
Lawvere Theories

Mitchell Buckley
40721116

November 11, 2008

Abstract

In his 1963 PhD dissertation, F. William Lawvere presented a categorical
formulation of universal algebra. To explain this we begin by providing the
standard definitions and theorems for adjoints and Kan extension. We examine
the standard approach to describing algebraic structure and its corresponding
formulation in category theory. An example of this correspondence is demon-
strated by considering the theory for monoids and we explore the special case
of the “empty” theory. Using properties of the left Kan extension we show that
algebraic functors have left adjoints and list some familar examples. Finally,
proofs are given that the category of models for a Lawvere theory is both com-
plete and cocomplete and that the forgetful functor has a left adjoint which is
the free algebra construction.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Adjunction . 4
2.2 Kan Extension . 7

3 Algebraic Theories 9
3.1 Lawvere theories . 9
3.2 Models . 11
3.3 An example: monoids . 12
3.4 The initial theory . 16
3.5 Varieties . 18

4 Existence and properties of adjoints 22
4.1 LanJ F preserves finite products 22
4.2 Algebraic functors have left adjoints 23
4.3 An example: groups to monoids 24

5 Applications to universal algebra 26
5.1 Families . 26
5.2 The category of T-algebras is complete 28
5.3 The free T-algebra construction 30

1

Chapter 1

Introduction

When describing algebraic structure, traditional mathematical (eg. Bourbaki)
practice is to define a collection of operations on a set and then specify a list of
axioms that they must obey. This has proved to be a very successful approach,
a great deal of rigor is achieved and many interesting results have come about
by defining new and exotic structures in this fashion. As mathematics has
developed, there have been many efforts to make these definitions more abstract
and to specify how to describe a theory for each algebraic structure. This is the
domain of universal algebra.

After defining the concept of group, mathematicians proceeded to develop
“group theory”. A certain amount of this is routine and applies analogously to
other structures such as commutative rings – matters such as products, images,
quotients, first isomorphism theorem and so on. To deal with this, we seek a
“theory of groups” which crystallizes in a higher structure the essence of these
commonalities. This theory will then have models which deliver back the groups
as sets with structure.

As category theory has grown in popularity in the past century, one of the
early persuasive examples of its power is found in dealing with this problem of
algebraic theory. In his 1963 dissertation, F. William Lawvere provided a very
accurate description of how algebraic theories should be represented in terms
of categories and outlined how complete this representation is. This work by
Lawvere was so accurate that, even unpublished, the ideas were very quickly
understood and extended by authors such as Benabou, Mac Lane and Pareigis
and the results made appearances in text books only a few years later. It has
also been applied to computer science in recent years.

We will provide an outline of some of the concepts behind Lawvere’s disser-
tation, though it is presented in a form much different from the original. First
some standard theory on adjunction and Kan extension needs developing.

A Lawvere theory exists for every variety of algebras and captures the theory
as a category T with finite coproducts. We may consider models of a Lawvere
theory in any category with finite products, though the case of most interest is
that of models in Set, called T-algebras. The Lawvere theory for monoids is
constructed and indeed the models are proved to be monoids. The special case
of the “empty” theory is outlined, giving an equivalence between the models of
the theory in a category X and the category itself.

By proving a result about left Kan extensions, one shows that all algebraic

2

functors have a left adjoint and a few familar constructions are provided as
examples. The category of T-algebras is complete and cocomplete implying
that there are always universal constructions such as product, coproduct and
equalizer of T-algebras and their morphisms. The universal algebra matters
mentioned earlier all depend on the availability of these constructions. The
forgetful functor that sends each T-algebra to its underlying set has a left adjoint
which is the free T-algebra construction. This is pretty amazing because even
the example of free group on a set requires a delicate construction and a lot of
work to prove its universal property.

These results demonstrate the power of Lawvere theories and the extent to
which category theory is capable of describing existence results in algebra with
extreme depth and accuracy.

3

Chapter 2

Preliminaries

We begin by presenting some definitions and theorems that are required for our
work regarding Lawvere theories. The standard definitions of category, functor
and natural transformation are omitted along with concepts such as duality,
universals and limits. The standard theory treated here is that of adjunction
and Kan extension. The majority of definitions in this chapter are contained
in standard texts on category theory such as [1] or [2]. Most proofs have been
omitted, except where they do not appear in standard texts.

2.1 Adjunction

Definition Let A and B be categories. An adjunction from A to B is a triple
〈S, T, φ〉 : B→A, where S and T are functors

A
T
// B

Soo

while φ is a function which assigns to each pair of objects b ∈ B, a ∈ A, a
bijection of sets

φ = φb,a : A(Sb, a) ∼= B(b, Ta)

which is natural in b and a.

Here the left hand side A(Sb, a) is the functor

Bop ×A
Sop×IA // Aop ×A hom // Set

which sends each pair of objects 〈b, a〉 to the homsetA(Sb, a), and the right hand
side is a similar such functor Bop ×A→Set. The naturality of the bijection φ
means just that it is natural in each place.

When we have an adjunction 〈S, T, φ〉 : B→A, we then say S is a left adjoint
for T and T is a right adjoint for S. For notation, we use

S a T or A ⊥
T

66 B
Suu

4

to mean “S is a left adjoint for T” and “T is a right adjoint for S”.
In order to present enough theory to support later work, but not wanting to

dwell too long on the more standard theory, four theorems will now be presented
without proof. They may be found with proof in [1].

Theorem 2.1.1 An adjunction 〈S, T, φ〉 : B→A determines the following.

i) A natural transformation η : IB→TS such that for each object b the arrow
ηb is universal to T from b, while the right adjunct 1 of each f : Sb→ a is

φf = Tf ◦ ηb : b→Ta. (2.1)

ii) A natural transformation ε : ST → IA such that for each object b the arrow
εa is universal from a to S, while the left adjunct of each g : b→Ta is

φ−1g = εa ◦ Sg : Sb→ a. (2.2)

Moreover, each of the following composites are identities (of T and S respec-
tively),

T
ηT // TST

Tε // T , S
Sη // STS

εS // S , (2.3)

We call η the unit and ε the counit of the adjunction. In fact, the given
adjunction is already determined by various portions of all these data, in the
following sense.

Theorem 2.1.2 Suppose we have functors S : B→A and T : A→B, and
natural transformations η : IB→TS and ε : ST → IA such that both composites
in (2.3) are identity transformations. Then there is an adjunction 〈S, T, φ〉 :
B→A with φ defined by (2.1) and φ−1 by (2.2).

In light of this result, we often denote the adjunction 〈S, T, φ〉 : B→A by
〈S, T ; η, ε〉 : B→A.

