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Abstract 
We outline an approach for transferring specifications and technical documents 
written in plain English into controlled English. In a first step, we analyse the 
sentences of the source documents and (partially) translate them into a set of logical 
forms. In the second step, we send the logical forms to a surface-form generation 
module that plans how the sentences of the controlled language should be composed 
and how the surface string should be realised. The result is an explicit interpretation 
of the source document in controlled English that can be refined in a stepwise manner 
by the authors until it corresponds to their intended interpretation. 
 

Introduction 

Writing specifications or technical documents in a controlled language is difficult. 
While the authors are describing something that is in the process of being understood 
or invented, they have to remember the allowed structures and rules of the controlled 
language. Fitting ideas straightaway into a controlled language can be harmful, since 
it inhibits the flow of the ideas. Plain natural language is a great tool for writing rough 
drafts of something that is only vaguely perceived, but in many cases these drafts 
need to be reworked sooner or later into precise technical descriptions. At this point 
controlled languages can play a key role in the document production process, since 
they have very nice characteristics that one would like to retain to increase the 
document’s precision: they are unambiguous, easily readable, and ideally computer-
processable like formal languages [Schwitter 1998, Fuchs et al. 1999]. In this paper 
we propose a method of how drafts written in plain English can be semi-automatically 
transferred into precise (formal) documents in controlled English. The problem is 
similar to that of machine translation, with the obvious advantage that the target 
language is also (a subset of) English.  

 

To give the authors full freedom to develop their ideas, we let them have the power of 
plain English to write the first draft of a document. The document is then transferred 
into controlled English in two steps. In the first step, the document is syntactically 
analysed and (partially) translated into a set of logical forms [Schwitter et al. 1999, 
Mollá 2001]. In the second step, the logical forms are sent to a surface-form 
generation module that plans how the sentence of the controlled language should be 
composed and how the surface string should be realised [Reiter & Dale 2000].  



Each sentence of the original text is processed independently to produce the logical 
form, and it will generate one or more sentences in the target controlled language.  

The Logical Forms 

A central point in this process is the format of the logical forms. We propose the use 
of flat logical forms [Schwitter et al. 1999, Mollá et al. 2000a]. Flat logical forms 
have a number of interesting characteristics. They allow: 

 
x the capturing of different levels of representation, which means that in 

situations where a parser is not able to produce a complete result, it is still 
possible to produce a partial representation of the content of the text; 

x the monotonic increase of the level of detail in the logical representation, 
appropriate in situations where a human (or another program) refines the 
initial flat logical form produced by the system by adding more information; 

x the easy comparison of the semantic content of two sentences by computing 
the overlap in their flat logical forms, thus allowing the computation of 
sentence similarity; and 

x the implementation of practical systems where the linguistic complexity of the 
domain is very high but only a subset of the semantic information can be 
extracted or used efficiently, as in the case of answer extraction systems and 
content-based information retrieval systems. 

 
Flat logical forms are obtained by means of reification, whereby abstract objects are 
converted into concrete entities [Hobbs 1985]. These entities can then be used as 
arguments in other predicates in the logical forms.  
 
Consider the domain of Unix manuals that we use as a case study in the answer 
extraction system ExtrAns [Mollá et al. 2000b]. If we reify objects, events and 
properties, then the representation of the sentence cp copies files quickly is: 

 
cp( o1 ,[x1]), 
copy( e1 ,[x1,x2]),  
file( o2 ,[x2]),  
quick( p3 ,[e1]). 

 
Here, the elements in bold indicate the reification of two objects (o1  and o2), an 
event (e1), and a property (p3). Note that this allows the use of the constant e1  in the 
final term, thus avoiding the need for a nested expression like 
quick(copy(x1,x2)) . 
 
These flat logical forms are existentially closed conjunctions of terms. The advantage 
of this simple notation is that it allows the partial encoding of the propositional 
content of sentences, simply by removing unanalysable natural language expressions. 
This partiality can be used in a variety of ways in different applications. In the case of 
ExtrAns, partial representations are used to perform answer extraction.  
 

