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Much Australian work on categories is part of, or relevant to, the development of

higher categories and their theory. In this note, I hope to describe some of the origins

and achievements of our efforts that they might perchance serve as a guide to the

development of aspects of higher-dimensional work. 

I trust that the somewhat autobiographical style will add interest rather than be a

distraction.  For so long I have felt rather apologetic when describing how categories

might be helpful to other mathematicians; I have often felt even worse when

mentioning enriched and higher categories to category theorists.  This is not to say that I

have doubted the value of our work, rather that I have felt slowed down by the

continual pressure to defend it. At last, at this meeting, I feel justified in speaking freely

amongst motivated researchers who know the need for the subject is well established.   

Australian Category Theory has its roots in homology theory: more precisely, in the

treatment of the cohomology ring and the Künneth formulas in the book by Hilton and

Wylie [HW].  The first edition of the book had a mistake concerning the cohomology

ring of a product.  The Künneth formulas arise from splittings of the natural short exact

sequences

  0 0æ Ææ æ Ææ æ Ææ æ ÆæExt HA HB H A B Hom HA HBH( , ) [ , ] ( , )

  0 0æ Ææ ƒ æ Ææ ƒ( ) æ Ææ æ ÆæƒHA HB H A B Tor HA HB( , )

where  A  and  B  are chain complexes of free abelian groups; however, there are no

choices of natural splittings. Wylie's former postgraduate student, Max Kelly, was

intrigued by these matters and wanted to understand them conceptually. 

So stimulated, in a series of papers [K1], [K2], [K3], [K5], [K7] published in Proc. Camb.

Phil. Soc., Kelly progressed ever more deeply into category theory. He discussed

equivalence of categories and proposed criteria for when a functor should provide

"complete invariants" for objects of its domain category. Moreover, Kelly invented

differential graded categories and used them to show homotopy nilpotence of the kernel

of certain functors [K7].

Around the same time, Sammy Eilenberg invented DG-categories probably for

purposes similar to those that led Verdier to derived categories. Thus began the

collaboration of Eilenberg and Kelly on enriched categories. They realized that the

definition of DG-category depended only on the fact that the category    DGAb of chain

complexes was what they called a closed or, alternatively, a mono ida l category. They

favoured the "closed" structure over "monoidal" since internal homs are usually more
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easily described than tensor products; good examples such as   DGAb have both anyway.

The groundwork for the correct definition of monoidal category    V had been

prepared by Saunders Mac Lane with his coherence t h e o r e m for associativity and unit

constraints. Kelly had reduced the number of axioms by a couple so that only the Mac

Lane – Stasheff pentagon and the unit triangle remained.  Enriched categories were also

defined by Fred Linton; however, he had conditions on the base  V that ruled out the

examples     V = DGAb and     V = Cat that proved so vital in later applications.

The long Eilenberg – Kelly paper [EK2] in the 1965 LaJolla Conference Proceedings

was important for higher category theory in many ways; I shall mention only two.

One of these ways was the realization that 2-categories could be used to organize

category theory just as category theory organizes the theory of sets with structure. The

authors provided an explicit definition of (strict) 2-category early in the paper although

they used the term "hypercategory" at that point (probably just as a size distinction since,

as we shall see, "2-category" is used near the end). So that the paper became more than a

list of definitions with implications between axioms, the higher-categorical concepts

allowed the paper to be summarized with theorems such as: 

  V - Cat is a 2-category and         -( ) æ Ææ* : MonCat Cat2- is a 2-functor.

The other way worth mentioning here is their efficient definition of (strict) n-

category and (strict) n-functor using enrichment.  If    V is symmetric monoidal then

  V - Cat is too and so the enrichment process can be iterated.  In particular, starting with

    V0 = Set using cartesian product, we obtain cartesian monoidal categories      Vn defined

by      V Vn n+ =1 - Cat .  This      Vn is the category   n - Cat of n-categories and n-functors.  In my

opinion, processes like        V Va - Cat are fundamental in dimension raising.

With his important emphasis on categories as mathematical structures of the ilk of

groups, Charles Ehresmann [Ehr] defined categories internal to a category  C with

pullbacks.  The category      Cat C( ) of internal categories and internal functors also has

pullbacks, so this process too can be iterated.  Starting with     C = Set , we obtain the

category   Cat Setn ( ) of n-tple categories.  In particular,   Cat Set DblCat2 ( ) = is the category of

double categories; it contains   2 - Cat in various way as does   Cat Setn ( ) contain    n - Cat . 

At least two other papers in the LaJolla Proceedings volume had a strong influence

on Australian higher-dimensional category theory.  One was the paper [L1] of Bill

Lawvere suggesting a categorical foundations for mathematics; concepts such as comma

category appeared there. The other was the paper [Gr3] of John Gray developing the

subject of Grothendieck fibred categories as a formal theory in   Cat so that it could be

dualized. This meant that Gray was essentially treating   Cat as an arbitrary 2-category; the

duality was that of reversing morphisms (what we call   Catop) not 2-cells (what we call
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  Catco ). In stark contrast with topology, Grothendieck had unfortunately used the term

"cofibration" for the   Catco case. 

Kelly developed the theory of enriched categories describing enriched adjunction

[K8] and introducing the variety of limit he called e n d.  I later pointed out that Yoneda

had used this concept in the special case of additive categories using an integral notation

which Brian Day and Max Kelly adopted [DK].  Following this, Mac Lane [ML2] discussed

ends for ordinary categories. 

Meanwhile, as Kelly's graduate student, I began addressing his concerns with the

Künneth formulas. The main result of my thesis [St1] (also see [St4] and [St16]) was a

Künneth hom formula for finitely filtered complexes of free abelian groups.  I found it

convenient to express the general theory in terms of DG-categories and triangulated

categories; my thesis involved the development of some of their theory. In particular, I

recognized that completeness of a DG-category should involve the existence of a

suspension functor. The idea was consistent with the work of Day and Kelly [DK] who

eventually defined completeness of a   V -category A to include cotensoring   A
V with

objects V of   V : the characterizing property is  
   
A V AB A V B AV, , ,( ) @ ( )( ). The point is

that, for ordinary categories where   V = Set, the cotensor   A
V is the product of  V  copies

of  A  and so is not needed as an extra kind of limit. Cotensoring with the suspension of

the tensor unit in   V = DGAb gives suspension in the DG-category A .  Experience with

DG-categories would prove very helpful in developing the theory of 2-categories. 

In 1968-9 I was a postdoctoral fellow at the University of Illinois (Champaign-

Urbana) where John Gray worked on 2-categories. To construct higher-dimensional

comprehension schema [Gr4], Gray needed lax limits and even lax Kan extensions [Gr7].

