW)® MA ® NB

AB_ _
of the form J 02,4 w ®1®1 which is clearly invertible if ¢,.5 p.w is. The converse

comes by taking M and N to be representable and using Yoneda.

Similarly, the left closed constraint for [H,1] is obtained by composing the

morphism JB C[q)é;U,B;C ® 1,1] from

[N,L],HU = jB’C [P(HU, B;C) ® NB,LC]
to

| [P(U, V;W)® 4(B,HV) ® A(HW,C) ® NB,LC]
V,W,B,C

with the Yoneda isomorphism between this last expression and

[NH,LH],U = [ [P(U,V;W)®NHV,LHW];

this constraint is clearly invertible if (bé;U,B;C is, and the converse comes by taking N

and L to be representable. The right closed case is dual. QED

7. Forms and promonoidal star autonomy

A problem with *—autonomy is that the common base categories (like the category

of sets and the category of vector spaces) are not themselves *—autonomous. So we do

not expect the convolution monoidal structure on [ﬁl,‘V] to be *—autonomous even

when A4 is. We introduce the notion of form to address this problem: forms do exist on

base categories and carry over to convolutions, while #—autonomy is to be equipped

with a special kind of form. The definition of a *—autonomous promonoidal 7-category

will be expressed in terms of forms.
A form for a promonoidal P*category 4 is a module 6:A4®A4—— I (where I is

the usual one-object T-category) together with an isomorphism 6¢(P®1)=c6-(1®DP).

In other words, a form is a P functor
¢ :AP®AP — 7V
together with a 7 natural family of isomorphisms

jxc(x,C)@)P(A,B;X) = Y 5(A,Y)® P(B,C;Y)
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called form constraints. Indeed, we can inductively obtain isomorphisms

X Y
j 6(X, A1) ®P.(A,..., A ; X) zj (AL Y)®P,(Ay, ..., AL,y Y)

called the generalized form constraints. A promonoidal P category with a chosen form

is called formal.

For example, every object K of any promonoidal V-category A defines a form
6 (A,B) = P(A,B; K); the form constraints are provided by the promonoidal associativity
and unit constraints. Other examples are *-autonomous monoidal categories, as we

shall soon discover. Moreover, we will also see that forms carry over to various
constructions such as tensor products and general convolutions of 7categories.

If 4 is monoidal, using Yoneda, the form constraints become
6(A®B,C) =06(A,B®CQ).

A form is called continuous when o(A,-) and o(-,B) : 4°° — > 1 are small

(weighted) limit preserving for all objects A and B of A.

Proposition 7.1 Let A4 and X be formal promonoidal V-categories..
(@) If A and X are formal then the tensor product A®X with promonoidal

structure
P, (A1, X)), -, (AL XL (A X)) = P(Ay, ... ,ALA)®P(X, ..., X
admits the form o((A,X),(B,Y)) = 6(A,B)®c(X,Y).

(b) If A is small and X is cocomplete closed monoidal with a continuous form

X)

ns

then the convolution monoidal V-category [A,X] admits the continuous form
o(MN) = [ [o(A,B), o(MA,NB).
Proof (a) This is trivial.
(b) We have the calculation

oM*N,L) = [ [M*N)U®LC,o(U,C)]

A,B
= [, C[G(U, Q), c(j P(A,B;U)® MA ® NB, LC)]

[6(U,C)® P(A,B; U),6(MA ® NB,LC)|
U,A,B,C

= [6(A, U)®P(B,C;U),6(MA,NB®LC)|
U,A,B,C

= [ A[G(A,U), G(MA, [*“PB,c;U)ONB® LC)]
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= [, J[o(A, 1), 6(MA,(N+L)U)] = o(M,N+L). QED

A form ¢ :A® A—— I transforms under the duality of 7 modules to a 7*module

o : A——> A°P. We say the form ¢ isnon-degenerate when o is an equivalence as a
V-module (a Morita equivalence if you prefer). A form o is said to be representable
when there exists a V-functor S;: A—— A°P and a Vnatural isomorphism

c(A,B) = A(A,S/B).
A promonoidal Ticategoryis *-autonomous when it is equipped with a representable

non-degenerate form. In fact,if 4 satisfies a minimal completeness condition ("Cauchy
completeness”) then "representable" is redundant. Notice that S, is necessarily an

equivalence, with adjoint inverse S,, say, and the form constraints have the cyclic

rs

appearance
P(A,B;S,C) = P(B,C;S,A).

More generally, using Yoneda, the generalized form constraints become

X
P (Ap ) Ar;SA L) ;j AX,S/A 1) ®P.(Aq,..., Ay X)

X Y
= j 6(X,AL) ®P. (Aq,., A X) = j 6(A,Y)®P,(Ay,., AiisY)

n

Y
[ A0S, AD®PL (At A1 Y) = Po(Ag,, ApyriS,AY).

A monoidal category is *-autonomous in the monoidal sense if and only if it is *-

autonomous in the promonoidal sense.

Corollary 7.2 In Proposition 7.1, if A and X are *-autonomous then so are
(@) A®X and (b) [A,X].

Proof (a) o((A,X),(B,Y)) = 6(A,B)®c(X,Y) = A(A,S,B)®X(X,S,Y)
= (A®X)((A,X),(S,B,5,Y)).

