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Abstract

There is a construction which lies at the heart of descenttheory. The combinatorial
aspects of this paper concern the description of the construction in all dimensions. The
description is achieved precisely for strict n-categories and outlined for weak n-
categories. The categorical aspects concernthe development of descent theory in low
dimensions in order to provide a template for a theory in all dimensions. The theory
involves non-abelian cohomology, stacks, torsors, homotopy, and higher-dimensional
categories. Many of the ideas are scattered through the literature or are folklore; a

few are new.
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1. Introduction

Descent theory, as understood here, has been generalized from a basic example

involving modules over rings. Given a ring morphism f:R——S5, each right R-module

M determines a right S-module M®g;$S. This process is encapsulated by the
“pseudofunctor” Mod from the category of rings to the category of (large) categories; to

each ring R it assigns the category ModR of right R-modules and to each morphism f
the functor —®g S : ModR —— ModS. The reason that Mod is not quite a functor is that

the composite of ring morphisms is not taken precisely to the composite of the functors,
but only up to a well-determined isomorphism. Descent data come into play when we
contemplate what is needed on aright S-module N in order that it should be isomorphic
to M®g S for some M.

The author’s interest in pseudofunctors was aroused many years ago by their
appearance in group cohomology as “factor systems”. It seemed inevitable that one day we

would need to study even higher-dimensional weakenings of composition preservation:
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up to isomorphism, then up to equivalence, and so on. Then Ilearned from John Roberts
that cohomology itself dealt with higher-dimensional categories (where there are not only
morphisms, but morphisms between morphisms — called 2-cells, and so on) and higher
functors between them. He suggested studying higher-dimensional categories as the
coefficient objects for non-abelian cohomology (see [Rts]). I was really taken by this idea
which led to my work (see [St5]) on making a precise definition of the simplicial nerve of a
strict higher category.

There are various possibilities for what we might mean by higher-dimensional
categories. Initially we will concentrate on the strict ones called n-categories. While these
were originally defined by Charles Ehresmann, let us recall how they were defined
inductively by Eilenberg and Kelly [EK] in terms of hom enriched categories.

For any symmetric monoidal category %, there is a symmetric monoidal category
V -Cat whose objects are categories with homs enriched in ¥; that is, 7-categories. (We
will need enriched categories again later on; suitable references are [Ky]and [Bo; Chapter 6].)
Starting with the category Set of sets using cartesian product for the monoidal structure,
we can iterate the process ¥ > ¥ -Cat yielding the following sequence of definitions:

Set, Cat:=Set-Cat, 2-Cat:= Cat-Cat, 3-Cat:= (2-Cat)-Cat
all terms having cartesian product as monoidal structure. Sets are called 0-categories,
categories are called 1-categories, and, as we have indicated, objects of (Set-Cat)-Cat are
called 2-categories; and so on. Each set can be regarded as a discrete category so there are
inclusions
SetcCatc2-Catc3-Catc... .

The union of this chain is the category - Cat of (strict) w-categories .

When 7 is closed, it is enriched in itself. Each n-Cat is cartesian closed and hence

n - Cat is itself naturally an (n+1)-category.
The n-cells in an -category can be defined recursively: the 0-cells of a set are its

elements; the (n + 1)-cells of A are the n-cells of some hom n-category Af(a,b) for a, b
objects of A. Itis an important fact that n-categories are models for a finite-limit theory, in

fact, a 1-sorted finite-limit theory where the one sort is “n-cell”. In particular, this means

that we can model n-categories in any finitely complete category £.

Cohomology involves a “space” and a coefficients object. A fairly general notion of
space is a simplicial object in some category E. For example, in combinatorial homotopy
theory, simplicial sets can act as spaces. In topos theory, the topos E itself is a generalized
space; however, to calculate the cohomology of % we consider hypercovers; these are

particular kinds of simplicial objects of £

' Although sometimes something a bit bigger than this union is given that name; as in [St5].
The term “eo-category” is also used.
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Let A denote the usual topologists’ simplicial category; that is, the category of non-

empty finite ordinals and order-preserving functions. Consider a “space” R which we
consider to be a functor R:A°® —— C of C (that is, a simplicial object of C) and
consider a coefficients object A which is an ®-categoryin C. Form the functor C(R,A) :
A—— o-Cat. We wish to construct the cohomology w-category H(R,A) of R with

coefficients in A. Some people would call this the “cocycle w-category” rather than
cohomology, but the spirit of category theory has it that our interest in cells of any -
category is only up to the appropriate equivalence, and this very equivalence is the
appropriate notion of cobounding.

Jack Duskin pointed out to me (probably in 1981, but not formally documented by him

until [Dn3]) that the construction, called (lax) descent, should be done for any cosimplicial

o-category E:A—— o-Cat and should yield an w-category DescE. He proceeded to

draw the diagrams for this construction in low dimensions. These diagrams are
reproduced in Section 1. It then became a combinatorial challenge to make the general
definition precise for all dimensions.

It was immediately clear that the objects of DescE were related closely to the

th oriental is

“orientals” that I had introduced to define the nerve of an w-category. The n
the “free n-category on the n-simplex”. It took me quite a bit longer (surprisingly in
retrospect!) to realize that the higher cells of DescE were based on the products of
simplexes with “globes” (an n-globe is a “free living n-cell”).

This led me to abstract the properties of simplexes that allowed the construction of
free n-categories thereon. The result was the combinatorial notion of parity complex which
I wanted to be closed under product. Meanwhile Michael Johnson and Robert Walters [JW]
were taking a new approach to the orientals, and, in his PhD thesis, Johnson abstracted the
combinatorial notion of pasting scheme; see [Jn]. When I presented my ideas about descent
and parity complexes in an Australian Category Seminar, I gave a simplistic suggestion for
the product of two parity complexes. The very next week, Johnson had the correct
construction. I was able to prove that parity complexes were closed under product. This
involved the invention of a new order, called the “solid triangle order”, on the elements of
a parity complex.

We shall describe all these combinatorial matters in the present paper. We shall show
how they lead to a precise definition of DescE.

This paper started as a revised version of my Oberwolfach notes [St8]. However, quite
a lot has happened since then. Most significantly there have been announcements of many
competing definitions of weak n-category: see Leinster [Lr]for a readable discussion of most

of the approaches to date. The path towards comparison of the approaches is being trod.
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These developments present a further combinatorial challenge: how to construct
cohomology with weak n-categories as coefficients. We shall provide some indication of
an approach to this involving ideas of Batanin on computads.

Apart from the combinatorics establishing definitions and constructions, there needs
to be a fully fledged theory of descent. This is worked out fairly well in what we would call
dimension 2. So many of the sections of this paper are concerned with that. Itis intricately
related with the theory of stacks (champs in French) begun by Giraud [Gd2].

2. Low-dimensional descent

In broad terms descent is about the higher categorical notion of limit. When an n-
category B isalimit of a diagram £ of n-categories, we can determine what data we need

from the diagram £ to “descend” to a cell of ‘B, uniquely up to the appropriate kind of
equivalence.

For example, when n =0, we know what it means for a set B to be the equalizer of a
diagram £ consisting of two functions d;, and d; with the same domain %, and
codomain ;. An element F of %, descends to a unique element of B if and only if
doF = o4F.

The example can be made slightly more complicated. Suppose we have a diagram E :

do

—
S —
1

and a morphism p: E; ——B in a category C. For any object X of C, we can take the set

B to be the homset C(B,X) and the functions 9y and d; tobe C(dy,X) and C(dy,X). If
p exhibits B as the equalizer of £ = C(E,X), we may say that X sees B as a coequalizer
of E. If this is true for all X, we might say that B is the codescent object of the diagram E.
Alternatively, if E is the kernel pair of p, an X for which this is true is called a sheaf for

the cover p: Ej——B of B.

Now let us look at n = 1. The construction of general limits of categories can be
broken into various steps just as the limits of all diagrams of sets can be constructed from
products and equalizers. The analogue of equalizer is what is called the descent category
DescE of a diagram E of the form

) )

Ey el U E,
J1 97

satisfying the usual identities for a truncated cosimplicial category:



as ar = ar as_l for r<s and 19 80 =1p 81.
The objects of DescE are pairs (F, f) where F is an object of £, and f: 0;F —— 9 F is

a morphism of ‘; satisfying the conditions that 14f is the identity morphism of F and

that d;f is the composite of d,f and dyf (a commutative triangle). A morphism
u:(F,f)—>(G,g) in DescE is a morphism u:F——>G in %, such that
dou o f = godju. Composition of morphisms in DescE is asin E,.

In particular, for categories 4 and X, the functor category [/‘2[,)(] (whose objects are
functors A——X and whose morphisms are natural transformations) is the descent

category for the cosimplicial category obtained as follows. The nerve Ner4 of A4 is the

simplicial set which begins

where obA, arA4 and cpA are the sets of objects, arrows (= morphisms), and composable
pairs of arrows of A, where the left-hand functions d,, iy, and d; assign codomain,
identity arrow, and domain to each arrow, object, and arrow, and where the right-hand d;
assigns the composite to each composable pair of arrows. We can regard each set S as a

discrete category; then [S,.X]| is the category of S-indexed families in X. The cosimplicial

category we want is [Nerﬁl,X]. We leave it as an exercise (although one can see a
generalization in the proof of Proposition 3) to verify that there is an isomorphism of
categories:

Desc[Ner4, X]| = [4,X].
Because this holds naturally for all categories X, we can re-interpret this isomorphism as

saying that A is the codescent category of NerA, showing that every category is obtained
by codescent from a cosimplicial set.

The reader will need to know a little about 2-categories and (especially for the n = 2
case below) about pasting; an appropriate reference is [KS].