He also worked on a closed structure for the category   2 - Cat for which the internal hom

  [ , ]A B of two 2-categories A and B consisted of 2-functors from A to B, lax natural
transformations, and modifications. (By "lax" we mean the insertion of compatible

morphisms in places where there used to be equalities. We use "pseudo" when the

inserted morphisms are all invertible.)  The next year at Tulane University, Jack Duskin

and I had one-year (1969-70) appointments where we heard for a second time Mac Lane's

lectures that led to his book [ML2]; we had all been at Bowdoin College (Maine) over the

Summer. Many category theorists visited Tulane that year. Duskin and Mac Lane

convinced Gray that this closed category structure on   2 - Cat should be monoidal.  Thus

appeared the (lax) Gray tensor product of 2-categories that Gray was able to prove

satisfied the coherence pentagon using Artin's braid groups (see [Gr8] and [Gr9]). 

Meanwhile Jean Bénabou [Bu1] had invented weak 2-categories, calling them

bicategories. He also defined a weak notion of morphism that I like to call lax functor.

His convincing example was the bicategory    Span( )C of spans in a category   C with
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pullbacks; the objects are those of the category  C while it is the morphisms of     Span( )C
that are spans; composition of spans requires pullback and so is only associative up to

isomorphism. He pointed out that a lax functor from the terminal category  1 to   Cat was

a category   A equipped with a "standard construction" or "triple" (that is, a monoid i n

the monoidal category      A A,[ ] of endofunctors of   A where the tensor product is

composition); he introduced the term m o n a d for this concept. Thus we could

contemplate monads in any bicategory. In particular, Bénabou observed that a monad i n

    Span( )C is a category internal to  C .    

The theory of monads (or "triples" [EM]) became popular as an approach to

universal algebra. A monad  T  on the category   Set of sets can be regarded as an algebraic

theory and the category    SetT of "T-modules" regarded as the category of models of the

theory. Michael Barr and Jon Beck had used monads on categories to define an abstract

cohomology that included many known examples.

The category   C T of T-modules (also called "T-algebras") is called, after its inventors,

the Eilenberg-Moore category for T.  The underlying functor    U
T :   C CT æ Ææ has a left

adjoint which composes with   U
T to give back  T.  There is another category      C T, due to

Kleisli, equivalent to the full subcategory of     C T consisting of the free T-modules; this

gives back  T  in the same way.  In fact, whenever we have a functor     U : A Cæ Ææ with

left adjoint  F,  there is a "generated" monad  T = UF  on  C .  There are comparison

functors    C AT æ Ææ and    A Cæ Ææ T ;  if the latter functor is an equivalence, the functor

U  is said to be monadic. See [ML2] for details. Beck [Bec] established necessary and

sufficient conditions for a functor to be monadic. Erny Manes showed that compact

Hausdorff spaces were the modules for the ultrafilter monad b on   Set (see [ML2]).

However, Bourbakifying the definition of topological space via Moore-Smith

convergence, Mike Barr [Br] showed that general topological spaces were the relational

modules for the ultrafilter lax monad on the 2-category Rel whose objects are sets and

morphisms are relations. (One of my early Honours students at Macquarie University

baffled his proposed Queensland graduate studies supervisor who asked whether the

student knew the definition of a topological space. The aspiring researcher on dynamical

systems answered positively: "Yes, it is a relational b-module!" I received quite a bit of

flak from colleagues concerning that one; but the student Peter Kloeden went on to

become a full professor of mathematics in Australia then Germany.) 

I took Bénabou's point that a lax functor     W Cat: A æ Ææ became a monad when

  A = 1 and in [St3] I defined generalizations of the Kleisli and Eilenberg-Moore
constructions for a lax functor W  with any category   A as domain. These constructions

gave two universal methods of assigning strict functors      A æ Ææ Cat to a lax one; I
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pointed out the colimit- and limit-like nature of the constructions. I obtained a

generalized Beck monadicity theorem that we have used recently in connection wi

natureth Tannaka duality.  The Kleisli-like construction was applied by Peter May to

spectra under the recommendation of Robert Thomason.

When I was asked to give a series of lectures on universal algebra from the

viewpoint of monads at a Summer Research Institute at the University of Sydney, I

wanted to talk about the lax functor work. Since the audience consisted of

mathematicians of diverse backgrounds, this seemed too ambitious so I set out to

develop the theory of monads in an arbitrary 2-category  K ,  reducing to the usual theory

when     K = Cat.  This "formal theory of monads" [St2] (see [LSt] for new developments)

provides a good example of how 2-dimensional category theory provides insight into

category theory. Great use could be made of duality: comonad theory became rigorously

dual to monad theory under 2-cell reversal while the Kleisli and Eilenberg-Moore

constructions became dual under morphism reversal. Also, a distributive law between

monads could be seen as a monad in the 2-category of monads.

In 1971 Bob Walters and I began work on Yoneda structures on 2-categories [KS1],

[StW]. The idea was to axiomatize the deeper aspects of categories beyond their merely

being algebraic structures. This worked centred on the Yoneda embedding    A Aæ Ææ √ of

a category  A  into its presheaf category 
  
√ = [ ]A A Setop , .  We covered the more general

example of categories enriched in a base   V where  
   
√ = [ ]A Aop ,V .  Clearly size

considerations needed to be taken seriously although a motivating size-free example was

preordered sets with   √A the inclusion-ordered set of right order ideals in  A.  Size was

just an extra part of the structure.  With the advent of elementary topos theory and the

stimulation of the work of Anders Kock and Christian Mikkelsen, we showed that the

preordered objects in a topos provided a good example. We were happy to realize [KS1]

that an elementary topos was precisely a finitely complete category with a power object

(that is, a relations classifier). This meant that my work with Walters could be viewed as

a higher-dimensional version of topos theory. As usual when raising dimension, what

we might mean by a 2-dimensional topos could be many things, several of which could

be useful. I looked [St6], [St8] at those special Yoneda structures where   √A classified two-

sided discrete fibrations. 

At the same time, having made significant progress with Mac Lane on the

coherence problem for symmetric closed monoidal categories [KML1], [KML2], Kelly was

developing a general approach to coherence questions for categories with structure. In

fact, Max Kelly and Peter May were in the same place at the same time developing the

theories of "clubs" and "operads"; there was some interaction.  As I have mentioned,

clubs [K9], [K10], [K11], [K12], [K13] were designed to address coherence questions i n
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categories with structure; however, operads were initially for the study of topological

spaces bearing homotopy invariant structure. Kelly recognized that, at the heart of both

notions were monoidal categories such as the category  P of finite sets and permutations.