(b) o(M,N) = jAB[c(A,B),c(MA,NB)] = JA,B[}ZL(A,S[B), X(MA,S,NB)]

1N

[, X(MSB,S,NB) = [4,X](MS,,S,N) = [4,X](M,S/NS,). QED

Example 7.3 As noted in the final remarks of [Dal], for any 7*category C, there is a

canonical promonoidal structure on C°? ® C. It is explicitly defined by
Py(C,D) = J(C,D) = C(C,D) and
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PZ((Dll Cl)/ (D2/ CZ)I(C3/D3)) = C(C3/D1) ® C(CllDZ) ® C(C21D3)-
More generally,
Pn((Dll Cl)/’ e ,(Dn, Cn);(Cn+1/Dn+1)) = C(Cn+1,D1)®C(C1,D2)® L.® C(Cn,Dn+1) .

After the lecture [Da4], Luigi Santocanale observed that C°°? ® C is #*-autonomous. To
be precise, define S:(C°P ® C)°> —— C? ® C by S(D,C) = (C,D). Clearly

Pn((Dll Cl )/ sy (Dn/ Cn )/ (Cn+1l Dn+1)) = Pn((DZI CZ )/ sy (Dn+1/ Cn+1 )/ (Cll Dl))l
so that S,=S,=5 for *-autonomy. To relate this to our discussion of bialgebroids

(Section 3), note that a k-algebra C =R is a one-object T-category (for V' the category of

k-modules) and so the "chaotic bialgebroid" C°° ® C = R® is *-autonomous.

Example 7.4 The notion of Hopf 7*algebroid appearing in Definition 21 of [DS1]is an

example of a *-autonomous promonoidal T-category. Suppose that the T-category C is

comonoidal [Dal]; thatis, C is a pseudomonoid (or monoidal object) in (¥ -Cat):

this means we have Tfunctors A : C——>C®C and E: C —— I, coassociative anc

counital up to coherent ¥-natural isomorphisms. Itis easy to see that A must be given

by the diagonal AC = (C,C) on objects. A multimorphism structure Q on C is
then defined by

Q,(C;Cy, ..., Cpy) = C(C,C)®...®C(C,Cp);

the actions on hom-objects require the 7 functors A and E. Indeed, Q defines a
promonoidal structure (compare Section 5 of [Dal]). If this promonoidal V-categoryis *-
autonomous then the condition Q(A,B;S,C) = Q(B,C;S,A) becomes
C(A,S,C)®C(B,S,C) = C(B,S,A)®C(C,S,A) = C(B,S,A)®C(A,S,C),
which precisely gives the condition
C(A,C)®C(B,C) = C(B,S,A)®C(A,C)

for the authors' concept of Hopf P*algebroid.

A promonoidal functor H: E —— 4 between *-autonomous promonoidal 7

categories is called #-autonomous when it is equipped with a ¥ natural transformation
T[ : HS[——)S[H

such that the following diagram commutes
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UV, P(1,1;7
P(U, V;S W) MP(HU, HV;HS W) PALT) P(HU,HV;S HW)

]l 4l

P(V,W;S,U)—> P(HV,HW;HS U) ———=P(HV,HW;S HU)
02.v,w;s,U P(1,1;t")

where 17 :HS,——S H is the mate of t° under the adjunction between S, and S, .

We call H strong *-autonomouswhen 1’ is invertible; it follows that 1’ is invertible.

Proposition 7.5 Suppose H: E ——> A is a strong *-autonomous promonoidal V-

functor. If the restriction V-functor [H,1]:[A,Y] —|[E, V] is strong monoidal then it

is strong closed.

Proof The idea of the proof is to use *-autonomy to cycle the criterion of Proposition
6.1 for [H,1] to be strong monoidal into the criteria for it to be strong closed. The precise

calculation for strong left closed is as follows:

V,W
j P(U,V;W)® 4(B,HV)® A(HW,C)

n

[ e, v;wy e a6, HY) ® A(HW,S,S,0)

[ pu,v;wy e aB,HY)® A(S,C,S, HW)

N

N

[ pu, v;w)® (B, HV) ® 4(S,C, HS, W)

[P, vis W) a8, HV) ® A(S,C, HW)

In

[PV, wis,U)® A(B, HV) ® A(S,C, HW)

In

P(B,S,C;HS,U) = P(B,S,C;S,HU) = P(HU,B;S,5,C) = P(HU,B;C). QED

In

The next simple observation can be useful in this context.

Proposition 7.6 Suppose U: A —— X is any V-functor with a left adjoint F, and
suppose there are equivalences S:A——> A% and S: X——> X°° such that

SoU = UeS. Then U has a right adjoint S 'oFoS and the monad T = UoF
generated by the original adjunction has a right adjoint comonad G = UoS T oFoS,

Dually, F has a left adjoint S oUoS. A doubly infinite string of adjunctions is
thereby created.
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Proof Clearly U: A°° —— X°P has F asright adjoint whereas the mutually inverse

equivalences S and S are adjoint to each other on both sides. The results now follow
by composing adjunctions. QED
Anopform for a promonoidal Pcategory A is a V-functor

c:A®A4—— 1V
and ?natural isomorphisms

| [PABX),0(X,Q)] = | [P(B,C;Y),0(A, V)],
X Y

called opform constraints. For a monoidal 7 category, we see by Yoneda's Lemma that

an opform on A is the same as aform on A°°. Moreover, in general, if ¢ is a form

on 4 and K is any object of ¥ then an opform ok on A4 is defined by the equation
ox(A,B) =[o(A,B),K].

Proposition 7.7 Let A be a small promonoidal “V-category. Each opform o for A

determines a continuous form for the convolution monoidal V-category [ﬂ,‘V] via the

formula

s(MN) = [, [MA®NB,q(A,B)|.
Furthermore, every continuous form on [ﬁl,‘V] arises thus from an opform on A.

