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1 Three principles of noncommuta-

tive differential calculus

The commutative algebra of smooth functions on a
manifod M is a limit of noncommutative algebras of
observables in quantum theory.

Question: can we get this noncommutative algebra
from A = C*°(M) by a deformation? Deformation
means that we consider the algebra of formal series
over A and we define a ‘deformed’ multiplication f % g

by the formula

frg=fg+ I h'B,(f,9)

where

Bu(f.g): A A— A

are bidifferential operators.



This new product must be associative and this pro-
vides some constraints on the operators B,,. In particu-
lar, By has to determine the so called Poisson structure
on M. This means that it satisfies the Jacobi identity
and the Leibniz rule with respect to the usual product
of functions.

One of the fundamental questions of the deformation
theory was the existence of a x-product on a manifold
with a given Poisson structure. A beautiful example of
such a deformed product is famous Moyal’s product.

In 1997 Kontsevich gave a positive answer to this
question. Moreover, he proved that there is a canoni-
cal (up to some natural equivalence) x-product on any

Poisson manifold.



The main idea is to compare two natural objects
from differential calculus: the space of polyvector fields
on M and the so called Hochschild complex of A =
C'*(M), which exists for an arbitrary associative alge-

bra A. It turned out that

e the Hochschild complex of any associative algebra
has a very rich algebraic structure (this is the con-

tent of Deligne’s hypothesis);

e the space of polyvector fields on M has a similar

structure;

e these two objects are equivalent in an appropriate

sense (up to strong homotopy).

These three observations imply Kontsevich theorem.



Tamarkin and Tsigan have formulated them as three

principles of noncommutative differential caculus:

e An object from classical calculus should have its

noncommutative analogue;

e [f there is an algebraic structure on a classical ob-
ject, the corresponding noncommutative object should

posses a similar structure up to strong homotopy;

olf A = C(M), one gets two strong homotopy
structures, one coming from classical calculus and
another from noncommutative one. Those two struc-

tures should be equivalent (formality theorems).



2 Operads and strong homotopy struc-

tures

To understand these principles we should first talk
about abstract algebraic structures and strong homo-
topy structures. Operads provide one of the solutions.

Classically, the operads were invented to solve the
problem of recognition of the n-fold loop spaces and
for this purpose it was suflicient to have topological

operads.



Let [n] denote the ordinal 0 < 1 < ... <n — 1.

Definition 2.1 A (syymetric) operad A is a se-

quence of topological spaces
A[()], . ,A[n], .

together with an element e € Ay and a multiplica-

tion (substitution) map
mey - A[k] X A[nl] X ... X A[nk_l] — A[n]

for every map
o [n] — [k
with the preimages (with their induced orders) o= (i) ~
(n;], satisfying associativity and unitarity conditions
with respect to the composition of maps.
A,, called the space of operations of arity n of the

operad A.



[n]

[K]

. <«— k-1




A map of operads is a sequence of continuous
maps

fin) + A = B

which preserves the operad structures.

Example 2.1 The endomorphism operad

E(X) of a topological space
B(X)y = Top(X", X).

The unit element is the identity map id : X — X and

composition is given by substitution of functions.

Example 2.2 The little n-disks operad D".
(Boardman-Vogt-May)
The space Dj is the space of configurations of &

nonoverlapping open n-dimensional disks inside closed
unit disk in K",



For example, the space D} (the space of binary op-
erations of the operad D™) is equivalent to the (n —1)-

dimensional sphere.

Definition 2.2 An algebra over an operad A s a

topological space X together with a map of operads
k:A— EX).

We will also say that the operad A acts on X.



To construct noncommuative differential calculus we
need also algebraic operads. More specifically we need
operads with values in vector spaces and chain com-
plexes.

Operads in vector spaces is easy to define. It is suffi-
cient to replace cartesian product of topological spaces
by tensor product of vector spaces in the definition of
operad. We also need to replace the space of continu-
ous maps by the vector space of linear operators in the
definition of endomorphism operad. Then we have a

notion of an algebra over an operad.



Example 2.3  An associative algebra (A, m,e) is a
vector space A equipped with an associative bilinear

operation

m: AR A— A

and an element e € A which is a unit for multiplication
m.

There is an operad in vector spaces Assoc whose
algebras are exactly associative algebras. The vector
space Assoc, is the vector space freely generataed by
the symmetric group on n elements .S,,.

Example 2.4 The space of n-ary operations of the
operad for commutative algebras is one dimensional
vector space.

There are also operads for Lie algebras and many
other interesting structures. But there is no operads

for Hopf algebras, for example.



Now we extend our definition of operad from vector

spaces to chain compexes of vector spaces.