May was essentially dealing with the category      P,Top[ ] (also written      TopP ) of functors

from  P to the category   Top of topological spaces; there is a tensor product on     P,Top[ ],

called "substitution", and a monoid for this tensor product is a symmetric topological

operad. Kelly was dealing with the slice 2-category     Cat / P with its "substitution" tensor

product; a monoid here Kelly called a club (a special kind of 2-dimensional theory).

There is a canonical functor     P, ,Top Top Top[ ] æ Ææ [ ] and a canonical 2-functor

    Cat Cat Cat/ ,P æ Ææ [ ]; each takes substitution to composition. Hence each operad gives a

monad on   Top and each club gives a 2-monad on   Cat.  The modules for the 2-monad

on   Cat are the categories with the structure specified by the club. Kelly recognized that

complete knowledge of the club solved the coherence problem for the club's kind of

structure on a category.  

That was the beginning of a lot of work by Kelly and colleagues on "2-dimensional

universal algebra" [BKP].  There is a lot that could be said about this with some nice

results and I recommend looking at that work; homotopy theorists will recognize many

analogues. One theme is the identification of structures that are essentially unique when

they exist (such as "categories with finite products", "regular categories" and "elementary

toposes") as against those where the structure is really extra (such as "monoidal

categories").  A particular class of the essentially unique case is those structures that are

modules for a Kock-Zöberlein m o n a d [Ko1], [Z].  In this case, the action of the monad on

a category is provided by an adjoint to the unit of the monad. It turns out that these

monads have an interesting relationship with the simplicial category [St9].  It is well

known (going right back to the days when monads were called standard constructions)

that the coherence problem for monads is solved by the (algebraic) simplicial category

  Dalg: the monoidal category of finite ordinals (including the empty ordinal) and order-

preserving functions.  A monad on a category A is the same as a strict monoidal functor

    Dalg ,æ Ææ [ ]A A .  In point of fact,    Dalg is the underlying category of a 2-category   Ordfin

where the 2-cells give the pointwise order to the order-preserving functions.  There are

nice strings of adjunctions between the face and degeneracy maps. A Kock-Zöberlein

monad on a 2-category K is the same as a strict monoidal 2-functor     Ordfin æ Ææ [ ]K K, ;

see [St9] and [Ko2].  My main example of algebras for a Kock-Zöberlein monad in [St

and [St9] was fibrations in a 2-category. The monad for fibrations needed an idea of Joh

Gray that I will describe.

In the early 1970s, Gray [Gr6] was working on 2-categories that admitted th
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construction which in   Cat forms the arrow category    A
Æ from a category  A .  This rang

a bell, harking me back to my work on DG-categories: Gray's construction was like

suspension.  I saw that its existence should be part of the condition of completeness of a

2-category.  A 2-category is complete if and only if it admits products, equalizers and

cotensoring with the arrow category  Æ .  

Walters and I had a general concept of limit for an object of a 2-category bearing a

Yoneda structure. As a special case I looked at what this meant for limits in 2-categories.

Several people and collaborators had come to the same conclusion about what limit

should mean for enriched categories. Borceux and Kelly called the notion "mean

cotensor product". I used the term "indexed limit" for the 2-category case and Kelly

adopted that name in his book on enriched categories. When preparing a talk to

physicists and engineers in Milan, I decided a better term was weighted limit :  roughly,

the "weighting" J should provide the number of copies   JA of each object   SA in the

diagram   S whose limit we seek.  Precisely, for   V -categories, the limit   lim ,J S( ) of a   V -

functor    S : A Xæ Ææ weighted by a   V -functor    J : A Væ Ææ is an object of  X equipped

with a   V -natural isomorphism

  X A V XX J S J X S, lim , , , ,( )( ) @ [ ] ( )( ) .

Products, equalizers and cotensors are all examples. Conversely, if X admits these three

particular examples, it admits all weighted limits; despite this, individual weighted

limits can occur without being thus constructible.

The     V = Cat case is very interesting.  Recall that a     V -category in this case is a 2-

category.  As implied above, it turns out that all weighted limits can be constructed from

products, equalizers and cotensoring with the arrow category. Yet there are many

interesting constructions that are covered by the notion of weighted limit: a good

examples are the Eilenberg-Moore construction on a monad and Lawvere's "comma

category" of two morphisms with the same codomain.

Gray had defined what we call lax and pseudo limits of 2-functors. Mac Lane says

that a limit is a universal cone; a cone is a natural transformation from a constant

functor. A lax limit is a universal lax cone. A pseudo limit is a universal pseudo cone.

Although these concepts seemed idiosyncratic to 2-category theory, I showed that all lax

and pseudo limits were weighted limits and so were covered by "standard" enriched

category theory. For example, the lax limit of a 2-functor    F : A Xæ Ææ is precisely

  lim ,L FA( ) where      L CatA A: æ Ææ is the 2-functor defined by      L A AA A= ( )*p0 / ;  here

    A / A is the obvious slice 2-category of objects over A and   p0 * applies the set-of-path-

components functor    p0 : Cat Setæ Ææ on the hom categories of 2-categories.  Gray then
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pointed out that, for  
  
V = [ ]Dop Set, (the category of simplicial sets), homotopy limits of

    V -functors could be obtained as  l imits weighted by the composite

    
A AL Nerve opCat Setæ Ææ æ Æææ [ ]D , .  

In examining the limits that exist in a 2-category admitting finite limits (that is,

admitting finite products, equalizers, and cotensors with Æ) I was led to the notion of

computad. This is a 2-dimensional kind of graph: it has vertices, edges and faces. Each

edge has a source and target vertex, however, each face has a source and target directed

path of edges. More 2-categories can be presented by finite computads than by finite 2-

graphs. Just as for 2-graphs, the forgetful functor from the category of 2-categories to the

category of computads is monadic: the monad formalizes the notion of pasting diagram

in a 2-category while the action of the monad on a 2-category encapsulates the operation

of pasting in a 2-category. Later, Steve Schanuel and Bob Walters pointed out that these

computads form a presheaf category.     

The step across from limits in 2-categories to limits in bicategories is fairly obvious.

For bicategories   A and   X ,  the limit   lim ,J S( ) of a pseudofunctor     S : A Xæ Ææ weighted

by a pseudofunctor    J Cat: A æ Ææ is an object of X equipped with a pseudonatural

equivalence

  
X A XX J S Psd Cat J X S, lim , ~ , , ,( )( ) - ( ) ( )( ).

It is true that every bicategorical weighted limit can be constructed in a bicategory that

has products, iso-inserters (or "pseudoequalizers"), and cotensoring with the arrow

category (where the universal properties here are expressed by equivalences rather than

isomorphisms of categories), however, the proof is a little more subtle than the 2-

category case. It is also a little tricky to determine which 2-categorical limits give rise to

bicategorical ones: for example pullbacks and equalizers are not bicategorical limits per s e

; the weight needs to be flexible in a technical sense that would be natural to homotopy

theorists.  

