
Towards Reconciling Use Cases via Controlled

Language and Graphical Models

Kathrin B�ottger, Rolf Schwitter, Diego Moll�a, and Debbie Richards

fschwitt,molla,richardsg@ics.mq.edu.au
Department of Computing

Macquarie University, Sydney, Australia

Abstract. In requirements engineering use cases are employed to de-

scribe the
ow of events and the occurrence of states in a future in-

formation system. Use cases consist of a set of scenarios each of them

describing an exemplary behaviour of the system to be developed. Dif-

ferent stakeholders describe the steps in varying ways since they perceive

the state of a�airs in the application domain from di�erent viewpoints.

This results in ambiguous use cases written in natural language that use

di�erent terminology and are therefore di�cult to reconcile. To solve

this problem, we have developed a set of simple guidelines to rewrite use

cases and scenarios in a controlled language. The sentences are translated

into
at logical forms by a Prolog module and subsequently processed

by the RECOCASE system. These resulting
at logical forms can be

used to generate graphical models for the elaboration and re�nement of

functional requirements between project stakeholders. As an experiment

we have chosen Formal Concept Analysis to automatically represent the

viewpoints of di�erent stakeholders graphically in a concept lattice.

1 Introduction

It is well known that many software projects do not go as well as they are sup-
posed to | and some completely fail. One way to improve software development
is to pay more attention to the outcomes of the requirements de�nition phase
in the software development process. Requirements de�nition aims to establish
a shared understanding of all stakeholder requirements.

Conventional requirements capture techniques use a series of interviews to
acquire requirements. In interviews users play a relatively passive role. Usually
system analysts document the results in speci�cations described in plain natural
language using varying graphical models. These speci�cations are presented to
the users for con�rmation but are typically incomplete and inconsistent and do
not re
ect the real needs of all project stakeholders.

To overcome these problems, viewpoint development has been proposed to
improve requirement de�nitions. Viewpoint development is de�ned as a process
of identifying, understanding and representing di�erent stakeholder viewpoints
(Darke and Shanks 1995). We have developed a viewpoint development approach
known as RECOCASE as it is a Computer Aided Software Engineering (CASE)

method and tool for RECOnciling multiple use case descriptions. In our ap-
proach, several viewpoint agents are identi�ed who play the role of actors for
each use case (Jacobson 1992). These agents describe their viewpoints of use
cases and scenarios in plain natural language.

To reduce ambiguity and vagueness in use cases written in plain natural lan-
guage, we propose the use of a controlled natural language that has a well-de�ned
grammar and that comes with a set of simple writing guidelines. The controlled
natural language is computer-processable and can be unambiguously translated
into
at logical forms. Due to the formal properties of the controlled language
the use cases can be checked whether they are consistent with the writing guide-
lines during the intra-viewpoint analysis phase and during the inter-viewpoint
analysis phase the use cases can be compared to identify misunderstandings,
inconsistencies and con
icts.

Apart from these formal properties,
at logical forms can be translated au-
tomatically into crosstables. Once in crosstable format we use Formal Concept
Analysis (FCA) (Wille 1982, 1992) to develop a concept lattice. FCA is a mathe-
matical approach to data analysis based on the lattice theory of Birkho� (1967).
In our approach, the use cases of multiple stakeholders are combined to allow fur-
ther discussions, identi�cation of similar terminology, integration of viewpoints
into one viewpoint, elaboration and re�nement of functional requirements.

In Section 2 of this paper we will introduce our controlled language and
show how a use case written in plain natural language can be translated into
the controlled language version by following a set of simple writing guidelines.
In Section 3 we will discuss how the resulting use case can be unambiguously
translated into
at logical forms. In Section 4 we show how crosstables can be
generated automatically out of these
at logical forms. Crosstables build the
starting point to produce concept lattices. Finally, in Section 5 we provide a
summary.