Suppose we have a truncated simplicial diagram E :

dg do
E2 4 El R E 0
dp d;

and a morphism p: E; ——B in a2-category C. For any object X of C, we can take the

category B to be the homset C(B,X) and the functions 9, and 1, tobe C(d,,X) and
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C(i,,X). If p exhibits B asthe descent categoryof £ = C(E,X), we may say that X sees

B as a codescent object of E. If this is true for all X, we might also say that B is the
codescent object of the diagram E. Alternatively, if E is the simplicial kernel of p (thatis,
E; =Eyxg Ey is the binary product of p with itself in the slice 2-category C /B, and

E, =E; xg Eg xg Eq is the ternary product, where the morphisms d, are the projections)

an X for which this is true is called a stack for the cover p: Ej——B of B.

Now let us look at n =2. We shall describe the descent 2-category DescE of a

truncated cosimplicial 2-category E:

_ 9 %
do 5 ) 8—1>
Foe"—F % 4 F, %, "I, .
% | T
_h ., T

The objects (F,f,¢) consist of an object F of E,, amorphism f:d;F —— d;F of Z for
which has 1yf=1g, and a 2-cell
0qf

Jo

9,f dof
azaoF = aoalF

azalF = 8181F

alaoF = aoaoF

of E, which has 1y¢=1; and 1;¢=1; and is such that the following equation between

pasting composites holds in ‘E5:

910} Jo20
Jaso 90|}

(a commutative tetrahedron). The morphisms (u,v):(F,f,¢) —>(G,g,\|l) consist of a

morphism u:F —— G in £, and a 2-cell



alu U V aOu

&
of ‘E; which has 1yv =1, and is such that the following equality (a commutative

triangular cylinder) holds in Z,.

oyf oyf
Uo
a>\\ aof 811) U
8281u aoaou — alalu alaou
'U'a2u aOD'U' 81g

SNPEE o e

Composition of morphisms uses composition in £, for the first component and vertical

stacking of the 2-cells in ‘E; for the squares in the second component. The 2-cells
o: (u,v)=(v,v): (Ff0) —> (G,g ) arejust 2-cells a:u=v:F — G in £, such

that the following equality (a commutative circular cylinder) holds in Z;.
f f

alv g 81u U L aou

dpo
o1V v dgV & dou

) )
The compositions of 2-cells are those of ;.

Generally then, we begin with a cosimplicial w-category £ (which is simply a functor

E: A——>m-Cat where A is the (topologists’) simplicial category whose objects are the

non-empty finite ordinals) and hope to produce a descent w-category DescE. The purpose
of this paper is to make this construction precise for the case of strict m-categories, to suggest
a precise construction in the case of so-called weak w-categories, and to indicate some

reasons why the construction is important.

3. Exactness of the 2-category of categories
At the heart of modern algebrais the following exactness property of the category Set
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of sets. Every morphism factors, uniquely up to isomorphism, as a composite of a
surjective morphism followed by an injective morphism, and the surjective morphisms
are precisely those that occur as coequalizers.

When it comes to exactness properties of the 2-category Cat of categories, there are
numerous possibilities. In particular, we may be interested in studying Cat as a mere
bicategory in the sense of Bénabou [Bu] and work only with objects of Cat up to
equivalence. However, for the moment, we wish to regard it as a (strict) 2-category and

work up to isomorphism. The factorization we wish to highlight involves expressing each

functor f: A——B as acomposite of functors s:A——>C and j:C——B where s is
bijective on objects (b.o.) and j is fully faithful (f.f.).

This defines a factorization system on the category Cat.’ For a given functor f, to
produce such a factorization, define C to have the objects of A and the homs
C(a,a’) = B(fa,fa’); then in fact s is the identity on objects and j is the identity on homs.
Moreover, given a commutative square of functors

S
A——>8B

C——>=D

]

7

if s isb.o.and j is f.f. then there exists a unique functor w:B——C with jw=v and

w s =u; for fixed sand j, and varying u and v, we call this the diagonal fill-in property.

This last property can be expressed by saying that the square

per )

[s, C]l l [s,D]

A,Cl—|AD
ACH— = lAD)

is a pullback after applying the functor ob:Cat—— Set. Actually, this last square is a
pullback already in Cat. It follows that a functor s: A——C isb.o.if and only if it has the

diagonal fill-in property for all f.f. j:C——B.

On the other hand, given s, j, u, v as above, butinstead of ju=vs, merely an

isomorphism 6 :ju = vs, one finds that there is a unique pair w:B——C, 1:jw=v

2 There are many factorization systems on the category of categories, some of the others are also quite useful:
see [SW] and [CJSV] for examples.
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such that ws=u and 1ts= o. This implies that the last displayed square of functor
categories is a pseudopullbackin Cat as well as a pullback (see [JS4]).

One might feel that the b.o. functors are not the correct higher version of surjective
function since a b.o. functor between discrete categories is not merely surjective but an
isomorphism. This is where the bicategorical view of Cat plays its role. We call a functor

f: A——B essentially surjective on objects (e.s.0.) when, for all object b of B, there exists

an object a of A and an isomorphism fa = b. Clearly an e.s.o. functor between discrete
categories is precisely a surjective function. However, every e.s.o. functor f is equivalent
to a b.o. functor; indeed, factorize f =j s with s b.o. and j Lt then f e.s.o. implies j is
an equivalence. This means that, when regarding Cat as a bicategory, the b.o. functors are
indistinguishable from the e.s.o. functors.

Now we turn to the main aspect of exactness: the higher analogue of surjective

functions being coequalizers.

Proposition 3 A functor is bijective on objects if and only if it exhibits its codomain as the

(2-categorical) codescent category of some simplicial category.

Proof Suppose p:Ey——B exhibits B as the codescent category for a simplicial

category E. This means that, for all categories X, the functor p induces an isomorphism
of categories

[B,X] = Desc[E,X].
We show that p isb.o. byshowing it has the diagonal fill-in property with respect to all f.f.

j:C——D. This amounts to showing that the square

Desc[E,C] —= Desc[E, D]

L

[Bo- €I 5 LoD
is a pullback at the level of objects, where the vertical functors are the obvious forgetfuls.
An object of Desc[E,D]| consists of a functor g:Ej——D and a natural transformation
v:gd;——gd, satisfying conditions. So an object of the pullback consists of such data
together with an object h of [Ey,C] such that g=jh. Since j isf.f, there exists a unique

natural transformation x:hd;——hd, such that jkx=7y. Again, since j isff, h and

satisfy the descent data conditions required for h and % to be an object of Desc[E,C]. So

the square is indeed a pullback.



Conversely, for any functor s:A——B there is a “higher kernel” which is a
simplicial category E defined as follows. Put E,=A. Let E; be the comma category s s

(in the notation of Mac Lane [ML]): the objects are triples (al, sa, L>sa1, ao) where the

a, are objects of A and f is a morphism of B — the functor d, takes such a triple to a,
and the functor i, takesan object a of A to (a, sa#—ma, a) ; the morphisms of sls

are pairs of morphisms in A making the obvious square commute in B. Let E, be the

category we might call sl s{s: the objects are quintuplets

(az, sa, ﬁ%sal, aj, sa, B%sal, ao) .

Then there is an obvious natural transformation A:sd;——sd, equipping s with the

structure of an object of Desc[E,B]. (Notice that, if s is an identity-on-objects functor from
a discrete category, then E is the nerve NerB of B.)

We claim that s exhibits B asthe codescent category of E if s isb.o. To see this take

any category D and an object g, y:gd;——gd, of DescE,D]. We shall define a functor
h:B——>D wunique with the property that hs =g and hXA =7y. On objects we put

hb=gs™'b. Each morphism PB:b;——b, gives an object e = (s_1 by, B, s bo) of sis

and we define hp = vy,. The descent conditions imply that h is indeed a functor as
required. Q.E.D.

The final aspect of exactness of Cat that we wish to point out (making the situation
much like that in a regular category in the sense of Barr [Br])is the simple observation that
the pullback of a b.o. functor along any functor is b.o. (After all, pullbacks in Cat are
preserved by the set-of-objects functor.) There is a bicategorical analogue of this: the

pseudopullback of an e.s.o. functor along any functor is e.s.o.

4. Parametrized categories

We are interested in 2-categories of categories varying over some fixed category C.

For our purposes we take a category varying over C to be a pseudofunctor

X : C°* ——Cat (thatis, a homomorphism of bicategories in the sense of [Bu]); a functor

preserves composition and identities on the nose, whereas a pseudofunctor only preserves
them up to coherent natural isomorphism. Between pseudofunctors there are
pseudonatural transformations: these have isomorphisms in the naturality squares which
satisfy the obvious coherence conditions.

We should explain a little of the folklorical intuition behind such pseudofunctors.
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Suppose C is a category of sets in some universe such that C is actually an object of Cat.

Suppose we are interested in studying categories of mathematical structures based on thx
sets in C. For example, we would be interested in the category GpC of groups whose

underlying sets are in C. Then we have no problem speaking of families of such groups

parametrized by sets I belonging to C: they are merely functors I—— GpC. We actually

have a functor [-,GpC]: C°P——Cat taking I to [I, GpC]. Notice that [I, GpC] is
equivalent to the category Gp(C /I) of groupsin the slice category C/I. The assignment
I Gp(C /1) becomes the object function of a pseudofunctor pseudonaturally equivalent
to [— ,GpC ]

Suppose now that C is the category of topological spacesin the universe mentioned

above. One can certainly consider the category GpC of topological groups (in the

universe). However, in doing this, we are availing ourselves of nothing more than usual

category theory. We wish to take advantage of parametrization by objects I of C. There is

no obvious topology on the set of objects of GpC so a functor I—— GpC makes no use

of topology; this time we do not have a functor [— , GpC] : C°? ——Cat available to us.

A useful notion of topological group parametrized by I isa groupin C /I, and we do still

have a pseudofunctor Gp(C/-): C°° ——Cat. In the language of parametrized category
theory (in the terminology of [SS], or “indexed” category theory [PS], [Je]) over C, the
pseudofunctor Gp(C/-) isthe category of groups. We should point out here that groups

give a slightly false impression of the general case since they are models of an algebraic
theory — the axioms are equational. When the structures are defined using richer logic
(fields or local rings, for example), it is not sufficient to take mere models in the slices C /1.

