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After all, the most mysterious aspect of n-category

theory is the origin of coherence laws.

John Baez, ”Categorification” (1998)
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1 Coherence laws as a source of equations

Let L be a vector space over k equipped with a skew-

symmetric bilinear operation
—,—|:LxL— L.
Let V = ko L. Define the isomorphism
B:VV-=VxV
by
Bl(a,2) @ (b,y)) = (b, 1) ® (,2) + (1,0)@ (0, [z, y]).
Then [—, —] satisfies the

Jacobi identity

if and only if B makes the following diagram commu-

tative:



VeveV

B@@// \\T®B

Vevev Vevev
Id® B B®Id
ValVeV VeVl
B®;\\ //2®B
Vevev

Yang-Baxter Equation



Eilenberg, MacLane, Steenrod, Whitehead
1930-1950 -

- 3-cocycle equation in group cohomology in algebra;
Maclane’s pentagon and hexagon conditions in cate-
gory theory:.

- the theory of cohomology and homotopy operations
in algebaic topology:.

1950-1970th:

- A-spaces and A-algebras; delooping machines,
homotopy invariant algebraic structures, the theory of
operads in homotopy theory and algebraic topology
by Stasheff, Boardman-Vogt, Milgram, Se-
gal, May .



Since the 1980s the equations determined by coher-
ence laws have proliferated in many different fields of
Mathematics and Physics. Examples include:

- Topology: homotopy theory, algebraic topology,
knot theory:

- Quantum algebra : Yang-Baxter equations and
Kniznik-Zamolodchikov equations ;

- Algebra and Algebraic Geometry: Theory of gen-
eralised determinants, theory of gerbes, non-Abelian
cohomology:

- Combinatorics: the theory of hyperplane arrange-
ments;

- Mathematical Physics: As-categories, mirror sym-
metry conjecture, String Theory:;

- Noncommutative Geometry. Deformation (QQuan-
tisation.

- Clategory Theory: braided monoidal categories and

higher dimensional categories;



There is an urgent need of
a Coherent Theory of Coherence Laws

for higher dimensional algebraic structures! Coherence
laws for n-fold loop spaces should form the foundations
for such a Theory:.

Most notable theories are:

- The theory of homotopy invariant algebraic struc-
tures of Boardman and Vogt;

- The Koszul duality theory for operads by Guinzburg
and Kapranov;

- Kontsevich and Soibelman recent approach through
formal noncommutative geometry:.

The ultimate solution should describe the combina-
torics of coherent laws and explain its origin in geome-
try. And here the only approach succeding in all ways
was proposed by Stasheff in 1963 for the coherence
of 1-fold loop spaces.

The main purpose of this lecture is to ex-
plain how we can extend Stasheff’s theory

for n > 1.



2 1-fold loop spaces and associahedra

Let (X, a) be a pointed topological space. The loop

space 2.X is the space of continuous maps
¢:10,1] - X
with compact-open topology such that
¢(0) = ¢(1) = a.
Multiplication (composition of paths)
o 1 X x QX — QX

G2t) if 0<t<1/2

el ) = @9lt) = w%—nrf1@<;<1



Multiplication is not associative, but it is homo-
topy associative. The homotopy (continuous

deformation) from the path

(@) w
to the path

¢ (- w)
is given by

s K3 x (QX)° — QX
K3 =10,1]
and satisfies
ps(0, =, = =) = pa(pa(—, =), —)

and



MS((Z)a ¢7 5)(11), t) -

O((4—2w)t) if 0<t<1/(4—2w)
= w4t — (1+w)) if 1/(4—2w) <t <1/4+1/(4 —2w)
(T4 w)(2t — (4 —w)/(4—2w)) if 1/4+1/(4—2w)<t<1

2-homotopy ( 2-dimensional deformation )
s Ky x (QX) — QX
K, is a pentagon.
St x (QX)* = 0K, x (QX)* - QX

is constructed from compositions of us, 3 :



Mz (Mz (_a_)7M2 (_a_))

MS(MZ (_J_)!’_’_) MS (_9_7M2 (_7_))

u, (w,, (1, (==)=)-) Uy, (=1 (=5, (=)

M2 (MS (_7_7_)7_) Mz (_’Ms (_5_3_))

iy (, (=5, (=-))-) (=5t (U (=5-),-))

Ms (_ 7“2 (_9_)5_)