Now I would like to say more about 2-dimensional topos theory. We have

mentioned that Yoneda structures can be seen as a 2-dimensional version of elementary

topos theory.  However, given that a topos is a category of sheaves, there is a fairly

natural notion of "2-sheaf", called stack, and a 2-topos should presumably be a 2-category

of stacks. After characterizing Grothedieck toposes as categories possessing certain limits

and colimits with exactness properties, Giraud  developed a theory of stacks i n

connection with his non-abelian 2-dimensional cohomology.  He expressed this in terms

of fibrations over categories. Grothendieck had pointed out that a fibration   P : E Cæ Ææ

over the category C was the same as a pseudofunctor   F Catop:C æ Ææ where, for each
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object  U  of    C ,  the category   FU is the fibre of  P  over  U.  If    C is a  (that is it is a

category equipped with a Grothendieck topology) then the condition that  F  should be a

stack is that, for each covering sieve      R Uæ Ææ -( )C , ,  the induced functor

    
FU Psd Cat R Fopæ Ææ ( )( )C , ,

should be an equivalence of categories.  We write 
   
Stack CatopC ,( ) for the full sub-2-

category of  
    
Psd CatopC ,( ) consisting of the stacks.  I developed this direction a little by

defining 2-dimensional sites and proved a Giraud-like characterization of bicategories of

stacks on these sites.  Perhaps on point is worth mentioning here.  In sheaf theory there

are various ways of approaching the associated sheaf.  Grothendieck used a so-called "L"

construction.  Applying L to a presheaf gave a separated presheaf (some "unit" map

became a monomorphism) then applying it again gave the associated sheaf (the map

became an isomorphism). I found that essentially the same L works for stacks. This time

one application of L makes the unit map faithful, two applications make it fully faithful,

and the associated stack is obtained after three applications when the map becomes an

equivalence. 

Just as Kelly was completing his book [K15] on enriched categories, a remarkable

development was provided by Walters who linked enriched category theory with sheaf

theory.  First, he extended the theory of enriched categories to allow a bicategory    W (my

choice of letter!) as base: a category A enriched i n W (or   W- category) has a set    obA of

objects where each object A is assigned an object   e A( ) of   W ;  each pair of objects  A  and

B  is assigned a morphism      A A B e A e B, : ( ) ( )( ) æ Ææ in  W thought of as a "hom" of   A ;

and "composition" in   A is a 2-cell    mA C
B B C A B A C, : , , ,A A A( ) ( ) fi ( )o which is required

to be associative and unital.  Walters regards each object  A  as a copy of "model pieces"

  e A( ) and   A as a presentation of a structure that is made up of model pieces that are

glued together according to "overlaps" provided by the homs.  For example, each

topological space  T  yields a bicategory    W = Re ( )l T whose objects are the open subsets of

T,  whose morphisms    U Væ Ææ are open subsets    R U VÕ « ,  and whose 2-cells are

inclusions.  Each presheaf  P  on the space  T  yields a     W- category    el ( )P whose objects

are pairs    U s,( ) where  U  is an open subset of  T  and  s  is an element of  PU;  of course,

  e U s U,( ) = .  The hom   el ( ) , , ,P U s V t( ) ( )( ) is the largest subset    R U VÕ « such that the

"restrictions" of  s  and  t  to  R  are equal.  As another example, for any monoidal

category V ,  let  SV denote the bicategory with one object and with the endohom

category of that single object being    V ;  then a     V -category in the Eilenberg-Kelly sense is

exactly a SV -category in Walters' sense.
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For each Grothendieck site   C , J( ), Walters constructed a bicategory      RelJ C such that

the category of symmetric Cauchy-complete     RelJ C -categories became equivalent to the

category of set-valued sheaves on     C , J( ). This stimulated the development of the

generalization of enriched category theory to allow a bicategory as base.  We established a

higher-dimensional version of Walters' result to obtain stacks as enriched categories.

Walters had been able to ignore many coherence questions because the base bicategories

he needed were locally ordered (no more than one 2-cell between two parallel

morphisms).  However the base for stacks is not locally ordered.

I have mentioned the 2-category     V - Cat of     V -categories; the morphisms are    V -

functors.  However, there is another kind of "morphism" between    V -categories. Keep i n

mind that a category is a "monoid with several objects"; monoids can act on objects

making the object into a module. There is a "several objects" version of module. Given

    V -categories A and    B ,  we can speak of left   A - , right   B -bimodules [L3], [L4]; I call this a
module from A t o   B (although earlier names were "profunctor" and "distributor"

[Bu2]).  Provided   V is suitably cocomplete, there is a bicategory    V -Mod whose objects are

  V -categories and whose morphisms are modules.  This is not a 2-category (although it is
biequivalent to a fairly natural one) since the composition of modules involves a

colimit that is only unique up to isomorphism. The generalization    W -Mod for a base

bicategory   W was explained in [St14] and, using some monad ideas, in [BCSW].

Also in [BCSW] we showed how to obtain prestacks as Cauchy complete   W-
categories for an appropriate base bicategory   W .  This has some relevance to algebraic

topology since Alex Heller and Grothendieck argue that homotopy theories can be seen

as suitably complete prestacks on the category   cat of small categories. I showed in [St13]

(also see [St14] and [St29]) that stacks are precisely the prestacks possessing colimits

weighted by torsors. In [St12] (accessible as [St31]), I show that stacks on a (bicategorical)

site are Cauchy complete   W- categories for an appropriate base bicategory W .   

Earlier (see [St6] and [St9]) I had concocted a construction on a bicategory  K to obtain

a bicategory M such that, if   K is   V - Cat, then M is    W -Mod; the morphisms of M
were codiscrete two-sided cofibrations in   K .  I had used this as an excuse in [St9] to

develop quite a bit of bicategory theory: the bicategorical Yoneda Lemma, weighted

bicategorical limits, and so on. The need for tricategories was also implicit.  