Another good reason for looking at pseudofunctors is provided by Heller [Hr] who
defines a homotopy theory to be a pseudofunctor T : C°? ——Cat where C is the
category of categories in the universe we have been using above. There are some axioms
on such a homotopy theory T including the condition that, for each morphism f of C,

the functor Tf should have both adjoints. For example, let 7 be the category of

topological spaces in the universe and define TC to be the homotopy category (inverting
the obvious weak homotopy equivalences) of the functor category [C, 7]. The adjoints of
Tf are given by left and right homotopy Kan extensions along f. In other words, rather

than considering the mere stagnant homotopy category T1 of 7 with its unattractive

categorical properties, we consider the whole pseudofunctor T which, as a category

parametrized by C, turns out to be nicely complete and cocomplete.
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Let C be any finitely complete category and put
F = Hom(COP,Cat),

the 2-category whose objects are pseudofunctors, whose morphisms are pseudonatural

transformations, and whose 2-cells are modifications (for example, see [KS] for precise

definitions). The objects of ¥ are to be thought of as large categories parametrized by C.

A category in C can be defined to be a simplicial object A: A’ ——C of C such
that, for all objects U of C, the simplicial set C(U,A) is the nerve of a category. Note that
we are using the convention that dy:A;——A, is the codomain morphism and
d;:Aj——A, is the domain morphism for A aswhen we were defining the nerve of a

category. A functor between categories in C is a simplicial map in C. Natural
transformations in C are defined in the obvious way yielding a 2-category CatC of

categories in C. Each object C of C gives a discrete category in C; itis the constant

functor A°° ——C at C. In this way we regard C as a full subcategory of CatC. The

opposite A°P of a category A in C is obtained by composing A: A’ ——(C with the

functor A —— A which reverses the order on each ordinal.

Each category A in C gives a functor C(—,A): C°? ——Cat. Any pseudofunctor

pseudonaturally equivalent to such a functor C(—,A) is said to be an essentially small
object of ¥ This defines a Yoneda-like 2-functor CatC —— ¥; since it is a fully faithful

2-functor, we identify categories in C with their image under it.

A Yoneda-like argument proves an equivalence of categories

F(U,X) = XU
which is actually pseudonatural in objects U of C. This shows that every pseudofunctor
X is equivalent in the 2-category F to a 2-functor F(-,X).

Given X in ¥ and a category A in C, we obtain a cosimplicial category

A A C°P F(=X) Cat .

Moreover, F(A,X) is isomorphic to the descent category for this cosimplicial category.

A pseudofunctor

£ : A——>Cat

might be called a pseudocosimplicial category : the cosimplicial identities only hold up to

coherent isomorphisms. By incorporating these isomorphisms into the definition, it is
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possible to define a descent category Desc,E for any pseudocosimplicial category Z.

Indeed, if £’ is a cosimplicial category equivalent to £ then there is an induced

equivalence of categories

Descpf =~ Desc ‘E’.

This shows that, from the bicategorical point of view, the two constructions are

indistinguishable when both can be made.

Returning to X in ¥ and the category A in C, we obtain a pseudocosimplicial

category XA and a generalized Yoneda-like equivalence
F(A,X) = Desc,(XA).

The 2-category ¥ is complete and cocomplete as a bicategory. Actually, it admits what
are called pseudolimits and pseudocolimits; these can be calculated pointwise in Cat.
Without going into too much detail: equalizers and pullbacks are not pseudolimits
products, pseudopullbacks, comma categories, Eilenberg-Moore-algebra constructions, and

descent categories are. For example, suppose we have morphisms

Xt 78y

in % We can form both the comma object fl g and the pseudopullback P of f and g as

objects of ¥; it is done by forming the comma categories componentwise:

and PU is the full subcategory consisting of the objects

(xeXU, fo—€—>gUy, erU)
with C invertible. Because in these definitions we are not asking any objects to actually be
equal, both flg and P can be defined on morphisms of C making them objects of %

There are pseudonatural projections p:flg——>X and q:flg—>Y with

component at U taking (x,{,y) to x and y, and a modification A:fp——>gq with
component at U having component { at (x,{,y).

Suppose X is an object of F and we have an object x of XU and an object y of XV
which we identify with morphisms x:U——X and y:V——X in ¥ (with U and V
in C). The hom of x and y is thecomma object xly. We say the hom is small when

x|y isessentially small. In this case there is a span U«E—X(x,y)——=V in C which is

equivalent in ¥ to U«P—xly—15V. We call x:U——X (left) homly when the hom

of x and y issmall for all y:V——X. (Ihave used the word “admissible” in the past but
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this was met with objections!) A morphism f:Z——X in # is called homly when, for
all z:U——>Z with U in C, the composite fz:U——X is homly.

A functor p:E——A between categories in C is said to be a discrete fibration when
the commutative square

P1

E,L— Ay

o e

Ep———= A

Po
is a pullback in C. The composite of two discrete fibrations is a discrete fibration. A

discrete fibration into a discrete category has discrete domain; every morphism of C is

such. For any functor f:B——A in C, the pullback of a discrete fibration p:E——A
along f is a discrete fibration p;:E;——B. A functor q: E ——B between categories

in C is called a discrete opfibration when q°P : E°? ——B°P is a discrete fibration.
There is a two-sided version of discrete fibration. A span
A« _E35B
in CatC is called a discrete fibration from A to B when, in the diagram below, where the

diamonds are pullbacks, pi,: E, —— A is a discrete fibration and qi,: E; —B isa

/\/\30@
N

When B is discrete, this reduces to the requirement that p should be a discrete fibration.

discrete opfibration.

For all functors u:A——C and v:B——C in C the span A« —ulv— 5B isa
discrete fibration from A to B.

Let A bea categoryin C. We shall define an object PA of ¥ called the presheaf
object of A. For each object U of C, the category (PA)U has as objects discrete fibrations

(p,E,q) from A to U (sometimes written in abbreviated notation as E). We make PA

pseudofunctorial by using pullback: thatis, for u:V——>U, define (PA)u to take

(p,E.q) to (pu’,E’,q’) where E’ is the pullback of q and u with projections u’ and q’.
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invertible where the first map is the inclusion of the pullback X of (E_l)_1 and (E_r)_1 over E_0 into E_2 and where the second map is
composition in E.



There is a yoneda morphism y, : A—— PA whose component at U takes acAU

to the span
AP -Ala—5U
obtained as the comma object of 1,: A——> A and a: U—— A in CatC. The fact that

the yoneda morphism is f.f. follows from the following “Yoneda lemma” in CatC.

Lemma4.1 Suppose a:B——A is a functor between categories in C and E is a discrete

fibration from A to B. Then there is an isomorphism between the category of span

morphisms from Ala to E and the category of span morphisms from (a,B,1g) to E.
The isomorphism is given by composing with the right adjoint i:B——>Ala of q

Ala B
P \l\ p
A/ fl B / i

A morphism u:W——>U in C issaid to bepowerful (or “exponentiable”) when the
functor C/U——C, taking K——U to the pullback Kxy W, has aright adjoint. This
is equivalent to asking that the functor C/U——C/W, taking K——U to
Kxy W—— W, have a right adjoint. It is also equivalent to the requirement that the

functor C/U——>C /U, defined by taking binary product with the object u of C/U,

should have aright adjoint (so that u can be used as a power for cartesian exponentiation
in the category C/U). Any pullback of a powerful morphism is powerful and any
composite of powerful morphisms is powerful. Every morphism in a topos is powerful
and the powerful morphisms in Cat were characterized by Giraud [Gd1]and Conduché
[Cé]; it was extended to categories in a topos by Johnstone [Je].

To see the relevance of the powerful morphisms, consider the special case of PA

when A is the terminal object 1 of C. Then (P1)U is the slice category C/U.

Morphisms x:U——P1 and y:V——>P1 in ¥ can be identified with morphisms

x:5——>U and y:S——>V in C If x:5——>U is powerful then so too is the

morphism xXxV:SxV——=UxV; so the internal hom of the objects
xXV:SXxV——UxV and Uxy:UxT——UxV

of C/UxV exists. This provides the span U«Et—(P1)(x,y)—1>V as in the definition
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of small homs. It follows that the powerful morphisms x:S5——U are the homly objects

of (P1)U. With a little more work one can show that:

Proposition 4.2 If A isa category in C and (p,E,q) is an object of (PA)U for which

qo : B —U is a powerful morphism of C then (p,E,q) is homly.

Corollary 4.3 The yoneda morphism of A is homly if dy: A —— Ay is powerful.

Recall that, in any bicategory X, a diagram
A —> B
\:> /
is said to exhibit k as aleft extension of h along j when, for all morphisms g:B——X,
the function
K(B,X)k,g) —> K(A,X)(h,gj), © - Ojok

is a bijection. Assume X admits all comma objects. The diagram is said to exhibit k as a

pointwise left extension of h along j when, for all s:C——B, the diagram

ils— 1 =

=y

A@B

exhibits ks as a left extension of hp along q. It can be shown that pointwise left

extensions are indeed left extensions. For K= Cat, a left extension of h along a functor

into 1 gives the colimit of h; and Lawvere’s colimit formula for the left Kan extension is
obtained from the pointwise condition with C =1. For K= % to test whether a left
extension is pointwise, it suffices to take C in C.

Suppose A is a categoryin C and E = (p,E,q) is an object of (PA)U. Let

f: A——X beamorphism in % The colimit of f weighted by E is the pointwise left

extension col(E,f) : U——X of fp along q (see the diagram below); sometimes we

identify col(E,f) with the corresponding object of XU.
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q

E————=U

K
P \L = i col(E, f)

A—_ X

f

We call an object X of ¥ (small) cocomplete when col(E,f) exists for all categories A in

C, all Uin C all E in (PA)U, and all f: A—X.