2 Example Use Case

Use cases are usually written in plain natural language. But as we will see even
simple sentences with no apparent ambiguities for humans are interpreted as
ambiguous by computers that cannot access the relevant knowledge sources.
To solve this problem, one could either let the stakeholders disambiguate the
sentences or teach them a subset of English that is unambiguously translatable
into a formal representation. The �rst approach is complex and arduous since
longer sentences may have hundreds of analyses and interpretations through
which the stakeholder would have to go. The second approach also takes some
e�ort since the stakeholders have to learn a set of guidelines about how to specify
a state of a�airs in a use case with words. However, we can ease this task by
keeping the set of guidelines minimal and by providing a sophisticated interface
for writing use cases.

The use case (Gomaa 2000) below is written in plain natural language and
contains a number of linguistic problems that need to be solved at some stage if

the use case is to be processed by a computer. For each problem we are detecting,
we will formulate a writing guideline that will circumvent the problem in an
unambiguous way.

Use Case Name: Withdraw Funds (in plain natural language)

Summary: Customer withdraws a speci�c amount of funds from a valid

bank account.

Actor: ATM customer

Precondition: ATM is idle, displaying a Welcome message.

Description:

1. Customer inserts the ATM card into the card reader.
2. If the system recognizes the card, it reads the card number.

3. System prompts customer for PIN number.
4. Customer enters PIN.

5. System checks the expiration date and whether the card is lost or stolen.
6. If card is valid, the system then checks whether the user-entered PIN

matches the card PIN maintained by the system.

7. If PIN numbers match, the system checks what accounts are accessible

with the ATM card.

8. System displays customer accounts and prompts customer for transaction

type: Withdrawal, Query, or Transfer.
9. Customer selects Withdrawal, enters the amount, and selects the account

number.
10. System checks whether customer has enough funds in the account and

whether daily limit has been exceeded.
11. If all checks are successful, system authorizes dispensing of cash.

12. System dispenses the cash amount.
13. System prints a receipt showing transaction number, transaction type,

amount withdrawn, and account balance.

14. System ejects card.
15. System displays Welcome message.

In sentence (1) the noun customer is used without an article and denotes
the same concept asATM Customer. Another potential problem for an automatic
processor is the structural ambiguity of the prepositional phrase into the Card

Reader that modi�es here the underlying verbal event and not the object ATM
Card. The minimal rule set to resolve these problems are:

P1 Use a noun together with a determiner (customer ! the customer).
P2 Use words in a consistent way (the customer ! the ATM customer).
P3 Use a prepositional phrase to modify a verb (inserts the ATM card into the

card reader).
P4 Use a relative clause to modify a noun (e.g.: inserts the ATM card that has

a PIN number).

In sentence (2) the personal pronoun it refers back to system and not to
card. Personal pronouns are notoriously di�cult to resolve since the search space
for the correct noun might be very deep and not enough linguistic information
or world knowledge might be available to �nd the correct antecedent. Therefore,
we do not allow personal pronouns in the controlled language:

P5 Use the appropriate noun with a de�nite article instead of a personal pro-
noun (it ! the system).

Sentence (5) expresses that the system checks three conditions but uses
only one explicit connector (whether). In the controlled language we make the
logical dependence between the clauses explicit by introducing parallel syntactic
structures (. . . if A and if B and if C).

P6 Distribute the connectors across all members of a conjunction to make the
dependence between clauses and phrasal structures explicit and eliminate all
the embeddings (The system checks if the date has expired and if the card is

lost and if the card is stolen).1

Sentence (6) uses a passive construction and a compound noun (card PIN).
In such passive constructions the actor is often omitted, therefore we do not
allow passive constructions in the controlled language. Another problem is that
the compound noun card PIN is a combination of two terms that have been
introduced before (PIN number and ATM card).

P7 Use active sentences instead of passive sentences (PIN maintained by the

system ! The system maintains the PIN number).2

P2 applies again (card PIN ! PIN number of the ATM card).

Sentence (7) uses a plural form. The set of objects described by this plural
form (what accounts) is underspeci�ed and can be made more explicit by using
a determiner (universal quanti�er and a singular form).

