

Dr. Ross Moore
DEPARTMENT OF MATHEMATICS
Faculty of Science and Engineering

Macquarie University
NSW 2109 Australia
T: +61 (2) 9850 8955
F: +61 (2) 9850 8114
ross.moore@mq.edu.au
ABN 90 952 801 237

May 21, 2018

To whom it may concern,

within the Academic Publishing and Document Engineering communities.

Implementing PDF standards for Mathematical Publishing

The author (hereafter, simply ‘Ross’) asserts the desirability

1

of having mathematical docu-

ments — journal articles, research reports, monographs, courseware, etc.—be produced conform-

ing to modern PDF standards; in particular, validating for PDF/UA (Universal Accessibility) and

PDF/A-2a (or PDF/A-3a) for both Archivability and Accessibility. These are published stan-

dards, respectively as ISO14289-1:2012 (slight revision in 2014)

[

13

]

, ISO19005-2:2011

[

8

]

and

ISO19005-3:2012

[

9

]

, all based upon ISO32000-1 (PDF 1.7)

[

4

]

. Ross has demonstrated the feasi-

bility of using LATEX to build documents that conform to these standards and can provide example

documents

[

21

]

. (Indeed, the PDF of this letter is one such.)

With the cooperation of most academic publishers, Ross asserts that this can be achieved within

5 years, along with just a little education of authors to provide the minimal extra information

required in producing such documents from LATEX source. This involves use of LATEX coding

supporting ‘Tagged PDF’, mostly already written for much of ‘standard’ LATEX, many commonly-

used packages, and extendable to the document-classes required by academic publishers that accept

LATEX source from authors.

Here is a summary of how the envisioned timeline of 5 years would be achieved, outlining the

main tasks to be undertaken both by publishers and by Ross himself.

Year 1

Publishers

: Implement full support for PDF/A-2u (or PDF/A-3u) — which doesn’t require

‘Tagged PDF’.

TWG

:

2

extend support for ‘Tagged PDF’ to cover all features of the document-class files

used by publishers, and to more LATEX packages used by authors along with such classes.

Year 2

Publishers

: provide free access to PDFs, of example articles (from back-issues) produced

by Ross during year 1, to visually-disabled academics and researchers, for feedback on the

quality of the Accessibility features; technical editors learn the extra requirements in the

production of ‘Tagged PDF’ documents, compliant with both PDF/UA and PDF/A-2a (or

PDF/A-3a). Also seek feedback from libraries on the switch to using PDF/A.

TWG

: provide instruction to technical (and other) editors on the extra requirements; continue

to process more examples from back-issues, solving issues that may arise in supporting special

kinds of content.

Year 3

Publishers

: start to produce ‘Tagged PDF’ versions of current issues in a small number

of journals; educate all editors in the extra requirements for producing ‘Tagged PDF’.

Ross

: implement any extra features, arising from the user feedback; work in support of

production staff, to ensure the ‘Tagged PDF’ articles are produced smoothly; start to develop

instructional materials, suitable for both authors and editors.

1

Libraries at academic institutions, particularly in Germany, are requiring academic theses to be submitted con-

forming to a PDF/A standard. Governments in several countries have ‘accessibility’ requirements for electronic

publications. Notable here is the U.S. GSA Government-wide Section 508 Accessibility Program

[

2

]

.

2

‘TWG’ here denotes a TEX working group, consisting of developer/programmers from existing TUG working

groups, initially with Ross as the lead programmer. This will include members of the LATEX-3 team.

Year 4

Publishers

: extend use of ‘Tagged PDF’ to more journals; continue to receive feedback,

passing on recommendations to Ross for implementation; fully develop instructional materials

for authors.

TWG

: continue to work on the LATEX coding, to produce a stable, modularised system that

editors and (later) authors will be able to use; extensions to other document-classes, such as

books and monographs, etc.

Year 5

Publishers & Ross

: make the new LATEX packages or class files publicly available (e.g., via

the CTAN network).

Publishers

: make available instructional materials for these new resources.

TWG

: continue to act on feedback from authors and editors, expecting to produce regular

updates to the software, as required.