Definition An adjoint equivalence of categories is an adjunction 〈S, T ; η, ε〉 :
B→A in which both the unit and counit are natural isomorphisms: IB ∼= TS,
ST ∼= IA.

As equivalence and adjunction play a major role in later results, the following
theorem is of particular importance.

Theorem 2.1.3 The following properties of a functor S : B→A are equivalent:

i) S is part of an equivalence of categories,

ii) S is part of an adjoint equivalence 〈S, T ; η, ε〉 : B→A,

iii) S is essentially surjective, full and faithful.

Theorem 2.1.4 Suppose we have two adjunctions

〈S , T ; η , ε〉 : B→A and 〈Ŝ , T̂ ; η̂ , ε̂〉 : C→B,

they compose to give an adjunction specified by

〈ŜS , T T̂ ;T η̂S ◦ η , ε̂ ◦ ŜεT̂ 〉 : C→A.

1If f : Sb→ a then we call φf : b→Ta the right adjunct of f .

5

Consider now an adjunction 〈S, T, φ〉 : B→A and the associated natural
isomorphism φa,b : A(Sb, a) ∼= B(b, Ta). The functor S is called a “left” adjoint
because it appears on the left in the hom-functor A(S−,−). The right adjoint
is named in a similar fashion. However, if we introduce a third category X and
a pair of functors F : A→X and G : B→X , then we can obtain a bijection
with S on the right (the “wrong” side). This fact is properly expressed and
proved in the following theorem.

Theorem 2.1.5 (Adjoints on the wrong side) Suppose that we have an
adjunction 〈S, T ; η, ε〉 and two functors F and G,

A

F @
@@

@@
@@

T

33⊥ B
S

ss

G��~~
~~

~~
~

X

then there is a bijection

φ : Nata(GTa, Fa)→Natb(Gb, FSb).

Proof Let φ : Natb(Gb, FSb)→Nata(GTa, Fa) be defined by sending α :
G→FS to the composite

GT
αT // FST

Fε // F

so that φ(α) = Fε ◦ αT .
Let θ : Nata(GTa, Fa)→Natb(Gb, FSb) be defined by sending β : GT →S

to the composite

G
Gη // GTS

βS // FS

so that θ(β) = βS ◦Gη.
It is easy to show that θ is inverse to φ. We can already see that θ(φ(α)) =

(Fε ◦ αT)S ◦Gη = FεS ◦ αTS ◦Gη and if we consider the commuting diagram
below,

G
α //

Gη

��

FS
IF S

$$H
HH

HH
HH

HH

FSη

��
GTS

αTS
// FSTS

FεS
// FS

we can see also that FεS ◦αTS ◦Gη = IFS ◦α = α and hence θ(φ(α)) = α. The
square on the left commutes because of the naturality of α, and the commuting
triangle on the right is obtained from one of the unit-counit identities. We can
show in a similar fashion that φ(θ(β)) = β and so φ is a bijection as required.

�

This result has been proved with much greater generality by Kelly in [5].

6

2.2 Kan Extension

Given a functor J : A→B and a category X , consider the functor category [B,X]
with objects the functors G : B→X and arrows the natural transformations
σ : G→G′. We define the functor resJ : [B,X]→[A,X] to be “pre-compose
with J”, more specifically, resJ is defined by the assignments

〈σ : G→G′〉 7−→ 〈σJ : GJ →G′J〉 .

The problem of Kan extension is to find left and right adjoints to resJ . Here we
will consider the problem only for left adjoints.

Definition Given functors J : A→B and F : A→X , a left Kan extension of F
along J is a pair L, η : F →LJ consisting of a functor L ∈ [B,X] and a natural
transformation η which is universal as an arrow from F to resJ : [B,X]→[A,X].
The diagram is shown below.

A

F
��=

==
==

==
=

J // B

L
����

��
��

��
η→

X

As always, this universality determines the functor L uniquely up to isomor-
phism. In detail, this universality means that for each pair S and α : F →SJ
there is a unique natural transformation σ : L→S such that α = σJ ◦ η.

The assignment σ 7→ σJ ◦ η is a bijection

Nat(L, S) ∼= Nat(F, resJ S)

natural in S; again, this natural bijection determines L from J and F . It is called
a “left” Kan extension because L appears on the left in the bijection. It follows
that if every functor F ∈ [A,X] has a left Kan extension 〈L , ηF : F →LJ〉, then
the assignment F 7→ L is the object function of a left adjoint to resJ and η is
the counit of this adjunction. When this is the case we denote L by LanJ F and
have LanJ a resJ .

Theorem 2.2.1 Given J : A→B, let F : A→X be a functor such that the
composite (J ↓ b)→A→X has for each b ∈ B a colimit

Lb = Colim((J ↓ b)
Q→A F→X) = Colimf Fa, f ∈ (J ↓ b)

in X , with limiting cocone λ.
Each g : b→ b′ induces a unique arrow

Lg : Colim FQ→Colim FQ′

commuting with the limiting cocones. These formulas define a functor L :
B→X , and for each a ∈ A, the components λIJa

= ηa of the limiting cocones
define a natural transformation η : F →LJ , and L, η is a left Kan extension of
F along J .

7

Corollary 2.2.2 If A is small, B is locally small and X is cocomplete, any
functor F : A→X has a left Kan extension along any J : A→B, and resJ has
a left adjoint.

Corollary 2.2.3 The pair L, η : F →LJ is a pointwise Kan extension of F
along J if and only if, for all x ∈ X and b ∈ B,

X (Lb, x) // Nata(B(Ja, b),X (Fa, x)),

sending g : Lb→x to the transformation with the component

B(Ja, b) L // X (LJa, Lb)
X (ηa,g) // X (Fa, x)

at a ∈ A, is a bijection.

8

Chapter 3

Algebraic Theories

F. William Lawvere’s 1963 dissertation titled Functorial Semantics of Algebraic
Theories (reprinted as [4]) introduced some very significant ideas that demon-
strated how theories for general algebra could be condensed into certain kinds
of categories. These categories contain within them all the information required
to describe a given algebraic structure independently of the context in which
they are usually studied. Lawvere puts it himself:

Algebras (and other structures, models, etc.) are actually func-
tors to a background category from a category which abstractly con-
centrates the essence of a certain general concept of algebra, and
indeed homomorphisms are nothing but natural transformations be-
tween such functors. Categories of algebras are very special, and
explicit axiomatic characterizations of them can be found, thus pro-
viding a general guide to the special features of construction in al-
gebra.

In this chapter we define what we mean by Lawvere theory and model of a
Lawvere theory and explain the above quotation.