P8 Use singular instead of plural forms (the system checks what accounts are

accessible with the ATM Card ! the system checks every account that is

accessible with the ATM card).

Sentence (8) enumerates three transaction types: Withdrawal, Query, or

Transfer.

P6 applies again (Withdrawal or Query or Transfer).

Sentences (9-12) are very problematic since the logical dependencies between
the clauses are not made explicit. Apart from the missing operators two vague
expressions (enough and has been exceeded) are used that are not precise enough
for a speci�cation.

1 Note that the original sentence (5) is not accurate in the sense that it does not tell

what to do with the results of the tests. Sentence (6) says if the card is valid . . . , but

sentence (5) does not explicitly say how to determine whether the card is valid. This

shows that the original speci�cation is not complete, and there are no rules that can

detect this automatically.
2 There are expressions that denote states, such as lost and stolen in sentence (5) |

the verbs are used as predicative adjectives. In these cases P7 does not apply.

P6 applies again (If . . . then . . . if . . . then).
P9 Use a comparative clause to compare speci�c values (bigger than the amount

X, smaller than the amount Y).

In sentence (13) a noun is modi�ed by a present participle and three noun
phrases are enumerated.

P4 applies again (a receipt that shows the transaction number . . .).
P10 Use commas followed by a comma plus an and operator to enumerate

more than two noun phrases (the transaction number, the transaction type,

the withdrawn amount, and the account balance).

If we apply these writing guidelines to the original use case we can rewrite
it as shown below. It is important that the viewpoint agent needs only to know
these guidelines and no grammar rules as in (Fuchs et al. 1999). The RECOCASE
system will automatically
ag all inadmissible grammatical structures.

Use Case Name: Withdraw Funds (in controlled natural language)

Summary: The ATM customer withdraws a speci�c amount of funds from

a valid bank account.

Actor: ATM customer

Precondition: The ATM is idle and the system displays a Welcome message.

Description:

1. The ATM customer inserts the ATM card into the card reader.

2. If the system recognizes the ATM card then the system reads the card

number.

3. The system prompts the ATM customer for the PIN number.

4. The ATM customer enters the PIN number.

5. The system checks if the date has expired and if the ATM card is lost and

if the ATM card is stolen.

6. If the ATM card is valid then the system checks if the PIN number matches

the PIN number of the ATM card.

7. If the PIN number matches the PIN number of the ATM card then the

system checks every account that is accessible with the ATM card.

8. The system displays every customer account and prompts the ATM cus-

tomer for the transaction type: Withdrawal or Query or Transfer.

9. If the ATM customer selects the transaction type Withdrawal and enters

the amount and selects the account number then the system checks if the

funds of the ATM customer is bigger than the amount X and if the daily

limit of the ATM customer is smaller than the amount Y and then the

system dispenses the cash amount.

10. The system prints a receipt that shows the transaction number, the trans-

action type, the withdrawn amount, and the account balance.

11. The system ejects the card.

12. The system displays a Welcome message.

The RECOCASE system takes this use case as input and produces for each
sentence a
at logical form.

3 From Use Cases to Flat Logical Forms

The logical form generator component of the RECOCASE system is a Prolog
implementation that uses Link Grammar (LG) (Sleator & Temperley 1993) to
parse the use case. The output is sent to a logical form generator, which is an
extension of the logical form generator of ExtrAns (Moll�a et al. 2000), to produce

at logical forms. LG consists of a fast parser and a grammar of English written
in the spirit of dependency grammar showing the words that are linked and
the types of links (see Figure 1 in Section 4 for an example of the LG output).
Since the original LG parser outputs all the alternative dependency structures
for a sentence, we use a �lter that only accepts dependency structures that are
de�ned in our controlled language. If RECOCASE discovers a sentence that is
not in the subset of the controlled language it displays a message and informs the
user about its coverage. From the dependency structures RECOCASE derives
a
at logical form as a semantic representation for each sentence. A
at logical
form consists of a conjunction of predicates where all variables are existentially
closed. To make this notation expressive enough, the logical form generator uses
rei�cation for objects, events, properties, and operators (Hobbs 1985, Copestake
et al. 1997).