Details

We now describe some of the details involved with the tasks that have been mentioned above.

Archivability

The main issues, for PDFs created using LATEX, in the standards ISO19005-2:2011

[

8

]

and ISO19005-

3:2012

[

9

]

for ‘Archivability’ are:

(a)

inclusion of Metadata in the XML-based XMP format

[

3

]

;

(b)

specification of a Color Profile (usually either ‘RGB’ or ‘CMYK’) for the document, and

ensuring that all embedded images and any colour-changing LATEX commands used in the

production of the PDF, conform to this Color-space described by the Profile;

(c)

the characters in all fonts used within the document have a mapping into the Unicode collection

of character codes;

(d)

inter-word spaces are present in the PDF page-description.

These are all requirements in all flavours of level and conformance for PDF/A. Thus to build

up conformance with PDF/A-2a (the ‘accessible’ flavour), one can start first with PDF/A-2b or

PDF/A-2u which do not require the extra complications needed for Accessibility. Put simply, deal

with the other issues first; then add the ‘accessibility’ part later. Furthermore, none of these affects

the actual typesetting, so a PDF/A document can replace a non-PDF/A one at any stage in the

production process, in particular to become a preferred online format. PDF/A-3 is appropriate

when the final PDF is to contain attachments in formats other than PDF; e.g., movies or runnable

code for mathematics engines.

The LATEX package

pdfx

[

22

]

has coding to deal with all of the issues (a)–(d) listed above, when

used with pdfTEX as the processing engine. Ross is currently the principal developer for the

pdfx

package, so is familiar with its LATEX coding, and how to extend it to cope with any issues that

may arise.

Metadata

In a production environment, metadata will normally be stored in a database, separate from the

LATEX source but clearly related to it. Using

pdfx

a file (with suffix

.xmpdata

) is used with the

LATEX job. This can be generated as a database report. Publishers will need to develop appropriate

work flows.

2

The XMP Metadata

[

3

]

is organised as an XML formatted file, which is included uncompressed

into a PDF as a single object. Using

pdfx

this XML file is constructed using a template, with TEX

macros expanding to provide the values for specific Metadata fields. Values are passed to these

macros using the

.xmpdata

file.

This setup is easily expanded to include extra fields, using the concept of ‘PDF/A Extension

Schema’. The standard templates which come with

pdfx

have examples of this, for including

Metadata fields from PRISM specifications

[

23

]

. It is not hard to add new fields, and define extra

TEX macros within the coding for

pdfx.sty

. If there is a need for this, in particular for information

that ultimately needs to be supplied by authors, then Ross can extend the

pdfx

package to cope.

Color Profiles

For PDF files distributed via the internet, the appropriate Color Profile will normally be based on

the ‘RGB’ Color Space. Consider embedded images, such as photographs, scientific graphics or

other kinds of colored diagram. These will all need to specify their colours via the RGB space, but

this may not be the space used when a graphic image supplied by the author was created. There

will be a need for conversions to be made.

Publishers must already have to deal with such issues, but with strict conformance to a PDF/A

standard, the amount of work required in this area can be expected to increase. It could be useful

to setup an online ‘colour-conversion’ service. This would allow authors to convert images prior to

submission of a paper for publication. The resulting image can then be used by the author during

preparation of their manuscript, and also be already available on the publisher’s system, converted

into the required format (perhaps with extra Metadata added).

Some publishers may also want a ‘CMYK’ version of images for paper-printing, in colour. This

might be done by a separate LATEX run, with the

.xmpdata

file specifying a CMYK profile, which

need not be the one included with the

pdfx

package distribution

[

22

]

. Note that

pdfx

loads the

xcolor

package, with options corresponding to the chosen Color Space (‘RGB’ or ‘CMYK’). This forces

all LATEX colour commands to use the specified space, irrespective of how a colour was originally

specified by the author. Thus there is no need to adjust an author’s LATEX preamble, or other

coding, to ensure compliance with a PDF/A standard.