3.1 Lawvere theories

When one considers how many standard algebraic structures are described, one
sees that many are defined by a collection of operations on a set together with
some axioms that the operations must obey. A standard example is that of group
structure. We describe a group as a set X together with three operations:

µ : X2 // X1 µ(x, y) = xy

σ : X1 // X1 σ(x) = x−1

η : X0 // X1 η() = 1

a binary operation called “multiplication”, a unary operation called “inverse”
and a nullary operation called “identity”. The axioms that they must obey are

x(yz) = (xy)z , x1 = x = 1x and xx−1 = 1 = x−1x .

9

There are many other examples that are described in a similar manner, such
as rings, R-modules and R-algebras (R is a commutative ring). These consid-
erations led to a subject called universal algebra and the concept, within that
subject, of variety.

Consider a set Ω, whose elements are thought of as abstract operations, which
is graded by a function ari : Ω→N, called arity. Let F (Ω) denote the category
whose objects are sets X equipped with a function

aω : Xn→X

for each ω ∈ Ω with ari(ω) = n; we call aω an operation of type ω. The
morphisms of F (Ω) are functions which preserve the operations of all the types.

A variety is any category A which is a full subcategory of some F (Ω) closed
under products, subobjects and homomorphic images. By the Garrett Birkhoff
theorem, the objects of A are obtained from those of F (Ω) by imposing equa-
tional axioms.

A derived operation in this setting is a function a : Xn→Xm all of whose
projections

Xn a // Xm
πi // X,

i = 1, . . . ,m, is of the form aω for some ω ∈ Ω.
Though varieties cover many common algebraic structures, there are some

that cannot be described in this fashion. Examples include fields, partially
ordered sets and categories.

Categories are well suited to describing varieties. Each (derived) operation
ρ : Xn→Xm may be considered as a map ρ̂ : cn→ cm in a category C with
finite products and each equational axiom may be regarded as a commuting
diagram in C. It is with these considerations in mind that we give the following
definition.

Definition Let C be a category with finite coproducts, we call C a Lawvere
theory when every object c ∈ C is a finite copower of one object c0 ∈ C. We call
c0 the generating object and say that C is one-sorted 1.

The choice to use coproduct here instead of product (by duality) does not
have any great significance and actually differs from the usage of other authors.
We define it this way only because it makes our examples easier to describe.
For example, the skeletal category S of finite sets is a Lawvere theory with
generating object c0 = 〈1〉 (since 〈n〉 = 〈1〉 .n); this is the subject of section 3.4.

Now with this definition in mind, consider a Lawvere theory T with gener-
ating object 1 (generally not terminal) and three maps

1
µ // 1 + 1 , 1

σ // 1 , and 1
η // 0

such that the following diagrams commute.

1 + 1 + 1 1 + 1
1+µoo

1 + 1

µ+1

OO

1µ
oo

µ

OO 1 1 + 1
1+ηoo η+1 // 1

1
I

ccGGGGGGGGGG I

;;wwwwwwwwww

µ

OO 1 + 1
1+σ

vvmmmmmm

1 0
!oo 1

ηoo
µhhQQQQQQ

µvvmmmmmm

1 + 1
σ+1

hhQQQQQQ

1In general, if C had n generating objects then we would say that it is n-sorted.

10

It would seem here that the object 1 behaves as a group in Top and that maybe
this category contains all the structure needed to define groups in all kinds
of contexts. However, how is this category linked to the category of groups
Grp? How does one describe group homomorphisms using this category? Is
this category exactly the one we are looking for? This leads us neatly to the
next section.

3.2 Models

While we are able to abstractly present the operations and axioms required to
specify a group, we have not yet specified how to link this to concrete examples.
We use the word model to describe any mathematical object that may reason-
ably be said to satisfy the requirements of the theory, a more exact definition
is provided shortly. Intuitively, if we understand what structure the theory is
specifying, a model is just a set (or a function, or a space etc.) equipped with
the specified structure.

Definition Let X be a category with finite products and let T be a Lawvere
theory. A finite product preserving functor F : Top→X is called a model of T
in X . The full subcategory of [Top,X] containing these is called the category of
models of T in X and is denoted by Prod(Top,X).

When X = Set we will call Prod(Top,Set) the category of T-algebras, or
T-Alg.

The consequences of being a functor are very helpful in this context, espe-
cially where they preserve products. For each commuting diagram in T, there
is a corresponding commuting diagram in X and if F1 = x, then F2 = x2,
F3 = x3 and so on. As an example, if there were a map σ : 1→ 2 in T satisfying

3 2
1+σoo

2

σ+1

OO

1σ
oo

σ

OO

and F1 = x then x satisfies

x3

Fσ×1

��

1×Fσ // x2

Fσ

��
x2

Fσ
// x

in X .
It should be noted that x = F1 alone has no structure, it is just an object

in X (usually a set). In an opposing sense, the Lawvere theory T has clear
structure, but it is too far removed from the category of sets to be of use. It
is precisely the product preserving structure that allow us the connect the two
together.

This approach also allows us to describe the (homo-)morphisms of the alge-
bra. Suppose there are two functors F and G in Prod(Top,X) and a natural

11

transformation α : F →G. Then by considering the following diagrams

n

1

ιi

OO F1n

πi

��

αn // G1n

πi

��
F1 α1

// G1

one can see that αn is completely determined by α1, in fact αn = αn
1 . When

you combine this with the maps specified in T, one sees that α1 preserves all the
operations, just as a morphism of algebras should. For example, for a binary
operation σ we have

F2

Fσ

��

α1×α1 // G2

Fσ

��
F1 α1

// G1.

We will see all of these properties in the following section.

3.3 An example: monoids

We begin by reminding the reader of the structure of a monoid.

Definition A monoid is a triple 〈X, ∗, 1〉 where X is a set, ∗ is an associative
binary operation and 1 is an element of X that acts as an identity under the
binary operation. So for all x, y, z ∈ X we have the equational axioms

x ∗ (y ∗ z) = (x ∗ y) ∗ z and x ∗ 1 = x = 1 ∗ x .

Some familiar monoids are 〈N,+, 0〉 and 〈Z,×, 1〉. A monoid morphism from
〈X, ∗, 1〉 to 〈Y, ◦, 0〉 is a function f : X →Y which preserves the binary operation
and sends the identity in X to that in Y . That is,

f(a ∗ b) = f(a) ◦ f(b) and f(1) = 0 .

Monoid morphisms compose as functions and so we have a category Mon whose
objects are monoids and whose arrows are monoid morphisms.

We can construct a monoid from any set X. Let X∗ be the set of “words”
in elements of X, that is, the set of tuples x = (x1, x2, . . . , xn) of elements in
X. Let it have a binary operation ⊕ which is concatenation of words; that is,

(x1, . . . , xn)⊕ (y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym) .