For example, the sentence

The ATM customer inserts the ATM card into the card reader.

results in the following
at logical form:

holds(e4)

object(customer,o1,[x3])

compound noun(x2,x3)

object('ATM',o2,[x2])

evt(insert,e4,[x3,x7])

object(card,o3,[x7])

compound noun(x6,x7)

object('ATM',o4,[x6])

prop(into,p8,[e4,x11])

object(reader,o5,[x11])

compound noun(x10,x11)

object(card,o6,[x10])

The compound noun ATM customer introduces three predicates:

object(customer,o1,[x3])

compound noun(x2,x3)

object('ATM',o2,[x2])

The meaning of the �rst predicate object(customer,o1,[x3]) is \o1 is the
concept that the object x3 is a customer" and the meaning of the third predicate
object('ATM',o2,[x2]) is \o2 is the concept that the object x2 is an ATM".

The second predicate compound noun(x2,x3) says that the objects x2 and x3

stand in a compound noun relation that is not further speci�ed.

The verb inserts introduces the predicate

evt(insert,e4,[x3,x7])

with the meaning \e4 is the event that x3 inserts x7". The objects intro-
duced by the arguments of the verb are represented by x3 and x7 represent. The
rei�cation of the event e4 provides a handle that can be used to modify this
event.

The prepositional phrase into the card reader introduces four predicates: the
predicate

prop(into,p8,[e4,x11])

deduced from the complete prepositional phrase and three additional pred-
icates deduced from the compound noun card reader. Prepositions introduce
properties: the meaning of the above predicate is \p8 is the property that x11
modi�es e4".

Rei�cation can also be used to encode the existence of concepts and logical
operators. To express that an event actually exists the predicate holds(e4)

is used. All logical operators that occur in the controlled language are rei-
�ed and represented in the following way: if(op1,e1,e2), and(op2,[e1,e2]),
or(op3,[e1,e2]), not(op4,e1). Nested logical expressions can be
attened-out
by using the rei�cation of the logical operators as handles. Thus, the expression
\and(x,or(y,z))" is converted into and(op1,[x,op2]), or(op2,[y,z]).

For example, the following sentence indicates the conjunction of three con-
ditionals:

The system checks if the date has expired and if the ATM card is lost

and if the ATM card is stolen.

Note that, since the system checks the validity of the conditionals, the condi-
tionals themselves do not introduce logical operators but states. The states are
represented as properties (p4, p10, and p17) in the
at logical form. The
at
logical form of the system checks p4 and p10 and p17 is:

holds(e3)

object(system,o1,[x2])

evt(check,e3,[x2,op1])

and(op1,[p4,p10,p17])

In plain words, the system checks the conjunction of the properties p4, p10,
and p17. The
at logical forms for these coordinated conditionals are:

if the date has expired

prop(if,p4,[e8])

object(date,o2,[x6])

evt(expire,e8,[x6])

if the ATM card is lost

prop(if,p10,[e15])

compound noun(x13,x14)

object(anonym object,o3,[a1])

object('ATM',o4,[x13])

object(card,o5,[x14])

evt(lose,e15,[a1,x14])

if the ATM card is stolen

prop(if,p17,[e22])

object(anonym object,o6,[a2])

compound noun(x19,x20)

object('ATM',o7,[x19])

object(card,o8,[x20])

prop(steal,e22,[a2,x20])

RECOCASE does not have enough lexical and world knowledge to tell that
lost and stolen denote states, and therefore it produces the active form of the
expressions. Since the agents of steal and lose are not known, the agent is
declared as anonymous object. RECOCASE does not resolve the coreference
of the ATM card in the two last conditionals and therefore the logical forms
introduce two di�erent objects. This does not a�ect its ability to produce concept
lattices, since the concept lattices convert the logical form back into substrings,
as we shall see below.