Font mappings to Unicode

The pdfTEX software already has a feature to generate mappings of font characters to valid Unicode

code-points, and the

pdfx

package turns on this feature. However, some rarely-used characters

can be mapped into invalid code-points; e.g., incorrectly mapped into the ‘Private Use’ area, or

where there is no obvious corresponding code-point. When this occurs, the

\pdfglyphtounicode

command allows the problem to be overcome, for each troublesome font character. Such instances

should be reported to Ross, to insert such command usage into

pdfx.sty

, to avoid the particular

issue recurring.

Interword spaces

Normally TEX (and hence LATEX) does not insert space characters into the PDF output that it

generates. However, since 2014 (and earlier in an experimental branch) the pdfTEX software has

had the ability to insert extra spaces, using a heuristic method to determine when sufficient white

space occurs between characters. This happens on output only, so has no effect whatsoever on

the typesetting. That is, the visual page remains unchanged. These spaces do contribute to

Copy/Paste and occur within the output stream fed to screen-readers and ‘Assistive Technology’.

This feature was added, at Ross’ request, specifically to meet the requirement for PDF/A com-

pliance. It is turned on automatically when using the

pdfx

package.

3

Validation

When producing a PDF document that is supposed to be conform to a particular standard, it is

important to check this conformance with validator software. For PDF/A there are a number of

programs that can do this. Best is probably the ‘Preflight’ utility that is built-in to the ‘Acrobat

Pro’ application from Adobe Systems Inc.

[

1

]

. This can also be obtained as stand-alone software

named

pdfaPilot

[

10

]

. There’s another validator at

pdftools.com

[

11

]

.

Production editors in particular, and eventually all editors, will need to gain experience using

such validation software. Starting with PDF/A-2u, the errors are likely to be associated with items

(a)–(d) above. Ross has had more than

5

years of experience creating documents conforming to

PDF/A, in all its flavours. He can help interpret the error reports that may arise using Adobe’s

‘Preflight’.

Later, as we move into ‘Accessibility’, via ‘Tagged PDF’ — which has much stricter requirements

on what must be tagged, and how that tagging is actually done — some of the errors will have an

obvious cause associated with poorly-constructed LATEX coding in an author’s manuscript. Others

may not be so clear. Since TEX was designed well before tagging in PDFs was ever conceived, there

are no internal checks related to it. Macros can be written in LATEX to catch some tagging-related

errors, but for most errors that are not also errors in TEX, mostly you will not know that there

is a problem until the resulting PDF has been checked with a validator. Again Ross’ experience

is paramount here, to diagnosing the problem and devising appropriate internal LATEX coding to

properly handle the situation.

Tagging for Accessibility

Producing a ‘Tagged PDF’ document requires tagging both structure and content. With ‘structure

tagging’ viewed as providing a ‘tree-like’ description of blocks the information contained within

the document, then ‘content tagging’ supplies the ‘leaf-nodes’ for this tree. That is, a span of

content ‘hangs off’ the structure tree, much as a leaf hangs from a branch. Detailed indexing of all

structure-types allows for rich navigation facilities; e.g., finding all sub-section headings, list items,

all inline or displayed mathematical expressions.

It is this embedded structure and indexing that is the key to ‘Accessibility’ within the PDF,

since it allows the content to be studied in ways that are independent of the visual appearance of

pages. A primary requirement of PDF/UA, is for

all

content to be ‘tagged’, either as leaf-nodes of

the structure tree, or as an ‘Artifact’ — such as page-numbering or running-headers and footers.

Content such as embedded figures and mathematical formulae must be accompanied by ‘alternative

text’, providing an easily spoken description of what the formula is about.

Precise (and some not-so-precise) rules on how a PDF file needs to be constructed for PDF/UA is

detailed in the ‘Matterhorn Protocol’

[

15

]

. This document contains a collection of 31 checkpoints,

comprised of 136 ‘Failure Conditions’, to test whether a given PDF is compliant. Most of these

can be automated, and such checking is available with the validation software mentioned above.