Proposition 4.4 For all categories B in C, the presheaf object PB is small cocomplete.

Proof The category of discrete fibrations from B to A is equivalent to # (A, fPB) ; given a

discrete fibration (p,F,q) from B to A, there is a corresponding f: A——PB whose

component at U takes each a:U——A to the discrete fibration from B to U defined by

pulling back q and a. To obtain the colimit of f weighted by a discrete fibration E from
A to U, one merely composes F from B to A with E from A to U toobtain EoF
from B to U. Then col(E,f) = EoF in PB. Q.E.D.

Suppose u:V——U is a morphism of C and X is an object of 7% If the functor

Xu:XU——>XV has a left adjoint Xu:XV——>XU then every morphism y:V——X
has a left extension along u ; to calculate it, we use the Yoneda-like correspondence to

identify y with an object of XV — then the left extension is the morphism U——>X

identified with the object ()A(u)y of XU. Conversely, if the left extension exists for all y

then Xu has a left adjoint. Pointwiseness of the left extension is equivalent to a so-called

Beck-Chevalley condition: for every pullback

in C the functor Xq has a left adjoint )A(q and the mate

N

Xq
XP————XW

XpT = T Xs
XV~ = XU
Xu

of the canonical isomorphism Xp.Xu = Xq.Xs is invertible.
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In fact, to have X such that each Xu:XU——>XV has a left adjoint and the Beck-
Chevalley condition holds is equivalent to having all pointwise left extensions existing for

morphisms into X along morphisms in C. It is reasonable to sayin this case that X has
small coproducts. (Compare the case of Cat where all Kan extensions into X exist along

functors between small discrete categories if and only if X admits all small coproducts.)

Proposition4.5 If X : C°°* ——Cat is a functor that has small coproducts as an object of

F then, for every category A in C, the forgetful functor DescXA —— XA is monadic.
The underlying functor of the monad is the composite

Xd, Rd,

XA,

XA, XA,.

Proof The equation djiy=1 induces a natural transformation Xi, :>)A(d0 which then
restricts along Xd; to give a natural transformation m : Ixs, :>)/zd0 .Xd; (where we use
d;ip=1). Using the units of the adjunctions Xd;— Xd; and then those of the adjunctions

)A(doﬂ Xd, and )A(dzﬂ Xd,, we obtain a natural transformation

Ixa, = Xdy . Xdg . Xdp . Xd; . Xd; . Xd;.
Using the equations dyd;=dyd, and d;d;=d;d,, we see that the codomain of this
natural transformation is isomorphic to Xd;.Xd, .)A(do . Xd, .)A(dl .)A(dz and so, using

mates under the adjunctions )A(do% Xdy and )A(d2% Xd,, we obtain a natural

)A(do . Xd2 = Xdo )A(do . Xdl )A<d1 .
Since d; and d, exhibit A, asa pullbackof d;, and d;, the Beck-Chevalley condition

gives )A(dO.Xdz = Xdl.)/ZdO. So we have a natural transformation
Xd;. Xdy = Xd, . Xd, . Xd; . Xd,

which has a mate p: )A(do . Xd;. )/Zdo Xd; = )A(do . Xd;. The functor )A(dO.Xdl becomes a

monad on the category XA, by taking m and p as unit and multiplication. An

Eilenberg-Moore algebra for this monad is an object x of XA, together with an action

()/zdo.Xdl)x ——x which corresponds under the adjunction )/deH Xd, to a morphism
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g : (Xd))x——(Xdy)x; the action conditions translate to the conditions that (x,&) should

be an object of DescXA. This defines an isomorphism between the category of Eilenberg-
Moore algebras and DescXA. Q.E.D.

5. Factorizations for parametrized functors
We shall make use of the exactness properties of Cat (see Section 3) carried over, in a

pointwise manner to ¥ = Hom(C Op,Cat). Consider first the factorization into b.o. and f.f.

Let f: X—— Y beany morphism of % We can factorize each component functor

fy : XU —— YU into a composite of a b.o. sy : XU —— ZU and {.f. jy:ZU —— YU.

We would like to make Z into an object of ¥ ; that is, a pseudofunctor. For all

u:V——>U in C, we have an isomorphism

which, by the 2-categorical diagonal fill-in property, is equal to

S
XU— Y 70 = YU

o w2 |w

XV——> 7ZV ——> YV
Sv Jv

=1

for a unique functor Zu and isomorphism j,, where the left square commutes. Using
the uniqueness of this kind of fill-in, we see that Z becomes a pseudofunctor and that
s:X——>Z and j:Z——>Y become pseudonatural; in fact, each s, is an identity
(that is, s is strict).

In summary, every morphism f of ¥ has the form f=js where s is pointwise b.o.

and strict, and j is pointwise f.f. From the bicategorical view, this is much stricter than we

need. Let us recall the bicategorical notion of factorization system.
Suppose M is a bicategory with two distinguished classes § and J of morphisms.

We call the pair (S, J) afactorization system on the bicategory M when

(i) each of § and 7 contains the equivalences and is closed under composition;
(ii) for each morphism f of M, there exist s in S, j in J and an isomorphism
f=js;
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(iii) foreach s : X—— K in Sand j: Z——Y in 7, the following square is

equivalent to the pseudopullback of the left and bottom sides.

MK, j)

M(K,2Z) M(K,Y)

M(S,Z)i = l M(s,Y)

The factorization system is called regular when the pseudopullback, along any
morphism, of a morphism in § is alsoin §.

For our prospective pointwise b.o./f.f. factorization system on ¥, condition (i)
already causes a problem since equivalences are not necessarily b.o. It is necessary (as

implied in Section 3) to allow the more general pointwise e.s.0o. morphisms in place of the

pointwise b.o. Let us call morphisms of ¥ b.o., es.o., orf.f. when they are pointwise so.

The analysis of Section 3 and the remarks at the beginning of this section make it easy

to see that the classes of e.s.o. and f.f. morphisms form a regular factorization system on F

as a bicategory. Notice that the pointwiseness of the morphism classes can be expressed by

the fact that, for U in C, the 2-functor
?.(U/ _) : .r]: —> Cat
preserves the bicategorical e.s.o./f.f. factorization (we use the Yoneda-like equivalence

between this 2-functor and evaluation at U). Moreover, the f.f. morphisms in ¥ can be

characterized as those morphisms j:Z——Y for which the functors

FX,j): FX, Z2)—> F(X,Y)

are fully faithful for all X in % The e.s.o. morphisms are not preserved by all F(X,-),

however, they do enjoy the codescent characterization:

Proposition 5.1 A morphism of F is (pointwise) essentially surjective on objects if and
only if it exhibits its codomain as the bicategorical codescent category of some

pseudosimplicial object of

Proof By using the factorization described at the beginning of this section, we can factor
each e.s.o.in ¥ into a pointwise b.o. followed by an equivalence. Since we are only
interested in ¥ as a bicategory, we can work with this pointwise b.o. s : X —— Z (which

can also be assumed strict). Now we can use pointwise the “generalized kernel”

construction in the proof of Proposition 3. Notice that the construction involves comma
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categories and the like which are pseudolimits and so create a simplicial object of % Since

the descent construction is a pseudolimit too, the codescent construction of our simplicial

object of ¥ is formed pointwise. It therefore follows from Proposition 3 that s induces an
isomorphism of Z with the codescent object.
The converse also follows from Proposition 3 and the pointwise nature of the

codescent construction. Q.E.D.

Suppose now that the category C has a class of distinguished morphisms called
covers. We assume that covers form a calculus of left fractions; this means, they contain

the isomorphisms, are closed under composition, and, for each object U, the opposite of
the full subcategory CovU of C{ U, consisting of the covers, is filtered. A trivial example

is when the covers are precisely the isomorphisms. A more interesting example is when C

is a regular category and the covers are the strong epimorphisms (which are the same as

the extremal and regular epimorphisms for C regular).

A morphism f:X——Y in ¥ is called locally surjective on objects (l.s.0.) when,

for all objects U of C and vy of YU, there exists acover e:V —— U, an object x of
XV, and an isomorphism (Ye)y = fyx.

A morphism f:X——Y in ¥ is called cover cartesian fully faithful (c.c.f.f.) when

it is (pointwise) f.f. and, for all covers e : V—— U, the following square is equivalent to a

pseudopullback.

fU
XU -———>=YU

Xei iye

XVf—>YV

-1

<

Proposition 5.2 The classes of l.s.o. and c.c.f.f. morphisms form a regular factorization

system on F as a bicategory.

Proof Given any morphism f: X——Y in 7% define ZU to be the full subcategory of
YU consisting of those objects y for which there exists a cover e : V—— U, an object x
of XV, and an isomorphism (Ye)y = fyx. Let iy be the inclusion iy :ZU — YU.
Because covers form a calculus of left fractions, we see that, for all u: W —— U, the

functor Yu restricts to a functor Zu:ZU —— ZW; so Z is an object of ¥ and
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i: Z——>Y isf.f. (and strict in fact). It is readily checked that i isindeed cover cartesian.

Also, since each fy; lands in ZU, we obtain the components of a morphism t: X —— Z

with f =it. Itis clear that t isl.s.0. The remaining details are routine. Q.E.D.

6. Classification of locally trivial structures
We require four ingredients:
(a) a category C;
(b) acategory X parametrized by C;
(c) acover e: V——U;

(d) afamily t of trivial objects of X.

More explicitly, C can be any finitely complete category, X can be any pseudofunctor
X :C°——Cat, e: V——> U canbeany morphism of C, and t is an object of XT for
some object T of C. We think of t as a family of objects of type X parametrized by T;

sometimes we identify it with the corresponding morphism t:T——X in %

Localizing will be understood with respect to the view that our morphism e: V ——U is

a cover.