By using
at logical forms we can avoid embedded structures, this has the
nice e�ect that the logical forms of two use cases are easy to compare and to
work with.

The generation of the
at logical forms from the output of LG uses a top-
down algorithm (Molla et al. 2000). In a �rst step the algorithm follows the
linkages from the sentence root until it �nds the main verb of the sentence.
This can be seen in Figure 1, where the main verb inserts can be found from
the root (the \/////" on the left) by following the links Wd and Ss. In a sec-
ond step, the top-down algorithm unfolds by following predicted links (such as
determiners, modi�ers, arguments, and adjuncts) in a recursive manner. This
step becomes rather complex due to several particularities of the dependency
structures returned by Link Grammar (Molla et al. 2000).

///// the ATM customer inserts the ATM card into the card reader /////

RW

Wd
Ds

AN Ss

MVp
Os

D*u
AN

Js
Ds

AN

Fig. 1. Output of Link Grammar

4 From Flat Logical Forms to Concept Lattices via

Crosstables

Graphical models have been recognised as useful communication mediums be-
tween project stakeholders.We have chosen to use FCA to present the viewpoints
of di�erent stakeholders as a concept lattice. We were attracted to FCA for the
problem of reconciling di�erences in viewpoints since a concept in FCA is based
on the philosophical understanding of a concept as a set of objects and the set
of attributes shared by those objects, known as the extent and intent of the
concept, respectively. This means that similar concepts and di�erences in ter-
minology should be identi�able either through their extensional or intensional
de�nition. As a graph, the lattice also allows us to compute the closeness be-
tween viewpoints and to test when we are moving towards a shared viewpoint.
To generate a concept lattice using FCA we begin with a crosstable that can
automatically be generated from the
at logical forms.

4.1 Example

A crosstable is made up of rows of objects (sentences) and columns of attributes
(terms) used by those objects (see Table 2 below). As an example in RECOCASE
we translate the logical forms for the sentence

The ATM customer inserts the ATM card into the card reader.

into a row in the crosstable. The predicate holds(e4) of the logical form
of this sentence refers to the event (insert) as the main event. We create an
attribute (insert) for this main event. The components, which are directly con-
nected with the main event, are the objects (customer) and (card) and the
preposition (into). In a recursive way we are looking for other connected com-
ponents. (customer) and (card) are only connected with (ATM) as compound
nouns. Since (customer) and (card) are directly connected with the main event,
we connect each of them with the components with which they are connected
recursively and create thus the attributes of the crosstable (ATM customer) and
(ATM card). The preposition (into) is connected with (reader) which is con-
nected to (card) to build a compound noun. This way we get the prepositional
phrase (into card reader) as the fourth attribute. Thus the �nal attributes
of the object `sentence 1' are:

s1: (ATM customer), (insert), (ATM card), (into card reader)

Using the algorithm in (B�ottger 2001) we get the following attributes for
sentences (2-5). Each of these sentences de�nes an object and thus a row in the
crosstable as shown in Table 1.

s2: (if system recognizes ATM card), (then), (system), (read),
(card number),

s3: (system), (prompt), (ATM customer), (for PIN number)
s4: (ATM customer), (enter), (PIN number)
s5: (system), (check), (if expired date), (if anonym object lose ATM card),

(if anonym object steal ATM card)

Table 1. Crosstable for sentences (1-5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

s1 x x x x

s2 x x x x x

s3 x x x x

s4 x x x

s5 x x x x x

Table 2. Legend for columns in crosstable for sentences (1-5)

1 ATM customer 7 system 13 PIN number

2 insert 8 read 14 check

3 ATM card 9 card number 15 if expired date

4 into card reader 10 prompt 16 if anonym object lose ATM card

5 if system recognizes ATM card 11 for PIN number 17 if anonym object steal ATM card

6 then 12 enter

Each sentence/row is a low level concept. By �nding intersections of shared
attributes we are able to develop higher-level concepts (as can be seen in concepts
2 and 4 in Figure 2). The concept lattice in Figure 2 is created by ordering the
concepts using term subsumption. Labelling is reduced on the lattice for clarity.
To �nd the extent and intent of a concept all paths to the bottom node (in�mum)
and top node (supremum), respectively, must be traversed. Thus in concept 8,
the object is \5-%uoi". This code represents that the object is sentence 5 for the
Withdraw Funds use case. The attributes for concept 8 are:

fsystem, check, if expired date, if anonym object lose ATM

card, if anonym object steal ATM cardg.