Proof We have the calculation

oM*N,L) = [ _[M*N)U®LC,o(U,C)]
= [ C[jA’BP(A,B ;U)® MA®NB®LC,o(U, C)]

= a5 [MA®NBGLC,[P(A,B;U),0(U,C)]

= U,AIB’C[MA ® NB®LC,[P(B,C;U),0(A, U)]|

= [, a5 c[MA/[P(B,C;U)®NBOLC,o(A, U)]

n

J.U,A|:MA, [ [*“PB,c;U)®NB® LC,G(A,U)]]

In

o(M,N=L).

Conversely, any continuous form ¢ on [A4,%] will have
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o(M,N) (j MA ® A(A, )j NB® A(B, ))

= [, ,[MA®NB,6(A(A,-), AB,-)],

so that ¢ will be determined by its value on representables. We define ¢ for A4 by
G(A/B) = G(ﬂ(A,—),ﬂ(B,—))

We have the calculation

jU[P(A,B ;U),6(A(U,-), A(C,-))] = c(jU P(A,B;U)® A(U,-), A(C, —))

o(P(A,B;-), A(C,-)) = 6(A(A,-)* A(B,-), A(C,-)) = 6(A(A,-), A(B,-) * A(C,-))

N

o(A(A,-),P(B,C;-)) = [ [P(B,C;V),0(AA,-), A(V,-)]. Q

In

8. The star and Chu constructions

We adhere to the spirit of the review [St4] where the Chu construction is defined at

the multimorphism level. The star construction on a multimorphism structure yields

one that is *-autonomous. When applied to a promonoidal P*category, the result may
not be promonoidal — hence the need to work at the more general level.

For that, we define a general multimorphism structure to be *-autonomous when
there exists an equivalence S;: A—— AP of T~categories and a sequence of T natural

isomorphisms
P (Aq,...,ALSAL) = Pr(Ay,. ALL1;S,AY)
where S, is an adjoint inverse for S,.
In this section we will show how to modify a multimorphism structure, with a

prescribed S;, to obtain a *-autonomous one with the same S;. We first need a natural
definition: an equivalence F : A—— B of multimorphism structures is an equivalence

F of T;categories together with natural isomorphisms
P, (Aq,...,A ;A) = P (FA,,...,FA;FA);
the inverse equivalence of F is obviously also a multimorphism equivalence.

Notice that, for any #*-autonomous multimorphism structure, S;oS,: A—— 4

is a multimorphism equivalence: for we have the calculation
P.(Ay,...,ApA) = Po(Ay, ..., ALS,S/A) = Py(S/A A, ..., Ay_1:S/A,)
= P.(S;AA;...,A,_1;S,5,S/A,) = Py(S,S/AL,S/A Ay, ..., A _2:S/A, ) =
.= P.(S/S/A,,...,5/5/A,,SA;S/A1) = P(S/S/A, ..., S/5,A,;SS,A).

Now to our construction. Suppose we have a multimorphism structure P on any
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Vecategory A equipped with a contravariant % functor S;: A°°—— 4 such that

S;oS;: A—— A is an equivalence of multimorphism structures. It follows that S, is
an equivalence; we write S, for the adjoint equivalence. The starring of this situation
is the multimorphism structure P* on 4 defined by the formula

P, (Xy, o Xpi S X)) =

n+1

U;; (1<i<j<n+1)
J : m@lpn(Um m+17-- '/Um n+1/SrU1 m’s - '/SrUm—lm; erm)'

Proposition 8.1 The starring P* produces a *-autonomous multimorphism structure

on A with the given S;.

Proof Extend the definition of the U;; and X; by putting U;; =S,U;; and

ij ij

X+it1 =5,5,X;. From the definition, we have

P, (Xg, .o Xnp15S,%q) =

V, (1<i<j<n+l) "L
J- : m@lpn(vm m+17-: '/Vm n+l/SrV1 m’ - '/Ser—l m erm+1)/

which we notice is isomorphic to the formula for P, (X1, ..., X4 S/ Xqy1) on making the
change of variables Vj; = Ui,y and using the isomorphisms

Po(Urz - Up n58.X1) = Py(S,S,Uny, -, 8,8,Uy 44138,8,8,X; ). QED

Let C bea T-category with a multimorphism structure P and a multimorphism
equivalence T : C —— C. We suppose furthermore that C is a comonoidal P-category
with derived promonoidal structure Q as made explicit in Example 7.4. We require that

T: C® —> C° is an equivalence for the multimorphism structure Q (that is, that
T: C——C is a comonoidal equivalence).

We want to apply the star construction to 4 = C? ® C with S,(C,D) = (D, T'Q),

so that S,(C,D) = (TD,C), and with the tensor product multimorphism
structure Q®DP for the P and Q as described in the last paragraph. Notice

S,5/(C,D) = (TTC,T'D) so that S,0S5,: C®Pe®C——>C?®C is indeed a
multimorphism equivalence.
Let us calculate the star R* of R= Q®P:
Ri((%4,Y), -y X, Yn) s (Yo, T X)) =
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J(UIJ,VIJ) nél QI’I(TYm ;Umm+1/"'/Umn+1 /TVlm,...,TVm_lm)
m=1 ®Pn(me+1/-.-,an+1 /Ulm/"'/Um—lm; Xm)

j(Uu,Vm né CTY, U i) ® .. ® C(TY,, U 1) © C(Yo, Vi) @ ... ® C(Ye, Vet )

m=1 ®Pn(vmm+1l""an+1 'Ulm/"'/Um—lm; Xm)

n+1

(Ui, Vi)
[T ®(cry,, U, e C(YS,VI,S))®m@an(meH,...,anH,Ulm,...,Um_lm;Xm)

r<s

N

n+1

= ® Py(Ynsrroos Yot TV oo, T Xy )
m=1

which has the same shape as the multimorphism structure described in [St4].

