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Abstract A useful general concept of bialgebroid seems to be resolving itself in recent
publications; we give a treatment in terms of modules and enriched categories. Generalizing this
concept, we define the term "quantum category"in a braided monoidal category with equalizers
distributed over by tensoring with an object.  The definition of antipode for a bialgebroid is less
resolved in the literature.  Our suggestion is that the kind of dualization occurring in Barr's star-
autonomous categories is more suitable than autonomy (= compactness = rigidity).  This leads to
our definition of quantum groupoid intended as a "Hopf algebra with several objects".  

1. Introduction

This paper has several purposes.  We wish to introduce the concept of quantum

category.  We also wish to generalize the theory of ∗-autonomous categories in the sense

of [Ba1].  The connection between these two concepts is that they lead to our notion of

quantum groupoid.  

It was shown by [Se] that ∗-autonomous categories provide models of the linear

logic described in [Gi].  This suggests an interesting possibility of interactions between

computer science and quantum group theory.  Perhaps it will be possible, in future

papers, to exploit the dichotomy between categories as structures and categories o f

structures. For example, what is the quantum category of finite sets, or the quantum

category of finite dimensional vector spaces?

It is well known that ordinary categories are not models of an ordinary algebraic

(Lawvere) theory; rather, they are models of a finite-limit theory, requiring operations to

be defined in stages since some of them are defined on finite limits of earlier operations.

Quantum categories, in a braided monoidal category with equalizers distributed over by

tensoring, similarly involve operations defined on objects created by tensoring and

taking equalizers of previously defined objects and operations. 

The section headings are as follows:

1. Introduction

2. Ordinary categories revisited

3. Takeuchi bialgebroids

4. The lax monoidal operation    ×R

5. Monoidal star autonomy

6. Modules and promonoidal enriched categories

7. Forms and promonoidal star autonomy

8. The star and Chu constructions

9. Star autonomy in monoidal bicategories

10. Ordinary groupoids revisited
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11. Hopf bialgebroids

12. Quantum categories and quantum groupoids

Before looking at quantum categories we will develop, in this introduction, a

definition of "category" which suggests the definition of "quantum category".  We will

then relate this definition to the literature.  

We use the terminology of Eilenberg-Kelly [EK] for monoidal categories and

monoidal functors; so we use the adjective " strong monoidal" for a functor which

preserves tensor and unit up to coherent natural isomorphisms.  A comonoidal category

would have, instead of a tensor product, a tensor coproduct   A A A → × and a counit

with appropriately coherent constraints; this concept is not so interesting for ordinary

categories but becomes more so for enriched categories.  Comonoidal functors would go

between comonoidal categories.  So, for monoidal categories  A and  X ,  like [McC], we

use the term opmonoidal functor for a functor

   F : A X →

equipped with a natural family of morphisms    δA B F A B FA FB, : ( )⊗  → ⊗ and a

morphism   ε : F I I → that are coherent. 

For any set    X,  consider the monoidal category    Set X X/ × of sets over    X X× with

the tensor product defined by

    
A X X B X X P X Xs t u v s p v q( , ) ( , ) ( , ) → ×( ) ⊗  → ×( ) =  → ×( )o o

where  P  is the pullback of    t A X: → and    u B X: → with projections    p P A: →

and    q P B: → .  The objects of    Set X X/ × are directed graphs with vertex-set  X  and

the monoids are the categories with object-set  X;  this is well known (see [ML]) and easy.

Less well known, but also easy, is the fact that category structures on the graph

  A X Xs t( , ) → × amount to monoidal structures on the category    Set A/ of sets over  A

together with a strong monoidal structure on the functor

  Σ( , ) : / /s t Set A Set X X → ×

defined on objects by composing the function into  A  with    ( , )s t .  

To see this, notice that every object of a slice category    Set C/ is a coproduct of

elements    c C: 1  → of  C  (here  1  is a chosen set with precisely one element) so that

any tensor product on    Set C/ ,  which preserves coproducts in each variable, will be

determined by its value on elements (which may not be another element in general).

The tensor product on    Set X X/ × is such, and its value on elements is given by
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  ( , ) ( , ) ( , )x y u v x v⊗ = when    y u= (which is in fact another element)  but is the unique

function    ∅  → ×X X when    y u≠ .  Since    Σ( , )s t is conservative and coproduct

preserving, and is to be strong monoidal, the tensor product on    Set A/ preserves

coproducts in each variable.  An object of    Set A/ has the same source set as its value

under    Σ( , )s t .  So, for elements  a  and  b  of  A,  the tensor product    a b⊗ is an element of

A  if and only if    t a s b( ) ( )= ;  in this case,    s a b s a( ) ( )⊗ = and    t a b t b( ) ( )⊗ = ;  otherwise,

  a b⊗ is the unique function    ∅  → A.  The unit for the monoidal category    Set X X/ ×

is the diagonal    X X X → × ,  so the unit for    Set A/ has the form    i X A:  → with

  s i x t i x x( ( )) ( ( ))= = for all    x X∈ .  Thus we have a reflexive graph  X, A, s, t, i  with a

composition operation.  We leave the reader to check that the associativity and unity

constraints of the monoidal category    Set A/ give associativity for the composition and

that each  i(x)  is an identity.

Conversely, suppose we have a category    A with underlying graph   A X Xs t( , ) . → ×

Notice that    Set A/ is canonically equivalent to the category    A Set,[ ] of functors from

the discrete category  A  to  Set.  We can define a promonoidal structure (in the sense of

[Da1]) on  A  by

  
P a b c

when c is the composite of a and b
otherwise

( , ; )
;

;
=

∅




1
and    

  
J a

when a is an identity
otherwise

( )
;

.
=

∅




1

Then    A Set,[ ] becomes a monoidal category under convolution;  this transports to a

monoidal structure on    Set A/ for which    Σ( , )s t is strong monoidal.

When our category    A is actually a groupoid (that is, every arrow is invertible),

there is a bijection    S A A:  → defined by    Sa a= −1.  We draw attention to the

isomorphisms

  P a b Sc P b c Sa( , ; ) ( , ; )≅ ,

noting here that  S  is its own inverse and that the diagram

  A

  X X×

  ( , )s t

  A

  X X×

  ( , )s t

  S

  S
commutes, where the lower  S  is the switch map — which is inversion for  X  as a

chaotic category (meaning, the category whose object set is  X  and each homset has
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exactly one element).  We will relate this kind of "antipode" structure to ∗-autonomy. 

Now suppose we have a category    A :   A X Xs t( , ) → × and suppose we regard

  Set A/ as monoidal in the manner described above.  The functor    Σ( , )s t has a right

adjoint    ( , )s t ∗ defined by pulling back along    ( , )s t .  The strong monoidal structure on

  Σ( , )s t is obviously both monoidal and opmonoidal; the opmonoidal structure transforms

to a monoidal structure on the right adjoint    ( , )s t ∗ in such a way that the unit and

counit for the adjunction are monoidal natural transformations.  The composite of

monoidal functors is monoidal; so the endofunctor      GA =   Σ( , )s t   ( , )s t ∗ is also monoidal.

The adjunction also generates a comonad structure on      GA in such a way that the

counit and comultiplication are monoidal natural transformations; we have a monoidal

comonad      GA on    Set X X/ × .  Remember the term "monoidal comonad"!

It is also important to notice that    ( , )s t ∗ has a right adjoint    Π( , )s t ;  so the

endofunctor      GA has a right adjoint    ( , )s t ∗
  Π( , )s t .  By Beck's Theorem (see [ML] for

example),    Σ( , )s t is comonadic since it is obviously conservative (that is, reflects

isomorphisms) and preserves equalizers.  On the other hand, any monoidal comonad

on a monoidal category leads to a monoidal structure on the category of Eilenberg-Moore

coalgebras in such a way that the forgetful functor is strong monoidal (see [Mo] or [McC]

for example).  Any cocontinuous endofunctor of   Set X X/ × has the form    Σ( , ) ( , )s t s t ∗ for

some graph    A X Xs t( , ) → × .  Assembling all this, we obtain:

Proposition 1.1 Categories with underlying graph    A X Xs t( , ) → × are in bijection

with monoidal comonad structures on the endofunctor    Σ( , ) ( , )s t s t ∗ o f   Set X X/ × .  

Let us compare the combinatorial context of Proposition 1.1 with the linear algebra

context.  Szlachányi [Szl] has shown that, for a k–algebra  R,  the   ×R-bialgebras of

Takeuchi [Tak] are opmonoidal monads on the monoidal category      Vectk
R R⊗ o

of left R-,

right R-bimodules over  R  where the underlying endofunctor of the monad is a left

adjoint.  These   ×R-bialgebras of Takeuchi have been convincingly proposed (see [Xu],

[Lu], [Sch2]) as the good concept of "bialgebroid" based on  R  (that is, with "object of

objects  R").   

Here we face the usual dilemma.  Given a k–bialgebra  H,  is it better to consider the

category of modules for the underlying algebra with the monoidal structure coming

from the comultiplication, or, the category of comodules for the underlying coalgebra

with the monoidal structure coming from the multiplication?  Our preference is

definitely the latter since the obvious linearization of the group case leads to this
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decision; also see [JS2].  When  H  is finite dimensional (as a vector space over a field  k)

there is essentially no difference.  We feel that the functor from the category of sets to the

category of k-vector spaces should provide the mechanism for regarding classical

categories as quantum categories. For this we need to dualize the   ×R-bialgebras of

Takeuchi to be based on a k–coalgebra  C  rather than a k–algebra  R ;  indeed, Brzezinski-

Militaru [BM] have already made this dualization of the   ×R-bialgebras of Takeuchi based

on a k–coalgebra  C  rather than a k–algebra  R.   We take this as our concept of quantum

category; it involves a monoidal comonad.  Actually, our general setting of a monoidal

bicategory formalizes this duality.  

The basic examples of quantum groups are Hopf algebras with braidings (also called

quasitriangular elements or R-matrices) or cobraidings, depending how the dilemma is

resolved.  Indeed, these basic quantum groups are cotortile bialgebras (see [JS2]).  W e

leave it to a future paper to define and discuss braidings and twists on quantum

categories. 

So what is a quantum groupoid?  It should be a quantum category with an

"antipode".  We first develop a notion of antipode for the   ×R-bialgebras of Takeuchi.

We are influenced by the chaotic example      R Ro ⊗ itself where we believe the antipode

should be the switch isomorphism    ( )R R R Ro o o⊗  → ⊗ .  This is not a dualization i n

the sense of [DMS] but a dualization of the kind that arises in Barr's ∗-autonomous

monoidal categories [Ba1].  

Consequently we are led to study ∗-autonomy for enriched categories.  In fact, we

define ∗-autonomous promonoidal V-categories and show this notion is preserved

under convolution.  There is always the canonical promonoidal structure on    A Aop ⊗
(see the concluding remarks of [Da1]) which is ∗-autonomous (as remarked by Luigi

Santocanale after the talk [Da4]) and leads under convolution to the tensor product of

bimodules.  The Chu construction as described in [Ba3] and [St4] is purely for ordinary

categories: it needs the repetition and deletion of variables that are available in a

cartesian closed base category such as  Set.  We vastly extend the notion of ∗-autonomy

to include enriched categories and other contexts. We provide a general star-

construction which leads to the Chu construction as a special case.    

Equipped with this we can define when a Takeuchi    ×R-bialgebra is "Hopf".  Then,

by dualizing from k-algebras to k-coalgebras, we define quantum groupoids to be ∗-

autonomous quantum categories.  
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2. Ordinary categories revisited

Let us consider Proposition 1.1 from a slightly different viewpoint.  A left adjoint (or

cocontinuous) functor  F :    Set X/  →   Set Y/ between slice categories is determined by

its restriction to the elements    x X: 1  → of  X,  and so, by a functor

  X Set Y Y Set →  →/ [ , ]~ ,  

where we regard the sets  X  and  Y  as discrete categories and write      A B,[ ] for the

category of functors and natural transformations from  A to  B.  However, the functors

  X Y Set → [ , ] are in bijection with functors  S  :    X Y Set×  → which we think of as

matrices

  
S S x y

x y X Y
= ( ) ∈ ×( ; )

( , )
.

This gives us an equivalent (actually "biequivalent") way of looking at the 2-

category whose objects are (small) sets, whose morphisms  F :    X Y → are

cocontinuous functors     Set X/  →   Set Y/ ,  and whose 2-cells are natural

transformations;  however, rather than a 2-category we only have a bicategory which we

call  Mat(Set)  (compare [BCSW] for example).  Again, the objects are sets, the morphisms

S :   X Y → are matrices,  and the 2-cells  θ : S ⇒ T  are matrices of functions

  
θ θ=  →( )

∈ ×
( ; ) : ( ; ) ( ; )

( , )
x y S x y T x y

x y X Y
;

vertical composition of 2-cells is defined by entrywise composition of functions,

horizontal composition of morphisms  S :   X Y → and  T :   Y  → Z is defined by

matrix multiplication

  
( )( ; ) ( ; ) ( ; )T S x z S x y T y z

y Y

o = ×
∈
∑ ,

and horizontal composition is extended in the obvious way to 2-cells.  We write  X :

X  → X  for the identity matrix (or Kronecker delta):

  
X x y

for x y
otherwise

( ; )
,
.

=
=

∅




1

Of course  Mat(Set)  is also biequivalent to the bicategory  Span(Set)  of spans (in the

sense of Bénabou [Bé]) in the category  Set  of sets.

In fact,  Mat(Set)  is an autonomous monoidal bicategory in the sense of the authors

[DS1].  That is, there is a reasonably well behaved tensor product pseudofunctor
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Mat(Set) × Mat(Set)    → Mat(Set)

which is simply defined on objects by cartesian product of sets and likewise, by cartesian

product entrywise, on morphisms and 2-cells.  Each object  Y  is actually self-dual since a

matrix    X Y×  → Z can be identified with a matrix    X  → ×Y Z.  This means that

  Y Z× is the internal hom in  Mat(Set)  of  Y  and  Z  (mimicking the fact that in finite-
dimensional vector spaces the vector space of linear functions from  V  to  W  is

isomorphic to  V * ⊗ W).  In particular,  X × X  is the internal endohom of  X ;  and so we

expect it to be a pseudomonoid in Mat(Set) (mimicking the fact that the internal

endohom of an object in a monoidal category is an internal monoid).