Definition 2.3 A chain complex C s a family of
vector spaces indexed by integers and equipped by a

sequence of linear operators (differential)
d, : C" — Ot
such that for any n the composite
o1 At o dn ol
15 0.
Since d,, - d,,.1 = 0 we have
Im(d,—,) C Ker(d,)
and we can form a factor-space
H"(C) = Ker(d,)/Im(dy-1)

which is called n-th homology group of C. We will
consider the sequence H*(C) as a chain complex with

trivial differential.



Example 2.5 Chain complexes in differential cal-

culus.

e For any smooth manifold M the sequence of spaces
of differential forms on M is a chain complex (de
Rham complex). The differential is the usual oper-

ator of exterior differentiation.

e The n-th homology group is called the n-th de Rham
cohomology of M. The famous Poincaré lemma (ev-
ery closed differential form in " is exact) can be

expressed by the isomorphism HP(R") = 0.

e Hochschild complex C'H®(A) of an associative alge-
bra A will be defined in the next section. If A =
C*°(M) the homology of the Hochschild complex
are isomorphic to the graded space of polyvector

fields on M (Hochschild-Konstant-Rosenberg theo-

rem )



Example 2.6 Singular chain complex of a topolog-
ical space X. In the dimension n < 0 this is the vector
space S"(X) of linear combinations of all continuous

maps from a simplex A™" to X. On a singular simplex
f-AT"—= X

the differential is given by the formula

a(f) = ¥ (=1)'d(f)
where d'(f) is the restriction of f on the i-th face of
A™". The homology of this chain complex are called
the singular homology group of X and are denoted
H*(X).
There is also the normalised version C*(X) of the
complex S*(X)

C"(X) = S"(X)/D

where D is the subspace generated by ‘degenerate’ sin-

oular simplices.



We can extend the tensor product of vector spaces to
the tensor product of chain complexes. Analogously,
we can extend the space of linear operators between
vector spaces to chain complex level and construct the
chain complex of homomorphisms between two chain
complexes. So we can consider the theory of operads

with values in chain complexes.

Theorem 2.1 If A is a topological operad , then
C*(A) is an operad in chain complexes and H*(A)
15 an operad in graded vector spaces. Moreover, if
X is an algebra of A then C*(X) and H*(X) has
a natural structure of an algebra over C*(A) and

H*(A) respectively.



Finally, we can use operads to define algebraic struc-
tures up to strong homotopies in categories like topo-
logical spaces or chain complexes. The idea is: an al-
gebraic structure is given by operations and relations.
For the corresponding strong homotopy structure we
leave the same operations but we replace relations by
some sort, of explicit deformation (homotopy). These
deformations should satisfy some relations but only up
to a new homotopy etc..

For example, if a structure is an associative multipli-
cation on a topological space its strong homotopy coun-
terpart will be a multiplication which can be nonasso-
ciative but there should be a path between any points
(ab)c and a(be), these pathes should satisfy the so
called pentagon relation up to a homotopy etc. This is
called A,-space in topology.

One can do a similar thing for chain complexes.

In general it is a hard problem to describe such a
structure but, fortunately, it is always possible if our

structure is given by an operad.



Theorem 2.2 For an operad A in topological spaces
or chain complexes there exists an operad A’ such

that the algebras of A" are strong homotopy algebras
of A.

We also want to consider morphisms of algebras up

to strong homotopy. There is a way to do this.



3 Gerstenhaber algebras and Hochschild

complex

Definition 3.1 The Hochschild complex CH®*(A) of

A 1is the sequence of vector spaces
CH"(A)=Hom(A®...® A A)
equipped with a differential
d, : CH"(A) — CH"™(A)
d(f) (1, ..., xpi1) = x1f(T0y .o Tpa1)+
+él(—1)if(a:1, ST, e Tl ) —
—(=D)"f(z1,. s Toy1) Ty

The homology of CH*(A) is denoted by HH*(A)
and are called the Hochschild cohomology of A.



There are some natural operations defined on Hochschild

complex and Hochschild cohomology

e The cup product
—U—:CHP(A)® CHY(A) — CHP"(A)
defined by the formula
(F UGN . Tpey) =
= (=D f(x1,...,2p) - 9(Tps1, .-« Tpig)
e The bracket
{—, =} :CHP(A)® CHY(A) — CHP"11(A)
{fgy=Fog— (=)D g0 f

where

Jo 9(3717 e 7$p—|—q—1) =
'§:1<_1)((]—1)(2._1)10(3317 ey Lgy g<$¢+1, ¢« .
T 7xi+@>7 xH—C]—Fla S 7xp+q—1)

The cup product is associative but not commutative.
However, it induces a multiplication on Hochschild co-

homology which is graded commutative. The bracket



operation also induces a bracket operation on cohomol-
ogy.
Definition 3.2 A Gerstenhaber algebra is a graded

vector space C' equipped with two binary operations
U and {—,—}
satisfying the identities
fUlguh)=(fug)Uh
fUg = (—1ytatiets gUf
{f .9} = — (=)t Dideso =g £}
graded Jacobi identity

{f.{g9,h}} = {{f. g}, h}+(=1)eol)=Nidealo) =11 fg £ £ p}Y

graded Leibniz rule

{£,9UNh} = {f, gy Uh+(-1) D=V g U {f .
Theorem 3.1 (Gerstenhaber) The Hochschild co-
homology HH*(A) has a natural structure of a Ger-

stenhaber algebra.