Theorem 2.1 (Stasheff 1963) There exists a se-
quence of polytopes K,, n > 0, such that K, 1s
homeomorphic to a ball of dimension (n—2) and a

sequence of continuous maps
ty o K, x (2X)" — QX
with the following properties:

1. the faces of K, correspond to the planar trees
with n-leaves. In particular, the vertices of K,
correspond to the binary trees with n-leaves 1.e.
to all possible bracketings of a string with n-

symbols;

2. the boundary sphere 0K, s subdivided to the

facets homeomorphic to the products
K,xK,, ptqgq=n+1;
3. it 1s possible to construct a map
0K, x (QX)" — QX

using different compositions of . , k <n, such

that [, is an extension of this map to K,.



Theorem 2.2 (Stasheff 1963) A connected base
space Y (with strict unit) is a loop space (i.e. Y
is homotopy equivalent to QX for some X ) if and

only if there exists a sequence of operations
ty K, xY" =Y

such that the restriction of u, to the boundary of
K, is constructed like in (3).

Such a space is called A -space by Stasheff. The
polytope K, is the n-th associahedron (1980s).
This theorem led directly to the modern theory of

operads.



The first three nontrivial associahedra

K
a(bc) — 3 (ab)c
(ab)(cd)
a(b(cd)) " ((ab)c)d
4
a((bc)d) (a(bc))d



Loday’s convex realisation of associahedra.
The convex polytope defined by the following system

of inequalities
1+ ...tz 1 <nn-1)/2

I‘Z'+...—|-£E'Z'+k_12k(k—|—1)/2
1<i1<n—-1,1<k<n—1

is combinatorially isomorphic to K.




3 Double loop spaces and low dimensional coherence

laws
associator braiding
(ab)c a(bc) ab ba
a(cb) | (ac)b a(bc). (ab)c
a(bc) (ba)c
(ab)c b(ac)
(ba)c b(ac) (bc)a b(ca)




4 Operads

Notation: a finite ordinal [n]| ={0 <1< ... <n—1}

Definition 4.1 An operad is a sequence of topolog-

wcal spaces

A[O],...,A[n],...

together with an element e € Apy and a multiplica-

tion map
my - A[k] X A[nl] X ... X A[nk—ﬂ — A[n]
for every order preserving map
o] — [k

with the fibers o~ 1(i) ~ [n;], satisfying associativity
and unitarity conditions with respect to the compo-

sition of order preserving maps.

A picture of operadic composition



[n]

[K]

. <«— k-1




A symmetric operad is defined analogously but
we allow all maps between ordinals. Every symmetric
operad is an operad. There exists an "inverse” opera-

tion symq of symmetrisation of an operad.
symy(A), = A, X S,,.

A map of operads is a sequence of continuous
maps

Jin) + Ap) — B

which preserves the operad structures.

Example 4.1  The endomorphism operad E(X) of

a topological space
E(X)y) = Top(X", X).

The unit element is the identity map id : X — X and

composition is given by substitution of functions.

Example 4.2  The sequence of associahedra { K, },,>0

form an operad ( As-operad ).



Example 4.3 Thelittle n-cubes operad (Boardman-
Vogt-May ).

Definition 4.2 An algebra over an operad A s a

topological space X together with a map of operads
k:A— EX).

Theorem 4.1 (Reformulation of Stasheff’s theorem)

A connected based topological space is a loop space

(with strict unit) if and only if it is an algebra of
the operad k = { K, },>0 of associahedra.

Theorem 4.2 (Bordman-Vogt,May,1972)
A connected based topological space is an n-fold loop
space (with strict unit) if and only if it is an algebra

of the little n-cube operad.



5 Fulton-Macpherson compactification

The configuration space of k£ points in R" is
Confr(R") = {(z1,...,z1) € (R | 2; # xjifi # 5 }.
The moduli space of configurations of k-

points in R" is
Mody(R") = Con fy(R")/G,
where (5, is the group of affine transformations of "
ueR'— du+v,A>0,veR".

The real compactification of moduli space of
configurations (Fulton-Macpherson, Axelrod-Singer,

Kontsevich) :

- fm; is the closure of Mod(R") in the compact space

mn S x m 0,00
1<i,7<k 1<i,7,l<k

1] 177,J 77



The inclusion is defined by the family of functions

ZCJ'—SC@'

uij<$1,...,xk) = ||:L’ —QEH
J 1

1<t,j<k,i#]

di,j,l@:l; c e 737k:> =

L<igl<k,17#jj7#LiFl

Example 5.1

For any n > 1 the space



Example 5.2 Collision of points in Mod;o(R?)