Let us be more specific about this pseudomonoid structure on  X × X  in  Mat(Set).

The multiplication  

  P X X X X X X: ( ) ( )× × ×  → ×

is defined by    P y x y x x y X y x X y x X y x( , , , ; , ) ( , ) ( , ) ( , )2 2 1 1 1 1 2 2= × × .  The unit  J : 1    → ×X X

is defined by    J x y X x y( ; , ) ( ; )• = .  One easily checks the canonical associativity and unit

isomorphisms

  P P X X P X X Po o( ( )) (( ) )× × ≅ × × ,              P J X X X X P X X Jo o( ( )) (( ) )× × ≅ × ≅ × × . 

Thinking of the set  X × X  as a discrete category, we see that  P, J  and these

isomorphisms form a promonoidal structure on  X × X.  Noting that, under the

equivalence of categories

  [ , ] ~ /X X Set Set X X×  → × ,

the convolution monoidal structure for  X × X  transports across the equivalence to the

monoidal structure on    Set X X/ × described in the Introduction, the following result

becomes a corollary of Proposition 1.1. 

Proposition 2.1 Categories with object set X  are equivalent to monoidal comonads

on the internal endohom pseudomonoid X × X  in the monoidal bicategory Mat(Set).      

It may be instructive to sketch a direct proof of this result. A monoidal comonad  G

on  X × X  comes equipped with 2-cells  

  δ : G G G → o ,   ε : G X X → × ,   µ : ( )P G G G Po o×  → and    η : J G J → o ,

subject to appropriate axioms.  The mere existence of  ε is quite a strong condition since

  X x u X y v( ; ) ( ; )× is empty unless  x = u  and  y = v;  so    G x y u v( , ; , ) is empty unless  x = u

and  y = v.  This leads us to put  

  A x y G x y x y( , ) ( , ; , )=

which defines the homsets of our category  A.  It is then easy to check that  µ defines
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composition and  η provides the identities for the category  A.  We note finally that  δ is

forced to be a genuine diagonal morphism: we are dealing here with the categories of

"commutative geometry".

3. Takeuchi bialgebroids

We are now ready to move from set theory to linear algebra.  Let  k  be any

commutative ring and write  V for the monoidal category of k-modules;  we write  ⊗

for the tensor product of k-modules.  Monoids  R  in  V will be called k-algebras and we

write      V R for the category of left R-modules; we can think of  R  as a one-object V-

category [EK] so that      V R is the category of V-functors from  R  to  V.  From this

viewpoint the k-algebra      R
o ,  which is just  R  with opposite multiplication, is the

opposite V-category of  R.

We briefly recall the preliminaries of Morita theory starting with Watts' Theorem

[Wa] characterizing cocontinuous functors between categories of modules.  For k-

algebras  R  and  S,  a left adjoint (or cocontinuous) functor F :     V R  →     V S between

module categories is, up to isomorphism, determined by its restriction to the V-dense

(see [DK]) full subcategory of     V R consisting of  R  itself as a left R-module.  This full

subcategory is isomorphic to     R
o .  So the left S-module  F(R) = M  is also a right R-, left S-

bimodule which we call a module from R to S  and use the arrow notation  M : R  →

S .  (The fact that  R  is actually on the left of the arrow and  S  on the right, rather than

the other way around, has to do with our convention to compose functions in the usual

order.)   We also identify  M  with an object of    V R So ⊗ .

There is a 2-category whose objects are k-algebras, whose morphisms  R  → S  are

left adjoint functors  F :   V R  →   V S ,  and whose 2-cells are natural transformations

between such functors  F;  the compositions are the usual ones for functors and natural

transformations.  This 2-category is biequivalent to the bicategory    Mod( )V whose

objects are k-algebras, whose morphisms are modules  M : R  → S,  and whose 2-cells

are 2-sided module morphisms;  the horizontal composite    N Mo : R  → T of  M : R

 → S  and  N : S  → T  is the tensor product   N MS⊗ of the modules  M  and  N

over  S ;  vertical composition of 2-cells is the usual composition of module morphisms.

Indeed, like  Mat(Set), the bicategory      Mod( )V is autonomous monoidal.  The
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tensor product is that of  V:  k-algebras  R  and  S  are taken to the k-algebra  R⊗S,

modules   M R S:  → and   ′ ′  → ′M R S: are taken to the module   M M R R⊗ ′ ⊗ ′:

   → ⊗ ′S S ,  and module morphisms are tensored using the functoriality of    M M⊗ ′ i n

the two variables. The opposite k-algebra    S
o acts as a dual for  S  since the category of

modules    R S T⊗  → is equivalent to the category of modules      R S T → ⊗o .  

It follows that     R Ro ⊗ is an internal endohom for  R  and, as such, is a

pseudomonoid in      Mod( )V .  The multiplication

  P R R R R R R: ( ) ( )o o o⊗ ⊗ ⊗  → ⊗

is  P  =    R R R⊗ ⊗ as a k-module, with the further actions defined by

  ( )( ) ( ) ( ) ( ) ( )x y a b c y x y x yax y bx y cx⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗1 1 2 2 1 1 2 2

for   a b c P⊗ ⊗ ∈ ,     x y R R⊗ ∈ ⊗o and     x y x y R R R R1 1 2 2⊗ ⊗ ⊗ ∈ ⊗ ⊗ ⊗o o .  The unit

  J k R R:  → ⊗o

is just  J = R  as a k-module, with the further action    ( )x y a yax⊗ = .   One easily checks

that there are canonical isomorphisms

  P R P P P R
R R

e
R R

e
e e e e⊗ ⊗ ≅ ⊗ ⊗⊗ ⊗( ) ( ) and

  P R J R P J R
R R

e e
R R

e
e e e e⊗ ⊗ ≅ ≅ ⊗ ⊗⊗ ⊗( ) ( )

where we have used the traditional notation     R R Re = ⊗o for this pseudomonoid; the

"e" superscript could be thought to stand for "endo" as well as the usual "envelope". 

Definition 3.1 A Takeuchi bialgebroid is a k-module  R  together with an opmonoidal

monad on    R
e in the monoidal bicategory     Mod( )V .

To see that this definition agrees with that of   ×R-bialgebra as defined by Takeuchi

[Tak] (and developed by [Lu], [Xu], [Sch2], [BM] and [Szl]) we shall be more explicit about

what an opmonoidal monad  A  on any pseudomonoid  E  involves.  

In any monoidal bicategory  B (with tensor product  ⊗ and unit  k )  we use the

term pseudomono id (or "monoidal object") for an object  E  equipped with a binary

multiplication    P E E E: ⊗  → and a unit    J k E:  → which are associative and unital

up to coherent invertible 2-cells.  A monoidal m o r p h i s m   f E E:  → ′ is a morphism

equipped with coherent 2-cells    P f f f Po o( )⊗ ⇒ and    J f J⇒ o .  A monoidal 2-cell is

one compatible with these last coherent 2-cells.  With the obvious compositions, this

defines a bicategory      MonB of pseudomonoids in  B.  For example, if  B is the cartesian-
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monoidal 2-category  Cat  of categories, functors and natural transformations then

    MonB is the 2-category  MonCat  of monoidal categories, monoidal functors and
monoidal natural transformations as in [EK].

We write      B co for the bicategory obtained from  B on reversing 2-cells.  We put

   OpmonB =       ( )Mon co coB ;

the objects are again pseudomonoids, the morphisms are opmonoidal morph i sms, and

the 2-cells are opmonoidal 2-cells.  An opmonoidal m o n a d in  B is a monad i n

    OpmonB .  

A monoidal morphism    f E E:  → ′ is called strong when the 2-cells      J f J⇒ o

and      P f f f Po o( )⊗ ⇒ are invertible.  The inverses for these 2-cells equip such a strong

f  with the structure of opmonoidal morphism.          

Now we return to the case of opmonoidal monads in  B =   Mod( )V .   First of all, we

have a module    A E E: → .  The monad structure consists of module morphisms  

  µ : A A AE⊗ → and         η : E A→

satisfying the usual conditions of associativity and unitality:

    µ µ µ µo o( ) ( )⊗ = ⊗E A A E1 1 ,                       µ η µ ηo o( ) ( )⊗ = = ⊗E A A A E1 1 1 .   

The opmonoidal structure consists of module morphisms

  δ : ( )A P P A AE E E⊗ → ⊗ ⊗⊗ and       ε : A J JE⊗ →

satisfying the following conditions:

  A P E P A P P E
E E E E

⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗⊗ ⊗2 2( ) ( )   P A P E
E E

⊗ ⊗ ⊗⊗ ⊗
⊗

2 2
2 ( )

≅

  
P A P A

E E
⊗ ⊗ ⊗⊗2 (( ) )

  1 1⊗ ⊗( )δ

  δ ⊗ 1

  P A P A P P A A
E E E E

⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗
⊗ ⊗

2 2 2 2
2 2( ( )) (( ) )  P A A P

E E⊗ ⊗ ⊗⊗2 ( ( ))
  1 1⊗ ⊗( )δ

≅  P A E P
E E

⊗ ⊗ ⊗⊗ ⊗
⊗

2 2
2 ( )

  δ ⊗ 1

  A P E J
E E

⊗ ⊗ ⊗⊗2 ( )   δ ⊗ 1
  P A E J P A A J

E E E E⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗⊗ ⊗ ⊗
⊗

2 2 2
2 ( ) ( ( ))

  1 1⊗ ⊗( )ε

  A P A J
E

≅ ⊗ ⊗⊗2 ( )

≅
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  δ ⊗ 1

≅

  A P J E
E E

⊗ ⊗ ⊗⊗2 ( )
  P A J E P A J A

E E E E⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗⊗ ⊗ ⊗
⊗

2 2 2
2 ( ) (( ) )

  1 1⊗ ⊗( )ε

  A P J A
E

≅ ⊗ ⊗⊗2 ( )

  A A PE E⊗ ⊗   µ ⊗ 1
  A PE⊗ δ

  P A
E

⊗ ⊗
⊗

2
2  1⊗ δ

  A P A
E E

⊗ ⊗ ⊗
⊗

2
2

  δ ⊗ 1
  P A A P A A

E E E E⊗ ⊗ ≅ ⊗ ⊗⊗ ⊗ ⊗
⊗ ⊗ ⊗

2 2 2
2 2 2( )

  1
2⊗ ⊗µ

  A A JE E⊗ ⊗   µ ⊗ 1
  A JE⊗

ε

  J

  1⊗ ε

  A JE⊗ ε

  P   A PE⊗  η ⊗ 1

  P A
E

⊗ ⊗
⊗

2
2

  1
2⊗ ⊗η

δ

  J

  J

  A JE⊗

ε

  η ⊗ 1

  1

.

Notice in particular that  A  becomes a k-algebra with multiplication defined by

composing  µ with the quotient morphism   A A A AE⊗  → ⊗ and with unit  η(1).

Indeed,    η : E A→ becomes a k-algebra morphism.  Moreover, the structure on  A  as a

module    A E E: → is induced by    η : E A→ via    eae e a e′ = ′η η( ) ( ). 

From time to time we will require special properties of bicategories such as     Mod( )V .

In particular, at this moment, we need to point out that      Mod( )V admits both the Kleisli

and Eilenberg-Moore constructions for monads.  For monads in 2-categories rather than

bicategories, the universal nature of these constructions was defined in [St1];  however,

for the kind of phenomenon for modules we are about to explain, a better reference is

[St2]. To be explicit, a m o n a d in a bicategory  B is an object  A  of  B together with a

monoid  t  in the monoidal category      B A A,( ) in which the tensor product is horizontal

composition in  B.  An Eilenberg-Moore object for    A t,( ) is an object denoted    A
t for

which there is an equivalence of categories

  
B B BX A X At X t, ,~ ,( ) ( ) ( )

pseudonatural in objects  X  of  B,  where the right-hand side is the category of Eilenberg-

Moore algebras for the monad    B X t,( ) on the category    B X A,( ) in the familiar sense of

say [ML].  The existence of Eilenberg-Moore objects is a completeness condition on  B;

11



that condition on      B
op is the Kleisli construction, the notion of monad being invariant

under this kind of duality.  That is, a Kleisli object for    A t,( ) is an object denoted    At for

which there is an equivalence of categories

    B B BA X A Xt
t X, ,~ ,( ) ( ) ( )

pseudonatural in objects  X  of  B,

Now we move more explicitly to the bicategory    Mod( )V .  Notice that each k-algebra

morphism    f R S: → leads to two modules    f R S∗ →: and    f S R∗ →: which are

both equal to  S  as k-modules but with the module actions defined by

  s x r s x f r= ( ) and         r y s f r y s= ( )

for    x f∈ ∗ ,    y f∈ ∗,    r R∈ and    s S∈ .  What is more, there are module morphisms

  R f fS→ ⊗∗
∗ and       f f SR∗

∗⊗ → ,

the former defined by  f  and the latter defined by multiplication in  S,  forming the unit

and counit of an adjunction in which    f
∗ is right adjoint to    f∗.  

Suppose    A E E: → is a monad on the k-algebra  E  in the bicategory    Mod( )V .

The multiplication    µ : A A AE⊗ → and unit    η : E A→ morphisms compose 

with the quotient morphism    A A A AE⊗ → ⊗ and the unit    k E→ ,  

respectively,  to provide the k-module  A  with a k-algebra structure with    η : E A→

becoming a morphism of k-algebras.  Then  µ can be regarded as a 2-cell

  E   E

  A

  A

µ
η∗ η∗⇐

in    Mod( )V ;  it is a right action of the monoid  A  on  η∗.  Indeed, this is the universal

right action of  A  on modules out of  E;  that is,  the above triangle exhibits  A  as the

Kleisli construction for the monad  A  on  E.  Since the homcategories of    Mod( )V are

cocomplete and composition with a given module preserves these colimits, the triangle

  E   E

  A

  A

η∗η∗ ⇒
,

′µ

in which ′µ is the mate of  µ under the adjunction  η∗
Jη∗,  exhibits  A  as the

12



Eilenberg-Moore construction for the monad  A  on  E.  That is, ′µ is the universal left

action of  A  on modules into  E.