We propose to generalise ExtrAns’ flat logical forms by allowing the reification of 
any of the terms. We believe that (generalised) flat logical forms are useful not only 



for answer extraction but also for a wide range of applications requiring the use of 
(possibly partial) logical information from unrestricted text [Mollá 2001], including 
the paraphrasing of text into controlled English. Take, for example, the sentence: 

The customer should enter the VISA card with a pin code into the slot of the ATM. 
 
The natural language sentence contains a modal verb (should), two compound nouns 
(VISA card and pin code), an abbreviation (ATM), and three prepositional phrases 
(with the pin code, into the slot, and of the ATM). Most of these elements lead to 
ambiguity problems during the syntactic analysis and to competing formal 
representations if the ambiguities cannot be resolved. Even worse, the modal verb 
(should) indicates that the state of affairs described in the sentence can be interpreted 
either from an epistemic or a deontic viewpoint (therefore modal verbs would have to 
be formalised with respect to the conversational backgrounds they allow) and it is not 
clear how to represent these readings properly in first-order logic. Here is one out of 
several competing partial representations for the example sentence by using flat 
logical forms: 

 
customer(o1,[x1]),  
enter(e1,[x1,x2]), 
visa_card(o2,[x2]), 
with(p1,[x2,x3]), 
pin_code(o3,[x3]), 
into(p2,[e1,x4]), 
slot(o4,[x4,x5]), 
automated_teller_machine(o5,[x5]).  

 
The formal representation above is not a full logical form and it shows a couple of 
design decisions: all compound nouns have been translated into single terms, the 
modal verb has been completely ignored, and the of-preposition has been absorbed by 
a relational term (slot ).  
 
Since flat logical forms are conjunctions of terms, it is very intuitive to express partial 
information with them, namely by omitting some of the terms of an otherwise full 
logical form. This, in turn, makes it possible to produce systems that deal with very 
complex or ungrammatical sentences by deriving only the logical forms of the known 
parts of a sentence. Therefore, flat logical forms allow us to work with unrestricted, 
unedited text and they can be produced with the current technology [Mollá et al. 
2000a]. Flat logical forms are thus a convenient internal representation of text in 
robust natural language understanding systems. It is theoretically possible to use a 
shallow parser in the process, such as the parser used in GATE [Wilks & Gaizauskas 
1999], generating as a result underspecified logical forms. The degree of accuracy in 
the translation would obviously depend on the thoroughness and accuracy of the 
parser’s output and the level of detail in the logical forms, but this procedure would 
ensure that we get some sort of result. The task of the controlled natural languages is 
now to paraphrase the interpretation of the logical forms and make them easily 
readable. 
 



Generating a Paraphrase in Controlled English 
The logical representation above is sent to the microplanner of the generation module 
that uses internal rules in order to plan the controlled English paraphrase of the 
original sentence. Example rules are [Schwitter 1998]: 
 

1. Prepositional phrases in adjunct position always modify the verb. 
2. Relative sentences modify the immediately preceding noun. 
3. Only of-constructions are allowed as post-nominal modifiers. 
4. Abbreviations are resolved to their full form. 

 
The microplanner detects a problem between the logical form of the source sentence 
and these rules since the translation of the prepositional phrase with the pin code 
resulted in a post-nominal modifier of the compound noun Visa card. The micro-
planner tries to repair this difference and finally suggests using a relative sentence 
(that has a pin code) instead of the prepositional phrase.  
 
By using meta-programming techniques, the microplanner takes the logical form of 
the source sentence as input: 
 

visa_card(o2,[x2]), 
with(p1,[x2,x3]), 
pin_code(o3,[x3]), 

  
and employs a rewriting rule of the form: 
 
     N(O2,[X2]), noun(N), with(P1,[X2,X3]) => 

N(O2,[X2]), have(E2,[X2,X3]]).  
 
This rule specifies that, if a term can be expressed by a noun and if it is modified by 
the term ‘with’, then convert this term into a ‘have’ term. The test noun(N)  can be 
performed by a dictionary lookup. The rule will produce the following representation: 
 

visa_card(o2,[x2]), 
have(e1,[x2,x3]), 
pin_code(o3,[x3]),  

 
There are cases where the microplanner needs additional syntactic information to 
produce the correct transformation. Therefore, local syntactic structures of the input 
sentence are employed as supplementary constraints in the rewriting rules (e.g. the 
logical forms currently ignore number and verb tenses. Since we have to re-create 
these in the controlled English languague, we will need an appropriate data structure 
that encodes these features). 
   