Proposition 8.2 In the situation just described, if P is actually a monoidal structure on

C, then R isa *-autonomous promonoidal structure on C°P®C.

Proof After Proposition 8.1, it suffices to show that R™ is promonoidal. We need to see

that each R}, is determined bythe n =0 and n =2 cases. The general calculation is by

induction so we trust that the following exemplary step will be sufficient indication for

the reader:
AyBr_, 1 % -1
[ R (06, Y1), (Xa, Y)i By, T AD) @ RS ((TBy, Ag), (Xs, Y )i (By, TA))

J'Aerl (PZ(YZIBl;Xl) ® Py (By, TY1; X5) ® Py (TYy, TY,; Aq) }
®P2(Y3,Y4,'TBl) ® P2(Y4,A1,'X3) ® Pz(Al,TY3}X4)

3 J~A1,Bl C(Y, ®B;,X;)® C(B; ®TY;,X,) ® C(TY; ® TY,, A;)
®C(Y3®Y,,TB))®C(Y, ® Ay, X3)® C(A, ®TY;,X,)

L (CL,®T(Y; ®Y,), X)) ® C(T(Ys ® Y,) ® TY;, X,)
~ l®C(Y, ®TY; ®TY,,X;)®C(TY; ® TY, ® TY;, X,)
= R3((X, ), (X5, Y), (X3, Y3); (Y, T7'X,)). QED

Proposition 8.3 In the situation of the Proposition 8.2, further suppose that P is closed
monoidal and that the comonoidal structure on C is representable by an object K, an

operation BeC, and V-natural isomorphisms
CAJK) =1 and C(A,BeC) = C(A,B)®C(A,C)
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where the right-hand sides require the counit and comultiplication for their effects on

homs. Then R™ isa *-autonomous monoidal structure on C°P®C.

Proof We have the calculations:

Ro((X1, Y1), (X5, Ya)  (Ya, T7X5)) = Py(Ya, YaiX) ® Py(Ya, TY;X5) ® Py(TY,, TY,; X5)

In

C(Y, ® Y3, X;) ®C(Y; ® TY;, X,) ® C(TY; ® TY,, X3)

n

C(Y?)/[erxl]r) ® C(Ygz[TYl,Xz][) ®C(TY; ® TY,,X3)

In

C(Y?:/[YZ/XI], . [TY1,X2][) ®C(Y;®Y,, TX3)

In

(cre c)(([yz,xl] e [TYLX,], Yy ® Yz), (Y3,T‘1x3))

and

Ro(Y, T'X) = Py(X) = C(I,X) = C(Y,K)®C(T'L,T'X) = (CP &C) (K, 1), (Y,T'X),
so that C°? ® C is monoidal with unit (K, I) and tensor product

(X1, Yy) ®(X,,Y,) = ([Yz,Xl]r o [TY,X,],, Y, ® Y2) . QED

A particular case of Proposition 8.3 is the Chu construction of [Ba3]. Here 7 is the

category of sets with cartesian monoidal structure (although any cartesian closed base
would do). Then every 7-category C is comonoidal via the diagonal functor A. The
representability of this structure as required in Proposition 8.3 amounts to C having
finite limits; so K is the terminal objectand BeC = BxC is the product of B and C.
Then R* is the #-autonomous monoidal structure on C°°’®C arising from any

monoidal closed category C with finite products and a monoidal endoequivalence T.

However, the case of finite products for ordinary categories is not the only example
where the representable comonoidal structure can be found. For any %, such structure

exists for example on any C which is a free T-category on an ordinary category with

finite products.

9. Star autonomy in monoidal bicategories

In order to exploit duality, we need to generalise the notion of star autonomy to
pseudomonoids in a monoidal bicategory B. The work of Sections 5 to 8 is a special case

taking place in the autonomous monoidal bicategory %Mod of T-categories and V-

modules as defined in Section 6.

As mentioned in Section 3, for pseudomonoids A and E in ‘B, where we write p
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and j for the multiplications and units, a monoidal morphism g: A ——E isa
morphism equipped with coherent 2-cells

02:po(g®g) = geop and Gp:j = geoj.
The morphism is called strong monoidal when ¢, and ¢, are invertible. When g

has a left adjoint h, there are 2-cells

¢§ thopo(1®g) = pe(h®1) and ¢5 : hopo(g®1) = po(1®h)
obtained from ¢, as mates under adjunction. We say g is strong left [right] closed
when 05 [respectively, 05 ] is invertible; it is strong closed when it is both.

For a pseudomonoid A in B, the category B(I,A) is monoidal with tensor
product defined by
m#*n = po(m®n).
The internal homs, provided B has the relevant right liftings, are defined as follows:
[n,r]; is the right lifting of r through po(1, ®n) while [m,r], is the right lifting of r
through po(m®1y,).

Proposition 9.1 If g: A ——E is a strong monoidal morphism between

pseudomonoids then B(,g) : BI,A)—— B(LE) is a strong monoidal functor. If g
has a left adjoint h and is strong closed then the functor ‘B(l,g) is strong closed.