The following result abstracts Proposition 2.16 of [McC].  

Lemma 3.2 If the monoidal bicategory  B admits the Eilenberg-Moore construction for

monads then so does      OpmonB .  Furthermore, the forgetful morphism  

  OpmonB B →

preserves the Eilenberg-Moore construction.

In particular, this means that      OpmonMod( )V admits the Eilenberg-Moore

construction.  (That the Kleisli construction exists for promonoidal monads was

remarked in Section 3 of [Da2].)

Proposition 3.3 Suppose  E is a pseudomonoid in      Mod( )V and    η : E A→ is a k-

algebra morphism.  There is an equivalence between the category of opmonoidal m o n a d

structures µ , δ , ε on    A E E: → inducing  η and the category of p s eudomono id

structures on  A  for which    η
∗ →: A E is a strong monoidal morphism.

Proof In one direction, given the opmonoidal monad  A  on  E  inducing the given  η ,

Lemma 3 lifts the triangle involving ′µ to a triangle in      OpmonMod( )V where it is

again the Eilenberg-Moore construction.  In particular, the adjunction  η∗
Jη∗ lifts to

  OpmonMod( )V and so, for general reasons explained in [Ke1],    η
∗ →: A E is strong

monoidal.  In the other direction, any k-algebra morphism    η : E A→ always has the

property that  η∗ is opmonadic in      Mod( )V ;  that is, it supplies the Kleisli construction

for the opmonoidal monad    η η∗
∗⊗A on  E  generated by the adjunction  η∗

Jη∗.  This

opmonoidal monad has the form  A, µ , δ , ε, η as required.   These two directions are

the object functions for an obvious equivalence of categories. QED

It follows that a Takeuchi bialgebroid can equally be defined as consisting of a k-

algebra  R,  a k-algebra morphism    η : R Ae  → ,  and a pseudomonoid structure on  A

for which  η∗ is strong monoidal. 

In preparation for interpreting Takeuchi bialgebroids in terms of module categories,

we need to clarify further some monoidal terminology.  The concepts are not new but

the terminology is inconsistent in the literature. 

13



We say that a monoidal V-category  A is left closed when, for all pairs of objects  B,

C,  there is an object  
    
B C,[ ] l ,  called the left internal h o m o f B  and C,  for which there

are isomorphisms

   
A Al( , , ) ( , )A B C A B C[ ] ≅ ⊗ ,

V-natural in  A.  A right internal hom
    
B C,[ ]r satisfies

  
A Ar( , , ) ( , )A B C B A C[ ] ≅ ⊗ .

We call a monoidal V-category closed when it is both left and right closed. (This differs

from Eilenberg-Kelly [EK] who use "closed" for left closed. However, they were mainly

interested in the symmetric case where left closed implies right closed.) 

As pointed out in [EK], if  A and  X are closed monoidal, a monoidal V-functor

    F : A X → ,  with its (lax) constraints

  φ0 : I F I → and       φ2; , : ( )A B FA FB F A B⊗  → ⊗

subject to axioms, could equally be called a left closed V-functor since these constraints

are in bijection with pairs

  φ0 : I F I → and     
  
φ2; ; : , ,B C F B C FB FCl

l l[ ]  → [ ]
satisfying corresponding axioms.  Equally  F  could be called a right closed V-functor since

the constraints are in bijection with pairs

  φ0 : I F I → and     
    
φ2; ; : , ,A C F A C FA FCr

r r[ ]  → [ ]
satisfying corresponding axioms.  We call a monoidal V-functor  F  norma l when    φ0 is

invertible.  As usual we call  F  strong mono ida l when it is normal and each    φ2; ,A B is

invertible.  We define  F  to be strong left closed when it is normal and each      φ2; ;B C
l is

invertible; it is strong right closed when it is normal and each     φ2; ;A C
r is invertible;  and

it is strong closed when it both strong left and strong right closed.    

Pseudomonoid structures on  A  in     Mod( )V are equivalent to closed monoidal

structures on the V-category      V A =   Mod k A( )( , )V of left A-modules; this is a special case

of convolution in the sense of [Da1].  In fact, since  k  is a comonoid in     Mod( )V ,  we

have a monoidal pseudofunctor

    Mod k Mod Cat( )( , ) : ( )V V V− → − , 

which, as such, takes pseudomonoids to pseudomonoids.  Since it is representable by  k,

it also preserves Eilenberg-Moore constructions (and all weighted limits for that matter).

This means that when we apply      Mod k( )( , )V − to a Takeuchi bialgebroid    η : R Ae  → ,
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we obtain a strong monoidal monadic functor   

    V VA Re
 → .

Conversely, given a k-algebra morphism    η : R Ae  → , a V-monoidal structure on

    V A,  and a strong monoidal structure on the functor      V VA Re
 → ,  we obtain a

Takeuchi bialgebroid structure on    η : R Ae  → .  This is because     V VA Re
 → has both

adjoints and is conservative (= reflects isomorphisms), so is monadic;  but being strong

monoidal and colimit preserving, any monoidal structure on     V A will be automatically

closed, reflecting the fact that the monoidal V-category      V Re
is closed.  Consequently, by

[Da1], the monoidal structure on      V A is obtained by convolution of a pseudomonoid

structure on  A. 

By Theorem 5.1 of [Sch1] (also see Theorem 3.1 of [BM]) characterizing the   ×R-

bialgebras of Takeuchi as monoidal structures on      V A for which    V VA Re
 → is strong

monoidal, we have shown that our Takeuchi bialgebroids are the    ×R-bialgebras.  W e

will see this in another way in the next section. 

4. The lax monoidal operation    ×R

In order to define a bimonoid (or bialgebra) in a monoidal category, the monoidal

category requires some kind of commutativity of the tensor product such as a braiding.

A braiding can be regarded as a second monoidal structure on the category for which the

new tensor is strongly monoidal with respect to the old.  The so-called Eckmann-Hilton

argument forces the new tensor to be isomorphic to the old and forces a braiding to

appear (see [JS1]).  

Ah, but what if the second tensor is only a lax multitensor and is only monoidal

with respect to the old monoidal structure?  Then there is certainly no need for the two

structures to coincide.  However, it is still possible to speak of a bimonoid: there is

sufficient structure to express compatibility between a monoid structure for one tensor

and a comonoid structure (on the same object) for the other tensor.  After some

preliminaries about right extensions in bicategories, we shall describe in detail just such

a situation. 

On top of the already discussed diverse properties and rich structure enjoyed by

    Mod( )V ,  we also have the property that all right liftings and right extensions exist.
Despite the terminology (from [St1] for example), these concepts are very familiar in the

usual theory of modules.

Suppose    M and   ′M are modules    R S→ .  We put  
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  Hom M MR
S ( , )′ =      Mod R S M M( )( , )( , )V ′ ;

that is, traditionally, it is the k-module of left S, right R-bimodule morphisms from    M

to   ′M .  Now consider three modules as in the triangle

.

  R   S

  T

  M

  N   L

Let    Hom M NR( , ) :   S T → denote the k-module of right R-module morphisms with

right S- and left T-actions defined by    ( )( ) ( )t f s m t f sm= for  

s ∈ S,      t ∈ T,      f ∈   Hom M NR( , ) and     m ∈ M.

Let    Hom L NT( , ) :   R S → denote the k-module of left T-module morphisms with right

R- and left S-actions defined by    ( )( ) ( )sg r l g ls r= for  

r ∈ R,      s ∈ S,      g ∈   Hom L NT( , ) and     l ∈ L.

There are natural isomorphisms

  Hom L Hom M N Hom L M NS
T

R R
T

S( , ( , )) ( , )≅ ⊗   ≅ Hom M Hom L NR
S T( , ( , )).

induced by evaluation morphisms

  ev Hom M N M NN
M

R S: ( , ) ⊗ → and     ev L Hom L N NN
L

S
T: ( , ))⊗ → .

In bicategorical terms,    Hom M NR( , ) is the right extension of  N  along  M,  while

  Hom L NT( , ) is the right lifting of  N  through  L.

We require normal lax monoidal categories in the sense of [DS2] and [DS3]. These

structures have been considered by Michael Batanin; they are the algebras for the

categorical operad defined on page 88 of [Bat].   A lax monoidal structure on a category  E
amounts to a sequence of functors

      
• × ×  →
n

n

: . . .E E E
1 24 34

(thought of as multiple tensor products) together with substitution operations  µξ in the

direction we will give below in our main example, and a unit  
  
η : X X → •

1
,  satisfying

three axioms.  This is called norma l when  η is invertible (and so can be replaced by an

identity).   

Consider any pseudomonoid  E ,  with multiplication  P  and unit  J, in a monoidal

bicategory  B which admits all right extensions (where we have in mind  B =    Mod( )V ).

Then the endohom category  End(E)  =      B (E, E) becomes a lax monoidal category 

as follows.  We define
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  Pn : E En⊗  →

to be the composite

  E E E En P E n P E P E Pn n
⊗ ⊗ ⊗ − ⊗ ⊗ ⊗

⊗ − ⊗ −

 →  →  →  →
( ) ( )

( ) . . .
2 3

1 2

for    n 2≥ ,  to be the identity of  n = 1,  and to be  J  when  n = 0.  The coherence conditions

for a pseudomonoid ensure that    Pm ≅ ⊗ ⊗P P Pn m mn
o ( . . . )

1
for each partition  ξ :

  m mn1 + +. . . =  m.

We define the multiple tensor  
  
• ( )n

M M1 n, . . . , of objects    M M1 n, . . . , of  End(E)

to be the right extension of      P M Mn 1 no ⊗ ⊗( ). . . along    Pn ;  that is,

  
• ( )n

M M1 n, . . . , =  
  
Hom

E En n⊗ ⊗⊗ ⊗ ⊗( )( )P P M Mn n 1 n, . . . .

The lax associativity constraint

µξ :  
  
• • • •





 →
n m m m n n m m nmM M M M M M

n n n1 111 1 1 11( , . . . , ), . . . , ( , . . . , ) ( , . . . , )

for each partition  ξ :    m mn1 + +. . . =  m  is, by using the right extension property of the

target, induced by the morphism

  
• • •





 → ⊗ ⊗
n m m m n n m m m nmM M M M P P M M

n n n1 111 1 1 11( , . . . , ), . . . , ( , . . . , ) ( . . . )o o

which, after "conjugation" with    Pm ≅ ⊗ ⊗P P Pn m mn
o ( . . . )

1
,  is the composite

  

• • •

• •







⊗ ⊗  →







n m m m n n m n m m
ev

n m m m n n m

M M M M P P P

P M M M M

n n n

n n

1 1 1

1 1

11 1 1
1

11 1 1

( , . . . , ), . . . , ( , . . . , ) ( . . . )

( , . . . , ), . . . , ( , . . . , )

o o

o o

o

(( . . . )

( , . . . , ) ) . . . ( ( , . . . ,

( , . . . ,

( . . . )

P P

P M M P M M P

P P M

m m

n m m m m n n m m
ev ev

n m m

n

n n n

1

1 1 1

1 1

11 1 1
1

11

⊗ ⊗  →

⊗ ⊗











 →

≅

⊗ ⊗• •

•

o o o

o o

o

MM P M M

P P P M M

m m m n n m

n m m n m

n n n

n n

1 1

11

1

1

) . . . ( , . . . , )

( . . . ) ( . . . ) .







⊗ ⊗ 











 →

⊗ ⊗ ⊗ ⊗

• ≅
o

o o

The three axioms for a lax monoidal category can be verified.  Since    P E E1 : → is the

identity,  we see that  
  
•
1

M = M ;  so the lax monoidal structure on  End(E)  is normal.

As an endomorphism category    End E( ) is also a monoidal category for which the

tensor product is composition.  So    End E( ) is an object of the 2-category  MonCat.    Now

MonCat   is a monoidal 2-category with cartesian product as tensor.  We will now see

that     End E( ) is a lax monoid in  MonCat.   

17



Proposition 4.1 Regard   End E( ) as a monoidal category under composition. T h e

functors
  
• →
n

nEnd E End E: ( ) ( ) are equipped with canonical monoidal structures such

that the substitutions µξ are monoidal natural transformations.

Proof  The structure in question is the family of morphisms

    
• ( ) • ( )n n n nN N M M1 1, . . . , , . . . ,o →

   
• ( )n n nN M N M1 1o o, . . . ,

which, using the right extension property of the target, are induced by the composites

    
• ( ) • ( )  →
n n n n n

ev
N N M M P1 1

1
, . . . , , . . . ,o o

o

    
• ( ) ⊗ ⊗  →
n n n n

ev
N N P M M1 1

1
, . . . , ( . . . )o o

o

    P N N M M P N M N Mn n n n n no o o o o( . . . ) ( . . . ) ( ) . . . ( )1 1 1 1⊗ ⊗ ⊗ ⊗  → ⊗ ⊗( )≅ .

The compatibility of these morphisms with the lax associativity morphisms is readily

verified. QED

A monoid for composition in    End E( ) is a monad on  E  in  B.  We write

  MonEnd E( ) for the category of monads on  E;  the morphisms are 2-cells between the
endofunctors of the monads that are compatible with the units and multiplications. It

follows from Proposition 4.1 that the lax monoidal structure on    End E( ) lifts to the

category    MonEnd E( ).

The concept of comonoid makes sense in any lax monoidal category.

Proposition 4.2 A Takeuchi bialgebroid can equally be defined as a k-algebra R

together with a comonoid in the lax monoidal category    MonEnd Re( ). 

