

DMTH237 Discrete Mathematics II

Week 5&6: Fridays — 29 March, 5 April 2019
NON-DETERMINISTIC FINITE STATE MACHINES

NDFSA acceptance

Well, let's ask: what strings **can be accepted** by this **NDFSA**?
First we have to modify our definition of '**accepted**'.

Definition (non deterministic FSA)

A string is **accepted** by a non-deterministic FSA if it is possible to terminate in an **accepting state**.

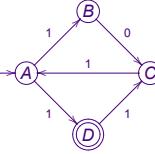
What can be accepted? $(101 + 111)^*(101 + 111)^*1(101 + 111)^*1$

1011 could terminate in B , or in the **black-hole**, or in D . Going **multiply around the top loop** accepts strings matching regular expression: $(101)^*1$.

1111 if it just **goes around the bottom loop**.

Any sequence of 1s matching the regular expression $(111)^*1$ will be **accepted**.

Going around **either loop**, many times, in **any order**: e.g., '1011111011011'.



Reference: Rosen 7th ed, p.873; 8th ed, p.912

Non-Deterministic Finite State Machines (NDFSMs)

NDFSA: easier to design

The point of considering **non-deterministic machines** is that, in many cases, they are **much easier** to design than **deterministic** ones.

Try to construct a **deterministic FSA** to accept the **language** $(101 + 111)^*1$.

It is **not so easy**.

- So, the **advantage** of non-deterministic FSAs over deterministic ones is that they are **easier to design**.
- But how do we **implement** them?
 - use a **random number generator** whenever we have a choice;
 - work in parallel – follow **multiple paths simultaneously**;
 - need a method for **converting** non-deterministic FSAs into **deterministic** ones.

Multiple Transitions

Do you notice anything **peculiar** about this **FSA**?

There **seems to be a mistake** because there are **two transitions** labelled '1' coming out of state **A**.

If we are in **state A** and we **happen to read a '1'**, do we **go to state B or to state D**?

We **appear to have a choice**.

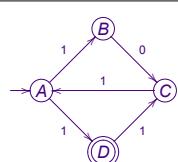
Does this mean we have to toss a coin so that **sometimes we go to state B** but on other occasions, with the **same input string**, we **go to D**?

There is no mistake.

This is an example of what is known as a **non-deterministic FSA**.

It appears to incorporate the **element of chance**.

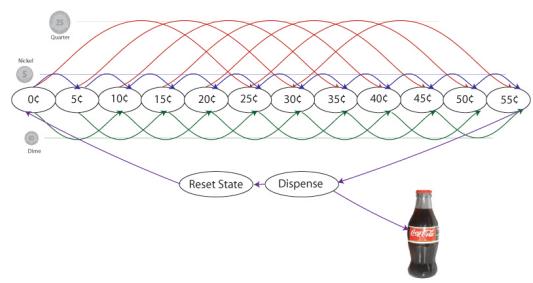
But what possible use could there be for a **machine** whose **behaviour is unpredictable**?



Reference: Rosen 7th ed, p.873; 8th ed, p.912

State changes w/o input

Finite State Machine:
Soda Machine State Diagram

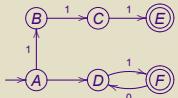


Null transitions

Having multiple transitions, for the same input, is **not the only way** an FSA can be **non-deterministic**. It can have **null transitions**.

Consider the follow **state diagram** for an acceptor.

Example



Note the **two transitions coming out of state A**. We have **not forgotten to write the input character that produces the transition from A to D**. It can be made **spontaneously, without the need to read any input**. **Accepts: $111 + (10)^*1$** .

However there is **danger** in using an **arrow without a label** for a null transition. If we **simply forget to label** an arrow it could be **interpreted wrongly**. To avoid this, we use the **null-string symbol ' λ '** to represent a null transition.

Run the **machine** on the **string '10101'**. When we **start with a null transition** ... it is accepted because **it is possible** to end in an **accepting state**.

scanning for nulls

Working with a **transition table** is **much more reliable** than using a **state diagram** as it is not so easy to **miss a null** in a table.

We use the same system to **complete the nulls** as to find **accessible states**.

Example (scanning for nulls)

	0	1	λ
A	B	A	BD
B	F	C	F
C		F	
D	AC		A
E		ABC	
F	C		BE

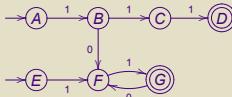
- **A:** which has **null transitions**; so ...
- **A, B, D:** ... write down its **nulls**.
- **A, B, D:** Look at next **state** in the list; it has **null to F**.
- **A, B, D, F:** ... so add **F** to the list.
- **A, B, D, F, E:** Next **state**, has **null to A**, already listed;
- **A, B, D, F, E:** **F** adds **E** to the list.
- **A, B, D, F, E:** no more to add.