The mathematical physicist John Roberts had asked Peter Freyd whether he knew

how to recapture a compact group from its monoidal category of finite-dimensional

unitary representations. While visiting the University of New South Wales in 1971,

Freyd lectured on his solution of the finite group case.  A decade and a half later Roberts

with Doplicher did the general case using an idea of Cunz: this is an analytic version of

Tannaka duality. In 1977-8, Roberts visited Sydney. He spoke in the Australian Category

Seminar (ACS) about non-abelian cohomology. It came out that he had worked on
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(strict) n-categories because he thought they were what he needed as coefficient

structures in non-abelian cohomology. In the tea room at the University of Sydney,

Roberts explained to me what the nerve of a 2-category should be: the dimension 2

elements should be triangles of 1-cells with 2-cells in them and the dimension 3

elements should be commutative tetrahedra.  Furthermore, he had defined structures

he called complicial sets: these were simplicial sets with distinguished elements (he

originally called them "neutral" then later suggested "hollow", but I am quite happy to

use Dakin's term [Dak] "thin" for these elements) satisfying some conditions, most

notably, unique "thin horn filler" conditions. The important point was which horns

need to have such fillers. Roberts believed that the category of complicial sets was

equivalent to the category of n-categories.  

I soon managed to prove that complicial sets, in which all elements of dimension

greater than 2 were thin, were equivalent to 2-categories. I also obtained some nice

constructions on complicial sets leading to new complicial sets. However the general

equivalence seemed quite a difficult problem.  

I decided to concentrate on one aspect of the problem. How do we rigorously define

the nerve of an n-category?  After unsuccessfully looking for an easy way out using

multiple categories and multiply simplicial sets (I sent several letters to Roberts about

this), I realized that the problem came down to defining the free n-category      On on the n-

simplex.  Meaning had to be given to the term "free" in this context: free on what kind

of structure? How was an n-simplex an example of the structure? The structure required

was n-computad. The definition of n-computad and free n-category on an n-computad is

done simultaneously by induction on  n (see [St17], [Pw1], [St21], [St22], [St29]). A n

element of dimension  n  of the nerve  N(A)  of an w-category  A  is an n-functor from

  On to  A.  Things began to click once I drew the following picture of the 4-simplex.
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I was surprised to find out that Roberts had not drawn this picture in his work on

complicial sets!  It was only in studying this and the pictures for the 5- and 6-simplex that
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I understood the horn filler conditions for the nerve of an n-category. The resemblence

to Stasheff's associahedra was only pointed out much later (I think by Jim Stasheff

himself). 

I think of the n-category      On as a simplex with oriented faces; I call it the   n
th

oriental.  The problem in constructing it inductively starting with small  n  is where t o

put that highest dimensional cell. What are that cell's source and target?  Even in the

case of    O4 above, the description of the 3-source and 3-target of the cell   01234( ) , in terms

of composites of lower dimensional cells, takes some work to write explicitly. To say a 4-

functor out of      O4 takes   01234( ) to the identity is the non-abelian 3-cocycle condition.

In mid 1982 I circulated a conjectural description of the free w-category   Ow on the

infinite-dimensional simplex; the objects were to be the natural numbers and   On would

be obtained by restricting to the objects no greater than  n.  The description is very

simple: however, it turns out to be hard even to prove Ow is an w-category, let alone

prove it free. 

The starting point for my description is the fact that a path in a circuit-free (directed)

graph is determined by the finite set of edges in the path: the edges order themselves

using source and target. The set must be "well formed": there should be no two edges

with the same source and no two with the same target. Moreover, the source of the path

is the unique vertex which is a source of some edge but not the target of any edge in the

set. What a miracle that this should work in higher dimensions.   

Meanwhile, on the enriched category front, Walters had pointed out that in order

for   W -Mod to be monoidal, the base bicategory W should be monoidal. You will recall

that, in order to define tensor products and duals for     V -categories, Eilenberg-Kelly [EK]

had assumed    V to be symmetric. In a talk in the ACS, Bob Walters reported on a

discussion Carboni, Lawvere and he had had about the possibility of using an Eckmann-

Hilton argument to show that a monoidal bicategory with one object was a symmetric

monoidal category in the same way that a monoidal category with one object is a

commutative monoid. It is perhaps not surprising that they did not pursue the

calculation to completion at that time since monoidal bicategories had not appeared i n

print except for the locally ordered case. I was so taken by how much I could do without a

monoidal structure on     W -Mod that I did not follow up the idea then either.   

Duskin returned to Australia at the end of 1983 and challenged me to draw     O6; this

took me a weekend.  The odd-faces-source and even-faces-target convention forces the

whole deal!  

By the end of 1984 I had prepared the oriented simplexes paper [St17].  My

conjectured description is correct. (Actually, Verity pointed out an error in the proof

written in [St17] which I corrected in [St23].)  The heart of proving things about  Ow is the

algorithm I call excision of extremals for deriving the non-abelian n-cocycle condition
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"from the top down". 

The paper [St17] has several other important features. Perhaps the most obvious are

the diagrams of the orientals; they resemble Stasheff associahedra with some oriented

faces and some commuting faces. I give the 1-sorted definition of w-category and show

the relationship between the 1-sorted definition of n-category and the inductive one i n

terms of enrichment. I make precise some facts about the category   w-Cat of w-categories

such as its cartesian closedness.  I say what it means for a morphism in an n-category to

be a weak equivalence.  

The paper [St17] defines what it means for an n-category to be free. I define the nerve

of an n-category and make a conjecture about characterizing those nerves as "stratified"

(or filtered) simplicial sets satisfying horn-filler conditions. The horns I suggested should

be filled were a wider class than those of Roberts' complicial sets; I called my horns

"admissible" and Roberts' "complicial".  However, I really believed the admissible horns

would still lead to complicial sets.  

That there is a weaker notion of n-category than the strict ones was an obvious

consequence of the introduction of weak 2-categories (bicategories) by Bénabou [Bu1]. I

later was reminded that Mac Lane, in 1969, had suggested tricategories as a possible area

of study [ML1]. As a kind of afterthought in [St17], I suggest a characterization of weak n-

categories as stratified simplicial sets with horn filler conditions. My intuition was that,

even in a strict n-category, the same horns should be fillable by only insisting that our

thin elements be simplexes whose highest dimensional cell is a weak equivalence rather

than a strict identity.  So the same horns should have fillers even in a weak n-category.

Of course, the fillers now would not be unique.

While travelling in North America, I submitted the preprint of [St17] to expatriate

Australian Graeme Segal as editor of Topology. I thought Graem might have some

interest in higher nerves as a continuation of his work in [Seg].  He rejected the paper

without refereeing on grounds that it would not be of sufficient interest to topologists. I

think this IMA Summer Program proves he was wrong. To make things worse, his

rejection letter went to the institution I was visiting when I submitted and it was not

forwarded to me at Macquarie University. I waited a year or so before asking Segal what

happened! He sent me a copy of his short letter.   

In April 1985, all excited about higher nerves, I began a trip to North America that

would trigger two wonderful collaborations: one with Sammy Eilenberg and one with

André Joyal. The first stop was a conference organized by Freyd and Scedrov at the

University of Pennsylvania. After my talk, Sammy told me of his work on rewriting

systems and that, in my orientals, he could see higher rewriting ideas begging to be

explained.  I left Philadelphia near the end of April as spring was beginning to bloom

only to arrive in Montréal during a blizzard. Michael Barr had invited me to McGill
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where Robin Cockett was also visiting. 