Proof Both a Takeuchi bialgebroid  A :   R
e  →   R

e and a comonoid in    MonEnd Re( )

start with a monad  A :   R
e  →   R

e on    R
e in     Mod( )V .  To make this a comonoid i n

  MonEnd Re( ) we need a comultiplication  
  

′  → •δ : ( , )A A A
2

and a counit  
  

′  → •ε : A
0

satisfying axioms.  By the right extension properties of their targets,  these morphisms

are determined by morphisms    δ : ( )A P P A Ao o2 2 → ⊗ and    ε : A P Po 0 0 → ,  exactly

as for a Takeuchi bialgebroid. The condition that  ′δ and  ′ε should form a comonoid

translates to the first three diagrams on  δ and  ε describing an opmonoidal monad (as

in Section 3) while the conditions that  ′δ and  ′ε should respect the monad structure

translate to the last four diagrams on  δ and  ε .  So the comonoid is equivalently a

Takeuchi bialgebroid. QED
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The operation  
  
•
2

on   MonEnd Re( ) is precisely the operation   ×R of Takeuchi [Tak];

also compare Section 2 of [Sch2]1 whose    α : ( )M P N M P NR R R R× ×  → × × , for

example, is our substitution  
  
µξ : , , , ,• • •( )



  → ( )

2 2 3
M P N M P N for  ξ : 2 + 1 = 3.   To help

the reader make these identifications explicit, let  E =   R
e=     R Ro ⊗ ,  take left-E, right E-

bimodules  M  and  N,  and recall that    P R R R2 = ⊗ ⊗ with the actions explained i n

Section 3.   There is a canonical isomorphism

  P M N2 ⊗ ⊗( ) ≅ ⊗⊗E RM N2

where    M N M N x m n m x nR⊗ = ⊗ ⊗( ) ⊗ ⊗ ⊗( )/ ( ) ~ ( )1 1 .  Then we have the following

calculation where the third isomorphism is obtained by evaluating the homorphisms at

  1 1 1⊗ ⊗ ∈ ⊗ ⊗R R R.

  

•( ) ≅ ⊗ ⊗( )( ) ≅ ⊗( )

≅ ⊗ ∈ ⊗ ⊗ ⊗ = ⊗ ⊗ ∀ ∈











= ×

⊗ ⊗ ⊗

∑ ∑ ∑

2 2 2 2

1 1

M N Hom Hom M N

m n M N m x n m n x x R

M N

E E E R

i R i
i

R i R i
i

i R i
i

R

, , ,

( ) ( )

P P M N P2 2 2

5. Monoidal star autonomy

In this section we extend the theory of ∗−autonomous categories in the sense of

Barr (see [Ba1], and, for the non-symmetric case, see [Ba3]) to enriched categories in the

sense of Eilenberg-Kelly [EK].  The kind of duality present in a ∗−autonomous category is

closer than compactness (also called rigidity or autonomy) to what is needed for an

antipode in a bialgebroid or quantum category, and so for a concept of Hopf bialgebroid

or quantum groupoid (see Example 7.4).   

A V-functor      F : A B → is called e s o (for "essentially surjective on objects") when

every object of  B is isomorphic to one of the form  FA  for some object  A  of  A .  

A left star operation for a monoidal V-category  A is an eso V-functor  

  S
op

l A A:  →

together with a V-natural family of isomorphisms (called the left star constraint )  

  A Al l( , ) ( , ( ))A B S C A S B C⊗ ≅ ⊗ .

It follows that  A is left closed with  
    
B C S B D, ( )[ ] ≅ ⊗l l where      S D Cl ≅ .  
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A right star operation for a monoidal V-category  A is an eso V-functor  

   S
op

r A A:  →

together with a V-natural family of isomorphisms (called the right star constraint )  

    A Ar r( , ) ( , ( ))A B S C B S C A⊗ ≅ ⊗ .

It follows that  A is then right closed with  
    
A C S E A, ( )[ ] ≅ ⊗r r where      S E Cr ≅ .

A monoidal V-category  A is called ∗-autonomous when it is equipped with a left

star operation which is fully faithful.  Since it follows that      Sl is then an equivalence of

V-categories, we write      Sr for its adjoint equivalence so that the left star constraint can be

written as

    A Al r( , ) ( , )A B S C B C S A⊗ ≅ ⊗ .

We see from this that      Sr is a right star operation and ∗-autonomy can equally be

defined in terms of a fully faithful right star operation.  It follows that ∗-autonomous

monoidal V-categories are closed, with internal homs given by the formulas  

    
B C S B S C, ( )[ ] ≅ ⊗l l r and   

    
A C S S C A, ( )[ ] ≅ ⊗r r l .  

Notice that

  A A A Al l r r( , ) ( , ) ( , ) ( , )A S I I A S I A I S I A S I≅ ⊗ ≅ ⊗ ≅ ,

so that      S I S Il r≅ (by the Yoneda Lemma).  The object      S Il is called the dualizing object

and determines the left star operation via  
    
B S I S B, l l l[ ] ≅ . 

For the reader interested in checking that our ∗-autonomous monoidal categories

agree with Michael Barr's ∗-autonomous categories, we recommend Definition 2.3 of

[Ba2] as the appropriate one for comparison.  Also see [St3].

A monoidal category is autonomous if and only if there exists a left star operation

  Sl and a family of V-natural isomorphisms   

    S A B S B S Al l l( )⊗ ≅ ⊗ .

If  A is autonomous then taking the left dual provides a left star operation with

isomorphism as required which a fortiori satisfy the conditions for a strong monoidal V-

functor. To see the less obvious implication, suppose we have an     Sl and the

isomorphisms.  Then  
    
B C,[ ] ≅l   S B Dl ( )⊗   ≅ ⊗S D S Bl l   ≅ ⊗C S Bl where    S D Cl ≅ ,  so    S Bl

is a left dual for  B.  So every object  B  has a left dual    S Bl .  However, every object  B  is

isomorphic to      S Dl for some  D.  This implies that  D  is a right dual for  B. 

6. Modules and promonoidal enriched categories

An important part of our goal is to extend star autonomy from monoidal categories

to promonoidal categories. In preparation, in this section we shall discuss some basic
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facts about enriched categories and modules between them.  Then we will review

promonoidal categories and promonoidal functors in the enriched context.  We obtain a

result about restriction along a promonoidal functor.  

Let  V denotes any complete and cocomplete symmetric monoidal closed category.

We write  V-Mod  for the symmetric monoidal bicategory (in the sense of [DS1]) whose

objects are V-categories and whose hom-categories are defined by

V-Mod(A , B)  =  
    
A B Vop ⊗[ ], .

The objects    M : A B → of  V-Mod(A , B)  are called modules from  A t o B.  The

composite of modules  M : A B → and    N : B C → is defined by the equation

    
( )( , ) ( , ) ( , )N M A C N B C M A B

B
o = ⊗∫ ;

the integral here is the "coend" in the sense of [DK] (also see [Ke2]).  The tensor product

for  V-Mod  is the usual tensor product of V-categories in the sense of [EK] (also see

[Ke2]); explicitly,  an object of  A B⊗ is a pair    A B,( ) where  A  is an object of  A and  B

is an object of  B,  and the homs are defined by 

  A B A B⊗( ) ( ) ′ ′( )( ) = ′( ) ⊗ ′( )A B A B A A B B, , , , , .

Actually  V-Mod  is autonomous since we have

V-Mod    A B C⊗( ), ≅ V-Mod
  
B A C, op ⊗( )

since both sides are isomorphic to  
    
B A C Vop op⊗ ⊗[ ], .

We have reversed the direction of modules from that in [DS1–3] so that a

promonoidal V-category  A is precisely a pseudomonoid (monoidal object) of  V-Mod

(rather than      A op being such).  The multiplication module  P :   A A A⊗  → and the

unit module  J :   I A → are equally V-functors  

P :     A A A Vop op⊗ ⊗  → and     J :  A V → ,

and we have associativity constraints

  
P X C D P A B X

X
( , ; ) ( , ; )⊗∫ ≅

  
P A Y D P B C Y

Y
( , ; ) ( , ; )⊗∫

and unital constraints

  
P X A B JX

X
( , ; ) ⊗∫ ≅   A( , )A B ≅

  
P A Y B JY

Y
( , ; ) ⊗∫ ,

satisfying the usual two axioms (see [Da1]) which yield coherence.  It is convenient to

introduce the V-functors
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Pn

op op

n

: . . .A A A V⊗ ⊗ ⊗  →
1 24444 34444

,

for all natural numbers  n,  which we define  as follows:

  P A JA0 = ,      P A A A A1 1 1( ; ) ( , )= A ,     P A A A P A A A2 1 2 1 2( , ; ) ( , ; )= and

  P A A An n+ +1 1 1( ,. . . , ; ) =  
  

P X A A P A A Xn n
X

( , ; ) ( ,. . . , ; )+ ⊗∫ 1 1 . 

We think of    P A A An n( , . . . , ; )1 as the object of  multimorphisms from    A An1, . . . , to  A

in  A .  For example, when  A is a monoidal V-category, we have a promonoidal

structure on  A with 

  P A A An n( , . . . , ; )1 ≅     A( . . . , )A A An1 ⊗ ⊗ ,

where the multitensor product is, say, bracketed from the left.  

It will also be convenient to define a multimorphism structure on a V-category  A

to be a sequence of V-functors

      
Pn

op op

n

: . . .A A A V⊗ ⊗ ⊗  →
1 24444 34444

subject to no constraints.  So a promonoidal structure is an example where all the    Pn

are obtained from the particular ones for  n = 0, 1, 2.  A multitensor structure on  A is a

multimorphism structure for which each    P A An n( ,... , ; )1 − is representable;  so we have

objects  
  
⊗( )
n nA A1, . . . , of  A and a V-natural family of isomorphisms

    
P A A A A A An n n n( ,... , ; ) . . . , ,,1 1≅ ( )



⊗A .

For example, when  A is monoidal, we obtain  
  
⊗( )
n nA A1, . . . , inductively from the

cases  n = 0, 1, and 2  where it is the unit, the identity functor, and the binary tensor

product, respectively. 

Suppose  A and  E are promonoidal V-categories.  A V-functor  H : E  → A is

called promonoida l when it is equipped with V-natural families of morphisms

  φ2; , ;U V W :   P U V W P HU HV HW( , ; ) ( , ; ) → and     φ0;U :    JU JHU →

that are compatible in the obvious way with the associativity and unital constraints.  For

any such promonoidal  H ,  we can inductively define V-natural families of morphisms

  φn U U U n n n nn
P U U U P HU HU HU; ,... , ; : ( ,... , ; ) ( ,... , ; )

1 1 1 →

using the inductive definition of    Pn .  In particular,    φ1; ; : ( , ) ( , )U V U V HU HVE A → is

the effect of  H  on homs.  We say that  H  is promonoidally fully faithful when each

  φn U U Un; ,... , ;1
is invertible.  We say  F  is norma l when each    φ0;U is invertible.
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A promonoidal V-functor  H : E  → A also gives rise in the obvious way to V-

natural families of morphisms

    
φ2; , ;

,
: ( , ; ) ( , ) ( , ) ( , ; ),A B W

U V
P U V W A HU B HV P A B HW⊗ ⊗  →∫ A A

    
φ2;

,
: ( , ; ) ( , ) ( , ) ( , ; )U B C

B C
P U V W B HV HW C P HU B C, ;

l A A∫ ⊗ ⊗  → ,   and

    
φ2;

,
: ( , ; ) ( , ) ( , ) ( , ; )A V C

U W
P U V W A HU HW C P A HV C, ;

r A A∫ ⊗ ⊗  → .

We need to say a little bit about convolution (see [Da1], [Da3] and [DS3]).  For V-

categories  A and  X equipped with multimorphism structures, the convolut ion

multimorphism structure on the V-functor V-category      A X,[ ] is defined by

  
P M M M P A A A P M A M A MAn n n n n n nA An

( , . . . , ; ) ( , . . . , ; ), ( , . . . , ; )
, . . . ,1 1 1 1

1
= [ ]∫

whenever these ends all exist (for example, when  A is small).  In the case where  X is

multitensored, the convolution is also multitensored by the formula

  
∗ ∫( ) = ⊗ ( )⊗n n n n

A A

n n nM M A P A A A M A M An
1 1 1 1

1, . . . , ( ) ( , . . . , ; ) . . . ,
, . . . ,

, ,

provided the appropriate weighted colimits (expressed here by coends and tensors) exist

in  X .  In the case where  A is promonoidal, if  X is cocomplete closed monoidal then so

is    A X,[ ] (see [Da1]). 

Proposition 6.1 Suppose H : E  → A is a normal promonoidal V-functor. T h e

restriction V-functor

    H, : , ,1[ ] [ ]  → [ ]A V E V

is a normal monoidal V-functor.  It is strong monoidal if and only if each    φ2; , ;A B W is

invertible. It is strong left (respectively, strong right) closed if and only if each      φ2;U B C, ;
l

(respectively,    φ2;A V C, ;
r ) is invertible.

Proof The monoidal unital constraint for    H,1[ ] is    φ0;U :    JU JHU → .  To obtain the

associativity constraint, we use the Yoneda Lemma to replace

  
( ) ( , ; )

,
MH NH W P U V W MHU NHV

U V
∗ = ⊗ ⊗∫

by the isomorphic expression

  
P U V W A HU B HV MHU NHV

U V A B
( , ; ) ( , ) ( , )

, , ,
⊗ ⊗ ⊗ ⊗∫ A A
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and take the morphism into

  
( ) ( , ; )

,
M N HW P A B HW MA NB

A B
∗ = ⊗ ⊗∫

of the form  
  

φ2 1 1; , ;
,

A B W
A B

⊗ ⊗∫ which is clearly invertible if    φ2; , ;A B W is.  The converse

comes by taking  M  and  N  to be representable and using Yoneda.

Similarly,  the left closed constraint for    H,1[ ] is obtained by composing the

morphism  
    

φ2 1 1;,
,U B CB C , ;

l ⊗[ ]∫ from

    
N L HU P HU B C NB LC

B C
, ( , ; ) ,

,
[ ] = ⊗[ ]∫l

to  

    
P U V W B HV HW C NB LC

V W B C
( , ; ) ( , ) ( , ) ,

, , ,
⊗ ⊗ ⊗[ ]∫ A A

with the Yoneda isomorphism between this last expression and

    
NH LH U P U V W NHV LHW

V W
, ( , ; ) ,

,
[ ] = ⊗[ ]∫l ;

this constraint is clearly invertible if     φ2;U B C, ;
l is, and the converse comes by taking  N

and  L  to be representable.  The right closed case is dual. QED

7. Forms and promonoidal star autonomy

A problem with ∗−autonomy is that the common base categories (like the category

of sets and the category of vector spaces) are not themselves ∗−autonomous.  So we do

not expect the convolution monoidal structure on    A V,[ ] to be ∗−autonomous even

when  A is.  We introduce the notion of f o r m to address this problem: forms do exist on

base categories and carry over to convolutions, while ∗−autonomy is to be equipped

with a special kind of form.  The definition of a ∗−autonomous promonoidal V-category

will be expressed in terms of forms.  