Proof For the first sentence we have
B(1,g)m=*n) = gopo(M®n) = po(g®g)o(M®n)
po(gem)®(gon) = (gom)*(gon)
B(1, g)(m) *B(1, g)(n).
For the second sentence consider the diagram

[gon,gorl,
= &°f

Xega X 5 =

In

n

The right-hand triangle is a right lifting since h is left adjoint to g. The left-hand
triangle is a right lifting by definition of the left internal hom. So the outside triangle
exhibits [gon,gor], asaright lifting of r along the bottom composite. However, if g is
strong left closed, the bottom composite is isomorphic to

hopo(1®g)e(1®n) = po(h®1)c(1®n) = po(1®n)oh.
However, the right lifting of r through po(1®n) is [n,r];, and the right lifting of
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[n,r]; through h is ge[n,r];. So we have go[n,r];= [gon,gor], proving B(,g)
strong left closed. Right closedness is dual. QED

A form for a pseudomonoid A in B is a morphism 6:A®A——>1 together
with an isomorphism

A®3 p®1A

called the form constraint.
In the bicategories B that we have in mind there are special morphisms (as

abstracted by Wood [Wo]). The special morphisms h have right adjoints h* and, in

some cases, are precisely the morphisms with right adjoints, sometimes called maps in
B. For example, in Mat(Set) the maps are precisely the matrices arising from functions,

and these are the special morphisms we want. For Mod(?), the special morphisms are

those modules isomorphic to h, for some algebra morphism h. In the bicategory of -
categories and 7-modules the special modules are those arising from 7*functors.

Suppose B has selected special maps and that B is autonomous. Each form
6: A® A——1 corresponds to a morphism G : A—— A°. We say that the form ¢ is
representable when 6 is isomorphic to a special map. We say that ¢ is non-degenerate
when G is an equivalence.

A pseudomonoid in B is defined to be *-autonomous when it is equipped with a

non-degenerate representable form. For example, for any object R of B and any

equivalence v:R——>R°°, the canonical endohom pseudomonoid R®=R°®R
becomes *-autonomous when equipped with the form ¢ :R*®R*——1 defined by
6=1,,®v:R°=R°®R—>R"® R°*=R°".

An opmorphism h:E—— A between #-autonomous pseudomonoids is called -

autonomous when there is an isomorphism

E®E
&
hohy &
A®A?>I
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such that the following equation holds:

b®1 £®2 o1 £®2 s
£ /h@:h T = ! I

ll I ®3 ~ s
v, ®1|) LZ/ _ E M_@//y
TU G

E
heheh - o heheh\ 1o
ﬁ’/@ T 2) peh
®3 ®2 ®3 ®2
AT g =A AP gy A .

We are particularly interested in opmorphisms h that are maps. Then the right adjoint

h* is a morphism of pseudomonoids. Under these circumstances we define h to be

strong *-autonomous when the mate
i 6o(h*®1)=0.(1®h)

of 1 is invertible. It follows that 1" : 6o (1®h*) = c0o(h®]1) is also invertible.

Proposition 9.2 Suppose h:E—— A is a strong *-autonomous special opmorphism

between #*-autonomous pseudomonoids in B. If h™ is strong monoidal then h™ is

strong closed.

Proof We have the calculation
60(h®1)o(p®1o(1®h"®1) = 6o(1®h)e(p®1)o(1®h™ ®1)

In

co(p®1)o(1®h")e(1®h"®1) = 60(1®p)o(1®h*®h")

In

60(1®h")e(1®p) = 060(h®1o(1®p) = 60(1®p)o(h®1®1)
6o(1®p)e(h®1®1).

In

It follows that G ohopo(1®h™) 6 opo(h®1). Left strong closedness follows since

n

o is non-degenerate. Right closedness is dual. QED

Motivated by Proposition 3.3, we define basic data in an autonomous monoidal

bicategory ‘B to consist of an object R equipped with a special opmorphism h :

R°®R —— A into a pseudomonoid A such that h” is strong monoidal. Here R°®R
has the canonical endohom pseudomonoid structure. Suppose further that R* =R°®R

is #*-autonomous via a form arising as above from an equivalence v:R——R"". The

basic data is called Hopfwhen A is equipped with a *-autonomous structure and h is

strong *-autonomous.
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From basic data, by applying the pseudofunctor B(I,-) : B ——Cat, we obtain an

adjunction
B(1,h) — BI,h*) : Bd,A)— B(I,R° ®R)
which transports via the equivalence B(I,R°®R)——B(R,R) to an adjunction

between B(I,A) and B(R,R). The pseudomonoid structure on A induces a monoidal
structure on ‘B(I,A) and the canonical endohom pseudomonoidal structure on R°®R

induces the monoidal structure on B(R,R) whose tensor product is composition in B.
Since h” is strong monoidal, the right adjoint B(I, A) —— B(R,R) is strong monoidal.
By Propositions 9.1 and 9.2, this right adjoint is also strong closed in the Hopf case.

Since basic and Hopf basic data are expressible purely in terms of the monoidal

bicategory structure and the special maps of B, the next result is clear.

Proposition 9.3 Strong monoidal pseudofunctors that preserve special maps also

preserve basic and Hopf basic data.

Remark 9.4 The day after we submitted this paper to the Fields Workshop organizers,
the preprint [Bo] appeared on math.arXiv. We contacted Dr Gabriella B6hm who pointed

out that, in our original preprint, we had not been specific about the *-autonomous

structure on R® = R°®R in our definition of Hopf basic data. This was indeed an

omission and we had in mind the symmetric case where we had the opportunity to take

R°°=R and G:R°®R ——> R°® R°° the identity.

10. Ordinary groupoids revisited

Let us return to the definition of ordinary category as formulated in Propositions 1.1
and 2.1. Let G be a monoidal comonad on the internal endohom pseudomonoid XxX
in the monoidal bicategory Mat(Set). Recall that G(x,y;u,v) is empty unless x=u and
y =v, and we put

A(x,y) =G(x,y;x,y)
which defines the homsets of our category A. Let A denote the set of arrows of the

category A ; we have the triangle

XXX—>X><X

(s, 1), <= (s,t).