Furthermore, Adobe’s ‘Acrobat Pro’ software

[

1

]

has a suite of 32 checks built in to its ‘Accessibility

Tool’, most of which are the same as in the Matterhorn Protocol; there are differences, but no

incompatibilities. Some of the latter tests can only be checked by a human; e.g., sufficient colour

contrast, correct reading order, hyperlinks point to a sensible (and correct) target, etc. In all, these

rules embody all of the WCAG guidelines

[

24

]

for documents delivered via the internet, insofar as

these can be sensibly applied to a PDF document — of course, most can.

It is desirable for PDFs produced using LATEX to satisfy

all

the automated checks of both the

Matterhorn Protocol

[

15

]

, and those in Acrobat Pro’s ‘Accessibility Tool’

[

1

]

. That has been

the case with Ross’ earlier work

[

18

,

19

,

20

]

, and remains so with the ‘Tagged PDF’ document

examples

[

21

]

produced more recently. Furthermore, the idea of ‘alternative text’ can be extended

4

beyond just figures and formulæ; indeed any structure item or span of content can have a speakable

alternative. This is useful for the ‘Accessible Text’ view, as read by screen-readers that do not

have the ability to follow structure, but only content. In

[

20

]

Ross introduced the notion of ‘access-

tag’, which is a span of content containing a single very, very small space, which can be equipped

with arbitrary ‘alternative text’. It can hold words such as “start of enumerated list”, “end of

quotation”, etc., as appropriate to the start and end of blocks of special content.

Tagged PDF with LATEX

So far the tagging required for many aspects of a document’s structure have been implemented by

Ross, within example documents

[

21

]

. These include . . .

document title, normal paragraphing, section headings (numbered and unnumbered),

lists and list-items, font-changes within a paragraph, italic corrections, inline mathe-

matics, most

amsmath

displayed environments, footnotes, cross-referencing, hyperlinks,

table-of-contents, citations, bibliography, floats, theorem-like environments, some ver-

batim environments, quotations, centering, abstract, included images and more.

The title-page of a document depends very much on the particular document-class being used. A

lot of work is needed to correctly tag all the different pieces of information that may occur. Thus

a large part of the work required to support a new document-class is devoted to just getting the

first page(s) correct. All of this has been done is such a way that pagination and full-page layout

is exactly the same as would occur with no tagging; that is, all the internal ‘glue’ calculations

performed by the TEX engine result in the same numerical values for all glue settings.

Other typical document elements that currently are not yet properly supported include . . .

tabular environments, 2-column format, color-changing commands, language switches,

index and indexing, some displayed math-environments, line-numbering, commenting,

and most user-supplied packages that are not simply built from environments in the

standard LATEX base distribution.

Thus there is still plenty of work to be done, some of it easy, but much of it not-so. The main

source of difficulty lies in the way that different environments can interact with each other. There

are many situations in LATEX where one environment or structure is not really completed until the

next has begun. So it is not just a matter of wrapping start and finish tags around every piece of

supplied content. Instead one needs to understand the subtleties of how different environments and

other structures actually start and finish, within the context established by surrounding material.

Export to other formats

When creating a ‘Tagged PDF’ document from LATEX source, the created tags use the name of

the LATEX environment presenting its content. These names are essentially arbitrary, so must

be ‘mapped’ to standard PDF structure types. Similarly for the tagging of content. The format

provides a ‘Role Map’ feature for precisely this purpose. This is important for exporting the PDF’s

content into other formats: XML, HTML, Plain Text, Accessible Text, Microsoft Word, Rich Text,

Excel spreadsheet, Powerpoint slides, etc.

Upon export to XML (using Acrobat Pro DC

[

1

]

), structure tags use the user-defined (i.e., LATEX)

names; that is, no DTD is assumed. Furthermore all the Metadata is included in the resulting XML

file. On the other hand, export to HTML uses tags based upon the role-mapped structure. There

is also a ‘Class Map’ feature that allows style attributes to be added to tags upon export. With

proper use of the ‘Role Map’ and ‘Class Map’ a ‘Tagged PDF’ version of a document can be truly

‘Universal’, much as in the mathematical (categorical) sense. That is, good quality alternative

5

formats of a document’s content can (at least in principle) be obtained from the PDF file, using

‘Export’ options, just as a functor can be factored through a ‘Universal Object’. To make this even

better, especially when mathematical content is involved, may require collaboration with Adobe

Systems Inc., or other PDF browser vendors.