A f o r m for a promonoidal V-category  A is a module    σ : A A I⊗  → (where  I is

the usual one-object V-category) together with an isomorphism    σ σo o( ) ( )P P⊗ ≅ ⊗1 1 .

In other words, a form is a V-functor

  σ : A A Vop op⊗  →

together with a V-natural family of isomorphisms 

  
σ σ( , ) ( , ; ) ( , ) ( , ; )X C P A B X A Y P B C Y

X Y
⊗ ≅ ⊗∫ ∫
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called form constraints.  Indeed, we can inductively obtain isomorphisms

  
σ σ( , ) ( ,... , ; ) ( , ) ( ,... , ; )X A P A A X A Y P A A Yn n n

X
n n

Y
+ +⊗ ≅ ⊗∫ ∫1 1 1 2 1

called the generalized form constraints. A promonoidal V-category with a chosen form

is called f ormal.

For example, every object  K  of any promonoidal V-category  A defines a form

  σ ( , ) ( , ; )A B P A B K= ; the form constraints are provided by the promonoidal associativity

and unit constraints. Other examples are ∗-autonomous monoidal categories, as we

shall soon discover. Moreover, we will also see that forms carry over to various

constructions such as tensor products and general convolutions of V-categories.

If  A is monoidal, using Yoneda, the form constraints become

  σ σ( , ) ( , )A B C A B C⊗ ≅ ⊗ .

A form is called continuous when    σ( , )A − and    σ( , )− B     : A Vop  → are small

(weighted) limit preserving for all objects  A  and  B  of  A .   

Proposition 7.1 Let  A and  X be formal promonoidal V-categories.. 

(a)  If  A and  X are formal then the tensor product A⊗X with promonoida l

structure  

  P A X A X A X P A A A P X X Xn n n n n n n(( ), . . . ,( , );( , )) ( , . . . , ; ) ( , . . . , ; ),1 1 1 1= ⊗

admits the form    σ σ σ(( , ),( , )) ( , ) ( , )A X B Y A B X Y= ⊗ .

(b)  If  A is small and  X is cocomplete closed monoidal with a continuous f o r m

then the convolution monoidal V-category     A X,[ ] admits the continuous form

  
σ σ σ( , ) ( , ), ( , )

,
M N A B MA NB

A B
= [ ]∫ .

Proof (a)  This is trivial.

(b)  We have the calculation

  
σ σ( , ) ( ) , ( , )

,
M N L M N U LC U C

U C
∗ = ∗ ⊗[ ]∫

  
≅ ⊗ ⊗









∫∫ σ σ( , ), ( , ; ) ,

,

,
U C P A B U MA NB LC

A B

U C

  
≅ ⊗ ⊗( )[ ]∫ σ σ( , ) ( , ; ), ,

, , ,
U C P A B U MA NB LC

U A B C

  
≅ ⊗ ⊗( )[ ]∫ σ σ( , ) ( , ; ), ,

, , ,
A U P B C U MA NB LC

U A B C

  
≅ ⊗ ⊗









∫∫ σ σ( , ), , ( , ; )

,

,
A U MA P B C U NB LC

B C

U A
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≅ ∗( )[ ] ≅ ∗∫ σ σ σ( , ), ,( ) ( , )

,
A U MA N L U M N L

U A
.  QED

A form      σ : A A I⊗  → transforms under the duality of V-modules to a V-module

    √ :σ A A → op.  We say the form  σ is non-degenerate when    √σ is an equivalence as a

V-module (a Morita equivalence if you prefer).  A form  σ is said to be representable

when there exists a V-functor      S
op

l A A:  → and a V-natural isomorphism

   σ ( , ) ( , )A B A S B≅ A l .

A promonoidal V-category is ∗-autonomous when it is equipped with a representable

non-degenerate form.  In fact, if  A satisfies a minimal completeness condition ("Cauchy

completeness") then "representable" is redundant.  Notice that   Sl is necessarily an

equivalence, with adjoint inverse     Sr ,  say,  and the form constraints have the cyclic

appearance

  P A B S C P B C S A, ; , ;l r( ) ≅ ( ).
More generally, using Yoneda, the generalized form constraints become

  
P A A S A X S A P A A Xn n n n n n

X
( ,... , ; ) ( , ) ( ,... , ; )1 1 1 1l lA+ +≅ ⊗∫

  
≅ ⊗ ≅ ⊗+ +∫ ∫σ σ( , ) ( ,... , ; ) ( , ) ( ,... , ; )X A P A A X A Y P A A Yn n n

X
n n

Y
1 1 1 2 1

  
≅ ⊗ ≅+ +∫ A r r( , ) ( ,... , ; ) ( ,... , ; )Y S A P A A Y P A A S An n

Y
n n1 2 1 2 1 1 . 

A monoidal category is ∗-autonomous in the monoidal sense if and only if it is ∗-

autonomous in the promonoidal sense.  

Corollary 7.2 In Proposition 7.1, if A and X are ∗-autonomous then so are

(a)   A⊗X and (b)      A X,[ ]. 

Proof (a)    σ σ σ(( , ),( , )) ( , ) ( , )A X B Y A B X Y= ⊗    ≅ ⊗A Xl l( , ) ( , )A S B X S Y

  ≅ ⊗( )(( , ),( , ))A X l lA X S B S Y .

(b)
  
σ σ σ( , ) ( , ), ( , )

,
M N A B MA NB

A B
= [ ]∫     

≅ [ ]∫ A Xl l( , ), ( , )
,

A S B MA S NB
A B

    
≅ ∫ X l l( , )MS B S NB

B    ≅ [ ]A X l l, ( , )MS S N     ≅ [ ]A X l r, ( , )M S NS .  QED

Example 7.3 As noted in the final remarks of [Da1], for any V-category  C,  there is a

canonical promonoidal structure on      C Cop ⊗ .  It is explicitly defined by  

  P C D0( , ) =     J C D C D( , ) ( , )= C and  
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    P D C D C C D C D C D C D2 1 1 2 2 3 3 3 1 1 2 2 3(( , ),( , );( , )) ( , ) ( , ) ( , )= ⊗ ⊗C C C .

More generally,

   P D C D C C D C D C D C Dn n n n n n n n(( , ), , . . . ,( , );( , )) ( , ) ( , ) . . . ( , ) .1 1 1 1 1 1 1 2 1+ + + += ⊗ ⊗ ⊗C C C

After the lecture [Da4], Luigi Santocanale observed that      C Cop ⊗ is  ∗-autonomous. To

be precise, define      S
op op op: ( )C C C C⊗  → ⊗ by    S(D,C)  =  (C,D).  Clearly

  P D C D C C D P D C D C C Dn n n n n n n n(( , ), . . . ,( , );( , )) (( , ), . . . ,( , );( , ))1 1 1 1 2 2 1 1 1 1+ + + += ,

so that      S S Sr l= = for ∗-autonomy.  To relate this to our discussion of bialgebroids

(Section 3), note that a k-algebra  C = R  is a one-object V-category (for  V the category of

k-modules) and so the "chaotic bialgebroid"      C Cop eR⊗ = is ∗-autonomous.

Example 7.4 The notion of Hopf V-algebroid appearing in Definition 21 of [DS1] is an

example of a ∗-autonomous promonoidal V-category.  Suppose that the V-category  C is

comonoidal [Da1];  that is,  C is a pseudomonoid (or monoidal object) in      V −( )Cat op :

this means we have V-functors  ∆ : C C C → ⊗ and    E : C I → ,  coassociative and

counital up to coherent V-natural isomorphisms.  It is easy to see that  ∆ must be given

by the diagonal    ∆C C C= ( , ) on objects.  A multimorphism structure  Q  on      C op is

then defined by

    Q C C C C C C Cn n n; , . . . , ( , ) . . . ( , )1 1( ) = ⊗ ⊗C C ;   

the actions on hom-objects require the V-functors  ∆ and  Ε.  Indeed,  Q  defines a

promonoidal structure (compare Section 5 of [Da1]).  If this promonoidal V-category is ∗-

autonomous then the condition     Q A B S C Q B C S A( , ; ) ( , ; )l r≅ becomes

    C C C C C Cl l r r r l( , ) ( , ) ( , ) ( , ) ( , ) ( , )A S C B S C B S A C S A B S A A S C⊗ ≅ ⊗ ≅ ⊗ ,

which precisely gives the condition

    C C C Cr( , ) ( , ) ( , ) ( , )A C B C B S A A C⊗ ≅ ⊗

for the authors' concept of Hopf V-algebroid.

A promonoidal functor  H : E  → A between ∗-autonomous promonoidal V-

categories is called ∗-autonomous when it is equipped with a V-natural transformation

  τ
l

l l: HS S H →

such that the following diagram commutes
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    P U V S W( , ; )l     P HU HV HS W( , ; )l    
φ2; , ;U V S Wl    P( , ; )1 1 τl

    P HU HV S HW( , ; )l

    P V W S U( , ; )r

    
φ2; , ;V W S Ur

    P HV HW HS U( , ; )r
   P( , ; )1 1 τ r    P HV HW S HU( , ; )r

where      τ
r

r r: HS S H → is the mate of   τl under the adjunction between      S l and      S r .

We call  H  strong ∗-autonomous when    τl is invertible; it follows that   τ r is invertible.

Proposition 7.5 Suppose H : E  → A is a strong ∗-autonomous promonoidal V-

functor.  If the restriction V-functor    H, : , ,1[ ] [ ]  → [ ]A V E V is strong monoidal then it

is strong closed.

Proof The idea of the proof is to use ∗-autonomy to cycle the criterion of Proposition

6.1 for    H,1[ ] to be strong monoidal into the criteria for it to be strong closed.  The precise

calculation for strong left closed is as follows:

    
P U V W B HV HW C

V W
( , ; ) ( , ) ( , )

,

∫ ⊗ ⊗A A

≅
    

P U V W B HV HW S S C
V W

( , ; ) ( , ) ( , )
,

∫ ⊗ ⊗A A l r

≅
  

P U V W B HV S C S HW
V W

( , ; ) ( , ) ( , )
,

∫ ⊗ ⊗A A r r

≅
  

P U V W B HV S C HS W
V W

( , ; ) ( , ) ( , )
,

∫ ⊗ ⊗A A r r

≅
    

P U V S W B HV S C HW
V W

( , ; ) ( , ) ( , )
,

l rA A∫ ⊗ ⊗

≅
    

P V W S U B HV S C HW
V W

( , ; ) ( , ) ( , )
,

r rA A∫ ⊗ ⊗

≅     P B S C HS U P B S C S HU P HU B S S C P HU B C( , ; ) ( , ; ) ( , ; ) ( , ; )r r r r l r≅ ≅ ≅ .  QED

The next simple observation can be useful in this context. 

Proposition 7.6 Suppose U : A  → X is any V-functor with a left adjoint F,  and

suppose there are equivalences     S
op: A A → and      S

op: X X → such that

    S U U So o≅ . Then  U  has a right adjoint     S F S−1 o o and the m o n a d T =    U Fo

generated by the original adjunction has a right adjoint c o m o n a d G  =      U S F So o o−1 .

Dually,  F  has a left adjoint     S U S−1 o o .  A  doubly infinite string of adjunctions is

thereby created.
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Proof Clearly      U
op op: A X → has  F  as right adjoint whereas the mutually inverse

equivalences  S  and    S
−1 are adjoint to each other on both sides.  The results now follow

by composing adjunctions.  QED

A n o p f o r m for a promonoidal V-category  A is a V-functor

    σ : A A V⊗  →
and V-natural isomorphisms

  
P A B X X C P B C Y A Y

X Y
( , ; ), ( , ) ( , ; ), ( , )σ σ[ ] ≅ [ ]∫ ∫ ,

called opform constraints. For a monoidal V-category, we see by Yoneda's Lemma that

an opform on  A is the same as a form on    A op.  Moreover, in general, if  σ is a form

on  A and  K  is any object of  V then an opform    σK on  A is defined by the equation

  σ σK A B A B K( , ) ( , ),= [ ].

Proposition 7.7 Let  A be a small promonoidal V-category.  Each o p f o r m σ f or A

determines a continuous form for the convolution monoidal V-category   A V,[ ] via t h e

formula

  
σ σ( , ) , ( , )

,
M N MA NB A B

A B
= ⊗[ ]∫ .

Furthermore, every continuous form on     A V,[ ] arises thus from an opform on A .

Proof We have the calculation

  
σ σ( , ) ( ) , ,

,
M N L M N U LC U C

U C
∗ = ∗ ⊗ ( )[ ]∫

  
≅ ⊗ ⊗ ⊗ ( )



∫∫ P A B U MA NB LC U C

A B

U C
( , ; ) , ,

,

,
σ

  
≅ ⊗ ⊗ ( )[ ][ ]∫ MA NB LC P A B U U C

U A B C
, ( , ; ), ,

, , ,
σ

  
≅ ⊗ ⊗ ( )[ ][ ]∫ MA NB LC P B C U A U

U A B C
, ( , ; ), ,

, , ,
σ

  
≅ ⊗ ⊗ ( )[ ][ ]∫ MA P B C U NB LC A U

U A B C
, ( , ; ) , ,

, , ,
σ

  
≅ ⊗ ⊗ ( )









∫∫ MA P B C U NB LC A U

B C

U A
, ( , ; ) , ,

,

,
σ

  ≅ ∗σ( , )M N L .

Conversely, any continuous form  σ on    A V,[ ] will have  
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σ σ( , ) ( , ), ( , )M N MA A NB B

A B
≅ ⊗ − ⊗ −



∫ ∫A A

    
≅ ⊗ − −[ ]∫ MA NB A B

A B
, ( ( , ), ( , ))

,
σ A A ,

so that  σ will be determined by its value on representables.  We define  σ for  A by

   σ σ( , ) ( ( , ), ( , ))A B A B= − −A A .