In Figure 2 we can see what actions are performed by the ATM customer
and what actions are performed by the system. In concept 5 we can see that
the ATM customer and system are involved in the prompt for a PIN number.
The lattice does not make explicit whether the system or the ATM customer
does the prompting. Common sense can assist the human in the interpretation
but in many domains the correct relationship will not be clear to all users. To
address this problem we are currently investigating how to represent the relations
between the attributes. A possibility is to tag the attributes in the objects and
add expressions about the nature of the relations. By adding such additional
information the attributes can be simpli�ed and thus it is more likely to �nd
shared attributes. For example (for PIN number)would be converted into (PIN
number) and a new concept (say, Concept 9) would be generated. Figure 3 shows
the necessary changes in the a�ected concepts to represent who prompts whom
for what and who enters what (the relations between the concepts are not shown).

Fig. 2. Conept lattice of sentences (1-5)

The example above only shows one viewpoint of the Withdraw Funds use
case. As described in the introduction, RECOCASE is a viewpoint development
approach which seeks to produce a more complete and consistent set of require-
ments based on multiple viewpoints. By combining the sentences of use case
descriptions from more than one viewpoint we can perform comparisons of the
usage of terms and the steps given in each viewpoint. By using term subsumption
we are able to identify when terms are shared. The lattice can also suggest when
synonyms, hyponyms and hypernyms are being used. The viewpoint development
methodology we have developed o�ers strategies for dealing with similar terms
and other inconsistencies found in the lattice. These strategies include the use

2

o 21: (ATM customer)

9

o 91: (PIN number)

3

e 31: (enter)

4-%uoi

4-%uoi: e 31(o 21, o 91)

4

o 41: (system)

5

e 51: (prompt)

3-%uoi

3-%uoi: e 51(o 41, o 21)

3-%uoi: for(e 51,o 91)

Fig. 3. Possible changes in some nodes of the concept lattice in Figure 2

Fig. 4. Concept lattice comparing sentences from two viewpoints

of a table for mapping terms, modifying sentences and the use of tags (Richards
1999). Tags can be attached to sentences so that they are not included in the
formal context (circumvent) or tags can be attached to concepts so that they
are not shown on the lattice (ignore) or the concept can be shown on the lattice
with a delay tag which indicates the con
ict will be resolved at a later time. The
decision of which strategy to apply will be made by the group of stakeholders
led by a group facilitator. The distance between viewpoints can be computed by
comparing the distance between concepts in di�erent viewpoints. By calculating
the distance before and after applying our resolution strategies we can see how
e�ective they are and whether we are moving closer to a shared viewpoint. For
further discussion regarding FCA and the generation of concepts and concept
lattices please refer to Wille (1992).