Concatenation is an associative operation and the empty word o = () is an
identity. Hence 〈X∗,⊕, o〉 is a monoid, we call it the free monoid on X and
denote it by X∗.

The formulation given here is the traditional approach; where monoids are
regarded as sets with the given structure. However, monoids may be generalised
to mathematical objects other than sets in the following manner.

12

Definition Let C be a category with finite products and terminal object t.
Then a monoid in C is a triple 〈c, µ : c× c→ c, η : t→ c〉 such that the following
diagrams commute.

c× c× c

Ic×µ

��

µ×Ic // c× c

µ

��
c× c

µ
// c

t× c

##G
GGGGGGGGGG

η×Ic // c× c

µ

��

c× t
Ic×ηoo

{{wwwwwwwwwww

c

A morphism f : 〈c, µ, η〉→ 〈c′, µ′, η′〉 of monoids is an arrow f : c→ c′ such that
both diagrams below

c× c

f×f

��

µ // c

f

��
c× c

µ′
// c

t
η //

η′

��>
>>

>>
>>

>>
c

f

��
c

commute. Together with these morphisms, the monoids in C constitute a cate-
gory Mon(C). 2

We may intuitively understand the maps µ and η in C as a binary oper-
ation and a constant, then the first set of commuting diagrams describes the
associativity of the binary operation and the identity nature of the constant.
The second set of commuting diagrams then describes how monoid morphisms
preserve structure. Hence, if C = Set then this definition reduces to that given
initially and Mon(Set) = Mon.

We claim that there is a Lawvere theory, call it M, such that Prod(Mop,X) '
Mon(X). This theory concentrates all the structure of a monoid and any models
of this theory will have monoid structure.

Let M have as objects the finite sets 〈n〉 (including the empty set), that
is, M has the same objects as S. We will abuse standard notation somewhat
and refer to the objects in M by their cardinality, that is, m is the set with
m elements and 0 = ∅. Where there might be any confusion, we will return
to the original notation, 〈n〉 = {1, 2, . . . , n}. The arrows in M are defined by
M(n, m) = Mon(n∗,m∗), that is, the arrows from n to m are all the monoid
morphisms from n∗ to m∗. This category will be called the Lawvere theory for
monoids, we will see shortly why.

It should be noted here that because monoid morphisms preserve the mul-
tiplication in the monoid, each morphism f : n∗→m∗ on a free monoid is
completely determined by its values on the one-element words. It must also
map the empty word to the identity. Hence there is a bijection

Mon(n∗,m∗) ∼= Set(〈n〉 ,m∗)

natural in m∗.

Proposition 3.3.1 M is a Lawvere theory.
2This definition is less general than the standard definition for monoid in a monoidal

category but it fits our needs here.

13

Proof For any n and m in M we have the following sequence of isomorphisms,

M(m + n, p) = Mon((m + n)∗, p∗)
∼= Set(〈m + n〉 , p∗)
∼= Set(〈m〉+ 〈n〉 , p∗)
∼= Set(〈n〉 , p∗)× Set(〈m〉 , p∗)
∼= Mon(m∗, p∗)×Mon(n∗, p∗)
∼= M(m, p)×M(n, p)

natural in p. Then by noting that

M(0, p) = Mon(0∗, p∗) ∼= Set(∅, p∗) ∼= 〈1〉

we see that M has finite coproducts. Each object n is therefore a coproduct of
1 with itself n times.

�

Shortly, we will show that the category of models of M in a category X is
equivalent to the category of monoids in X . First however, it is useful to note
that the generating object of M, call it 1, is a monoid in Mop. Consider the
maps

µ : 1 // 2
o � // o

(1) � // (1, 2)

η : 1 // 0
o � // o

(1) � // o

in M, where o denotes the empty word. They satisfy the following pair of
commuting diagrams,

3 2
µ+1oo

2

1+µ

OO

1

µ

OO

µ
oo

1 2
1+ηoo η+1 // 1

1

1

aaBBBBBBBBBB 1

==||||||||||

µ

OO

in M. Hence, in Mop, 1 is a monoid.

Proposition 3.3.2 Suppose a category X has finite products, then

Prod(Mop,X) ' Mon(X).

Proof Let E : Prod(Mop,X)→Mon(X) be be the functor “evaluate at 1”
sending F : Mop→X to 〈F1, Fµ, Fη〉. The functor E is defined on α : F →G
in Prod(Mop,X) by Eα = α1 : F1→G1. To see that E is well defined, first
observe that Fµ and Fη make following diagrams commute,

3

1×Fµ

��

Fµ×1 // 2

µ

��
2 µ

// 1

1

1
!!B

BB
BB

BB
BB

B
1×Fη // 2

Fµ

��

1
Fη×1oo

1
}}||

||
||

||
||

1

14

so the triple 〈F1, Fµ, Fη〉 is in fact a monoid in Mon(X). Also,

E(αβ) = (αβ)1 = α1β1 = E(α)E(β)

and it is easy to show that

F2

Fµ

��

α1×α1 // G2

Fµ

��
F1 α1

// G1

commutes and hence E(α) = α1 is a monoid morphism.
For any monoid 〈X, µ, η〉 in Mon(X), we define F̂ = F〈X,µ,η〉 : Mop→X

on objects by F̂ n = Xn and on arrows by sending ξ : 〈n〉→ 〈m〉 to the unique
arrow making the diagram,

Xn

πi !!C
CC

CC
CC

C Xm

πξ(i)}}{{
{{

{{
{{

F̂ ξoo

X

commute for i = 1, . . . , n. Then define F̂ on a : 〈n〉→m∗ by sending it to
the unique arrow in the the diagram on the left where a(i) : 〈ki〉→ 〈m〉 is the
function describing the word a(i) of length ki.

Xm F̂a //

F̂ a(i)

��

Xn

πi

��
Xki

µki

// X

Xn+1
µn+1 //

µ×1Xn−1 !!C
CC

CC
CC

C X

Xn

µn

@@�������

We define µk1 using the diagram on the right.
Using this definition for F̂ , it is easy to show that F̂ (µ) = µ, F̂ (η) = η and

F̂ preserves finite products. It is not so easy to see that F̂ is well defined as a
functor, but this this too is true. Hence, E(F̂) =

〈
F̂1, F̂ µ, F̂ η

〉
= 〈X, µ, η〉 and

so E is essentially surjective.
Suppose we have α : F →G in Prod(Mop,X) and consider the following

diagrams,
n

1

ιi

OO Fn

Fιi

��

αn // Gn

Gιi

��
F1 α1

// G1

which commute for i = 1, 2, . . . , n because α is natural. Since F and G preserve
finite products, Fιi = πi and Gιi = πi. Then the diagram above shows that αn

is completely determined by α1 (it is the unique arrow satisfying πi◦αn = α1◦πi

for i = 1, 2, . . . , n). Thus, the whole of α is completely determined by α1. Let
α, β : F →G be two natural transformations and suppose Eα = Eβ, then
α1 = β1 and so α = β. Hence E is faithful.