37



which is the universal coaction of G on a morphism into XxX; itis the Eilenberg-
Moore construction for the comonad G. By a dual of Lemma 3.2, there is a
pseudomonoid structure on A such that the whole triangle lifts to the Eilenberg-Moore
construction in the bicategory MonMat(Set).

We already pointed out in the Introduction what the pseudomonoidal structure on
A is; thaton XxX is the special case of a chaotic category. Referring to the definition

of basic data at the end of Section 9, we have:

Proposition 10.1 An equivalent definition of ordinary small categories is that they are

)CO

basic data in the autonomous monoidal bicategory  Mat(Set)™ where the special

morphisms are all the maps.

Proof Reversing 2-cells interchanges left and right adjunctions. So for a morphism to
have a right adjoint in Mat(Set) is to be a right adjoint in Mat(Set); that is, to be the
reverse of a function. Basic data in Mat(Set)® therefore consists of a set X, a
pseudomonoid A in Mat(Set), and a function (s,t) : A——>XxX that is strong

monoidal. The functor B(I,h") as at the end of Section 9 transports to the left-adjoint

functor
T - Set/ A——Set/ XxX

of the Introduction, which by Section 9 is strong monoidal. So we have a category A.

Conversely, if A is a category, clearly (s,t) is strong monoidal. QED

The discussion of the Introduction already shows that, if A is a groupoid, then it is

#-autonomous in Mat(Set) with Sa=a'. In particular (the chaotic case), the endohom
XxX is #-autonomous with S(x,y) = (y,x). For A a groupoid, (s,t) : XxX——A is
a strong #*-autonomous map in Mat(Set). So we have Hopf basic data in Mat(Set).

The converse almost holds.

Proposition 10.2 Consider a category as basic data in Mat(Set)®. The category is a
groupoid iff the basic data are Hopf.

Proof The characterizing property of S =S, is that
boa=Sc iff cob=S5"a.
For each object x, put e, = Sl,. Taking ¢ = 1, and b=S""a to ensure cob=5"a,

we deduce that Slaca = e, forall a:x——y. Taking a = 1, we see that e, = ST
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so Se, = 1,. Now go back to the characterizing property with ¢ =e,, b arbitrary, and a
— S(e, ob) toensure cob=S"'a: so we deduce that boS(e, ob) = Se, =1,. It follows

that every morphism b has a right inverse. So the category is a groupoid. QED

Remark 10.3 (This arose in lunchtime conversation with John Baez and Isar Stubbe.)
The operation S, of #-autonomy is not unique. For a groupoid A as we have been

considering, we can choose any endomorphism e, of each object x and define
S;a=aloe, sothat S,a=e, oa'. This defines another *-autonomous structure on

our pseudomonoid A.

Remark 10.4 The argument of this section can be internalized to any finitely complete
category ‘E. In particular, groupoids internal to E can be identified with Hopf basic data

in the monoidal bicategory Span(E)®. More details will be provided in Example 12.3.

11. Hopf bialgebroids

A bialgebroid A based on a k-algebra R is an opmonoidal monad on R°® in
Mod(7¥) (see Section 3). We have already seen that A becomes a k-algebra and that
N : A——R° provides the Eilenberg-Moore object for the monad, thereby lifting to the
bicategory of pseudomonoids in Mod(¥).

In the terminology of Section 9, a bialgebroid is precisely basicdata n:R® —— A in
B =Mod(V). We define a bialgebroid 1:R®* ——> A to be Hopf when this basic data in
Mod(¥) is Hopf; thatis, A should be *-autonomous and m1n": A ——>R® should be

strong *-autonomous. It follows from Section 9 that Mod(¥V )(k, Tf) is strong monoidal
and strong closed; this is none other than the functor

VA — VX
defined by restriction along Mm:R® ——A; compare Proposition 7.5 in the case of one-

object V;categories.

Preservation of internal homs was taken as paramount in the Hopf algebroid
notions of [DS1]and [Sch2]. Example 7.4 explains the connection between our work here
and that of [DS1] while we see from the last paragraph that our Hopf bialgebroids are
more restrictive than the Hopf algebroids of [Sch2].

Remark 11.1 In the correspondence mentioned in Remark 9.4 Dr Bohm advised us
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that her notion of Hopf bialgebroid in [B6] fits our setting, where ¥ is the category of
vector spaces, and that she has examples where the *-autonomous structure S, on R®
= R°*®R is defined by

S/(x®y) = x®uly)

with u anon-identity k-algebra automorphism of R. This kind of perturbation fits well

with our treatment of the Chu construction in Section 8.

Example 11.2 Let ¥ continue to be the category of k-vector spaces and let A4 denote

the category of commutative k-algebras. The category A is finitely cocomplete; the
pushout of two morphisms out of an object A is given by tensoring over A the

codomains of the two morphisms. Definition B.3.7 of [Ra] labels groupoids internal to
A°P  as "Hopf algebroids" (generalizing the idea that a commutative Hopf algebra is
exactly a group in A°P). In fact, these are examples of Hopf bialgebroids in our sense. To
see this we make use of the strong monoidal pseudofunctor

Span(ﬁ[(’p)co —— Mod(7)
which takes each commutative algebra A to itself as an algebra and each cospan C from

A to B in A4 to C with actions of A and B coming from the morphisms into C. By

Remark 10.4, each Ravenel "Hopf algebroid" is Hopf basic data in Span(ﬂlOp)CO. Then, by

Proposition 9.3 our pseudofunctor applies to give Hopf basic data in Mod(V ) ; that is, to
give a Hopf bialgebroid. We are grateful to Terry Bisson for pointing out the book [Ra]
which features good examples of groupoids internal to A°? occurring in algebraic

topology.