We have the calculation

    
P A B U U C P A B U U C

U

U
( , ; ), ( , ), ( , ) ( , ; ) ( , ), ( , )σ σA A A A− −( )[ ] ≅ ⊗ − −



∫ ∫

    ≅ − −( ) ≅ − ∗ − −( ) ≅ − − ∗ −( )σ σ σP A B C A B C A B C( , ; ), ( , ) ( , ) ( , ), ( , ) ( , ), ( , ) ( , )A A A A A A A

  
≅ − −( ) ≅ − −( )[ ]∫σ σA A A( , ), ( , ; ) ( , ; ), ( , ), ( , )A P B C P B C V A V

V
.  QED

8. The star and Chu constructions 

We adhere to the spirit of the review [St4] where the Chu construction is defined at

the multimorphism level.   The star construction on a multimorphism structure yields

one that is ∗-autonomous.  When applied to a promonoidal V-category, the result may

not be promonoidal  — hence the need to work at the more general level.  

For that, we define a general multimorphism structure to be ∗-autonomous when

there exists an equivalence      S
op

l A A:  → of V-categories and a sequence of V-natural

isomorphisms 

    P A A S A P A A S An n n n n( ,... , ; ) ( ,... , ; )1 1 2 1 1l r+ +≅

where    Sr is an adjoint inverse for    Sl .  

In this section we will show how to modify a multimorphism structure, with a

prescribed    Sl ,  to obtain a ∗-autonomous one with the same    Sl .  We first need a natural

definition: an equivalence   F : A B → of multimorphism structures is an equivalence

F  of V-categories together with natural isomorphisms

  P A A A P FA FA FAn n n n( , . . . , ; ) ( , . . . , ; )1 1≅ ;

the inverse equivalence of  F  is obviously also a multimorphism equivalence. 

Notice that, for any  ∗-autonomous multimorphism structure,    S Sl l A Ao :  →

is a multimorphism equivalence: for we have the calculation

  P A A A P A A S S A P S A A A S An n n n n n n( , . . . , ; ) ( , . . . , ; ) ( , . . . , );1 1 1 1≅ ≅ −r l l l

    ≅ ≅ ≅− − −P S A A A S S S A P S S A S A A A S An n n n n n n( , . . . , ) ( , , , . . . , ); ;l r l l l l l l1 1 1 2 1

    . . . ( , . . . , ; ) ( , . . . , ; ),≅ ≅P S S A S S A S A S A P S S A S S A S S An n n nl l l l l l l l l l l l2 1 1 .

Now to our construction.  Suppose we have a multimorphism structure  P  on any
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V-category  A equipped with a contravariant V-functor      S
op

l A A:  → such that

      S Sl l A Ao :  → is an equivalence of multimorphism structures.  It follows that      Sl is

an equivalence; we write      Sr for the adjoint equivalence.  The starring of this situation

is the multimorphism structure    P
∗ on  A defined by the formula  

   P X X S Xn n n
∗

+( )1 1, . . . , ; l =  

    
⊗

=

+

+ + −
≤ < ≤ + ( )∫ m

n

n m m m n m m m m
U i j n

P U U S U S U S Xi j

1

1

1 1 1 1
1 1

, . . . , , , . . . , ; .
( )

r r r

Proposition 8.1 The starring   P
∗ produces a ∗-autonomous multimorphism structure

o n A with the given    Sl .

Proof Extend the definition of the    Ui j and    X i by putting     U S Uj i i j= r and

  X S S Xn i i+ + =1 r r .  From the definition, we have   

  P X X S Xn n
∗

+( )2 1 1, . . . , ; r =  

    
⊗

=

+

+ + − +
≤ < ≤ + ( )∫ m

n

n m m m n m m m m
V i j n

P V V S V S V S Xi j

1

1

1 1 1 1 1
1 1

, . . . , , , . . . , ; ,
( )

r r r

which we notice is isomorphic to the formula for    P X X S Xn n n
∗

+( )1 1, . . . , ; l on making the

change of variables    V Ui j i j= + +1 1 and using the isomorphisms

    
P U U S X P S S U S S U S S S Xn n n n1 2 1 1 1 1 2 1 1 1, . . . , ; , . . . , ;+ +( ) ≅ ( )r r r r r r r r . QED

Let  C be a V-category with a multimorphism structure  P  and a multimorphism

equivalence      T : C C → .  We suppose furthermore that  C is a comonoidal V-category

with derived promonoidal structure  Q  as made explicit in Example 7.4.  We require that

    T
op op: C C → is an equivalence for the multimorphism structure  Q  (that is, that

    T : C C → is a comonoidal equivalence).    

We want to apply the star construction to   A C C= ⊗op with    Sl (C,D) =  (D,T C)-1 ,

so that    Sr (C,D) =  (TD,C), and with the tensor product multimorphism 

structure    Q P⊗ for the  P  and  Q  as described in the last paragraph.  Notice 

    S Sl l (C,D) =  (T C,T D)-1 -1 s o t h a t       S S op op
l l C C C Co : ⊗ ⊗ → i s i n d e e d a

multimorphism equivalence.   

Let us calculate the star    R
∗ of  R =   Q P⊗ :

  
R X Y X Y Y T Xn n n n n

∗
+

−
+( )( , ) , . . . , ( , ) ; ( , )1 1 1

1
1 =  
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⊗
=

+ + + −

+ + −

( )
⊗ ( )











∫ m

n n m m m m n m m m

n m m m n m m m m

U V Q TY U U TV TV

P V V U U X

i j i j

1

1 1 1 1 1

1 1 1 1

; , . . . , , , . . . ,

, . . . , , , . . . , ;

( , )

    

≅
⊗ ⊗ ⊗ ⊗ ⊗

⊗ ( )








⊗

=

+ + + −

+ + −m

n m m m m m n m m m m m

n m m m n m m m m

U V TY U TY U Y V Y V

P V V U U X
i j i j

1

1 1 1 1 1

1 1 1 1

C C C C( , ) . . . ( , ) ( , ) . . . ( , )

, . . . , , , . . . , ;

( , )
∫∫

    
≅ ⊗( ) ⊗ ( )⊗ ⊗

< =

+

+ + −∫ r s r r s s r s m

n

n m m m n m m m m
U V

TY U Y V P V V U U Xi j i j C C( , ) ( , ) , . . . , , , . . . , ;
( , )

1

1

1 1 1 1

  
≅ ⊗ ( )

=

+
+ + −m

n

n m n m mP Y Y TY TY X
1

1

1 1 1 1, . . . , , , . . . , ;

which has the same shape as the multimorphism structure described in [St4].

Proposition 8.2 In the situation just described, i f P  is actually a monoidal structure o n

C,  then     R
∗ is a  ∗-autonomous promonoidal structure on    C Cop ⊗ .

Proof After Proposition 8.1, it suffices to show that    R
∗ is promonoidal.  We need to see

that each    Rn
∗ is determined by the  n = 0  and  n = 2 cases.  The general calculation is by

induction so we trust that the following exemplary step will be sufficient indication for

the reader:

  
R X Y X Y B T A R TB A X Y B T A

A B
2 1 1 2 2 1

1
1 2 1 1 3 3 4

1
4

1 1 ∗ − ∗ −( ) ⊗ ( )∫ ( , ),( , );( , ) ( , ),( , );( , )
,

  
≅

⊗ ⊗
⊗ ⊗ ⊗





∫

P Y B X P B TY X P TY TY A
P Y Y TB P Y A X P A TY X

A B 2 2 1 1 2 1 1 2 2 1 2 1

2 3 4 1 2 4 1 3 2 1 3 4

1 1 ( , ; ) ( , ; ) ( , ; )
( , ; ) ( , ; ) ( , ; )

,

  
≅

⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗





∫

C C C
C C C
( , ) ( , ) ( , )

( , ) ( , ) ( , )
, Y B X B TY X TY TY A

Y Y TB Y A X A TY X
A B 2 1 1 1 1 2 1 2 1

3 4 1 4 1 3 1 3 4

1 1

    
≅

⊗ ⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗ ⊗ ⊗







C C
C C
( ( ), ) ( ( ) , )

( , ) ( , )
Y T Y Y X T Y Y TY X

Y TY TY X TY TY TY X
2 3 4 1 3 4 1 2

4 1 2 3 1 2 3 4

  ≅ ⊗ ⊗ ⊗P Y TY TY X P TY TY TY X P Y TY TY X P TY TY TY X3 2 3 4 1 3 3 4 1 2 3 4 1 2 3 3 1 2 3 4( , , ; ) ( , , ; ) ( , , ; ) ( , , ; )

  
≅ ( )∗ −R X Y X Y X Y Y T X3 1 1 2 2 3 3 4

1
4( , ),( , ),( , );( , ) . QED

Proposition 8.3 In the situation of the Proposition 8.2, further suppose that P  is closed

monoidal and that the comonoidal structure on  C is representable by an object K, a n

operation    B C• , and V-natural isomorphisms

    C ( , )A K I≅ and     C C C( , ) ( , ) ( , )A B C A B A C• ≅ ⊗
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where the right-hand sides require the counit and comultiplication for their effects o n

homs.  Then     R
∗ is a  ∗-autonomous monoidal structure on      C Cop ⊗ .

Proof We have the calculations: 

  
R X Y X Y Y T X P Y Y X P Y TY X P TY TY X2 1 1 2 2 3

1
3 2 2 3 1 2 3 1 2 2 1 2 3

∗ −( ) ≅ ⊗ ⊗( , ) ,( , ) ; ( , ) ( , ; ) ( , ; ) ( , ; )

    ≅ ⊗ ⊗ ⊗ ⊗ ⊗C C C( , ) ( , ) ( , )Y Y X Y TY X TY TY X2 3 1 3 1 2 1 2 3

    
≅ [ ]( ) ⊗ [ ]( ) ⊗ ⊗C C Cr lY Y X Y TY X TY TY X3 2 1 3 1 2 1 2 3, , , , ( , )

    
≅ [ ] •[ ]( ) ⊗ ⊗ −C Cr lY Y X TY X Y Y T X3 2 1 1 2 1 2

1
3, , , ( , )

    
≅ ⊗( ) [ ] • [ ] ⊗( )





−C C r l
op Y X TY X Y Y Y T X2 1 1 2 1 2 3

1
3, , , , ( , )

and

  
R Y T X P X I X Y K T I T X K I Y T Xop

0
1

0
1 1 1∗ − − − −≅ ≅ ≅ ⊗ ≅ ⊗( )( )( , ) ( ) ( , ) ( , ) ( , ) ( , ) , ( , )C C C C C ,

so that      C Cop ⊗ is monoidal with unit    ( , )K I and tensor product

    
( , ) ( , ) , , ,X Y X Y Y X TY X Y Y1 1 2 2 2 1 1 2 1 2⊗ = [ ] • [ ] ⊗( )r l . QED

A particular case of Proposition 8.3 is the Chu construction of [Ba3].  Here  V is the

category of sets with cartesian monoidal structure (although any cartesian closed base

would do). Then every V-category  C is comonoidal via the diagonal functor  ∆.  The

representability of this structure as required in Proposition 8.3 amounts to  C having

finite limits;  so  K  is the terminal object and    B C• =    B C× is the product of  B  and  C.

Then    R
∗ is the ∗-autonomous monoidal structure on      C Cop ⊗ arising from any

monoidal closed category  C with finite products and a monoidal endoequivalence  T.

However, the case of finite products for ordinary categories is not the only example

where the representable comonoidal structure can be found.  For any  V,  such structure

exists for example on any  C which is a free V-category on an ordinary category with

finite products. 

9. Star autonomy in monoidal bicategories

In order to exploit duality, we need to generalise the notion of star autonomy to

pseudomonoids in a monoidal bicategory  B.  The work of Sections 5 to 8 is a special case

taking place in the autonomous monoidal bicategory  V-Mod  of V-categories and V-

modules as defined in Section 6.

As mentioned in Section 3, for pseudomonoids  A  and  E  in  B,  where we write  p
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and  j  for the multiplications and units,  a monoidal m o r p h i s m   g A E:  → is a

morphism equipped with coherent 2-cells  

    φ2 : ( )p g g g po o⊗ ⇒ and     φ0 : j g j⇒ o .  

The morphism is called strong mono ida l when    φ2 and    φ0 are invertible.  When  g

has a left adjoint  h ,  there are 2-cells

      φ2 1 1l : ( ) ( )h p g p ho o o⊗ ⇒ ⊗ and         φ2 1 1r : ( ) ( )h p g p ho o o⊗ ⇒ ⊗

obtained from     φ2 as mates under adjunction.  We say  g  is strong left [right] closed

when      φ2
l [respectively,      φ2

r ]  is invertible;  it is strong closed when it is both.

For a pseudomonoid  A  in  B,  the category      B( , )I A is monoidal with tensor

product defined by  

    m n p m n∗ = ⊗( )o .

The internal homs, provided  B has the relevant right liftings, are defined as follows:

    [ , ]n r l is the right lifting of  r  through      p nAo 1 ⊗( ) while      [ , ]m r r is the right lifting of  r

through      p m Ao ⊗( )1 .  

Proposition 9.1 If    g A E:  → is a strong monoidal morphism between

pseudomonoids then      B( , )I g :     B B( , ) ( , )I A I E → is a strong monoidal functor.  If  g

has a left adjoint  h  and is strong closed then the functor    B( , )I g is strong closed.

Proof For the first sentence we have

      B( , )( ) ( ) ( ) ( )I g m n g p m n p g g m n∗ = ⊗ ≅ ⊗ ⊗o o o o

  ≅ ⊗ ≅ ∗p g m g n g m g no o o o o( ) ( ) ( ) ( )

    ≅ ∗B B( , )( ) ( , )( )I g m I g n .

For the second sentence consider the diagram

  I

  X   X X⊗   X   A
⇒ ⇒

  [ , ]g n g ro o l

    1⊗ ( )g no   p   h

  r
  g ro

.

The right-hand triangle is a right lifting since  h  is left adjoint to  g.  The left-hand

triangle is a right lifting by definition of the left internal hom.  So the outside triangle

exhibits    [ , ]g n g ro o l as a right lifting of  r  along the bottom composite. However, if  g  is

strong left closed, the bottom composite is isomorphic to  

  h p g n p h n p n ho o o o o o o( ) ( ) ( ) ( ) ( )1 1 1 1 1⊗ ⊗ ≅ ⊗ ⊗ ≅ ⊗ .