15

Showing that E is full is more difficult, but in the same way, given a monoid
morphism f : E(F)→E(G) we can construct a natural transformation φ :
F →G by letting φ1 = f and defining φn to be the unique arrow making the
diagram below commute for i = 1, 2, . . . , n.

Fn

πi

��

φn // Gn

πi

��
F1

f
// G1

Showing that this actually defines a natural transformation is difficult, but the
construction here suffices. Now since E(φ) = φ1 = f , for all f ∈ hom(E(F), E(G))
there exists φ ∈ Nat(F,G) such that E(φ) = f . Hence E is full.

�

3.4 The initial theory

As before, let S be the full subcategory of Set with finite sets as objects and for
each finite cardinal n there is precisely one set of that cardinality. In particular,
∅ is in S. An alternative definition could be: S is the full subcategory of
Set with objects the sets 〈n〉 for n = 0, 1, 2, These two categories are
clearly isomorphic. Note that the empty set ∅ is an initial object in S (empty
coproduct) and each 〈n〉 ∈ S is an n-fold disjoint union (coproduct) of 〈1〉 with
itself. We have proved the following proposition.

Proposition 3.4.1 S is a Lawvere theory.

Suppose now that we have a covariant functor F : Sop→A which is a bijec-
tion on objects and which preserves finite products. Then F1 is an object in A
and every other object in A is of the form Fn = F (1.n) = F1n. So Aop is a
Lawvere theory.

This is the approach taken in [3] and [4]. More explicitly, let S be the full
subcategory of Set described above. A covariant functor A : Sop→A which is
a bijection on objects and preserves finite products is referred to as an algebraic
theory. The notation is then softened slightly and algebraic theories are referred
to by naming the target category (in this case A). Our definition of Lawvere
theory differs from this definition in only one way: we choose to name the
category with finite coproducts instead of that with finite products.

Having defined the category S, observed it as a Lawvere theory and seeing
its significance in both [3] and [4], it seems relevant to ask “what are the models
of S?”. The answer is that S is the “empty” Lawvere theory, that is, the Law-
vere theory imposing no structure. This is properly expressed in the following
proposition.

Proposition 3.4.2 Suppose a category X has finite products, then

Prod(Sop,X) ' X .

Proof Let E : Prod(Sop,X)→X be the functor “evaluate at 1”. More specif-
ically, if F : Sop→X then E(F) = F1 and if α : F →G then E(α) = α1 :

16

F1→G1. To see that E is well defined, note that E(IF) = IF (1) = IE(F) and if

M
β→N

α→P then E(αβ) = (αβ)1 = α1β1 = E(α)E(β). We aim to show that
E is essentially surjective and fully faithful.

For each x ∈ X we have the functor Mx : Sop→X which is defined on
objects by Mxn = xn and on arrows by sending each arrow f : n→m in S to
the unique arrow making

xn

πi
 A

AA
AA

AA
A xm

Mxfoo

πf(i)}}||
||

||
||

x

commute for i = 1, . . . , n. It is easy to see that that MxIn = Ixn = IMxn. Then
the diagrams,

n

g◦f
,,

f
// m

g
// p and xn

πi

!!C
CC

CC
CC

CC
CC

xm

πf(i)

��

Mxf
oo xp

πg(f(i))

}}{{
{{

{{
{{

{{
{

Mx(g◦f)

rr

Mxg
oo

x

which commutes for i = 1, 2, . . . , n demonstrate that Mx(g ◦ f) = Mxf ◦Mxg.
Hence Mx is well defined. It is easily verifiable that Mx also preserves products
(as a covariant functor). Then for all x ∈ X there exists a functor Mx in
Prod(Sop,X) such that E(Mx) = Mx1 = x, so E is essentially surjective.

Suppose we have α : M →N in Prod(Sop,X) and consider the following
diagrams,

n

1

ιi

OO and Mn

Mιi

��

αn // Nn

Nιi

��
M1 α1

// N1

which commutes for i = 1, 2, . . . , n because α is natural. Since M and N preserve
finite products, Mιi = πi and Nιi = πi. Then the diagram above shows that αn

is completely determined by α1 (it is the unique arrow satisfying πi◦αn = α1◦πi

for i = 1, 2, . . . , n). Thus, the whole of α is completely determined by α1. Let
α, β : M →N be two natural transformations and suppose Eα = Eβ, then
α1 = β1 and so α = β. Hence E is faithful.

In the same way, given an arrow f : E(M)→E(N) we can construct a
natural transformation φ : M →N by letting φ1 = f and defining φn to be the
unique arrow making the diagram below commute for i = 1, 2, . . . , n.

Mn

πi

��

φn // Nn

πi

��
M1

f
// N1

It is straight forward to verify that φ is a well defined natural transformation.
Now since E(φ) = φ1 = f , for all f ∈ hom(E(M), E(N)) there exists φ ∈

17

Nat(M,N) such that E(φ) = f . Hence E is full.
�

Note how similar this proof is to that of Proposition 3.3.2. This proposition
expresses exactly what we mean when we say that S is the empty Lawvere
theory. This is also a result that will come in very handy later on.

3.5 Varieties

The example given illustrates a relationship between Lawvere theories and al-
gebraic structure that is true for every variety of algebras. For every variety of
algebras there is a Lawvere theory T such that

Prod(Top,Set) ' T-Alg.

An excellent list of examples can be found in [3] pp.145–148. A few of the
more familiar ones are listed here.