During my talk in the McGill Category Seminar, André Joyal started quizzing me on

various aspects of the higher nerves. We probably remember that discussion differently.

My memory is that André was saying that the higher associativities were not the

important things as they could be coherently ignored; the more important things were

the higher commutativities. In arguing that commutativities were already present in the

"middle-of-four interchange", I was harking back to Walters' talk about applying an

Eckmann-Hilton-like argument to a one object monoidal bicategory.  That night I

checked what I could find out about a monoidal object (or pseudomonoid) in the 2-

category of monoidal categories and strong monoidal functors. It was pretty clear that

some kind of commutativity was obtained that was not as strong as a symmetry.

When I reported my findings to André the next day, he already knew what was

going on. He told me about his work with Myles Tierney on homotopy 3-types as

groupoids enriched in 2-groupoids with the Gray tensor product. I told André that I was

happy enough with weak 3-groupoids as homotopy types and that ordinary cartesian

product works just as well as the Gray tensor product when dealing with bicategories

rather than stricter things. In concentrating on this philosophy, I completely put out of

my memory the claim that André recently reminded me he made at that time about

Gray-categories being a good 3-dimensional notion of weak 3-category. I believed we

should come to grips with the fully weak n-categories and this dominated my thinking. 

There had been other weakenings of the notion of symmetry for monoidal

categories but this kind had not been considered by category theorists.  I announced a talk

on joint work with Joyal for the Isle of Thornes (Sussex, England) conference in mid-

1985: the title was "Slightly incoherent symmetries for monoidal categories".  Before the

actual talk, we had settled on the name braiding for this kind of commutativity. I talked

about the a coherence theorem for braided monoidal categories based on the braid

groups just as Mac Lane had for symmetries based on the symmetric groups. 

After this talk, Sammy Eilenberg told me about his use of the braid monoid wi th

zero to understand the equivalence of derivations in rewriting systems. This was the

basis of our unpublished work some of which is documented in [ES]. We were going to

finish the work after he finished his books on cellular spaces with Eldon Dyer. 

I returned to Australia where Peter Freyd was again visiting. He became very excited

when I lectured on braided monoidal categories in the ACS.  He knew about his ex-

student David Yetter's monoidal category of tangles.  Freyd and Yetter had already

entered low-dimensional topology with their participation in the "homfly" polynomial

invariant for links.  By the next year (mid 1986) at the Cambridge category meeting, I

heard that Freyd was announcing his result with Yetter about the freeness of Yetter's

category of tangles as a compact braided monoidal category.  Their idea was that duals
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turned braids into links.      

In the mid-1980s the low-dimensional topologist Iain Aitchison (Masters student of

Hyam Rubenstein and PhD student of Robion Kirby) was my first postdoctoral fellow.

He reminded me in more detail of the string diagrams for tensor calculations used by

Roger Penrose. Max Kelly had mentioned these at some point, having seen Penrose

using them in Cambridge. Moreover, Aitchison [Ait] developed an algorithm for the

non-abelian n-cocycle condition "from the bottom up", something Roberts and I had

failed to obtain. He did the same for oriented cubes in place of oriented simplexes. The

algorithm is a kind of "Pascal's triangle" where a given entry is derived from two earlier

ones; the simplex case is less symmetric because of the different lengths of sources and

targets in that case. The algorithm appeared in combinatorial form in a Macquarie Math.

Preprint but was nicely represented in terms of string diagrams drawn by hand with

coloured pens.

Aitchison and I satisfied ourselves that the arguments of [St17] carried over to cubes

in place of simplexes but this was not published. That work was subsumed by my parity

complexes [St20], [St23] and Michael Johnson's pasting schemes [Jn2] which I intend to

discuss below.

Following my talks on orientals in the ACS, Bob Walters and his student Mike

Johnson obtained [JW] a variant of my construction of the nerve of a (strict)   n-category.

The cells in their version of     On were actual subsimplicial sets of a simplicial set and the

compositions were all unions; they thought of these cells as simplicial "pasting

diagrams".  The cells in my   On were only generators for the Walters-Johnson simplicial

sets and so, while smaller objects to deal with, required some deletions from the unions

defining composition. 

Around this time I set my student Michael Zaks the problem of proving the

equivalence between complicial sets and   w -categories. To get him started I proved [St19]

that the nerve of an   w -category satisfies the unique thin filler condition for admissible

(and hence complicial) horns. So nerves of   w -categories are complicial sets. Zaks fell i n

love with the simplicial identities and came up with a construction he believed to be the

zero-composition needed to make an n-category from a complicial set.  We showed that

this composition was the main ingredient required by using an induction based on

showing an equivalence

  
Cmpl -n

~- -Cmpl Catn 1

where the left-hand side is the category of n-trivial complicial sets; a stratified simplicial

set is n-trivial when all elements of dimension greater than  n  are thin. Zaks did not

complete the proof that his formula worked and we still do not know whether it does.

In 1990, Dominic Verity was motivated by my paper [St17] to work on this problem.

Unaware of [St19], Dominic independently came up with the machinery Zaks and I had
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developed.  By mid-1991 Dominic had proved, amongst other things, that the nerve was

fully faithful; he completed the details of the proof of the equivalence

  
w -Cat ~- Cmpl

in 1993; the details can be found in [V] (which appeared soon after the encouragement of

this Workshop).  

Knowing the nerve of an n-category, we now knew the non-abelian cocycle

conditions. So I turned attention to understanding the full cohomology.  The idea was

that, given a simplicial object  X  and an   w -category object  A,  there should be an   w -

category      H ( , )X A to be called the cohomology o f X  with coefficients i n A.  Jack Duskin

pointed out that this should be part of a general descent construction which obtains an

  w -category      DescC from any cosimplicial   w -category    C .  For the cohomology case, the

cosimplicial   w -category is    C = Hom X A( , ) taken in the ambient category.  Furthermore,

Jack drew a few low-dimensional diagrams.

It took me some time to realize that the diagrams Jack had drawn were really just

products of globes with simplexes. I then embarked on a program of abstracting the

structure possessed by simplexes, cubes and and globes, and to show the structure was

closed under products.  For his PhD, Mike Johnson was also working on abstracting the

notion of pasting diagram. In an ACS, I explained my idea about descent and gave an

overly-simplistic description of the product of parity complexes. By the next week's ACS

Mike Johnson had corrected my definition of product based on the usual tensor product

of chain complexes. The next step was to find the right axioms on a parity complex i n

order for it to be closed under product. For this I invented a new order that I denoted by a

solid triangle: let me denote it now by p .  I need to give more detail.