However, the right lifting of  r  through      p no ( )1⊗ is    [ , ]n r l ,  and the right lifting of
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    [ , ]n r l through  h  is  
      g n ro [ , ]l .  So we have  

    g n ro [ , ]l ≅
      [ , ]g n g ro o l proving      B( , )I g

strong left closed.  Right closedness is dual. QED

A f o r m for a pseudomonoid  A  in  B is a morphism    σ : A A I⊗  → together

with an isomorphism

  A
⊗2

  A
⊗2

σ

σ≅

  I

  A
⊗3   p A⊗ 1

  1A p⊗
≅
γ

called the form constraint.

In the bicategories  B that we have in mind there are special morphisms (as

abstracted by Wood [Wo]).  The special morphisms  h  have right adjoints    h
∗ and, i n

some cases, are precisely the morphisms with right adjoints, sometimes called m a p s i n

B.  For example, in  Mat(Set)  the maps are precisely the matrices arising from functions,

and these are the special morphisms we want.  For    Mod( )V ,  the special morphisms are

those modules isomorphic to    h∗ for some algebra morphism  h.  In the bicategory of V-

categories and V-modules the special modules are those arising from V-functors.

Suppose  B has selected special maps and that  B is autonomous.  Each form

  σ : A A I⊗  → corresponds to a morphism      σ
∧

 →: A Ao .  We say that the form  σ is

representable when σ
∧

is isomorphic to a special map.  We say that  σ is non-degenerate

when  σ
∧

is an equivalence.

A pseudomonoid in  B is defined to be ∗-autonomous when it is equipped with a

non-degenerate representable form.  For example, for any object  R  of  B and any

equivalence    υ : R R → oo, the canonical endohom pseudomonoid   R R Re = ⊗o

becomes ∗-autonomous when equipped with the form    σ : R R Ie e⊗  → defined by

    σ υ
∧

= ⊗ = ⊗  → ⊗ =1
R

e eR R R R R Ro
o o oo o: .    

An opmorphism    h E A:  → between ∗-autonomous pseudomonoids is called ∗-

autonomous when there is an isomorphism

  A A⊗   I

σ

σ

τ
  E E⊗

  h h⊗ ⇐
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such that the following equation holds:

  A
⊗2

  A
⊗3

  I
=

≅

τ

τ

  A
⊗2

  A
⊗3

  I≅

  1⊗ p   1⊗ p

σσ

σ

σ

σ

σ
  1⊗ p

  p ⊗ 1  p ⊗ 1

  p ⊗ 1 γ

γ

.

⇓

⇓⇓

⇓

  E
⊗2

  E
⊗3

  E
⊗2

  A
⊗2

  E
⊗3

  E
⊗2

  h h h⊗ ⊗  h h h⊗ ⊗

  h h⊗

  h h⊗

  ψ2 1⊗

  1 2⊗ ψ

We are particularly interested in opmorphisms  h  that are maps.  Then the right adjoint

  h
∗ is a morphism of pseudomonoids.  Under these circumstances we define  h  to be

strong ∗-autonomous when the mate  

      τ σ σl : ( ) ( )o oh h∗ ⊗ ⇒ ⊗1 1

of  τ is invertible.  It follows that      τ σ σr : ( ) ( )o o1 1⊗ ⇒ ⊗∗h h is also invertible. 

Proposition 9.2 Suppose    h E A:  → is a strong ∗-autonomous special o p m o r p h i s m

between ∗-autonomous pseudomonoids i n B. If    h
∗ is strong monoidal then    h

∗ is

strong closed.

Proof We have the calculation

    σ σo o o o o o( ) ( ) ( ) ( ) ( ) ( )h p h h p h⊗ ⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗ ⊗∗ ∗ ∗1 1 1 1 1 1 1 1

  ≅ ⊗ ⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗∗ ∗ ∗ ∗σ σo o o o o( ) ( ) ( ) ( ) ( )p h h p h h1 1 1 1 1 1

    ≅ ⊗ ⊗ ≅ ⊗ ⊗ ≅ ⊗ ⊗ ⊗∗σ σ σo o o o o o( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1h p h p p h

    ≅ ⊗ ⊗ ⊗σ o o( ) ( ) .1 1 1p h

It follows that     σ σ
∧ ∗ ∧

⊗ ≅ ⊗o o o o oh p h p h( ) ( )1 1 .  Left strong closedness follows since

σ is non-degenerate.  Right closedness is dual. QED

Motivated by Proposition 3.3, we define basic data in an autonomous monoidal

bicategory B to consist of an object  R  equipped with a special opmorphism  h :

  R R Ao ⊗  → into a pseudomonoid  A  such that    h
∗ is strong monoidal.  Here      R Ro ⊗

has the canonical endohom pseudomonoid structure.  Suppose further that    R R Re = ⊗o

is ∗-autonomous via a form arising as above from an equivalence    υ : R R → oo. The

basic data is called Hopf when  A  is equipped with a ∗-autonomous structure and  h  is

strong ∗-autonomous. 
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From basic data, by applying the pseudofunctor     B( , )I − : B  → Cat,  we obtain an

adjunction 

    B( , )I h J

    B B B( , ) : ( , ) ( , )I h I A I R R∗  → ⊗o

which transports via the equivalence         B B( , ) ( , )~I R R R Ro ⊗  → to an adjunction

between      B( , )I A and      B( , )R R .  The pseudomonoid structure on  A  induces a monoidal

structure on      B( , )I A and the canonical endohom pseudomonoidal structure on      R Ro ⊗

induces the monoidal structure on     B( , )R R whose tensor product is composition in  B.

Since    h
∗ is strong monoidal, the right adjoint     B B( , ) ( , )I A R R → is strong monoidal.

By Propositions 9.1 and 9.2, this right adjoint is also strong closed in the Hopf case.

Since basic and Hopf basic data are expressible purely in terms of the monoidal

bicategory structure and the special maps of  B,  the next result is clear.

Proposition 9.3 Strong monoidal pseudofunctors that preserve special maps also

preserve basic and Hopf basic data.

Remark 9.4 The day after we submitted this paper to the Fields Workshop organizers,

the preprint [Bö] appeared on math.arXiv. We contacted Dr Gabriella Böhm who pointed

out that, in our original preprint, we had not been specific about the ∗-autonomous

structure on    R
e =   R Ro ⊗ in our definition of Hopf basic data. This was indeed an

omission and we had in mind the symmetric case where we had the opportunity to take

    R Roo = and      σ
∧

⊗  → ⊗: R R R Ro o oo the identity.  

10. Ordinary groupoids revisited

Let us return to the definition of ordinary category as formulated in Propositions 1.1

and 2.1.  Let  G  be a monoidal comonad on the internal endohom pseudomonoid    X X×

in the monoidal bicategory  Mat(Set).  Recall that    G x y u v( , ; , ) is empty unless  x = u  and

y = v,  and we put  

    A( , ) ( , ; , )x y G x y x y=

which defines the homsets of our category  A.  Let  A  denote the set of arrows of the

category  A ;  we have the triangle

  X X×   X X×
  G

  ( , )s t ∗   ( , )s t ∗

δ⇐

  A

37



which is the universal coaction of  G  on a morphism into    X X× ;  it is the Eilenberg-

Moore construction for the comonad  G.  By a dual of Lemma 3.2, there is a

pseudomonoid structure on  A  such that the whole triangle lifts to the Eilenberg-Moore

construction in the bicategory  MonMat(Set).

We already pointed out in the Introduction what the pseudomonoidal structure on

A  is;  that on    X X× is the special case of a chaotic category.  Referring to the definition

of basic data at the end of Section 9, we have:

Proposition 10.1 An equivalent definition of ordinary small categories is that they are

basic data in the autonomous monoidal bicategory    Mat Set co( ) where the special

morphisms are all the maps.

Proof Reversing 2-cells interchanges left and right adjunctions. So for a morphism to

have a right adjoint in   Mat Set co( ) is to be a right adjoint in   Mat Set( );  that is, to be the

reverse of a function.  Basic data in    Mat Set co( ) therefore consists of a set    X , a

pseudomonoid  A  in    Mat Set( ),  and a function    ( , )s t :   A X X → × that is strong

monoidal.  The functor    B( , )I h∗ as at the end of Section 9 transports to the left-adjoint

functor

  Σ( , ) : / /s t Set A Set X X → ×

of the Introduction, which by Section 9 is strong monoidal.  So we have a category  A.

Conversely, if  A is a category, clearly    ( , )s t is strong monoidal.   QED

The discussion of the Introduction already shows that, if  A is a groupoid, then it is

∗-autonomous in  Mat(Set)  with    Sa a= −1.  In particular (the chaotic case), the endohom

  X X× is ∗-autonomous with  S  ( , )x y =   ( , )y x .  For  A a groupoid,    s t X X A, :( ) ×  →∗ is

a strong ∗-autonomous map in    Mat Set co( ) .  So we have Hopf basic data in    Mat Set co( ) .

The converse almost holds.     

Proposition 10.2 Consider a category as basic data in    Mat Set co( ) .  The category is a

groupoid iff the basic data are Hopf.

Proof The characterizing property of  S =   Sl is that 

    b a Sco = iff          c b S ao = −1 .  

For each object  x,  put    ex =   S x1 .  Taking    c x= 1 and    b S a= −1 to ensure    c b S ao = −1 ,

we deduce that      S a a−1 o =   ex for all  a : x  → y.  Taking  a  =    1x we see that    ex =   S x
−11
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so  S  ex =   1x .  Now go back to the characterizing property with  c  =   ex ,  b  arbitrary,  and  a

=     S e bx( )o to ensure      c b S ao = −1 :  so we deduce that      b S e bxo o( ) =  S  ex =   1x .  It follows

that every morphism  b  has a right inverse.   So the category is a groupoid.  QED

Remark 10.3 (This arose in lunchtime conversation with John Baez and Isar Stubbe.)

The operation      Sl of ∗-autonomy is not unique.  For a groupoid  A as we have been

considering,  we can choose any endomorphism    ex of each object  x  and define

      S a a exl = −1 o so that        S a e axr = −o 1.   This defines another ∗-autonomous structure on

our pseudomonoid  A. 

Remark 10.4 The argument of this section can be internalized to any finitely complete

category  E.  In particular, groupoids internal to  E can be identified with Hopf basic data

in the monoidal bicategory      Span coE( ) .  More details will be provided in Example 12.3.    

11. Hopf bialgebroids

A bialgebroid  A  based on a k-algebra  R  is an opmonoidal monad on    R
e i n

    Mod( )V (see Section 3).  We have already seen that  A  becomes a k-algebra and that

  η
∗  →: A Re provides the Eilenberg-Moore object for the monad, thereby lifting to the

bicategory of pseudomonoids in      Mod( )V .

In the terminology of Section 9, a bialgebroid is precisely basic data    η : R Ae  → i n

B =     Mod( )V .   We define a bialgebroid    η : R Ae  → to be Hopf when this basic data i n

    Mod( )V is Hopf;  that is,  A  should be ∗-autonomous and    η
∗  →: A Re should be

strong ∗-autonomous.  It follows from Section 9 that  
    
Mod k( ) ,V η∗( ) is strong monoidal

and strong closed;  this is none other than the functor

    V VA Re
 →

defined by restriction along    η : R Ae  → ;  compare Proposition 7.5 in the case of one-

object V-categories.  

Preservation of internal homs was taken as paramount in the Hopf algebroid

notions of [DS1] and [Sch2].  Example 7.4 explains the connection between our work here

and that of [DS1] while we see from the last paragraph that our Hopf bialgebroids are

more restrictive than the Hopf algebroids of [Sch2].

Remark 11.1 In the correspondence mentioned in Remark 9.4 Dr Böhm advised us
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that her notion of Hopf bialgebroid in [Bö] fits our setting, where  V is the category of

vector spaces, and that she has examples where the ∗-autonomous structure      Sl on    R
e

=     R Ro ⊗ is defined by

    S x y x u yl ⊗( ) = ⊗ ( )

with  u  a non-identity k-algebra automorphism of  R.  This kind of perturbation fits well

with our treatment of the Chu construction in Section 8. 

Example 11.2 Let  V continue to be the category of k-vector spaces and let  A denote

the category of commutative k-algebras.  The category  A is finitely cocomplete;  the

pushout of two morphisms out of an object  A  is given by tensoring over  A  the

codomains of the two morphisms.  Definition B.3.7 of [Ra] labels groupoids internal to

    A op as "Hopf algebroids" (generalizing the idea that a commutative Hopf algebra is

exactly a group in      A op).  In fact, these are examples of Hopf bialgebroids in our sense.  To

see this we make use of the strong monoidal pseudofunctor

  
Span Modop co

A V( )  → ( )
which takes each commutative algebra  A  to itself as an algebra and each cospan  C  from

A  to  B  in  A to  C  with actions of  A  and  B  coming from the morphisms into  C.  By

Remark 10.4, each Ravenel "Hopf algebroid" is Hopf basic data in  
   
Span op co

A( ) .  Then, by

Proposition 9.3 our pseudofunctor applies to give Hopf basic data in      Mod V( ) ; that is, to

give a Hopf bialgebroid. We are grateful to Terry Bisson for pointing out the book [Ra]

which features good examples of groupoids internal to    A op occurring in algebraic

topology.  

12. Quantum categories and quantum groupoids

It remains to state the main definitions of the paper.  We now have the motivation

and concepts readily at hand.

Let  V be a braided monoidal category with coreflexive equalizers (that is, equalizers

of pairs of morphisms with a common left inverse). We begin by recalling the definition

of the right autonomous monoidal bicategory    Comod( )V as appearing in [DMS].  W e

assume the condition: 

each of the functors     X ⊗ −  →:V V preserves coreflexive equalizers.