Let Loc(t; e) be the full subcategory of XU consisting of the objects x for which

there exist a morphism z:V——T in C and an isomorphism (Xe)x = (Xz)t. So the

objects of Loc(t; e) are thought of as U-families of objects of type X that are locally
isomorphic to trivial objects. A more bicategorical definition of Loc(t; e) is as follows.

Let Q(t; e) denote the category obtained as the following pseudopullback.

Qt; &) = F(V,T)

PooE

XU ——XV
Xe

Then p factors as a composite
Qt; e) —2 5 Loc(t; e) _ L xu

where p; ises.o.and j; is the f.f. inclusion.

A factorization

V4>U

ANV
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in ¥ is said to be of effective descent for X when s is e.s.0o. and e’ induces an

equivalence of categories XU = #(P,X). Itis expected that P should bein CatC, but that

is not really necessary.

Define X[t] by factoring in ¥ as follows:

T"X
NE A
X[t]

where s, is es.o.and j, is f.f. Again, it is expected that X[t] should bein CatC (and
there is some chance of this when X has small homs), but again this is not really
necessary.

The following result is essentially from [JSS] and contains the categorical version of
the Fundamental Theorem of Galois Theory due to Janelidze [Jdz] (also see [BJ]).

Theorem 6 There is an equivalence of categories

F@P,X[t]) = Loc(t;e).

Proof By the bicategorical factorization system property, since s :V——P is e.s.0. and

¢+ X[t]—— X is f.f., the bottom right square below is equivalent to a pseudopullback.

Qt; &) T= F(V,T)
/ pzl = l T

Loc(t; e) F@,X[t])——= F(V,X][t])
h\ = ?(P,jt)i = \L'{T(V’jt)
XU = F(P,X) XV

It follows from the definition of Q(t; e) that there exists a functor p, asin the above

diagram such that the top right square is equivalent to a pseudopullback. Since V isin C
and s, ise.s.o., the functor #(V,s,) ise.s.o. It follows by regularity that p, is e.s.o.
Thus the left-hand region of the diagram provides two factorizations of p into an e.s.o.

and an f.f. The images are therefore equivalent. Q.E.D.

By way of a typical example, take C to be the category Top of topological spaces.
Define the pseudofunctor X : Top°® —— Cat to take a space U to the category XU of
modules in Top /U over the ring object pr, :RxU ——U where R is the topological
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ring of real numbers. Let K be the space of pairs (n, x) where n is anatural number and
X is a vector in n-dimensional real Euclidean space. Then the first projection K——N is

a module over RXxN ——N, where N is the discrete space of natural numbers, and so

is an object t of XN. Let U =(U;) be an open cover of the space U and let V be the

disjoint union V=2Ui with e:V ——U induced by the inclusions U; ——U. Then
i
X[t] can be taken to be the topological category Mat(R) whose objects are natural numbers

and whose morphisms n——->m are mxn matrices. The topological category called P

above is none other than the nerve Ner? of the covering . Theorem 6 gives an
equivalence between the category

Cat(Top)(Ner U, Mat(R))
of topological functors from the nerve of U to Mat(R) and the category of real vector
bundles over U trivialized by the covering U. This yields the clutching constructions for

vector bundles and, on restricting the equivalence to the groupoids of invertible

morphisms, yields the classification of vector bundles by Cech 1-cocycles with coefficients

in the real general linear groups GL,(R).

7. Stacks and torsors

Suppose (as near the end of Section 5) we have a finitely complete category C with a
calculus of left fractions whose morphisms are called covers. For each cover e: V—U,

we can form the category Er(e) in C called the equivalence relation for e : it is the

simplicial object

pra
— B
di
VX VXV — VX V2V,
T
SN _Pn

We have a factorization
\Y & s U

N/

Er(e)
in which s isb.o. An object X of ¥ is said to be 1-separated when the functor
Fe',X): F(U,X) — F(Er(e), X)
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is faithful for all covers e. The object X is said to be 2-separated when the displayed
functor is fully faithful for all covers e. We call X a stack when 7(e’,X) is an
equivalence of categories for all covers e.

In other words, an object X of ¥ is astack (for the given covers in C) when, for all

covers e, the above displayed factorization of e is of effective descent for X.

Forany t:T——X with T in C, we put

Locx(t)U = U Loc(t;e).
eeCovU

Then, Locy(t) becomes an object of ¥F; indeed, itis the l.s.0./c.c.f.f.image of t:T——X.

Theorem 6 yields the equivalence

Locy (U = COCIiIIIlJ(CatC)(Er(e), X[t]),

where the right-hand side is a filtered colimit in Cat (and so commutes with finite

limits).

Let A bea categoryin C. An A-torsor trivialized by a cover e : V——U is a discrete

fibration E from A to U for which there exist a morphism a:V——>A and a

commutative diagram

Ala—>V

Cr

p E————>U
q
»
A

in which the square is a pullback. In other words, A-torsors trivialized by e are the objects

of the category Loc(t; e) where t is the composite

A, A—Ir s pa;
put Tors(A;e) = Loc(t; e) for this t. So “trivial” here means “representable” in the sense
of being in the image of the yoneda morphism. An A-torsor at U is an A-torsor

trivialized by some cover e : V——U. We put TorsA = Locgp,(t), an object of F

As a corollary of Theorem 6 we have the equivalence of categories
Tors(A;e) = (CatC)(Er(e),A)

and the equivalence
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TorsA =~ colim (CatC)(Er(e), A)
eeCovU

A
in ¥ which interpret as saying that all A-torsors can be constructed from Cech cocycles

with coefficients in A.
Now we point out the fundamental relationship between stacks and torsors (see [St3]
and [St4]).

Theorem 7.1 An object of ¥ is a stack if and only if it admits all colimits weighted by

torsors. These colimits are absolute: that is, preserved by all morphisms in F.

Proof Suppose X is astack. Take any torsor E from A to U and f:A——X. Let

e: V——U Dbe a cover trivializing E and let a:Er(e)——>A be the “cocycle”

corresponding to E. Then we have fa in the category 7F(Er(e),X) which is equivalent to
XU since X is a stack. The object of XU corresponding to fa is col(E,f). Conversely,

suppose X is cocomplete with respect to torsors as weights. We need to prove that the
functor F(U,X) —— F(Er(e),X) induced by e’:Er(e)—— U is an equivalence. We use

the factthat e’l U isan Er(e)-torsor trivialized by e. The required inverse equivalence

is defined by the colimit col(e’| U,~) weighted by e’ | U.
For the second sentence of the Theorem, it suffices to show that the colimit is

preserved by any morphism h:X——Y into a cocomplete object Y. In particular, Y is a

stack. So we see that col(E,hf) in YU corresponds to hfa. By evaluating the following

commutative square at col(E,f), we obtain the isomorphism col(E, h f) = hcol(E, f).

F(U, X)M F(Er(e), X)
F(U,h) F (Er(e), h)

FUY)——=>=7F Er(e), Y Q.E.D.
(UY) g T EEELY)
Constructing the associated stack of an arbitrary object P of ¥ we therefore obtain the

cocompletion of P with respect to torsors. This can be done in various ways. The

approach that is closest to the original associated sheaf construction described by

Grothendieck [An] is to define LP in ¥ by

(LP)U = colim ¥ (Er(e), P).
eeCovU
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The morphisms e’ : Er(e)—— U induce

F(e’, P)

PU—— F(U,P) F(Er(e), P),

and thereby a morphism mn:P——LP in % The proof of the following result can

essentially be found in [St2]. It proceeds in three steps by showing that P in # is 1-
separated iff 1 is (pointwise) faithful, that P is 2-separated iff n is fully faithful, and that

P is astack iff n is an equivalence.

Theorem 7.2 If P is any object of F then 1P is the associated stack of P in the sense

that 12P is a stack and, for all stacks X in ¥, the morphism P%LgP, obtained by

composing three instances of M, induces an equivalence of categories
F(L°P,X) = F(P,X).

8. Parity complexes

Free categories on circuit-free directed graphs have particularly simple descriptions.

We generalise this to higher dimensions following [St7].

A parity complex C of dimension n consists of a graded set C= 2 Cx and
0<k<n

functions (-)” and (-)" : C, —— PC,_; for 0<k<n, where P denotes the power set.

For any subset S of C,, we write S~ for the subsetof Cj_; consisting of all elements in
some x  with xeS; similarly define S*. There are some axioms such as

x Nnx'=@ and x Tux'T=xTux.
The solid triangle order <« on the set C is defined to be the smallest reflexive transitive

relation having x<«y when either xey™ or yex'. A strong axiom of loop freeness on a

parity complex is that the solid triangle order should be antisymmetric ; moreover, for the
important examples of simplexes, cubes and globes defined below, the order is linear (that
is, total).

The model for the free n-category OC on C will now be succinctly described in a
purely combinatorial way. An n-cell of OC is a pair (M,P) of non-empty finite subsets M
(for “minus”) and P (for “plus”) of C such that the following conditions hold (where —S
means the complement of S in C):

(i) each of M and P contains at most one element of C; and, for all x#y in Cy

with k>0, if both x,y € M orif both x,y € P, then the set (x_ N y_) U (x+ N y+) is empty;
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) P= (MUMJ')mﬁM_, M = (PUM_)m—'M+,
P =(MUP*)n=P", M = (PuP‘)m—'P“L.
The k-source and k-target of (M,P) are defined as follows (where S, =C, NS and

st = ) Sy, for any subset S of C):
h<k

sk (M,P) = (MY, M, PED) 1y (M,P) = (MED U Py, PY),
An ordered pair of cells (M,P), (N,Q) is called k-composable when
(M, P) = 5, (N, Q) ,
in which case their k-composite is defined by
(M,P)e (N,Q) = (MU(NN=Ny),(Pn=P,)uQ) .
The k-cells of OC are the n-cells (M,P) with s (M,P) = (M,P). The proof that OC is an

n-category is non-trivial (and requires more axioms on the parity complex than those
mentioned above). There is a dimension preserving injective function
x> (x) : C——0C
given inductively as follows: for xeCy, put (x) = (M,P) where
Mk = Pk = {X} P
+

M,_; = (M) n—=(M,)", and P._;=(P

r

)+ N—=(P.)” for O<r<k.
My notation for this particular M and P is u(x) and =n(x) so that (x)= (u(x), n(x)). It is
also non-trivial to prove that OC is the free n-category generated by the cells (x), xeC.