Future Directions

In July 2017, a new version of the PDF specification was released, namely PDF2.0

[

6

]

. This is

‘Tagged PDF’, with just a few changes and recommendations from PDF1.7

[

5

,

4

]

, with a few

new features. There should soon be a release of PDF/UA-2. The main difference will be that

mathematics must be described structurally, using MathML tagging

[

14

]

. Ross has done some

preliminary work

[

18

,

19

,

20

]

which used a non-standard pdfTEX engine, not generally available.

It is too soon to directly incorporate this work, but it should be a long-term aim to do so. First we

need to get editors and authors used to using ‘Tagged PDF’ and creating ‘Accessible’ documents.

Generating MathML descriptions, and their inclusion into published articles, can be a goal to be

realised perhaps 7 or more years hence.

References

[1]

Acrobat Acrobat DC; Adobe Systems Inc.

https://acrobat.adobe.com/au/en/acrobat.html

[2]

General Services Administration, U.S. Government-wide Section 508 Accessibility Program.

https://section508.gov .

[3]

ISO16684-1:2012; Graphic technology—Extensible metadata platform (XMP) specification—Part 1:

Data model, serialization and core properties; Technical Committee ISO/TC130 Graphic technology,

(February 2012). Reviewed in 2017.

https://www.iso.org/standard/57421.html

[4]

ISO32000-1:2008; Document management—Portable document format (PDF1.7); Technical Commit-

tee ISO/TC171/SC2 (July 2008). Also available as

[

5

]

.

http://www.iso.org/iso/catalogue

detail?csnumber=51502 .

[5]

PDF Reference 1.7; Adobe Systems Inc.; November 2006. Also available as

[

4

]

.

http://www.adobe.com/devnet/pdf/pdf

reference.html .

[6]

ISO32000-2:2017; Document management — Portable document format — Part 2: PDF 2.0; Technical

Committee ISO/TC 171/SC 2 (July 2017).

https://www.iso.org/standard/63534.html

[7]

ISO19005-1:2005; Document Management — Electronic document file format for long term preser-

vation — Part 1: Use of PDF1.4 (PDF/A-1); Technical Committee ISO/TC 171/SC 2 (Sept. 2005).

Revisions via Corrigenda: ISO19005-1:2005/Cor 1:2007 (March 2007); ISO19005-1:2005/Cor 2:2011

(Dec. 2011).

http://www.iso.org/iso/catalogue

detail?csnumber=38920 .

[8]

ISO19005-2:2011; Document Management — Electronic document file format for long term preserva-

tion — Part 2: Use of ISO32000-1 (PDF/A-2); Technical Committee ISO/TC 171/SC 2 (June 2011).

http://www.iso.org/iso/catalogue

detail?csnumber=50655 .

[9]

ISO19005-3:2012; Document Management — Electronic document file format for long term preserva-

tion — Part 3: Use of ISO32000-1 with support for embedded files (PDF/A-3); Technical Committee

ISO/TC 171/SC 2 (October 2012).

http://www.iso.org/iso/catalogue

detail?csnumber=57229 .

[10]

pdfaPilot; Callas Software GmbH.

https://www.callassoftware.com/en/products/pdfapilot .

[11]

3-Heights

TM

PDF Validator; pdftools.com, Premium PDF Technology.

http://www.pdf-tools.com/pdf20/en/products/pdf-converter-validation/ .

6

https://acrobat.adobe.com/au/en/acrobat.html
https://section508.gov
https://www.iso.org/standard/57421.html
http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.iso.org/standard/63534.html
http://www.iso.org/iso/catalogue_detail?csnumber=38920
http://www.iso.org/iso/catalogue_detail?csnumber=50655
http://www.iso.org/iso/catalogue_detail?csnumber=57229
https://www.callassoftware.com/en/products/pdfapilot
http://www.pdf-tools.com/pdf20/en/products/pdf-converter-validation/

[12]

ISO14289-1:2012; Document management applications – Electronic document file format enhancement

for accessibility –Part 1: Use of ISO 32000-1 (PDF/UA-1). Technical Committee ISO/TC171/SC2

(August 2012). Corrected version (December 2014).