There is an operad for Gerstenhaber algebra struc-

ture called the Gerstenhaber operad G.



The following result leads to Deligne’s conjecture.

Theorem 3.2 (F.Cohen,P.Deligne) Over a field
of characteristic 0 the operad of homology of the lit-
tle 2-disks operad H*(D?) is isomorphic to the Ger-
shtenhaber algebra operad G.

One can restate the Gerstenhaber theorem in the fol-
lowing form:

the operad H*(D?) acts on the Hochschild co-

homology HH*®(A) of an associative algebra

A.



1 Deligne’s hypothesis and higher cat-
egory theory

At the end of 80s beginning of 90s A whole new fam-
ily of natural operations on Hochschild complex was
discovered by Kadeishvili, Getzler. Gerstenhaber and
Voronov.

[t turned out that Hochschild complex has a very rich

algebraic structure.

Conjecture 4.1 (Deligne 1993)
The H*(D?)-algebra structure on HH*(A) is

induced by an action of the operad C*(D?)
on CH*(A).

Getzler and Jones claimed the proof in 1994. And
the result was considered as established and was used
in many papers until Tamarkin found a flow in the
arguments of Getzler and Jones in 1998. The first real

proof is also due to Tamarkin.



After this many people reproved the conjecture and
some generalizations of it by different methods (Voronov,
Berger-Fresse, McClure-Smith, Kontsevich-Soibelman,
R.Kaufman). But all these proofs are highly technical.

Kontsevich : We need a really short and con-
vincing argument for this very fundamental
fact about Hochschild complex.

Higher category theory provides us with the argu-

ment Kontsevich was looking for.



This proof appeared in 2005 in a paper by Tamarkin
"What do DG-categories form?”. It is based on my
theorem about the relation between n-operads (sub-
ject of higher category theory) and the little n-disks
operad on one side and Tamarkin’s observation on the
convolution operation in multicategories on the other

side.

11 Sketch of a proof

A category consists of a class of objects Ob(C') and
for every two objects a,b € C' a set of morphisms
Hom(a,b). We should have a special morphism 1, €
Hom(a,a) (an identity morphism) and also a compo-

sition of the morphisms:
Hom(a,b) x Hom(b,c) — Hom(a, c).

This should satisty some well known axioms.
We also have a notion of morphism between cate-

oories called functors . So the categories form a cate-

gory.



[f one replaces the set of morphisms by an object
in some other category V' (with some extra structure
called monoidal structure on V') and composition map
by a morphism in this category we get a notion of
category enriched in V.

Example 4.1 One can consider the categories en-
riched in the category of abelian groups (additive cat-
egories), vector spaces (linear categories or chain com-
plexes (differential graded or DG-categories).

Example 4.2  Categories enriched in the category
of categories are called 2-categories. To have a 2-
category is the same as to have a class of objects, be-
tween any to objects we have a set of l-arrows and
between any two parallel 1-arrows we have a set of 2-
arrows. We can compose l-arrows like in a category
and we can compose 2-arrows in two different ways:

vertically and horizontally.



One can develop a theory of operads which captures
the structure of a category (1-operads) and of 2-category
(2-operads). Similar to the usual operad theory we can
consider a notion of strong homotopy algebras of a 2-
operad. We will call these algebras strong homo-
topy 2-categories.

Now let me recall a classical Eckman-Hilton argu-
ment concerning commutativity of the second homo-

topy group.

Let G be a set with two group structures:
—x—:GxGE—-G
—o0o—:GxG—=G

with common unit e.
And suppose these two structures are interchange-

able in the sense that:

(axb)o(cxd)=(aoc)*x(bod).



Theorem 4.1 (Eckman-Hilton argument)

e The multiplications x and o coincide;

® % = 0 15 commutative.

The proof is an elementary exercise and can be pre-

sented in the following picture






We do not use the existence of inverses, so we can
generalise the statement a little bit saying that we have
two interchangeable monoid structures on the same
set.

There is an operad for two interchangeable monoid
structures on a set. We can express this fact by con-
structing a symmetric operad which has sets with two
interchangeable monoids structures as its algebras. The
Eckman-Hilton argument is the statement that this op-
erad is the operad for commutative monoids.