Hence there can be **null transitions** from **state A** to all of **BDEF**. Similarly from **B** to **EF**, and from **D** to **ABEF**, and from **F** to **BE**, as already stated. This **completes** the **λ -column**.

NDFSA: Multiple Initial States

This next **non-deterministic machine** offers a **choice of where to start**.

Example



It accepts the strings '111' and those such as '101', '10101', '1010101', '101010101', ... by **starting at A**. It also accepts strings such as '11', '1101', '110101', ... by **starting at E**.

The **language** accepted by this **machine** is: $111 + 10(10)^*1 + 1(10)^*1$. This could be written using more parentheses as: $1(1 + (\lambda + 0)(10)^*)1$, which while shorter is **not necessarily any clearer**. This is even shorter and remains quite clear: $111 + (10 + 1)(10)^*1$.

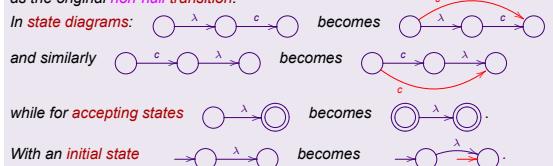
Removing the Nulls

Suppose we have a **complete NDFSA**.

We now **remove** any **null transitions** as follows.

Procedure (removing the nulls)

If there is a **null transition** from **A to B** and a **non-null transition** from **B to C** then **add a non-null transition** from **A** to **C** associated with the **same input character** as the original **non-null transition**.

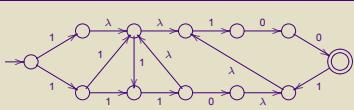


Having done this, each **null transition** is now **completely redundant**, so can be **simply removed**.

Completing the Nulls

In the following **NDFSA** it is possible to move **spontaneously** along several **null transitions** one after the other.

Example



Definition (completing the nulls)

If there is a **sequence of null transitions** from state **A** to state **B** add a **direct null transition** from **A** to **B** (unless there is already a **direct null** from **A** to **B**).

We then say that the **NDFSA** is **complete**.

(see example above)

removing nulls, example

Consider the following **complete NDFSA**.

Example (removing nulls)

	0	1	λ	
A	EF	BCD	CD	$\rightarrow A$
B	BCD		*	B
C			*	C
D	CD		*	D
E	CD		*	E
F	D		*	F

	0	1	
A			
B	E	B	*
C	BC		*
D	C		*
E	D		*
F	D		*

In the **transition table**, **augment** any state names that can **λ -transition** by **including their target states**. Now when in **state B** reading a '1' we could use the '1' directly from **B** (though in this case there is no appropriate 1-transition) or first move by a λ to either **C** or **D**, and then use the '1'. Take the **union** of sets in the '1' column for the **B, C** and **D** rows. This is: $\emptyset \cup \{B, C, D\} \cup \{C, D\} = \{B, C, D\}$, which we write as **BCD**. Similarly **state C** can λ -transition to **D**, so take the **union** of rows **C** and **D**. Similarly **state E** can λ -transition to **F**, so take the **union** of rows **E** and **F**. Row **A** is unchanged, as are rows **D** and **F**.

The resulting **NDFSA** has **no nulls**, which have all been replaced by **multiple transitions**.

incomplete NDFSA

Consider this incomplete NDFSA.

	0	1	λ
$\rightarrow A$	0	1	
B		B	
C	D	C	F
D		G	
E	E	A	
F	F	B	
G			*

* complete nulls

	0	1	λ
$\rightarrow A$	0	1	
B	B		
C	D	CF	BF
D		G	
E	E	A	
F	E	BC	
G	F		*

* remove nulls

	0	1	λ
$\rightarrow A$	B	DE	BCF
B	D	DE	G
C	E		*
D	F	DE	
E		BCF	*
F			*
G			*

Note how states **B, C and F** can all null-transition to each other, and that **B, C** become accepting because they can null-transition to an accepting state. Upon removing nulls these three states all transition equivalently.

We now have multiple transitions. Next we'll see how to combine these.

Summary of conversion NDFSA \rightarrow FSA

Given the state diagram for a non-deterministic FSA there are six stages in converting it into a reduced deterministic FSA presented in standard form.