[13]

ISO14289-1:2014, Document management applications — Electronic document file format enhance-

ment for accessibility — Part 1: Use of ISO32000-1 (PDF/UA-1).

International Standards Organisation, 2014.

https://www.iso.org/standard/64599.html .

[14]

ISO/IEC40314:2016, Information technology—Mathematical Markup Language (MathML), Version

3.0, 2nd Edition; Technical Committee: ISO/IECJTC1 Information technology, (February 2016).

https://www.iso.org/standard/58439.html

[15]

The Matterhorn Protocol (version 1.02); PDF Association, 2014.

http://www.pdfa.org/publication/the-matterhorn-protocol-1/ .

[16]

PDF/UA-1 Technical Implementation Guide: Understanding ISO 32000-1 (PDF 1.7); AIIM,

http://www.aiim.org/Global/AIIM

Widgets/Community

Widgets/

Technical-Implementation-Guide-32000-1 .

[17]

PDF/UA in a Nutshell; PDF Association, 2012.

https://www.pdfa.org/download/pdfua-in-a-nutshell/ .

[18]

Moore, Ross; Ongoing efforts to generate “tagged PDF” using pdfTEX , in ‘DML 2009, Towards a digital

Mathematics Library, Proceedings’, Petr Sojka (editor), Muni Press, Masaryk University, 2009. ISBN

978-80-20-4781-5. Reprinted as: TUGboat, Vol.30, No.2 (2009), pp. 170–175.

http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf .

[19]

Moore, Ross; Tagged Mathematics in PDFs for Accessibility and other purposes , in CICM-WS-WiP

2013, Workshops and Work in Progress at CICM, CEUR Workshops Proceedings.

http://ceur-ws.org/Vol-1010/paper-01.pdf .

[20]

Moore, Ross; PDF/A-3u as an archival format for Accessible mathematics , in S.M.Watt et al. (Eds.):

CICM2014, Springer LNAI 8543, pp. 184–199, 2014.

http://www.springer.com/computer/theoretical+computer+science/book/978-3-319-08433-6 .

[21]

Moore, Ross; Examples of Tagged PDF documents built using LaTeX.

https://www.maths.mq.edu.au/%7Eross/TaggedPDF/

[22]

pdfx —PDF/X and PDF/A support for pdfTEX; Moore R., C.V.Radhakrishnan, Hàn Th

́
ê

Thành,

Selinger P.; Package available at

https://ctan.org/pkg/pdfx .

Documentation for the pdfx package:

http://mirrors.ctan.org/macros/latex/contrib/pdfx/pdfx.pdf .

[23]

PRISM: Publishing Requirements for Industry Standard Metadata; Idealliance.

https://www.idealliance.org/prism-metadata .

[24]

Web Content Accessibility Guidelines (WCAG) 2.0 — W3C Recommendation 11 December 2008;

Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C).

https://www.w3.org/TR/2008/REC-WCAG20-20081211/ .

7

https://www.iso.org/standard/64599.html
https://www.iso.org/standard/58439.html
http://www.pdfa.org/publication/the-matterhorn-protocol-1/
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide-32000-1
http://www.aiim.org/Global/AIIM_Widgets/Community_Widgets/Technical-Implementation-Guide-32000-1
https://www.pdfa.org/download/pdfua-in-a-nutshell/
http://www.tug.org/TUGboat/tb30-2/tb95moore.pdf
http://ceur-ws.org/Vol-1010/paper-01.pdf
http://www.springer.com/computer/theoretical+computer+science/book/978-3-319-08433-6
https://www.maths.mq.edu.au/~ross/TaggedPDF/
https://ctan.org/pkg/pdfx
http://mirrors.ctan.org/macros/latex/contrib/pdfx/pdfx.pdf
https://www.idealliance.org/prism-metadata
https://www.w3.org/TR/2008/REC-WCAG20-20081211/