1. Group (abelian)
Operations:

× : X2 // X1

()−1 : X1 // X1

1 : X0 // X1

Axioms:
x× (y × z) = (x× y)× z

x× x−1 = 1 = x−1 × x

1× x = x = x× 1

(x× y = y × x)

2. Ring (commutative)
Operations:

+ : X2 // X1

−() : X1 // X1

0 : X0 // X1

× : X2 // X1

1 : X0 // X1

Axioms:
x + (y + z) = (x + y) + z

x +−x = 0 = −x + x

0 + x = x = x + 0

x + y = y + x

x× (y × z) = (x× y)× z

1× x = x = x× 1

18

(x× y = y × x)

x× (y + z) = x× y + x× z

(x + y)× z = x× z + y × z

3. Lie Ring
Operations:

+ : X2 // X1

−() : X1 // X1

0 : X0 // X1

[,] : X2 // X1

1 : X0 // X1

Axioms:
x + (y + z) = (x + y) + z

x +−x = 0 = −x + x

0 + x = x = x + 0

x + y = y + x

[x, y] + [y, x] = 0

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

[x + y, z] = [x, z] + [y, z]

[x, y + z] = [x, y] + [x, z]

4. R-module (R a commutative ring)
Operations:

+ : X2 // X1

−() : X1 // X1

0 : X0 // X1

and for each r ∈ R, an operation

r : X1 // X1

Axioms:
x + (y + z) = (x + y) + z

x +−x = 0 = −x + x

0 + x = x = x + 0

x + y = y + x

(r + r′)x = rx + r′x

r(x + x′) = rx + rx′

(r × r′)x = r(r′x)

1x = x

19

5. R-algebra (R a commutative ring)
Operations:

+ : X2 // X1

−() : X1 // X1

0 : X0 // X1

× : X2 // X1

1 : X0 // X1

and for each r ∈ R, an operation

r : X1 // X1

Axioms:
x + (y + z) = (x + y) + z

x +−x = 0 = −x + x

0 + x = x = x + 0

x + y = y + x

x× (y × z) = (x× y)× z

1× x = x = x× 1

x× (y + z) = x× y + x× z

(x + y)× z = x× z + y × z

(r + r′)x = rx + r′x

r(x + y) = rx + ry

(r × r′)x = r(r′x)

1x = x

r(x× y) = (rx)× y = x× (ry)

6. Jonsson-Tarski [7]
Operations:

b : X2 // X1

l : X1 // X1

r : X1 // X1

Axioms:
b(l(x), r(x)) = x

l(b(x, y)) = x

r(b(x, y)) = y

20

7. M-Set (M a monoid)
Operations: for each m ∈ M , an operation

m : X1 // X1

Axioms:
1x = x

(mm′)x = m(m′x)

The final two examples are of particular interest because both categories of
models are also toposes and are essentially the only two toposes that can be
described by means of a variety. In particular, models of the Jonsson-Tarski
theory are sets with a bijection X ∼= X ×X and hence the only finite models in
the category of models are 0 and 1.

21

Chapter 4

Existence and properties of
adjoints

There are many universal constructions in algebra that, while discovered using
techniques of the original subjects, were later observed to be left (or right)
adjoint to a functor an elementary functor between categories of algebras. We
will prove that if we consider only algebraic functors and we work with models
in Set then the left adjoint always exists. A list of familiar examples of this
result will follow.

4.1 LanJ F preserves finite products

Let J : R→T be a coproduct preserving functor between Lawvere theories.
Then there is a standard functor res∗J : Prod(Top,X)→Prod(Rop,X) which is
“pre-compose with Jop”. Such functors as are called algebraic functors.

Suppose we have an algebraic functor K : Prod(Top,X)→Prod(Rop,X),
then the problem of finding a left adjoint to K is similar to that of left Kan
extension. The difference however is that Kan extensions, as they are defined,
do not necessarily preserve products. Hence, we cannot immediately solve the
problem. However, we do have the following result.

Theorem 4.1.1 (LanJ F preserves finite products) Suppose a functor F :
A→X has a left Kan extension along J : A→B, that A and B have finite
products and X is cartesian closed.

A

F @
@@

@@
@@

J // B

LanJ F��~~
~~

~~
~

X

If F preserves finite products then LanJ F preserves finite products.

Proof Let K = LanJ F . Then we have the sequence of isomorphisms below,
each of which is natural in b, c and x:

22

X (Kb×Kc, x)
∼= X (Kb, xKc) (X is cartesian closed)
∼= Nata(B(Ja, b),X (Fa, xKc)) (Corollary 2.2.3)
∼= Nata(B(Ja, b),X (Kc, xFa)) (X is cartesian closed)
∼= Nata(B(Ja, b),Nata′(B(Ja′, c),X (Fa′, xFa))) (Corollary 2.2.3)
∼= Nata,a′(B(Ja, b)× B(Ja′, c),X (Fa′, xFa)) (Set is cartesian closed)
∼= Nata,a′(B(Ja, b)× B(Ja′, c),X (Fa× Fa′, x)) (X is cartesian closed)
∼= Nata,a′(B(Ja, b)× B(Ja′, c),X (F (a× a′), x)) (F preserves products)
∼= Nata′′(B(Ja′′, b)× B(Ja′′, b),X (Fa′′, x)) (Theorem 2.1.5)
∼= Nata′′(B(Ja′′, b× c),X (Fa′′, x)) (B has finite products)
∼= X (K(b× c), x) (Corollary 2.2.3)

The sixth isomorphism is achieved by noting that a natural transformation
is natural in two variables if and only if it is natural in each variable separately.
The ninth isomorphism is obtained by applying Theorem 2.1.5 to the functors
in the diagram below.

Aop

X (F−,x) ""E
EEEEEEE

∆

11⊥ (A×A)op
−×∼

rr

B(J−,b)×B(J∼,c)yysssssssss

Set

By considering the terminal object 1 in B, we get the following sequence of
natural isomorphisms, each of which is natural in x.

X (K1, x)
∼= Nata(B(Ja, 1),X (Fa, x)) (Corollary 2.2.3)
∼= Nata(1,X (Fa, x)) (1 is terminal)
∼= Nata(A(a, 1),X (Fa, x)) (1 is terminal)
∼= X (F1, x) (Yoneda’s Lemma)
∼= X (1, x) (F preserves products)

Then since each resultant isomorphism above is natural in x, by Yoneda’s
lemma, Kb × Kc ∼= K(b × c) and K1 = 1. Hence K ∼= LanJ F preserves
finite products.

�

4.2 Algebraic functors have left adjoints

Though this result is helpful, it does not yet complete the picture. We cannot be
sure that the Kan extension actually exists, let alone whether it can be restricted

23

to act on the category of models as we require. However, as we choose to consider
only models in Set, we have the following result.

Theorem 4.2.1 Suppose that T and R have finite coproducts and J : Top→Rop

is finite product preserving. Then the functor “compose with J”,

res∗J : Prod(Rop,Set)→Prod(Top,Set)

has a left adjoint.

Proof Begin by considering the following diagram,

[Rop,Set]
resJ

11⊥ [Top,Set]
LanJ

qq

Prod(Rop,Set)

OO

res∗J

00⊥ Prod(Top,Set)

OO

Lan∗Jpp

where the vertical arrows are inclusions.
Since Set is cocomplete and A is small, resJ has a left adjoint given by the

left Kan extension (Corollary 2.2.2), call it LanJ . Since J is product preserving,
resJ sends product preserving functors to product preserving functors and so
can be restricted to act just on Prod(Rop,Set), this restriction is precisely the
functor res∗J . Now by Theorem 4.1.1, LanJ sends product preserving functors
to product preserving functors and so it too can be restricted to act just on
Prod(Top,Set), call this restriction Lan∗J . Now because the inclusions are full
and faithful and LanJ is left adjoint to resJ , Lan∗J is left adjoint to res∗J . Thus,
res∗J has a left adjoint.