A parity complex is a graded set      dim : P æ Ææ N together with  functions

  -( ) -( ) æ Ææ √- +, : P Pfin ,

where    √finS is the set of finite subsets of the set  S,  such that  

  x y yŒ »- + implies    dim dimx y+ =1 .  

For  x  in the fibre    Pn we think of    x
- as the set of elements in the source of  x  and    x

+

as the set of elements in the target of  x.  For a subset  S  of    Pn ,  put  
    
S x

x S

e e=
Œ
U for

  e Œ + -{ }, . There are some further conditions such as

  x x- +« = ∆ ,        x x- + + -« = ∆ ,       x x- - + +« = ∆ ,       x x x x- + + - - - + +» = » .
These conditions imply that we obtain a positive chain complex  ZP  consisting of the

free abelian groups      ZPn with differential defined on generators by

  d x x x( ) = -+ -
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where we write  S  for the formal sum of the elements of a finite subset  S  of    Pn .   The

order    p on  P  is the smallest reflexive transitive relation such that

   x yp if either    x yŒ - or    y xŒ + .

The amazing axiom we require is that this order should be linear.

If the functions   -( ) -( ) æ Ææ √- +, : P Pfin land in singleton subsets of  P,  the parity

complex is a globular set which represents a globular pasting diagram.  As later shown by

Michael Batanin, these globular sets hold the key to free n-categories on all globular sets.

A very special globular pasting diagram is the "free-living globular k-cell";  it is a parity

complex      G
k with   2 1k + elements.

The original example of a parity complex is the infinite simplex    D[ ]w whose

elements of dimension  n  are injective order-preserving functions    x n: [ ] æ Ææ w ;  we

write such an  x  as an ordered (n+1)-tple    x x xn0 1, , . . . ,( ).  Also   ∂ - æ Ææi n n: [ ] [ ]1 is the

usual order-preserving function whose image does not contain  i  in  [n] = {0, 1, . . . , n}.

Then

  x x i oddi
- = ∂{ }: and       x x i eveni

+ = ∂{ }: . 

We obtain a parity complex    D[ ]k ,  called the parity k-simplex, by restricting attention to

those  x  that land in   [ ]k .  In particular,    D[ ]1 is the parity interval and also denoted by  I.

The product of two parity complexes  P  and  Q  is the cartesian product    P Q¥ with 

  dim , dim dimx y x y( ) = + and      x y x y x y m, ( )( ) = ¥ { } » { } ¥e e e

where    dim x m= and    e( )m is the sign  e when  m  is even and the opposite of  e when

m  is odd.  It can be shown that    P Q¥ is again a parity complex.  In particular, there is a

parity k-cube

    I I Ik
k

= ¥ ¥. . .
6 74 84

. 

There is a canonical isomorphism of chain complexes

    Z Z ZP Q P Q¥( ) @ ƒ .

A parity complex  P  generates a free   w-category    O P( ) .  The description is rather

simple because the conditions on a parity complex ensure sufficient "circuit freeness" for

the order of composition to sort itself out.  The detailed description can be found in [St20]

or [St29].

We shall now describe a monoidal structure on    w -Cat that was considered by

Richard Steiner and Sjoerd Crans.  It turns out that the full subcategory of    w -Cat,

consisting of the free   w - categories   
    
O I k( ) on the parity cubes, is dense in    w -Cat.  The

tensor product of the free   w - categories  
     
O I h( ) and   

     
O I k( ) is defined by
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O O OI I Ih k h k( ) ƒ ( ) = ( )+ .

This is extended to a tensor product on    w -Cat by Kan extension along the inclusion.  A

result of Brian Day applies to show this is a monoidal structure.  We call it the Gray

monoidal structure on    w -Cat although John Gray only defined it on    2 -Cat by forcing

all cells of dimension higher than 2  to be identities.  Dominic Verity has shown that, for

a wide class of parity complexes  P  and  Q,  we have an isomorphism of   w - categories

  O O OP Q P Q( ) ƒ ( ) @ ¥( ) .

These ingredients allow us to define the descent   w - category      DescE of a

cosimplicial   w - category    E as follows.  The functor    Cell Setn : w -Cat æ Ææ , which

assigns the set of n-cells to each   w - category,  is represented by the free n-category  
      
O Gn( )

on the n-globe;  that is,

     
Cell A An

n@ ( )( )w -Cat O G , .

From this we see that  
    
O Gn( ) is a co-n-category in   w -Cat.  Since the functor    - ƒ A

preserves colimits, it follows that  
    
O Gn A( ) ƒ is a co-n-category in    w -Cat for all   w -

categories  A.  In particular,

      
O O O O OG G Gn

m
n nm m( ) ƒ = ( ) ƒ @ ¥( )( )D D[ ] [ ]

is a co-n-category in    w -Cat.  Allowing  m  to vary, we obtain a co-n-category  
      
O Gn ¥( )D

in the category    D , w -Cat[ ] of cosimplicial   w - categories; so we define  

      
Desc nE O E= [ ] ¥( )( )D D, ,w -Cat G .

As a special case, the cohomology w-category of a simplicial object  X  with coefficients i n

an   w - category object  A  (in some fixed category) is defined by

    H ( , ) ( , )X A DescHom X A= .

During 1986-7, André Joyal and I started to hear about Yang-Baxter operators from

the Russian School. Drinfeld's lectured on quantum groups at the World Congress i n

1986. We attended Yuri Manin's lectures on quantum groups at the University of

Montréal.  My opinion at first was that, as far as monoidal categories were concerned,

braidings were the good notion and Yang-Baxter operators were only their mere shadow.

André insisted that we also needed to take these operators seriously.  The braid category

is not only the free braided monoidal category on a single object, it is the free monoidal

category on an object bearing a Yang-Baxter operator. While we were at the Louvain-la-

nerve category conference in mid-1987, Iain Aitchison brought us a paper by Turaev that

had been presented at an Isle of Thorns low-dimensional topology meeting the week

before. Turaev knew about Yetter's monoidal category of tangles and gave a presentation
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of it using Yang-Baxter operators.  I had the impression that Turaev did not know about

braided monoidal categories at the time.  All André and I had put out in print were a

handwritten Macquarie Mathematics Report at the end of 1985 and a typed revision

about a year later. 