The product CxD of two parity complexes C, D is given by

(CxD), Z C, xDyg (x,a)f = x& x{a} U {x} xatP
p+tq=n
for xeCp, aeDy and ee{—,+} where e(p)e{—,+} is € for p even and isnot € for p

odd.
Parity complexes can be regarded as combinatorial chain complexes. Each parity

complex C gives rise to a chain complex FC by taking the free abelian groups on each C,
and using the differential d(x) = x™ —x~, where we have identified x" with the formal
sum of its elements. It is easy to see that we have a canonical isomorphism of chain
complexes:
F(CxD) = FC®FD,
where we remind readers that the tensor-product boundary formula is
d(x®a) = dx®a + (-1)’ x®da for xeFC, and aeFD,.

There are explicit formulas for p(x,a) and =n(x,a) in terms of w(x), w(a), n(x) and m(a).
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To express these, write %' to denote y € {,®} when r iseven and to denote the other

element of {u,m} when r is odd. Then
rxa),= ) 200 xx" @)

r+s=n
The join CeD of two parity complexes C and D is given by

(CeD), =C,+ Y, C,xDy +D,
ptq+l=n

in which the summands C and D are embedded as parity subcomplexes and the elements

(x,a) € C, xDy are written as xa with

(xa)” = xauxa~ and (xa)" = x'auxa® for p odd,

(xa)” = xauxa® and (xa)" = x'auxa™ for p even,

where, for example, x'a = {ya 'ye x+} is taken to mean {a} when p=0. In particular,
when D consists of a single element o in dimension 0, the join CeD is called the right

cone of C and denoted by C”. Also DeC is the left cone of C and denoted by C=.
Let I° denote the parity point; it is the parity complex C with C, = {0} and
C, = @ for n>0. The parity interval is the parity complex which is the join T =1%o 1°

The parity n-simplex is the (n+1)-fold join A" =1°e 1%e ... ¢ I° of parity points. In
n+1

fact, the elements of (An) can be taken to be k-element subsets of {O, 1,..., n} where x

consists of the “odd faces” and x* the “even faces” for such a subset x. For n=3:

03
> 3

03

0123 013
23 = 01 13 23
U123

| 023
02

01
J 012

o]

N— W
Juy
N

12

—_

12

The parity n-cube is the n-fold product I"™ =IxIx...xI of parity intervals. For
|

n
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n _0- +—— -+ — b
-00 00- 0-7 ~
= = |.,. 000 -0
- -0+
~0+ o = 00+ oo |+0-
-+0 0+- ﬁ :
0+
—+ 4+ 0+0 4 - -4+ " +4-
=
+ 4+ ++

The parity n-glob is the parity complex G" defined by
(Gn)m = {(em): e=—-or +} for m<n, (G“)n = {n},
e m) = {(~m-1}, (e m)'={(+m-D} & =(-n-1) n'=(+n-1)
For n = 3:
(- 1)
(-,0) =2] 3 +.2) (+,0)
+, 1)

A precise definition of the the free n-category on the n-simplex, called the n-th

oriental, is
0, = OA".
A precise definition of the nerve NerA of an w-category A is then
(NerA) = o-Cat(O,,A) .
This process is quite like Kan’s definition of the “singular functor” going from spaces to

simplicial sets, so there is also the analogue of a “geometric realization”. From the functor
O, : A——> o-Cat, we obtain the nerve functor Ner: ®-Cat—— [AOP, Set] with a left
adjoint ®. While the restriction of Ner to 1-categories is fully faithful, it is not true that

Ner itself is full: simplicial maps NerA —— NerB amount to normal lax functors

A —— B. (See [AS] for another approach to the nerve of an n-category.)

9. The Gray tensor product of ®-categories and the descent w-category

We begin by reminding the reader of the technique for left Kan extending monoidal
structures along dense functors due to Brian Day [D1], [D2] (whose results more generally

cover promonoidal enriched categories).
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Proposition 9 Suppose ]J:C—— X is a dense functor from asmall monoidal category
C into a complete and cocomplete category X. The formula
CD
X®Y = [ (X(C,X)xX(D,Y)) s (C®D)
defines a (left and right) closed monoidal structure on X with ] strong monoidal if and
only if there exist functors H and H’:C°P x X —— X and isomorphisms
X(JB, H(C,X)) = X(J(B®CQ), X) = X(JC, H'(B,X))
natural in objects B and C of C and X of X.

For example, when ] is the Yoneda embedding of C, the tensor product on the
presheaf category is convolution.

The technique of Proposition 9 was used by the author in [St6] to construct the Gray
tensor product of 2-categories. This can be modified to obtain a Gray-like tensor product for

w-categories.
The free m-categories OI" on the parity cubes (n > 0) form a dense full subcategory Q
of the category - Cat; this essentially amounts to the fact that all possible composites of

cells can be found occuring in these cube. The subcategory Q is monoidal via the tensor
product defined by
(orm)®(o1m) = o1™*™.

With some work to satisfy the hypotheses of Proposition 9, we obtain a monoidal structure
on ®-Cat. Itis not the cartesian monoidal structure. We shall call it the Gray monoidal
structure on - Cat, although itis not really what John Gray defined; his tensor product
was on 2-Cat. The present structure was considered by Richard Steiner [Sn] and explored by
Sjoerd Crans [C]. Dominic Verity [V] has another elegant approach using cubical sets. To
obtain Gray’soriginal tensor product [Gyl] we need to render all 3-cells identities, although
his approach to coherence [Gy2] used the braid groups. To see the connection, consider the
braid category B (as defined in [JS1]and [JS2]) which is the disjoint union of all the usual
braid groups as 1-object categories. There is a 2-category XB with one object, with hom-

category B and with addition of braids as composition. There is an -functor
P : OI” —— 2B which is universal with the property that it equates all objects, inverts all

2-cells, and takes all 3-cells to identities. Actually, in [St6], the author used the “braid
monoids with zero” which are finite monoids that were part of his joint work with
Samuel Eilenberg [ES].

Dominic Verity has shown that, for a wide class of parity complexes C, D, we have
(0C)®(0D) = O(CxD).
Simplexes, cubes, globes, and products of them belong to the class. We shall make use of
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this result.
To give some further feeling for this Gray tensor product, we shall make a connection

with the ordinary tensor product of chain complexes. Each chain complex R gives rise to

an o-category YR whose 0-cells are O-cycles a€R,, whose 1-cells b:a——>a’ are

elements beR; with d(b)=a’"—a, whose 2-cells c:b——>b’ are elements ceR, with

d(c)=b"-b, and so on. All compositions are addition. This defines the object assignment

for a functor 9 :DG——>w-Cat from the category DG of chain complexes and chain

maps. In fact, 9 : DG——w-Cat isa monoidal functor where DG has the usual tensor
product of chain complexes and ®-Cat has the Gray tensor product. By applying ¥ on

homs, we obtain a (2-) functor 9, : DG-Cat ——%7, -Cat where 7, is ®-Cat with the

Gray tensor product. In particular, since DG is closed, it is a DG-category and we can apply
9, toit. The 7,-category 0.(DG) has chain complexes as 0-cells and chain maps as 1-
cells; the 2-cells are chain homotopies and the higher cells are higher analogues of chain
homotopies. In the next section we shall see the importance of 7,-categories in the
homotopy theory of topological spaces, not just the homotopy theory of chain complexes
(which is ordinary homological algebra).

We can now solve the problem of defining the descent w-category of a cosimplicial ®-
category. We make considerable use of the fact, mentioned before, that n-categories are
models of a finite-limit theory. Such models have their structure preserved by left-exact

functors and inherited by representing objects. For example, the functor

Cell, : -Cat——>Set, which assigns the set of n-cells to each w-category, is represented

by the free n-category OG" on the n-glob: that is,
Cell /A = o-Cat(OG",A).

The set of n-cells in an ®-category forms an n-category; so OG" is a co-n-category in the
category ®-Cat. Now using the fact that co-n-categories are taken to co-n-categories by
right-exact functors, we see that OG"™ ® A is a co-n-category in ® - Cat for all ®-categories
A. In particular,

0G" ® 0,, = OG" ® 0A™ = 0(G" x A"
is a co-n-category in - Cat for all m >0.

Allowing m to vary, we obtain a co-n-category O(Gn X A') in the category

[A, w-Cat] of cosimplicial w-categories. Hence, for any cosimplicial n-category £, we

obtain an n-category
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DescE = [A,0-Cat](0(G" x A°), ).

We thus have our precise definition of the n-category DescZ (with somewhat more

detail than appears in [St7]).

10. Weak n-categories, cohomology and homotopy

There are now many plausible definitions of weak n-category; see [Lr]. For any of
these we expect a weak 0-category to be a set, a weak 1-category to be a category, a weak 2-
category to be a bicategory in the sense of Bénabou [Bu], and a weak 3-category to be a
tricategory in the sense of [GPS]. In fact, Trimble [T]also wrote down an explicit definition
of tetracategory that we expect to understand by a weak 4-category. The definition we wish
to concentrate on here for general n is that of Batanin as described in [Bnl] and [Bn2]. The
starting point is the category of globular sets (or w-graphs) and the monad on it whose
algebras are w-categories.