12. Quantum categories and quantum groupoids
It remains to state the main definitions of the paper. We now have the motivation
and concepts readily at hand.

Let 7 be abraided monoidal category with coreflexive equalizers (that is, equalizers
of pairs of morphisms with a common left inverse). We begin by recalling the definition
of the right autonomous monoidal bicategory Comod(?) as appearing in [DMS]. We

assume the condition:
each of the functors X®—: YV ——1 preserves coreflexive equalizers.

Briefly, Comod(?) = Mod(¥°P)*°P. To make calculations we will need to make

the definition more explicit.
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The objects of Comod(?) are comonoids C in U the comultiplication and counit
are denoted by 8: C——>C®C and ¢: C——1. The hom-category Comod(?)(C,D)
is the category of Eilenberg-Moore coalgebras for the comonad C®-®D on the
category V. This implies that the morphisms M : C——>D in Comod(?) are
comodules from C to D; that is, left C—, right D-comodules. So M is an object of ¥

together with a coaction 8 : M—— C®M®D satisfying the expected equations. It is
sometimes useful to deal with the left and right actions 6, : M—— C®M and §, : M
——>M®D which are obtained from § wusing the counit. The 2-cells f: M = M'
: C——D in Comod(¥) are morphisms f: M — M' in ¥ respecting the coactions.

Composition of comodules M :: C——D and N : D——E is given by the

equalizer
§,®1

T

—_—
N°M = M%N — 5 MQ®N M®D®N .
193,

The identity comodule C——C is C with the obvious coaction. We point out that the
pair of morphisms being equalized here have a common left inverse 1®e®]1; so the
equalizer is coreflexive.

The remaining details describing Comod(‘) as a bicategory should now be clear.

Remark 12.1 (a) When 7 = Set, it is readily checked that Comod(%) is biequivalent
to Mat(Set).

(b) The main case that should be kept in mind is when ¥ is the category of vector
spaces over a field k; then the objects of Comod() are precisely k-coalgebras.

(c) If ¥ itself is a *-autonomous monoidal category then the distinction between
Mod(?) and Comod(¥) evaporates.

(d) By the Chu construction, any complete cocomplete closed monoidal ¥ can be
embedded into a complete cocomplete *-autonomous monoidal E= VP ® ¥ taking V
to (1, V) where 1 isthe terminal object of %. The embedding is strong monoidal and

preserves colimits and connected limits. So we can take full advantage of remark (c) by
working in E£-Mod and deducing results for both Mod(?) and Comod(¥).

Returning to general 7, we note that each comonoid morphism f: C — D

determines a comodule f, : C——D defined to be C together with the coaction
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c3,coc2% ;cocoD,

and a comodule f*:: D——C defined to be C together with the coaction

cycec—t2 ;peCecC.

Notice that we have y; : f,of " = 1 which is defined tobe f : C——D since f,of"

= f*Cé)f* = C with coaction CLC@C&C@C@C%D@C@D. Also,

f.®f" = f"of, is the equalizer
D

(COE®C)o(5®C)
f,Ff " ——> C®C C®D®C ;
D (CRI®0C)(CDD)

and, since

8®C

e
C —— C®C C®C®C

C®6

is an (absolute) equalizer, we have a unique morphism C —— f,®f" commuting with
D

the morphisms into C® C; this gives us ;: 1o = f of, . Indeed, 7y, o are the

counit and unit for an adjunction f, — f* in the bicategory Comod (7).

The comodules f* provide the special maps for the bicategory Comod(¥)®.

Suppose C, D are comonoids. Then C® D becomes a comonoid with coaction

C®CC,D ®D

CeD 2 ,CceC®D®D C®D®C®D

where c is the braiding and, as justified by coherence theorems, we ignore associativity
in V. For comodules M:C——C' and N:D——D', we obtain a comodule M®N :
C®D——> C’'®D’ where the coaction is given in the obvious way using the braiding.

This extends to a pseudofunctor ® : Comod(?) x Comod(?)——> Comod(¥V). The
remaining structure required to obtain Comod(%) as a monoidal bicategory should be

obvious.
Write C° for C with the comultiplication

c,CcoCc—% ,CcxC.

There is a pseudonatural equivalence between the category of comodules M : C®D
——E and the category of comodules M:D——>C°®E, where M= M as objects. It

follows that C° is aright bidual for C. This defines the structure of right autonomous
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monoidal bicategory on Comod(?).

Each C°®C has the canonical structure of a pseudomonoid in Comod(%V) because

it is an endohom in the autonomous monoidal bicategory.
A quantum categoryin V isbasicdata C, h: C°® C—— A in Comod(¥V).

A quantum groupoidin v is Hopf basic datain Comod (V).

Our referee has sensibly recommended that we unpackage these definitions for the

utility of the reader and for comparison with the definition of "bicoalgebroid" in [BM].

A quantum graph A in ¥V consists of

e acomonoid C, called the object object of A,

e acomonoid A, called the arrow object of A, and

e comonoid morphisms s:A——>C° and t:A——C, called source

and target morphisms of A,
such that the following diagram commutes.

AL)A@)A

&S

Sl C®C

A®A>C®C//a:

s®t
It follows that r: A—>3A®A—2',C°®C is a comonoid morphism. Therefore

Ty

we have a comodule 1 e A C°® C which corresponds, under C—C°, to a

comodule C——C ; explicitly, itis A:C——>C with coactions

-1
& AL SA®A—1E5 S A®C—SA L,CoA

5, : A2 SA®AL2 sA®C.
Then we can define the composable pairs object P=A®A as the composite comodule
C

C A

c—25¢C; explicitly, it is the equalizer
5,81

. —_—
P—A®A A®C®A
1®3,

which becomes a comodule P : C——C via right and left coactions induced by

ARA—2% A®A®C and A®RA—221 SCRA®A .