On the other hand we can express the same structure
in terms of 2-categorical structures. Indeed, to say that
we have two interchangeable monoid structures on a
set X is the same as to say that we have a 2-category
structure with one object * , one arrow 1, and the set

of morphisms
Hom(1,,1,) = X.

The Eckman-Hilton argument says that the sym-
metric operad for one object, one arrow 2-

category is the operad for commutative monoids.



Now we are interested in a strong homotopy version
of this statement. That is, we have two operations on
the same chain complex C which are interchangeable
up to all higher homotopies. Again, this can be re-
formulated as follows: there is a homotopy 2-category
structure with one object *, one arrow 1, and chain
complex of morphisms Ch(1,, 1) = C.. We have the

following Deriwed Eckman-Hilton argument

Theorem 4.2 (Batanin) The symmetric operad for
one object, one arrow strong homotopy 2-categories
15 equivalent to the operad of chains of the little
2-disks operad.

One evidence for this theorem can be seen from the
picture above. The picture has a shape of a circle which
is the space of binary operations of the little 2-disks op-
erad (up to homotopy). To prove that the correspond-
ing shapes for higher arities are of the right types is

more complicated but follows the same idea.



In 2005 Tamarkin answered a question of Drinfeld
and Belinson "What do DG-categories form?”.

[t is well known that one can define a notion of natu-
ral transformation between two functors and that cat-
egories, functors and natural transformations form a
2-category.

Recall that a DG-category is a category where for
every two objects a, b the set of arrows from a to b is
a chain complex and composition is bilinear.
Example 4.3 Let A be an associative algebra with
unit. Then it can be considered as a DG-category
YA if we form a category with one object x and with

Chain(x,*) = A. The composition rule
Chain(x, *) ® Chain(x, %) — Chain(x, *)

is given by multiplication in A.



For two DG-functors one can talk about natural
transformations which are natural in the strong ho-
motopy sense (homotopy coherent transformations).
So, we can ask what sort of 2-dimensional categorical
structure do we have for DG-categories, DG-functors
and coherent natural transformations?(Belinson-Drinfeld

question. )

Theorem 4.3 (Tamarkin) DG-categories, DG-functors
and homotopy coherent

DG-transformations form a strong homotopy 2-category.

Now if we fix a DG-category B one can consider the
chain complex of homotopy coherent natural transfor-

mations

Chain([dB, [dB>,

where Idpg is an identity functor on B. Since composi-
tion of identity with itself is an identity Tamarkin’s the-
orem implies that Chain(ldp, Idp) is a Hom chain
complex for a strong homotopy 2-category with one
object B , and one arrow Idg. So, by Batanin’s the-

orem Chain(Idg, Idp) is an algebra of the chains of



the little 2-disks operad.

It is a classical observation that the Hochschild com-
plex of an algebra A is the same as Chain(Idya, Idsa)
(recall that XA means that we consider A as a DG-
category with one object). So, we proved the Deligne’s

conjecture.



5 Higher dimensional Deligne’s con-

jecture and other generalisations

The original version of Deligne’s conjecture admits many

generalisations:

e Higher dimensional generalisation (Kontsevich) There
should exist a notion of Hochschild complex for an
algebra of the little n-disks operad. It should have
a structure of an algebra of the little (n + 1)-disks
operad. There is some partial progress with this
hypothesis in the works of Tamarkin and Krizh-

Voronov.



e A more sophisticated form of Deligne’s hypothesis

due to Kontsevich claims that the pair
(associative algebra, its Hochschild cochain com-

plex)
is an algebra over the Swiss Cheese operad and,
moreover, this is a universal pair in some strong

homotopy sense.

The Swiss-Cheese operad is an operad of configu-
rations of disks in a half plane and semidisks on
its boundary. It is proved in unpublished notes by
Tamarkin by a method similar to what I described
for the original Deligne hypothesis. The higher di-

mensional version is not proved, yet.






e Deligne’s conjecture for Frobenious algebras is proved
by Kaufman by purely geometric methods (using
spineless cacti operad). It involves the action of the
framed little 2-disks operad. This is an operad of
configurations of disks with a marked point on the
boundary of each disks. Substitution involves rota-

tion of disks.

Question: find a higher categorical interpretation

and proof of this form of Deligne’s conjecture?






e The latest version of the Deligne’s conjecture due to
Kontsevich-Soibelman and Tamarkin-Tsygan states

that on the pair
(Hochschild chains, Hochschild cochains)

there is an action of the operad of configurations
of little disks on a cylinder with a marked point
on each of the connected components of the bound-
ary of the cylinder. This leads to a noncommuta-
tive version of Cartan’s type calculus which involves
both polyvector fields and differential forms. There
is a very brief sketch of the proof in the paper of

Kontsevich and Soibelman.

Question: find a higher categorical interpretation

and proof of this form of Deligne’s conjecture?
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