�

4.3 An example: groups to monoids

Consider the forgetful functor

U : Grp→Mon

which sends each group in Grp to its underlying monoid in Mon by ignoring
inverses. Note also that each homomorphism in Grp is mapped into Mon
without change, for it is simply a function on sets.

Let G and M denote the Lawvere theories for groups and monoids respec-
tively. Then the generating object 1 in Gop has group structure and therefore
monoid structure (just ignore the inverse maps), hence it belongs to Mon(Gop).
Then remembering the equivalence,

φ : Mon(Gop) ' Prod(Mop, Gop) ,

let J = φ(1) : Mop→Gop be the functor in Prod(Mop, Gop) corresponding to 1
in Mon(Gop). The resulting algebraic functor res∗J : Grp→Mon is prescisely
the forgetful functor U .

24

It follows immediately from Theorem 4.2.1 that since U is an algebraic func-
tor, it has a left adjoint specified by the left Kan extension. The adjoint Lan∗J
is the construction “free group on a monoid” and can be described explicitly
by making use of the colimit formula for left Kan extension given in Theorem
2.2.1. This example U also has a right adjoint taking each monoid to the group
of invertible elements inside it. This is unusual because algebraic functors do
not, in general, have right adjoints.

An excellent list of further examples can be found in [3] pp148–149. We list
just four here.

1. The forgetful functor from abelian groups to groups is algebraic. The left
adjoint is most commonly called “factor commutator group”.

2. The forgetful functor from commutative R-algebras to R-modules is alge-
braic. The left adjoint is most commonly called “symmetric algebra”.

3. The forgetful functor from anti-commutative R-algebras to R-modules is al-
gebraic. The left adjoint is most commonly called “exterior algebra”.

4. The functor from R-algebras to R-Lie-algebras defined by letting [a , b] =
ab − ba is algebraic. The left adjoint is most commonly called “universal
enveloping algebra”.

25

Chapter 5

Applications to universal
algebra

The result given in the previous chapter is an important one. Using Theorem
4.2.1 alone we can prove quite significant results that can be applied to any
category of algebras definable by a Lawvere theory T. First, the category of
models for a Lawvere theory is complete (and cocomplete). Second, there is a
left adjoint to the forgetful functor on T-algebras which is the free T-algebra
construction.

5.1 Families

Before exploring these results, we need to define a standard categorical con-
struction called the category of finite families. For any category A, there is
the category of finite families of A, call it Famf A. It is in fact the coproduct
completion of A.

Definition Let A be a category, then construct Famf A as follows. The objects
in Famf A are finite families of objects in A, that is, tuples a = (a1, a2, . . . , an)
where ai ∈ A for i = 1, 2, . . . , n. An arrow from a = (a1, . . . , an) to b =
(b1, . . . , bm) in Famf A is a pair (ξ, f) where ξ : 〈n〉→ 〈m〉, f = (f1, . . . , fn) and
fi : ai→ bξ(i) for i = 1, 2, . . . , n.

It should be noted that Famf has all finite coproducts; for the empty family () is
always in Famf A and is initial and each family a = (a1, . . . , an) is a coproduct
of the 1-families (ai) and we have injections

(ai)
(i∗,Iai

)
// (a1, . . . , an) i = 1, 2, . . . , n

where i∗ : 〈1〉→ 〈n〉 is the map 1 7→ i.
There is also the canonical functor

A N // Famf A

which sends each a ∈ A to the one object family (a) and each arrow f : a→ b
to the pair (I〈1〉, (f)).

26

If A has all finite coproducts then N has a left inverse, call it L

Famf A L // A

which sends each family (a1, . . . , an) to the coproduct a1 + . . . + an in A and
each arrow (ξ, f) : a→b to the unique map in the following diagram.

ai
ιi //

fi

��

a1 + . . . + an

L(ξ,f)

��
bξ(i) ιξ(i)

// b1 + . . . + bm

It is easily observed that L ◦ N = IA. A more interesting fact however is
that L preserves finite coproducts. Observe that when L acts on the injections
ιi : (ai)→(a1, . . . , an) we have the following diagram,

ai
ι1 //

Iai

��

ai

Lιi

��
ai ιi

// a1 + . . . + an

which commutes, hence Lιi = ιi. Finally, L also maps the empty family () to
the empty coproduct and so L preserves finite coproducts.

Proposition 5.1.1 Suppose a category X has finite products, then there is an
equivalence

Prod((Famf A)op,X) ' [Aop,X].

Proof Let φ : Prod(Famf Aop,X)→[Aop,X] be defined on objects by sending
the functor K ∈ Prod((Famf A)op,X) to K ◦ N . That is, if φ(K) = L then
La = K(a) and Lf = K(I〈1〉, (f)) as shown.

a

f

��

K(a)

K(I〈1〉,(f))

��
b K(b)

If α : K→M in Prod(Famf Aop,X), then define φ on natural transformations
by φ(α)a = α(a). That is, if φ(α) = β then βa = α(a) as shown.

K(a)
α(a) // M(a)

We aim to show that φ is essentially surjective and fully faithful.
Suppose we have a functor G ∈ [A,X], then there exists a functor F in

Prod((Famf A)op,X) that sends (a1, . . . , an) to Ga1 × . . . × Gan and sends
(ξ, f) : a→b to the unique arrow making the diagram on the right

(a1, . . . , an)

(ξ,f)

��
(b1, . . . , bm)

Gai Ga1 × . . .×Gan
πioo

Gbξ(i)

Gfi

OO

Gb1 × . . .×Gbm

F (ξ,f)

OO

πξ(i)oo

27

commute for i = 1, 2, . . . , n. By observing how F behaves on composites, iden-
tities and injections in Famf Aop one can easily show that F is well defined and
preserves finite products. Then since φ(F) = F ◦ N , we get φ(F)a = Ga and
the following commuting diagram,

a

f

��
b

Ga Ga
π1oo

Gb

Gf

OO

Gb

F (I,(f))

OO

π1oo

so φ(F)f = F (I, (f)) = Gf . Thus, φ(F) = G and φ is essentially surjective.
Suppose that α, β : M →N in Prod((Famf A)op,X), then by naturality of

α we get the diagrams,

(a1, . . . , an)

(ai)

ιi

OO
M(a1)× . . .×M(an)

πi

��

αa // N(a1)× . . .×N(an)

πi

��
M(ai) α(ai)

// N(ai)

which commute for i = 1, . . . , n. The injections are mapped to projections
because M and N preserve finite products (as covariant functors). The diagram
above demonstrates that the component of α at some (a1, . . . , an) is completely
determined by the components α(ai) for i = 1, . . . , n. Suppose that φ(α) = φ(β),
then α(a) = β(a) for all a ∈ A and hence αa = βa for all a ∈ Famf A. Therefore
E(α) = E(β) implies α = β and φ is faithful.