We can approach o-graphs in the same way we approached w-categories in the

Introduction. For any symmetric monoidal category ¥, there is a symmetric monoidal

category v -Gph whose objects are V-graphs; a V-graph G has a set G, of vertices
together with, for each ordered pair x, y of vertices, an object G(x,y) of ¥ (the “object

of edges”). Starting with the category Set of sets using cartesian product for the monoidal
structure, we can iterate the process ¥ — 1 -Gph yielding the following sequence of
definitions:

Set, Gph:=Set-Gph, 2-Gph:=Gph-Gph, 3-Gph:=(2-Gph)-Gph, ...
all terms having cartesian product as monoidal structure. Each set can be regarded as a
discrete graph (the objects of edges are empty) so there are inclusions

Setc Gphc2-Gphc3-Gphc... .

The union of this chain is the category ®-Gph of w-graphs °. We define the n-cellsin an
w-graph just as in ®-categories (see the Introduction); each n-cell has a source (n-1)-cell and
a target (n-1)-cell. In this way an w-graph G can be regarded as having the same kind of
structure as a parity complex; it is graded by the dimension of the cells, the sets x™ is the
singleton consisting of the source of x and x" is the singleton consisting of the target of x.
It follows that we can define the solid triangle order for w-graphs. The author [St11] has
defined an w-graph to be a globular cardinal when the solid triangle order is linear; also see
[MZ].

Under reasonable (co)completeness conditions on ¥, Wolff [W] showed the forgetful

functor v -Cat—— 7 -Gph to have not only a left adjoint but to be monadic; also see

® Something a bit bigger than this union is the category of globular sets.
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[Bi]. It follows that the forgetful functor U, : n-Cat—— n-Gph has a left adjoint F,

forall 0<n<w. Indeed, U, is also monadic; we write D, for the monad U,F, on
n-Gph generated by the adjunction F,— U,..

The starting point of Batanin’s work was his explicit description of D,. For each n-
graph G, the m-cells of D,G are to be thought of as globular pasting diagrams of k-cells

for k<m. Batanin was able to code these globular pasting diagrams in terms of plane trees
of height m. Each plane tree t of height m gives rise to an m-graph t*. An w-graphis a

globular cardinal if and only if it is isomorphic to t* for some plane tree t. The cells of
D,G are n-graph morphisms t'——G.

Weak n-categories are expected to have all the composition operations of the strict n-
categories, however, these operations are not expected to be strictly associative or strictly
functorial over each other as in a strict n-category. Batanin realized that weak n-categories
should also be algebras for some monad K, on n-Gph. Write Wk-n-Cat for the
category of Eilenberg-Moore algebras for K, ; the objects are weak n-categories but the
morphisms are very strict, preserving all the structure precisely. Since every strict n-

category should be a particular kind of weak one, there should be a monad morphism

K,——D, inducing the inclusion n-Cat——>Wk-n-Cat. The genius of Batanin’s

approach was the idea, inspired by homotopy theory *, that K, should be contractiblein a
suitable sense; indeed, K, should be the initial contractible monad with a system of
compositions. This “system” ensured that the composition operations and identities
available in an n-category were there in the algebrasfor K,, while contractibility gave the
weak associativity and functoriality.

Batanin provided a construction for K, in [Bnl]and [Bn2]; another arose from [Pn]
and [Bn4]. Recent work of Batanin seems to be leading to an explicit combinatorial
description of K, using polyhedra constructed from Joyal’s morphisms of Batanin’s trees
as appearing in [J1] and [BS]. We shall not need much of this detail here: suffice it to say
that, like D,,, the endofunctor K, preserves filtered colimits so that its algebras (the weak

n-categories) are also models of a finite-limit theory. This means we can take models in
any finitely complete category C; that is, we can speak of weak n-categories internal to C.
What is more, if we let A be a weak n-category in C and let R be a simplicial object
of C, we obtain a cosimplicial weak n-category C(R,A). It is important to realize that the
coface and codegeneracy morphisms of C(R,A) are strict; that is, they are morphisms of

Wk -n-Cat. In the following sections we shall indicate how to define the descent weak n-
category of such a cosimplicial weak n-category. Then we define the cohomology weak n-

*He introduced a higher dimensional notion of operadand expressed contractibility in terms of that. See [BW]
for recent advances on higher operads.
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category H(R,A) of R with coefficients in A by
H(R,A) = DescC(R,A).
As mentioned in the strict case, the cells of #(R,A) are cocycles of R with coefficients in
A. To work with cocycles up to coboundary is to work with them up to “equivalence”. So
we shall briefly discuss equivalence in weak n-categories.
It is well known what is meant for two elements in a set to be equal (= 0-equivalent)
and what it means for an arrow in a category to be an isomorphism (= 1-equivalence). Itis

also well known what it means for a morphism in a bicategory to be an equivalence ( = 2-

equivalence). A 1l-cell f:a——>b in a tricategory is called a biequivalence ( = 3-

equivalence) when there exists a 1-cell g:b——>a such that fg and gf are both
equivalent to identity 1-cells.

Notice that for these kinds of equivalences no use is made of associativity or
functoriality of composition. In factit is possible to define m-equivalence in algebras for
any monad with a system of compositions; in such algebras, there is a composition of m-

cells for all 0<m<n. The definition of m-equivalence is recursive: an n-cell is a

equivalence when it is invertible; an m-cell f: a——b is an (n—m+1)-equivalence when

there exists an m-cell g : b——a with (n—m)-equivalences gf——1, and fg——1,.

We can define homotopy sets for any weak n-category A. We define m;(A) to be the
set of n-equivalence classes of O-cells of A. Let a be any O-cell of A and let AutEq(a)

denote the full sub-weak-(n-1)-category of A(a,a) whose 0-cells are the n-equivalences

a——a. We define the fundamental group my(A,a) to be the set ny(AutEq(a)) equipped

with the multiplication induced by composition of 1-cells in A. We recursively define

homotopy (abelian) groups =©,(A,a), n>1, by
To41(A a) = . (AutEq(a), 1,).

11. Computads, descent and simplicial nerves for weak n-categories

Computads were introduced in [St1]to provide presentations of 2-categories that were
more efficient than presentations by 2-graphs. Such a computad is a 2-graph whose 0-cells
and 1-cells form the underlying category of a free category on a graph; in other words, we
are given a graph together with 2-cells between paths in the graph. These computads were
later called 2-computads as the author had need for n-computads for all positive integers n;
see [Pr], [St9] and [St10].

More recently, Batanin has defined computads, not just for n-categories, but for any
algebraic structure on globular sets; see [Bn3] and [Bn5]. For example, computads for

bicategories are not the same as computads for 2-categories; the 2-cells in a computad for
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bicategories have chosen bracketings for their source and target paths. We shall now
explain the general definition in terms similar to the case of computads for (strict) n-
categories.

Suppose T, is a monad on n-Gph for each natural number n andlet T,-Alg

denote the category of Eilenberg-Moore algebras. Let U, : T, -Alg——>n-Gph be the

underlying functor with left adjoint F,. Let W,_;: n-Gph——> (n—-1)-Gph be the

functor that forgets about n-cells and let I,: (n—1)-Gph —— n-Gph be the inclusion;
indeed I, is the fully faithful left adjoint of W, _;.

A second sequence of monads T, on n-Gph can be constructed from the sequence
of monads T,. Define T, ; to bethe right Kan extension of W,_; T, along W, _;; in fact,
T,.1=W,_; T, I,. (For the special case where T, is the monad for strict n-categories, we
have T,=T,. However, when T, isthe monad for weak n-categories, T; assigns the
graph of bracketed paths in a graph, whereas T, assigns the usual graph of paths.) Since
W, _; is amonad morphism, it induces a functor W,_;: T, - Alg —— T,_; - Alg such that
U,_1 W,_; = W,_; U,, where we put bars overtop data pertaining to the T, to distinguish
it from the corresponding data for the T,.

For all sequences of monads T, on n-Gph, the category T,-Cpd of n-computads

for T,-algebras is defined inductively along with the functor V,: T, -Alg—— T, -Cpd
and its left adjoint L,—V,. For n=0, T,-Cpd is T,-Alg with V, and L, the
identity functor. For n >0, the category T, -Cpd is defined by the following pullback of

categories and functors.
P, —
T,-Cpd—— "= T, ;-Cpd

Qn Un—l En—l

n-Gph———> (n-1)-Gph

n-1

A functor V/ : T, -Alg——>n-Gph is defined by the following limit diagram of functors

and natural transformations
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, . o
Vn —_— InUn—an—IVn—lwn—l

I, U, _;(counit)W, 4

S
—_—

L]n—>t InUn—lwn—l
where s and t are the natural transformations whose components assign the source and
target (n—1)-cells to each n-cell. Notice that W, U, = U, {W,_; =W, ;1,U, W, _; and
Wh_ys = Wyt =1y ¢ ; this implies
Wy Vp = Un—lf‘m—lvn—lwn—l

since  W,_; preserves limits. Using the pullback property of T,-Cpd, there exists a
unique functor V, :T,-Alg——>n-Cpd such that P,V, =V, W, ; and Q,V, =V/.. It
is proved in [Bn3] that V,, has a left adjoint L,. This completes the inductive definition.

Just as for ordinary operads, the functor V, : T, - Alg—— T, -Cpd is monadic; again

see [Bn3].
The author has long held the view that the orientals should be transferable to contexts
other than strict n-categories — to weak n-categories, for example. I am grateful to Michael

Batanin for correcting my naive view of how to do this. He points out that each monad

morphism 0 : T, —— D,, induces a functor 8" : D, -Cpd —— T, -Cpd. Some choice is

involved in the definition of 6" (such as a splitting of © as a mere natural

transformation) but all choices are essentially equivalent. The full inductive definition of

0" must await another paper, however, the idea is clear enough. Take for example the

case where n =2 and T, is the monad whose algebras are bicategories. Given an ordinary

computad H, we must create a computad 6"H for bicategories. This is done by choosing a

bracketing of each source and target path of each 2-cell of H and making that a single 2-cell
of ©"H. This means that each 2-cell of H leads to only one 2-cell of 8"H ; of course, in

the free bicategoryon 6 H there will be 2-cells between the other bracketings of the source
and target paths obtained by using the associativity constraints available in the bicategory.
Start with any parity complex C of dimension n. Form the free n-category OC.