Although in general P is not a comonoid with 1 a comonoid morphism, there is a
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unique morphism 3§, : P—>A®A®P such that the following diagram commutes.

Pl > A0A %% A9A®A®A

6[ 1® CA,A ®1
A®A®P — = AQA®A
1®1®1
This is because the diagram
19105, ®1
P SARA 2 AQARARA24r®l ARARA®A ARARA®CR®A
1010183,

commutes, and 1®1®1 is the equalizer of 1®1®%,®1 and 1®1®1®3,. A small
calculation (four steps using string diagrams) proves that 8, : P——A® AQ®P is a left

coaction of the comonoid A® A on P.

A composition morphism for a quantum graph A is a comodule morphism

u: P—A : C—>C

that satisfies the axioms CM0, CM1 and CM2 below.

CMO. pu: AC?A—%A is associative in the monoidal category Comod(?)(C,C).

CM1. The following diagram commutes:

t®e®1
6[ - 1®u
P——A®AQ®P COP——CR®A.
e®s®1

Before stating CM2 we need to notice, using CM1, that there exists a unique morphism

3, : P——>P®A such that the following diagram commutes.

8
P ' =A®A®P
S,l ll@l@u

PRIA—ARARA
1®1

This is because the diagram

5,101
8, 1®1®u —
P——SAAP—HARARA ARCRARA

———
1®5,®1

commutes, and 1®1 is the equalizer of §, ® 1®1 and 1®, ®1. Now we can state:

CM2. The following diagram commutes.

44



PRIA—>=A®A
L®1

It can now be shown that P: A® A—— A is a comodule with coactions 9§, and §, as
above.
An identities morphism for A is a comodule morphism n: C——A : C——C

satisfying the axioms
IMO. n is a unit for g in Comod(¥)(C,C).

IM1. The following diagram commutes.

C—>A

BN

IM2. The following diagram commutes.

el scoa—Nn®
C A 5A®A laoa A®A
s®1 C®A n®1

It follows that A becomes a pseudomonoid in Comod(?’) when equipped with the

multiplication P, the unit J=m,, and the canonical associativity and unit constraints.

Furthermore, r,:A——>C°® C becomes strong monoidal.

Notice that we obtain a morphism ¢: P——C®C®C by taking either of the

equal routes in the diagram
5,®1

. —_—
P—A®A ARCR®A
1®3,

5818t . coCceC.

A quantum category is the same as a quantum graph equipped with a composition

morphism and an identities morphism. The basicdata in Comod(¥)® is the comodule

,:A—C°®C.

When ¥ is the monoidal category of vector spaces over a field k, our quantum
graph corresponds to BC1 of [BM] while our axioms CM0-CM2 amount to BC2 of [BM]
and our axioms IM0-IM2 amount to BC3 of [BM].

The chaotic quantum category A = Cgy, on C is defined by A = C°®C, s=1..®¢
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and t=e® 1.. Thus P=C®C®C with 1=1.®8®1., §,=1.®1.®3 and 3, =
0®1.®1.. Finally, p=1.®e®1., n=9% and ¢=1cgcec-
A quantum groupoid is a quantum category A equipped with comonoid

equivalences

V:C——>C°° and v: A—>A°

such that sv=t and tv=wvs, and for which there is a left A® A ® A-comodule

isomorphism vy : P, = P,, where P, is P with the left coaction

191®1® v 1®1®cp p

P2 SA®A®P®A

ARAR®P®A ARAR®A®P

and P, is P with the left coaction

1®1®1® Vv’

P SA®A®P®A ARAQP®A —ASASRA S AQARARP,

in which Vv’ is an inverse equivalence for v and & is the coaction associated with the

comodule P : A® A——A, such that the following square commutes.

G
P—>CR®C®C

Yl iCC,C@)C

P f) CRC®C

Example 12.2 Let 7 bethe symmetric monoidal category of vector spaces over a field
k. For any set X, let FX Dbe the vector space with X as basis. This F is the object

function for a strong monoidal functor F:Set——7 that preserves coreflexive
equalizers (exercise!). It therefore induces a strong monoidal pseudofunctor

F : Comod(Set)® — Comod(V)™.
Special maps are preserved by F. It follows from Proposition 9.3 that F takes each

category to a quantum category and each groupoid to a quantum groupoid.

Example 12.3 Following up on Remark 10.4 where £ is a category with finite limits,
we shall lead the reader into showing how quantum categories and quantum groupoids
in V= E (where the tensor product is cartesian product) are precisely categories and
groupoids in ‘£ Every object of £ has a unique comonoid structure defined by the

diagonal morphism, every morphism of Z is a comonoid morphism, and the only 2-
cells between morphisms are equalities. Also each object C has C° = C. So a quantum

graph A in E is just a pair of morphisms
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s, t:A——C;

that is, A is a(directed) graph in ‘£ The equalizer P = A(?A is now easily seen to be

the pullback of s and t; thatis, P is the usual object of composable pairs in the graph.

A composition morphism p and an identities morphism m are precisely what is
required to make A acategoryin Z. If A isa quantum groupoid then, because of the
absence of 2-cells, v : C——C and v : A—— A are isomorphisms while sv=t and

tv=1vs. Arguing as for Proposition 10.2, we see that v is actually the identity and v

makes A a groupoid in ‘E.
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