In the same way as above, suppose that M,N ∈ Prod(Famf Aop,X) and we
have γ : φ(M)→φ(N), then we can define a natural transformation δ : M →N
by letting δ(a) = γa for all a ∈ A and defining δa to be the unique arrow making

M(a1)× . . .×M(an)

πi

��

δa // N(a1)× . . .×N(an)

πi

��
M(ai) γai

// N(ai)

commute for i = 1, . . . , n. It can be verified that δ is a well defined natural
transformation. Then φ(δ) = γ and φ is full.

�

This proof followed very similar lines to that in Proposition 3.4.2, in fact it
is a more general result. If A is the category with one object and one arrow,
then Famf A ∼= S and [Aop,X] ∼= X , so Prod(Sop,X) ' X .

5.2 The category of T-algebras is complete

It is clear that Prod(Top,Set) is a full subcategory of [Top,Set] and hence there
is a canonical inclusion functor

Prod(Top,Set)
Q // [Top,Set] .

28

Theorem 5.2.1 For any Lawvere theory T, the inclusion

Prod(Top,Set)
Q // [Top,Set]

has a left adjoint.

Proof The proof is obtained by contemplating the following diagram.

Prod(Top,Set)

Q

44
resL

00⊥ Prod((Famf T)op,Set)
LanLpp

resN

11⊥ [Top,Set]
Spptt

The adjunction on the left is given by application of Theorem 4.2.1 to the
coproduct preserving functor L. The adjunction on the right is the adjoint
equivalence given by Proposition 5.1.1, call the left adjoint S. Since adjunctions
can be composed, it remains only to show that the composite resN ◦ resL is
the inclusion functor. This is straight forward because L ◦N = I implies that
resN ◦ resL = resI = Q. Thus the inclusion Q has a left adjoint.

�

The following result comes as a corollary.

Corollary 5.2.2 Suppose T is a Lawvere theory, then

Prod(Top,Set)

is complete and cocomplete.

Proof In Theorem 5.2.1 we proved that the inclusion

Q : Prod(Top,Set)→[Top,Set]

has a left adjoint, and hence Prod(Top,Set) is a full reflective subcategory of
[Top,Set]. We know also that Set is complete (and cocomplete), therefore
[Top,Set] is complete (and cocomplete). Finally, every full reflective subcate-
gory of a complete (and cocomplete) category is also complete (and cocomplete);
see [1] exercise 3, p120 for the cocomplete case 1.

�

This is a significant result. The notions of product, coproduct, equalizer
and coequalizer are all examples of limits and colimits, and hence exist in every
category of T-algebras. For example, in Ab, product is the direct product G×H,
coproduct is direct sum G⊕H (isomorphic to direct product in this case), the
equalizer object is the subgroup {x ∈ G : f(x) = g(x)} and the coequalizer
object is the factor group G/ im(f − g). If the category of T-algebras has a zero
object (that is, both initial and terminal) then the category also has kernels and
cokernels.

1The complete case is also well known; see [8] Corollary 8.

29

5.3 The free T-algebra construction

Suppose T is a Lawvere theory with generating object 1. Then consider the
functor U with domain Prod(Top,Set) which is “evaluate at 1” (in some previ-
ous cases we called this functor E). The functor U sends F : Top→Set to F1
and α : F →G to α1 : F1→G1. We say that U is forgetful because it takes each
model (with structure from T) to a set (with no structure). We choose to name
this functor with the letter “U” because it takes each model to it’s “underlying”
set. We have enough preliminary results to prove the following theorem.

Theorem 5.3.1 For any Lawvere theory T, the forgetful functor

U : Prod(Top,Set) // Set

has a left adjoint.

Proof Let 1 denote the generating object of T. Now consider the product
preserving functor J : Sop→Top defined on objects by Jn = 1n and on arrows
by sending f : n→m to the unique arrow making,

1n

πi
 @

@@
@@

@@
@ 1m

πf(i)
~~}}

}}
}}

}}

Jfoo

1

commute for i = 1, 2, . . . , n. This is precisely the functor M1 in the proof
of Proposition 3.4.2, where it was also shown to be well defined and product
preserving. The rest of the proof then comes from contemplating the following
diagram.

Prod(Top,Set)
resJ

00⊥ Prod(Sop,Set)
LanJpp

E

22⊥ Set
pp

Using Theorem 4.1.1 with the product preserving functor J we obtain the ad-
junction shown on the left. Then by Proposition 3.4.2 we get the adjoint equiv-
alence shown on the right. The functor E is “evaluate at 〈1〉”. These two
adjunctions compose, so the composite E ◦ resJ has a left adjoint.

Now if F ∈ Prod(Top,Set) then

(E ◦ resJ)F = E(F ◦ J) = (F ◦ J)1 = F (J 〈1〉) = F1

and if α : F →G then

((E ◦ resJ)α) = E(αJ) = αJ〈1〉 = α1.

Thus, E ◦ resJ is precisely the forgetful functor U and it has a left adjoint.
�

30

Bibliography

[1] S. Mac Lane, Categories for the Working Mathematician (Springer-Verlag,
1971).

[2] M. Barr and C. Wells, Toposes, triples and theories, Reprints in Theory and
Applications of Categories No. 12 (2005) pp. 1–289.

[3] B. Pareigis, Categories and Functors (Academic Press, 1970).

[4] F.W. Lawvere, Functorial semantics of algebraic theories and some algebraic
problems in the context of functorial semantics of algebraic theories, Reprints
in Theory and Applications of Categories No. 5 (2004) pp. 1–121.

[5] G.M. Kelly, Adjunction for enriched categories, Lecture Notes in Mathemat-
ics 106 (Springer-Verlag,1969) pp. 166–177.

[6] B.J. Day, Construction of Biclosed Categories (PhD Thesis, University of
New South Wales, 1970).

[7] B. Jonsson and A. Tarski, On two properties of free algebras, Mathematica
Scandinavica 9 (1961) pp.95–101.

[8] R. Street, “Consequences of Splitting Idempotents”, http://www.math.mq.
edu.au/∼street/idempotents.pdf .

31