Take the underlying computad V,0C for strict n-categories (that is, it is a D,-computad).

Now we apply the functor 8" : D, -Cpd — T, -Cpd to obtain a T, -computad 6*V,0C

Now we apply the functor L,: T,-Cpd —— T, -Alg to obtain O;C =L,0°V,0C. We
call O C the free T,-algebra on the parity complex C.
In particular, for the monad K, for weak n-categories, we have the free weak n-
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category Oy C on the parity complex C.

One application of this is to the descent construction for weak n-categories. For we

now have the cosimplicial weak m-category Og (Gn X A') ; that is, an object of the functor

category [A, Wk-o-Cat]. We believe it will be possible to show that Ok (Grl X A') is

actually a co-weak-n-category in [A, Wk-o-Cat]. Then, for any cosimplicial weak-n-
category E, we would obtain a weak-n-category
DescE = [A, Wk-w-Cat](OK (Gn X A'),Z) )
A related application is to obtain the simplicial nerve of a weak w-category. We might

th

call the weak n-category Oy A" the n" weak oriental. For any weak w-category A, define

the nerve NerA of A to be the simplicial set Wk - - Cat (OK A',A).

Conjecture 11.1 A simplicial set has the form NerA for some weak ®-category A if and
only if it is a weak w-category in the sense of [St12].

As a third application, it seems possible to use the descent construction to produce the
weak n-category of weak morphisms from one weak n-category to another. Details will
appear elsewhere. For the moment we content ourselves with the following remarks on

lax functors.

Proposition 11.2 The nerve functor Ner : Wk-(x)-CatH[AOp,Set] commutes with m,

for all n=0.

Simplicial maps f: NerA —— NerB are normal lax functors between the weak -

categories A and B. (The general lax functors are the face morphisms between the
simplicial nerves — they are not required to commute with the degeneracies.) Using the
familiar process of replacing a map by an inclusion using a mapping cylinder, we see that

each such normal lax functor gives rise to a long exact homotopy sequence.

n,(A,a) ; n,(B,f(a)) —> n,(f,a) —> w,,_1(A,a) ; n,_1(B,f(a))

12. Brauer groups

Let M denote a closed braided monoidal category which is finitely cocomplete. We

have in mind that M is the category of modules over a commutative ring R, or the

category of finite dimensional comodules for a quantum group (as featured in [JS3]).

Consider the bicategory Alm/M whose objects are monoids (also called “algebras”) in M,
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whose morphism M :A——B are left A- right B-bimodules, and whose 2-cells
f:M=M": A——>B are module morphisms f:M——>M’; vertical composition is
composition of functions and horizontal composition of modules M:A—B,

N:B——>C is given by tensor product M®zN:A—C over B (where M®y N

the coequalizer of the two arrows from M®B®N to M®N given by the actions of B on
M and on N).

Since M is braided, the tensor product A ®B of algebras is canonically an algebra.
This makes AlmM» into a monoidal bicategory. Let XAIm/M denote the 1-object
tricategory whose hom bicategory is AlmM and whose composition is tensor product of
algebras.

In the particular case of the tricategory TAImM, there it is an easy way to find a 3-

equivalent Gray category. First replace M by an equivalent strict monoidal category (see

[JS2]). We identify modules M : A —— B with left adjoint functors [AOP,M ]H[BOP,M ]

where [AOP,M ] is the category of right A-modules in M. The point is that tensor product

M ®g N of modules then becomes composition of functors.

Let Br(M) denote the sub-Gray-category of ZAImM consisting of the arrows A

which are biequivalences, the 2-cells M which are equivalences, and the 3-cells f which

are isomorphisms. The morphisms A of Br(M) are called Azumaya algebrasin M. The
2-cells M of Br(M) are called Morita equivalencesin M.
We can form the nerve NerBr(M) of Br(M). It is a simplicial set whose homotopy

objects are of special importance. In particular, m,NerBr(‘M) is a singleton set,
mNerBr(M) is called the Brauer group Br(M) of M, and n,NerBr(M) is the Picard group
Pic(M) of M. If M is equivalent to Mod(R) for a commutative ring R, these are the

usual Brauer and Picard groups of R; also m3;NerBr(M) is then isomorphic to the group

V(R) of units of R. Compare the approach of Duskin [Dn2].
Now suppose F : M —— N is a right-exact braided strong-monoidal functor between
finitely cocomplete closed braided monoidal categories. (We have in mind the functor

Mod(¢) : Mod(R) —— Mod(S) induced by a commutative ring homomorphism
® : R——S.) Such an F determines a weak morphism (compositions are preserved up to
equivalence) of tricategories AlmF : AlmM —— AlmA_. Weak morphisms preserve n-

equivalence for all n. So a weak morphism Br(F) : Br(M) — Br(N\) is induced, and a
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simplicial map NerBr(F) : NerBr(M)—— NerBr() is induced. This leads to the nine

term exact sequence
1—— Aut(I) — s Aut(I,;) —> Aut(F) —— Pic(M) — > Pic(())
5 Pic(F) ——> Br(M) ——— Br(\)) —— Br(F) ——> 1
in which Aut(IM) denotes the abelian group of automorphisms of the unit I,  for the

tensor product in M. Compare with [DI] when M = Mod(R).

§13. Giraud’s H? and the pursuit of stacks

We use Duskin’s [Dnl] amelioration of Giraud’s theory [Gd2] to show that Giraud’s

H? really fits into our general setting for cohomology. See [Gk] for Grothendieck’s later
reflections on this subject. We work in a topos .

A groupoid B in E isconnected when myB = 1.

Lemma 13.1 Locally connected implies connected.

Proof If R——1 is an epimorphism (“a cover”) then the functor Rx-:E——>E/R

reflects isomorphisms (that is, is conservative), and preserves terminal objects and

coequalizers. Hence it also reflects coequalizers. So, to see whether

B . > B,/ 1
is a coequalizer in Z, it suffices to see that
>
R x Bl — > RxB Oé R

is a coequalizer in E/R. QE.D.

A functor f: A — B in Z is called e.s.o0. (essentially surjective on objects, as before)

when the top composite of q and d; in the diagram below is an epimorphism P——B,

and the square is a pullback (here I is the category with two objects and an isomorphism

between them).

q I d4

PHBOHB

| |

Ay > B,

fo

A groupoid B is called a weak group when there exists an e.s.o. b:1——B. In this
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case, if G denotes the full image of b, we have a weak equivalence (that is, e.s.o. fully

faithful functor) G——B where G is a group.
Lemma 13.2 A groupoid is connected iff it is a locally weak group.

Proof By Lemma 13.1, “if” will follow from “weak group implies connected”. Suppose

b:1——B is e.s.0.; form the pullback P as above with A=1 and f=b. To prove

d

-0 5

t
Bld_,BO—>1
1

is a coequalizer, suppose h:By——X has hdy, = hd;. Then

hdiq=hdyq=hbp=hbtd;q
implies h =hbt since d;q is epimorphic. So h factors through t. However t isa

retraction (split by b), so the factorization is unique.

Conversely, assume B is connected. Certainly By——X is epimorphic, so we pass

to E/B, where we pick up a global object A:By——B;xB over B, which we will see is

€.S.0.
1xd,

dol ilxdo

B()T BO XB()

What we must see then is that (dj,d;):B;——>ByxB; is epimorphic. Take the

epi./mono. factorization of (dy,d;) and let K be the image. Since B is a groupoid, K is

an equivalence relation on B,. Since £ is exact, K is a kernel pair of its coequalizer. The

coequalizer is 1 since B is connected. So the kernel pair is B, xB,. Q.E.D.

Recall that the category of groups in a category with finite products is actually a 2-
category since group homomorphisms can be regarded as functors; so there are 2-cells
amounting to natural transformations. (In fact, we can make it a 3-category by taking
central elements of the target group as 3-cells, but this will not be needed here.) So we have

a 2-functor
Gp : Cat,——2-Cat
from the 2-category Cat, of categories with finite products and product-preserving

functors.
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There is a pseudofunctor ‘E/-: E°® —— Cat taking an object X of E to the slice
category E/X and given on morphisms by pulling back along the morphism. It is easy to

find an actual 2-functor E : £°° —— Cat equivalent to £/-. The composite 2-functor

G
ZOPLCatXLZ—Ca’[
defines a 2-category G in the presheaf category [EOp,Set].
It is natural then to look at the cohomology 2-category H (E,G) of E with

coefficients in G What I mean by this is the colimit of all the 2-categories # (R,§G) over

all hypercovers R in % which we regard, via the Yoneda embedding, as special simplicial
objects in the category [ZOp,Set].
What Giraud actually looks at is obtained from # (Z,G) by lots of quotienting. First

form the composite 2-functor
o G Tox
E°? ——2—-Cat—— Cat
where mg, is the 2-functor which applies m; to the hom categories of each 2-category. Let
L :E°®* —— Cat denote the associated stack of that composite 2-functor. The category
L(X) is called the category of X-liens of ‘E; in particular, L(1) is the category of liens of E.
The stack condition implies that each epimorphism R ——1 induces an equivalence

between the category L(1) of liens and the descent category of the following truncated

cosimplicial category.

—> —>
L(R) «— L(RXR) — L(RXRxXR) .
—> —>

Each connected groupoid B determines a lien lienBe £(1) as follows. By Lemma
13.2, there exists an epimorphism R——>1 and GemnyG(R). The quotient functor
Ty G(R)— L(R) gives an R-lien [G]e L(R) which can be enriched with descent data.
These descent data are determined up to isomorphism by B. It follows that there is a lien
lienB e L(1) taken to B by the functor L(1)— L(R).

For any lien L, let #*(ZL) denote the category whose objects are connected
groupoids B with lienB=L, and whose arrows are weak equivalences of groupoids. We

leave as a future quest the study of the 2-category # (E,G) versus the categories #H 2 (Z, L).
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