1. construct the state table
2. complete the nulls
3. remove the nulls
4. remove multiple transitions
5. combine equivalent states
6. put into standard form

Combining Multiple Transitions

Suppose now we have a non-deterministic FSA, M , with all its null transitions removed, but having multiple transitions from a state for the same input character. We transform this non-deterministic machine M into a deterministic one (we shall call this M^Δ , with the Greek delta representing 'deterministic') by considering sets of states as the states of the deterministic machine.

Definition (deterministic machine M^Δ)

If an NDFSA M has a set of states S , the new machine M^Δ is defined to have

- $\wp(S)$, the power set of S , as its set of states;
- if X is a subset of S and c is an input character, then $M^\Delta(X, c)$ is defined to be the subset of all states in S that can be reached from some state in X by reading the character c . In other words: $M^\Delta(X, c) = \bigcup_{x \in X} M(x, c) \in \wp(S)$.
- A subset $X \in \wp(S)$ is accepting in M^Δ if there is $x \in X$ such that x is accepting in M .

The resulting FSA, M^Δ , will clearly be deterministic because from each set of states of the original machine M there is exactly one subset of states of M that we can reach for a given input character. So we will now have a deterministic FSA that is equivalent to M , in the sense that it accepts precisely the same language as M .

Reference: Rosen 7th ed, p.874; 8th ed, p.956, Theorem 1

A worked example

	0	1	λ			0	1			0	1	
$\rightarrow A$						B	AD	B		B	AD	
B						C	DF	B		C	DF	
C						D	C			D	C	
D						E	B	CD	AF	E	BD	B
E						F	D			F	BCD	*

Reduced

	0	1
0	1	2
1	1	\emptyset
2	3	\ast B
3	4	AD
4	1	D
5	3	\ast BC
6	7	\ast C
7	4	DF

Reduced

1. construct state table; 2. complete the nulls — nothing to do; 3. remove the nulls; 4. remove multiple transitions; 5. combine multiple transitions; 6. put into standard form — nothing to do.

Convert NDFSA to FSA

Convert the following non-deterministic FSA to a deterministic one:

Example (NDFSA \rightarrow FSA)

	0	1				0	1				*
$\rightarrow A$	0	1	A	$\rightarrow 0$	1	2					A
B	CD	D	*	1	3	4	CD	1	3	4	CD
C	AD	B	*	2	0	5	D	2	0	5	D
D	AC	C	*	3	6	1	AC	3	6	1	* AC
	A		*	4	3	4	C	4	3	4	C
			*	5	5	5	\emptyset	5	5	5	\emptyset
			*	6	6	1	ACD	6	6	1	* ACD

We don't need all $2^4 = 16$ subsets in the power set. Just identify the subsets that we actually need, starting from the initial state. Fill in the table, numbering consecutively the subsets of states that can be reached. The empty set corresponds to a 'black-hole'. When the table is complete identify the accepting states as those subsets including an accepting state in the NDFSA.

Index of 'jargon' terms

1-transition, 12	empty set, 15	non-deterministic machine, 8, 14
λ -transition, 12	equivalent, 14	sets, 12
accepted, 5	equivalent states, 16	state form, 16, 17
accepted, 4, 7	FSA, 3, 7, 14	states, 3, 7, 9, 10, 15, 17
accepting, 13	initial state, 11, 15	state diagram, 11
accepting state, 4, 7, 13, 15	input, 7	state table, 16, 17
accepting states, 11, 15	input character, 7, 11, 14	states, 12–14
accepts, 4	input string, 3	string, 4, 7
accessible states, 10	language, 5, 8, 14	subset, 14
arrow, 7	machine, 3, 7, 8, 14	subsets, 15
black-hole, 4, 15	multiple transitions, 12–14,	subsets of states, 15
complete NDFSA, 11, 12	16, 17	table, 12
complete the nulls, 10, 17	NDFA, 4, 9, 12, 14, 15	terminal, 4
completes, 10	null, 9, 10	transition, 7, 11
deterministic, 5, 14, 15	null transition, 7, 9, 11	transition equivalently, 13
deterministic FSA, 5, 14, 16	null transitions, 9–11, 14	transition table, 10, 12
deterministic machine, 14	null-string, 7	transitions, 3, 7
	null-transition, 13	union, 12
	nulls, 10, 12, 16	
	power set, 14, 15	
	reduced, 16	
	regular expression, 4	
	remove multiple transitions,	
	17	
	remove the nulls, 17	
	removing nulls, 13	
	set, 14	