Briefly,    Comod( )V =      Mod op coop( )V .  To make calculations we will need to make

the definition more explicit. 
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The objects of      Comod( )V are comonoids  C  in  V;  the comultiplication and counit

are denoted by     δ : C C C → ⊗ and    ε : C I → .  The hom-category      Comod( )V (C⁄⁄,⁄⁄D)

is the category of Eilenberg-Moore coalgebras for the comonad    C D⊗ − ⊗ on the

category  V.   This implies that the morphisms    M C D:  → in     Comod( )V are

comodules from  C  to  D;  that is, left C–, right D-comodules.  So  M  is an object of  V

together with a coaction    δ : M C M D → ⊗ ⊗ satisfying the expected equations.  It is

sometimes useful to deal with the left and right actions    δl : M C M → ⊗ and      δr : M

   → ⊗M D which are obtained from  δ using the counit.  The 2-cells  f :  M ⇒ M '

  : C D → in      Comod( )V are morphisms  f : M aAM'  in  V⁄⁄⁄ respecting the coactions.

Composition of comodules  M :   : C D → and    N D E:  → is given by the
equalizer 

N ⁄⁄°⁄⁄M  =  
  
M N

D
⊗  → M ⁄⁄⊗ ⁄⁄N  

    

δ

δ

r

l

⊗

⊗

 →
 →

1

1

M ⁄⁄⊗ ⁄⁄D⁄⁄⊗ ⁄⁄N .

The identity comodule    C C → is  C  with the obvious coaction.  We point out that the

pair of morphisms being equalized here have a common left inverse    1 1⊗ ⊗ε ;  so the

equalizer is coreflexive. 

The remaining details describing      Comod( )V as a bicategory should now be clear.

Remark 12.1 (a)  When  V =  Set,  it is readily checked that     Comod( )V is biequivalent

to  Mat(Set).  

(b)  The main case that should be kept in mind is when  V is the category of vector

spaces over a field  k;  then the objects of    Comod( )V are precisely k-coalgebras. 

(c)  If  V itself is a ∗-autonomous monoidal category then the distinction between

    Mod( )V and      Comod( )V evaporates.

(d)  By the Chu construction, any complete cocomplete closed monoidal  V can be

embedded into a complete cocomplete ∗-autonomous monoidal  E =    V Vop ⊗ taking  V

to     1, V( ) where  1  is the terminal object of  V.  The embedding is strong monoidal and

preserves colimits and connected limits.  So we can take full advantage of remark (c) by

working in      E − Mod and deducing results for both     Mod( )V and      Comod( )V .       

Returning to general  V,  we note that each comonoid morphism  f : C aAD

determines a comodule  f∗   : C D → defined to be  C  together with the coaction
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  C C C C C Dfδ δ → ⊗  → ⊗ ⊗⊗ ,

and a comodule    f
∗ :   : D C → defined to be  C  together with the coaction

  C C C D C Cfδ δ → ⊗  → ⊗ ⊗⊗ .

Notice that we have  γ f :  
    f f∗

∗o ⇒   1D which is defined to be  f   : C D → since   
    f f∗

∗o

=⁄
  
f f

C

∗
∗⊗ =  C   with coaction    C C C C C C D C Df fδ δ → ⊗  → ⊗ ⊗  → ⊗ ⊗⊗ ⊗ ⊗1 1 .  Also,

  
f f

D
∗

∗⊗ =⁄ ⁄
    f f∗

∗o is the equalizer

  
f f

D
∗

∗⊗  →   C C⊗
    

(C f C) ( C)

(C f C) ( )

⊗ ⊗ ⊗

⊗ ⊗ ⊗

 →
 →

o

o

δ

δC
  C D C⊗ ⊗ ;

and, since

C   →   C C⊗
  

δ

δ

⊗

⊗

 →
 →

C

C
  C C C⊗ ⊗

is an (absolute) equalizer, we have a unique morphism  C  →
  
f f

D
∗

∗⊗ commuting with

the morphisms into  C⁄⁄⊗ ⁄⁄C;  this gives us   ωf :   1C ⇒⁄   f f∗
∗o .  Indeed,   γ f ,  ωf are the

counit and unit for an adjunction     f∗
J⁄   f

∗ in the bicategory     Comod( )V . 

The comodules    f
∗ provide the special maps for the bicategory    Co comod( )V . 

Suppose  C, D  are comonoids.  Then  C⁄⁄⊗ ⁄⁄D  becomes a comonoid with coaction

  C D C C D D C D C D
C c DC D⊗  → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗⊗ ⊗ ⊗δ δ ,

where  c  is the braiding and, as justified by coherence theorems, we ignore associativity

in  V.   For comodules  M : C  → C'  and  N : D  → D',  we obtain a comodule    M N⊗ :

  C D⊗  →   ′ ⊗ ′C D where the coaction is given in the obvious way using the braiding.

This extends to a pseudofunctor  ⊗ :     Comod( )V ×     Comod( )V  →     Comod( )V .  The

remaining structure required to obtain      Comod( )V as a monoidal bicategory should be

obvious.

Write    C
o for  C  with the comultiplication 

  C C C C C
c C Cδ → ⊗  → ⊗, .

There is a pseudonatural equivalence between the category of comodules  M :   C D⊗

 → E  and the category of comodules    M
∧

: D  →     C Eo⊗ ,  where  M =   M
∧

as objects.  It

follows that      C
o is a right bidual for  C.  This defines the structure of right autonomous
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monoidal bicategory on      Comod( )V . 

Each      C Co⊗ has the canonical structure of a pseudomonoid in    Comod( )V because

it is an endohom in the autonomous monoidal bicategory.  

A quantum category in  V is basic data  C,  h :     C C Ao ⊗  → in     Co comod( )V .

A quantum groupoid in  V is Hopf basic data in      Co comod( )V .  

Our referee has sensibly recommended that we unpackage these definitions for the

utility of the reader and for comparison with the definition of "bicoalgebroid" in [BM].  

A quantum graph A in  V consists of 

• a comonoid  C,  called the object object of  A,

• a comonoid  A,  called the arrow object of  A,  and

• comonoid morphisms     s A C:  → o and    t A C:  → ,  called source

and target morph i sms of  A,

such that the following diagram commutes.

A   A A⊗

  C C⊗

  A A⊗   C C⊗

δ

δ
  t s⊗

  s t⊗   c C C,

It follows that      r A A A C Cs t: δ → ⊗  → ⊗⊗ o is a comonoid morphism.  Therefore

we have a comodule      I A C C
rε ∗ ∗ →  → ⊗o which corresponds, under  C J    C

o ,  to a

comodule    C C → ;  explicitly,  it is    A C C:  → with coactions

  δ
δ

l : ,A A A A C C As c C A → ⊗  → ⊗  → ⊗⊗
−

1
1

  δ
δ

r : A A A A Ct → ⊗  → ⊗⊗1 .

Then we can define the composable pairs object
  
P A A

C
= ⊗ as the composite comodule

  C C CA A →  → ;  explicitly, it is the equalizer

    
P A A A C Aι

δ

δ
 → ⊗

 →
 →

⊗ ⊗
⊗

⊗

r

l

1

1

which becomes a comodule    P C C:  → via right and left coactions induced by

  A A A A C⊗  → ⊗ ⊗⊗1 δr and    A A C A A⊗  → ⊗ ⊗⊗δl 1 .

Although in general  P  is not a comonoid with  ι a comonoid morphism, there is a
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unique morphism      δl : P A A P → ⊗ ⊗ such that the following diagram commutes.

P   A A A A⊗ ⊗ ⊗

  A A A⊗ ⊗  A A P⊗ ⊗

  A A⊗ι δ δ⊗

  1 1⊗ ⊗cA A,  δl

  1 1⊗ ⊗ ι
This is because the diagram

   
P A A A A A A A A A A A A A C A

cA Aι δ δ
δ

δ
 → ⊗  → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗

 →
 →

⊗ ⊗ ⊗ ⊗⊗ ⊗ ⊗
⊗ ⊗ ⊗

⊗ ⊗ ⊗

1 1
1 1 1

1 1 1

,
r

l

commutes, and    1 1⊗ ⊗ ι is the equalizer of      1 1 1⊗ ⊗ ⊗δr and     1 1 1⊗ ⊗ ⊗ δl .  A small

calculation (four steps using string diagrams) proves that    δl : P A A P → ⊗ ⊗ is a left

coaction of the comonoid    A A⊗ on  P.

A composition morphism for a quantum graph  A is a comodule morphism

  µ : :P A C C →  →

that satisfies the axioms CM0, CM1 and CM2 below.

CM0.  
  
µ : A A A

C
⊗  → is associative in the monoidal category    Co C Cmod( ) ,V ( ).

CM1.  The following diagram commutes:

  
P A A P C P C A

t

s

δ
ε

ε

µl → ⊗ ⊗
 →
 →

⊗  → ⊗
⊗ ⊗

⊗ ⊗

⊗
1

1

1 .

Before stating CM2 we need to notice, using CM1, that there exists a unique morphism

    δr : P P A → ⊗ such that the following diagram commutes.

P

  A A A⊗ ⊗

  A A P⊗ ⊗
δl

δr

  P A⊗

  1 1⊗ ⊗ µ

  ι ⊗ 1
This is because the diagram

    
P A A P A A A A C A Aδ µ

δ

δ

l
r

l

 → ⊗ ⊗  → ⊗ ⊗
 →
 →

⊗ ⊗ ⊗⊗ ⊗
⊗ ⊗

⊗ ⊗

1 1
1 1

1 1

commutes, and    ι ⊗ 1 is the equalizer of      δr ⊗ ⊗1 1 and      1 1⊗ ⊗δl .  Now we can state:

CM2.  The following diagram commutes.
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P

  δr

  P A⊗

A
µ

  µ ⊗ 1   A A⊗

δ

It can now be shown that    P A A A: ⊗  → is a comodule with coactions    δl and   δr as

above.

An identities m o r p h i s m for  A is a comodule morphism    η : :C A C C →  →

satisfying the axioms

IM0.  η is a unit for  µ in      Co C Cmod( ) ,V ( ).

IM1.  The following diagram commutes.

C A
η

I
ε ε

IM2.  The following diagram commutes.

  

C A A A
C A

C A
A A

t

s

A Aη δ

η

η
 →  → ⊗

 → ⊗  →
 →
 → ⊗  →

⊗

⊗ ⊗

⊗ ⊗

⊗

1 1

1

1 1

It follows that  A  becomes a pseudomonoid in     Comod( )V when equipped with the

multiplication  P,  the unit  J = η∗ ,  and the canonical associativity and unit constraints.

Furthermore,      r A C C∗  → ⊗: o becomes strong monoidal.

Notice that we obtain a morphism    ς : P C C C → ⊗ ⊗ by taking either of the

equal routes in the diagram

    
P A A A C A C C Cs tι

δ

δ
 → ⊗

 →
 →

⊗ ⊗  → ⊗ ⊗
⊗

⊗

⊗ ⊗
r

l

1

1

1 .

A quantum category is the same as a quantum graph equipped with a composition

morphism and an identities morphism. The basic data in    Co comod( )V is the comodule

  r A C C∗  → ⊗: o .  

When  V is the monoidal category of vector spaces over a field  k,  our quantum

graph corresponds to BC1 of [BM] while our axioms CM0–CM2 amount to BC2 of [BM]

and our axioms IM0–IM2 amount to BC3 of [BM].

The chaotic quantum category A =     Cch o n C  is defined by  A =   C Co⊗ ,  
   
s = 1

C o ⊗ ε
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and    t = 1ε ⊗ C .  Thus  P =   C C C⊗ ⊗ with    ι δ= ⊗ ⊗1 1C C ,     δ δr = ⊗ ⊗1 1C C and    δl =

  δ ⊗ ⊗1 1C C .  Finally,    µ ε= ⊗ ⊗1 1C C ,  η δ= and    ς = ⊗ ⊗1C C C .        

A quantum groupoid is a quantum category  A equipped with comonoid

equivalences

    υ : C C → oo and        ν : A A → o

such that    s tν ≅ and    t sν υ≅ ,  and for which there is a left   A A A⊗ ⊗ -comodule

isomorphism      γ : P Pl r≅ ,  where      Pl is  P  with the left coaction

  P A A P A A A P A A A A P
c P Aδ ν → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗⊗ ⊗ ⊗ ⊗ ⊗1 1 1 1 1 ,

and      Pr is  P  with the left coaction

  P A A P A A A P A A A A P
c A A P Aδ ν → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗  → ⊗ ⊗ ⊗⊗ ⊗ ⊗ ′ ⊗ ⊗1 1 1 , ,

in which  ′ν is an inverse equivalence for  ν and  δ is the coaction associated with the

comodule    P A A A: ⊗  → ,  such that the following square commutes.

P   C C C⊗ ⊗
ς

P   C C C⊗ ⊗
ς

γ   c C C C, ⊗

Example 12.2 Let  V be the symmetric monoidal category of vector spaces over a field

k.  For any set  X,  let  FX  be the vector space with  X  as basis.  This  F  is the object

function for a strong monoidal functor      F Set:  → V that preserves coreflexive

equalizers (exercise!).  It therefore induces a strong monoidal pseudofunctor

    F Co Set Coco co: mod mod( )  → ( )V .

Special maps are preserved by    F .  It follows from Proposition 9.3 that    F takes each

category to a quantum category and each groupoid to a quantum groupoid.  

Example 12.3 Following up on Remark 10.4 where  E is a category with finite limits,

we shall lead the reader into showing how quantum categories and quantum groupoids

in  V = E (where the tensor product is cartesian product) are precisely categories and

groupoids in  E.  Every object of  E has a unique comonoid structure defined by the

diagonal morphism, every morphism of  E is a comonoid morphism, and the only 2-

cells between morphisms are equalities.  Also each object  C  has     C Co = .  So a quantum

graph  A in  E is just a pair of morphisms  
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  s t A C, :  → ;

that is,  A is a (directed) graph in  E.  The equalizer  
  
P A A

C
= ⊗ is now easily seen to be

the pullback of  s  and  t ;  that is, P  is the usual object of composable pairs in the graph.

A composition morphism  µ and an identities morphism  η are precisely what is

required to make  A a category in  E.  If  A is a quantum groupoid then, because of the

absence of 2-cells,    υ : C C → and    ν : A A → are isomorphisms while    s tν = and

  t sν υ= .  Arguing as for Proposition 10.2, we see that  υ is actually the identity and  ν

makes  A a groupoid in  E.   
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