Properties of FM compactification

( Getzler-Jones, Kontsevich ) :
e fm; is a manifold with corners with interior M ody(R");

e The boundary strata are in bijection with nonplanar
trees with labelled k leaves and a typical stratum

is isomorphic to the products of low dimensional

Mod;(R");

e The sequence {fm}'}, k > 0 form a symmetric op-

erad equivalent to the little n-disk operad.

Theorem 5.1 (Kontsevich, 1990) The space fm,
has n! connected components and each component
18 1somorphic to the associahedron K,. In other
words, the Fulton-Macpherson operad fm' is the

symmetrisation of Stasheff’s operad

fm' = sym; (k).



Example 5.3

n=3




Example 5.4 n =4
S A
~ @@ — \J((
— Y,
¥







6 n-ordinals as n-dimensional natural numbers

n-category theory: an n-fold loop space = a topo-
logical n-category with one object, one 1-
arrow, one 2-arrow etc. one (n — 1)-arrow.

The structure should be describable by higher categor-

ical tools.

Definition 6.1 Let X be a finite set equipped with
n binary relations <g,...,<p,_1 . X s called an n-
ordinal if these relations satisfy the following prop-

erties
o <, is nonreflexive and antisymmetric;

e for every pair a,b € X, there exists exactly one

p such that
a<,b or b<,a;

e ifa<,b and b<,c then a <y, (pq C

P.q)



Every n-ordinal can be represented as a planar tree

with n-levels or as n-dimensional graph

1-ordinals

1 0 < 1 < 2

0 0
W ® = @ = @ ~=— O
0

2-ordinals

R S
RS Y,




Definition 6.2 A map of n-ordinals
oc: X —Y
1s a map o : X — Y of underlying sets such that
1<p,J mX
implies that
e 0(i) <, a(j) for somer >p or
e o(i)=0(j) or

e o(j) <, o(i) forr>p.

For every i € Y the preimage o~ (i) (the fiber of

o over 1) has a natural structure of an n-ordinal.



7 n-operads

Definition 7.1 An n-operad is a family of topolog-

wcal spaces

AT, T € Ord,,

together with an element e € A;, where 1 s the

terminal n-ordinal and a multiplication map
Mg+ Ag X Ay x ... x Ay, — Ar
for every order preserving map of n-ordinals
o:1T— S8

with the fibers o~ 1(i) ~ T;, © € S, satisfying as-
sociativity and unitarity conditions with respect to

the composition of order preserving maps.



Example 7.1 An endomorphism operad of a

topological space X
E(X)r =Top(X",X), T € Ord,,

where X7 = XTI and |T| is the underlying set of T
(the number of leaves of the tree T').
Example 7.2 A 1-operad is the same as a clas-

sical (nonsymmetric) operad.

Definition 7.2 An algebra of an n-operad A is a

pointed topological space X equipped with a map of
n-operads A — E(X).

As in the case of ordinary operads an A-algebra struc-

ture on X amounts to a family of continuous maps
mp: Ap x X1 — X

satisfying some compatibility conditions with respect

to composition of functions and operad composition

in A.



8 Stratification, compactification and higher dimen-

sional coherence laws

We have seen before that with every 1-ordinal [m] one

can associate an open (m — 2)-dimensional cell
FNyy={(z1 <z9<...<zp)} C Mod,(R")

and the closure of it in fm] is exactly the associahe-
dron K,,.

We have a similar association for n-ordinals.

Let Sn P~ denote the open (n — p — 1)-hemisphere
nkR", 0<p<n-—1
it i =1
Tpy1 >0and z; =011 < <p

S”p1 r € R"

Similarly,

it i =1

S"pl r € R"
Tpr1 <Oand z; =011 < <p




The Fox-Neuwirth cell corresponding to an
n-ordinal 7" is a subspace of Mod|p|(R")

FNp =

x € Modr(R")

uj(x) €SP i<, jin T

uij(x) €S" Pt i j <, iin T

[t is a contractible open manifold of dimension

E(T)—n-—1

where E(T') is the number of edges in the tree T

Example 8.1
3
6 ¢
2 q
[ 4
1 j| 5 7




The Getzler-Jones space

UU<$> c S_Tﬁ_p_l if ¢ <pj in 7'

GJ| ={x € fm/
! [ T ) e "7 i j<,iin T

o
-1 -1 -1
where ST 7" and S”P7 are closures of S} 7" and

§ﬁ_p ! respectively.