I set my student Mei Chee Shum on the project of "adapting" Kelly-Laplaza's

coherence for compact symmetric monoidal categories [KL] to the braided case.  She soon

detected a problem with our understanding of the Freyd-Yetter result.  Meanwhile, Joyal

and I continued working on braided monoidal categories; there was a variant we called

balanced monoidal categories based on braids of ribbons (not just strings).  We started

developing the appropriate string diagrams for calculating in the various monoidal

categories with extra structure [JS1]; this could be seen as a formalization of the Penrose

notation for calculating with tensors but now deepened the connection with low-

dimensional topology. The notion of tortile monoidal category was established; Shum's

thesis became a proof (based on Reidermeister calculus) that the free tortile monoidal

category was the category of tangles on ribbons. Joyal and I proved in [JS2], just using

universal properties, that this category was also freely generated as a monoidal category

by a tortile Yang-Baxter operator.  In doing this we introduced the notion of centre of a

monoidal category  C :  it is a braided monoidal category  ZC .  This construction can be

understood from the point of view of higher categories. For any bicategory  D ,  the

braided monoidal category      Hom D D D D, ,( )( )1 1 whose objects are pseudo-natural

transformations of the identity of  D ,  whose morphisms are modifications, and whose

tensor product is either of the two compositions, might be called the centre of the

bicategory    D .  If    D is the one-object bicategory  SC with hom monoidal category  C

then      Hom D D D D, ,( )( )1 1 is the centre  ZC of  C in the sense of [JS2]. 

In statistical mechanics there are higher dimensional versions of the Yang-Baxter

equations.  The next one in the list is the Zamolodchikov equation.  I began to hear

about this from various sources; I think first from Aitchison who showed me the string

diagrams.  I talked a little about this at the category meeting in Montréal in 1991. This is

where I was given a copy of Dominic Verity's handwritten notes on complicial sets.

Moreover, Bob Gordon and John Power asked me whether I realized that my

bicategorical Yoneda lemma in [St9] could be used to give a one-line proof that every

bicategory is biequivalent to a 2-category. I remembered that I had thought about using

that lemma for some kind of coherence but it was probably along the lines of the Giraud

result that every fibration was equivalent to a strict one (in the form that every

pseudofunctor into   Cat is equivalent to a strict 2-functor). Gordon on Power had been

looking at categories on which a monoidal category acts and (I imagine) examined the

"Cayley theorem" in that context, and then realized the connection with the bicategorical

Yoneda lemma.  Since this coherence theorem for bicategories was so easy, we decided
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we would use it as a model for a coherence theorem for trictegories. Tricategories had

not been defined in full generality at that point. Our theorem was that every tricategory

was triequivalent to a Gray-category; the latter is a little more general than a 3-category

(there is an isomorphism instead of equality for the middle-four law). In fact, Gray-

categories are categories enriched in 2-Cat with a Gray-type tensor product. John Power

has briefly described at this conference the rest of the story behind [GPS] so I shall say no

more about that here.

Of course a tricategory is a "several object version" of a monoidal bicategory. The

need for tthis had already come up in the Australian School: a monoidal structure was

needed on the base bicategory    W to obtain a tensor product of enriched  W -categories.

Kapranov had also sent us rough notes on his work with Voevodsky (see [KV2], [KV3]

and [KV4]). Their monoidal bicategories were not quite as general as our one-object

tricategories but they had ideas about braided monoidal bicategories and the relationship

with the Zamolodchikov equation. Larry Breen and Martin Neuchl independently

realized that Kapranov-Voevodsky needed an extra condition on their higher braiding.

Kapranov-Voevodsky called Gray-categories semi-strict 3-categories and were advising

us that they were writing a proof of coherence; I do not think that ever appeared.

By 1993, with Dominic Verity and Todd Trimble at Macquarie University, many

interesting ideas were developed about monoidal and higher-order categories. Amongst

other things Verity contributed vitally to the completion of work I had begun with other

collaborators: modulated bicategories [CJSV] and traced monoidal categories [JSV].  Todd

was interested in operads and was establishing a use of Stasheff's associahedra to define

weak n-categories. He seemed to know what was going on but could not write the

general definition formally. I challenged him to write down a definition of weak 4-

category which he did [Tr] against his better judgement: it is horrendous. Moreover, at

Macquarie, Todd and Margaret McIntyre worked out the surface diagrams for monoidal

bicategories; the paper was submitted to Advances and is still in revision limbo. I should

point out that Todd was married just before taking the postdoctoral fellowship at

Macquarie University. His wife stayed in the U.S. with her good job. So it was natural

that, after two years (and only a couple of visits each way), he had to return to the U.S.

This left one year of the fellowship to fill. Tim Porter mentioned a chap from

Novosibirsk (Siberia).  So Michael Batanin was appointed to Macquarie and began

working on higher categories.

This brings me to the point of the letter John Baez and James Dolan sent m e

concerning their wonderful definition of weak w-category.  I think Michael Makkai

caught on to their idea much quicker than me and I shall skip over the history in that

direction.

I have learnt that when Michael Batanin comes to me starting a new topic with:
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"Oh Ross, have you . . . ?", that something serious is about to come. If it is mathematics,

it is something he has thought deeply about already.  A few months after he arrived at

Macquarie University, after returning to the Macquarie carpark from an ACS at Sydney

University, Michael popped me one of these questions: 

"Oh Ross, have you ever thought of the free strict n-category 

on the terminal globular set?" 

My response was that the terminal globular set is full of loops, so my approach to free n-

categories using parity complexes did not apply. The loops frankly scared me! Soon after,

Michael described the monad for w-categories on globular sets.  The clue was his answer

to the carpark question: it involved plane trees which he used to codify globular pasting

diagrams. Then the solution is like using what I tell undergraduates is my favourite

mathematical object, the geometric series, to obtain free monoids.  

Batanin's full fledged theory of higher (globular) operads quickly followed,

including the operad for weak w-categories and the natural monoidal environment for

the operads; see [Ba1] and [St25].  He also developed a theory of computads for the

algebras of any globular operad [Ba2]: the computads for weak n-categories differ from

the ones for the strict case since you need to choose a pasting order for the source and

target before placing your generating cell. (Verity's PhD thesis had a coherence theorem

for bicategories that pointed out the need for this kind of thing.)

Let me finish with one further development I see as a highlight and a reference

which contains many precise details of topics of interest to this conference. The

highlight, arising from the development of the theory of monoidal bicategories jointly

with Brian Day, is the realization of the connection among the concepts of quantum

groupoids, *-autonomy in the sense of Michael Barr, and Frobenius algebras (see [DS4]

and [St30]).  The reference for further reading is [St29] which I prepared for the

Proceedings of the Workshop on "Categorical Structures for Descent and Galois Theory,

Hopf Algebras and Semiabelian Categories" at the Fields Institute, Toronto 2002; it

represents an improved and updated version of notes of three lectures presented at

Oberwolfach in September 1995.    
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