We o�er a small example in Figure 4 which shows how viewpoints can be
compared and reconciled. Our system allows selection of sentences to be included
in a formal context manually or via keywords. In Figure 4 sentences 14 (The
ATM ejects the card to the customer.) and 19 (The ATM dispenses cash to
the customer.) from viewpoint A and sentences 26 (The ATM ejects the ATM
card.) and 24 (The ATM dispenses the amount.) from viewpoint B have been
selected. These are the sentences which concern what is output by the ATM.
From the diagram we can see that concept number 6 with the intent fATM,
eject, ATM cardg is shared by both viewpoints (sentence 26 in viewpoint B and,
by following descending paths, sentence 14 in Viewpoint A). We can immediately
see that the two sentences are not identical because they do not appear at the
same node. By following the ascending paths we can see that sentence 14 in
viewpoint A also includes the term \to customer". The group facilitator can
ask the two viewpoint owners whether they wish to drop the extra term or to
include it in both viewpoints. A further di�erence is highlighted by the shared
node in concept 4. Both viewpoints agree that the ATM dispenses something,
but viewpoint A has stated that \cash" is dispensed \to [the] customer" and
viewpoint B has stated that [an] \amount" is dispensed. Again this di�erence
would prompt the group facilitator to ask both viewpoint owners if cash, amount
or another word was the appropriate term to use and whether the words \to
customer" need to be speci�ed. Once these di�erence are reconciled the four
sentences will have been merged into two sentences and may be added to the
shared viewpoint. Other sentences can be selected until all sentences have been
considered. The end result is a shared use case description.

5 Conclusion

The RECOCASE system captures use case descriptions written in natural lan-
guage. The user is encouraged to �rst study and then follow the controlled
language guidelines so that the sentences will be accurately translated. If the
RECOCASE system discovers a sentence that is not in the subset of the con-
trolled language it informs the user about its coverage. It is then the task of
the user to rewrite the sentence according to the guidelines of the controlled

language. Once the sentences have been entered they are seamlessly passed to
the ExtrAns system which is a Prolog implementation that translates use cases
written in controlled language into
at logical forms. The
at logical forms of
the use cases can automatically be translated into crosstables. Once in crosstable
format we use Formal Concept Analysis to develop a concept lattice to reconcile
di�erences in viewpoints. Our goal is to capture a comprehensive set of vali-
dated requirements that are representative of the multiple viewpoints held by
the project stakeholders.

References

Birkho�, G.: Lattice Theory. American Mathematical Society. Providence, Rhode Is-

land. 1967.

B�ottger, K: Modelling and Reconciling Functional Requirements from Di�erent View-

points Using Use Case / Scenarios and Formal Concept Analysis. Masters Thesis.

University of Mannheim, Germany. 2001.

Copestake, A., Flickinger, D., Sag, I.A., Minimal Recursion Semantics: an Introduction.

CSLI report, Stanford University, 1997.

Darke, P., Shanks, G.: Managing user viewpoints in requirement de�nition. 8th Aus-

tralasian Conference on Information Systems. 1995.

Fuchs, N. E., Schwertel, U., Schwitter, R: Attempto Controlled English | Not Just

Another Logic Speci�cation Language. Lecture Notes in Computer Science 1559.

Springer Verlag. 1999.

Gomaa, H.:Withdraw funds (example use case), in Matthews, M.G. Object-Oriented

Analysis and Modeling. http://mason.gmu.edu/~mmatthe1/ObjectOrientedAnaly-

sis.pdf. 2001.

Hobbs, J.R.: Ontological Promiscuity. Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics ACL'85, 1985, University of Chicago,

pp. 61{69.

Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley. 1992.

Moll�a, D., Schneider, G., Schwitter, R., Hess, M.: Answer extraction using a dependency

grammar in ExtrAns. T.A.L. 41:1 (2000) 127{156.

Moll�a, D., Schwitter, R., Hess, M., Fournier, R.: ExtrAns, an answer extraction system.

T.A.L 41:2 (2000) 495{519.

Richards, D. and Zowghi, D. Maintaining and Comparing Requirements, Proceedings

of the Fourth Australian Conference on Requirements Engineering ACRE'99, 29-30

September, 1999, Macquarie University, Sydney, pp. 115{130.

Sleator, D. D., Temperley, D.: Parsing English with a link grammar. Proceedings of

the Third International Workshop on Parsing Technologies, 1993, pp. 277{292.

Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts.

In Reidel, D. Ordered Sets, Dordrecht, 1982, pp. 445{470.

Wille, R.: Concept lattices and conceptual knowledge. Computers and Mathematics

with Applications 23 (1992) 493{522.