Theorem 8.1 The family of spaces
{GJI}}, T € Ord,,

form a contractible n-operad.

Example 8.2 GJ! is isomorphic to the

Stasheft’s operad k of associahedra.



The following theorem generalises Kontsevich’s ob-
servation for arbitrary n and gives a precise recipe how

to construct fm" by gluing Getzler-Jones spaces.
Theorem 8.2
fm" = sym,(GJ"),
where for an n-operad A
symy(A)r = colim Ap,

TeJy

Ji' 15 the Milgram poset.

For an n-ordinal T', let K7 be the closure of the Fox-

Neuwirth cell F'Nr in the Getzler-Jones space GJ7.



Theorem 8.3

o K7 is a manifold with corners combinatorially

equivalent to the ball of dimension E(T)—n—1;

e The faces of codimension one of Kt are given by

products and collapsing of low-dimensional Kg.

The following analogue of Stasheft’s theorem holds:

Theorem 8.4 A connected base space Y is an n-
fold loop space (with strict units) if and only if there

erists a sequence of operations
: T
ur - KT XY —Y

where ur /0Ky is constructed from low dimensional
Kg and such that the base point of Y 1s a strict unit
for .

The last condition is equivalent to the existence of
a GJ"-algebra structure on Y, which in its turn 1s
equivalent to the existence of a fm"-algebra struc-

ture on Y.



Here are the examples of low dimensional K.

n=2
K K
\ U
Poincare/(1895) Alexandroff, Hopf (1930)
MacLane,Stasheff (1963) Drinfeld, Joyal, Street (1985)

Stasheff (1963) Breen (1990)






Warning !
| Tamarkin’s counterexample 1998 |

The polytope K7 coincides with GJ7 until dimension
5. The first difference appears in the dimension 6 for
a space of operation of 6 variables ! [Configurations of
6 points on the plane.]

The arity of these operations is given by the following

2-ordinal

S0, in contrast with the classical 1-dimensional case,
the polytopes K1 do not form an n-operad
for n > 2.

GJ" is an n-operad but GJ7. in general is just a

semialgebraic set.



9 n-operadic compactification

To overcome the difficulties created by Tamarkin’s coun-
terexample we introduce a bigger compactification of
configuration space which gives an n-operad B” which
is a true n-dimensional analogue of Stasheft’s operad.
The space By can be obtained by a further blow-up
procedure from K. It is a closure of F'Np inside the

following product

n S"'x 1 0,00]x

1<, j<|T) 1<i j,1<|T|
i#] GERTIRY
I S"*x I [0,00]x
1<i,j <[0T 1<i,j,1<[0T]
1] i) LI
I S"°x I |0,00]x
1<i,j<|0%T] 1<i,j,1<|0%T)
i#) i#5,5# i

0
1 5" X 11 [0, o0.
1<i,j<|0" 1T 1<i,5,1<|0"~ 1T
i#] i#,j7 i



The notation T here means an (n—1)-ordinal whose
underlying set is the set of equivalence classes of ele-
ments of 7" with respect to the equivalence relation

generated by the relation <,,_1 on 7.

2
1 : \/ 1
—— ——
0 . 0

The embedding is given by functions
Wij, dijly - - - ,uij(pk), diﬂ(pk), .
and p* is the natural projection from
FNp — FNgirp.
We have the induced projections

BT — BaT — B32T e B@”T = {pt}.



One can define a more general notion of n-operad
where the projection above is a part of the structure

of an operad.
Theorem 9.1

e By form an n-operad

e By is a manifold with corners combinatorially

equivalent to the ball of dimension E(T)—n—1;

e The faces of codimension one of By are given by

products of generalised resultoassociahedra,

e K can be obtained as a quotient of By by col-

lapsing some faces in Br.

The following is another n-dimensional analogue of

Stasheff’s theorem
Theorem 9.2 A space Y s an B"-algebra if and
only if X is an GJ"-algebra, if and only if X is an

fm"-algebra.



Permutoassociahedron KP3 = KRes w



10 The Table of coherence laws

Getzler-Jones, Baez-Dolan, Batanin
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