The surface realisation component takes the output produced by the microplanner and 
converts it into a surface string that corresponds to the rules of the controlled language.  
For the transformed part of our example, the string 
 
 Visa card that has a pin code 
 
is generated and embedded into the final result in controlled English: 



 
The customer [ enters the [ VISA card that has a pin code ] into the slot of the 
Automated Teller Machine ]. 
 
The square brackets in the controlled language version above make the interpretation 
explicit showing that the prepositional phrase into the slot modifies the verb enters 
and the relative sentence that has a pin code modifies the compound noun Visa card. 
 
In addition to this paraphrase in controlled language an explanation is produced that 
shows the users which transformations have been applied: 
 
 T1: Visa card with  => Visa card that has. 
 
In this way, there is no hidden information, the user is always informed about the 
applied transformations and will be able to learn something about the structure of the 
controlled language simply by observing the feedback information. The left-hand side 
of the explanation will be an extract of the source text (the extract can be traced from 
pointers attached to the terms in the logical forms, see below), and the right-hand side 
of the explanation will be automatically generated from the instantiation of the right-
hand side of the transformation rule. 
 
Since the input to the microplanner could be a partial logical form, the microplanner 
may not have enough information to produce a complete paraphrase. The semantic 
interpreter that produces the logical forms will keep track of the parts of the original 
sentence that have been used. The system will display the parts that have been used 
for the translation by highlighting them and give the user useful feedback about those 
parts of the input text that still require rewording. The basic methodology to keep 
track of the used parts of the input text and the highlighting mechanism need not be 
very different from earlier work on selective highlighting done in ExtrAns [Schwitter 
et al. 1999]. Suppose, for example, that the parser is unable to parse a sentence with 
noun-modifying prepositional phrases. Many parses (especially shallow parsers) often 
have this type of restrictions, but still they try to output the syntactic structure of the 
parts that they can process. The parser used in ExtrAns, the Link Grammar [Sleator & 
Temperley, 1993], is not a shallow parser but it can ignore words in the sentence until 
a full parse is found. ExtrAns would still be able to produce partial logical forms of 
the output of the parser. The terms in the partial logical forms contain pointers to the 
relevant words in the sentence: 
 
The customer should enter the VISA card with a pin code into the slot of the ATM. 
  1         2            3        4      5      6      7     8   9 10   11    12   13  14  15 16     17 
 

customer(o1,[x1])/[1,2],  
enter(e1,[x1,x2])/[4], 
visa_card(o2,[x2])/[5,6,7], 
into(p2,[e1,x4])/[12], 
slot(o4,[x4,x5])/[13,14,15], 
automated_teller_machine(o5,[x5])/[16,17]. 
 



After the paraphrase has been produced and displayed in one window, the original 
text can be displayed in another window with those parts highlighted that have been 
successfully processed by the system: 
 
The customer should enter the VISA card with a pin code into the slot  of  the ATM. 
 
More serious is the case when the partial logical form cannot generate a complete 
sentence in controlled English. In that case, the paraphraser can only generate phrases 
(not full sentences) that correspond with the partial logical forms that have been 
created by the logical form generator. For example, let’s assume that the parser cannot 
process the entire prepositional phrase with a pin code but is able to recognise the 
compound noun pin code. On the basis of this partial information the logical form 
generator would produce the following representation: 
 

customer(o1,[x1])/[1,2],  
enter(e1,[x1,x2])/[4], 
visa_card(o2,[x2])/[5,6,7], 
into(p2,[e1,x4])/[12], 
slot(o4,[x4,x5])/[13,14,15], 
automated_teller_machine(o5,[x5])/[16,17], 
pin_code(o6,[x3])/[10,11] . 
 

The term pin_code(o6,[x3])/[10,11 ] is not related to the propositional 
content since x3  is not used anywhere else in the logical form. This interpretation is 
directly reflected in controlled language where a string of the form: 
 
The customer [ enters the VISA card into the slot of  the Automated Teller Machine ].  
 
is generated together with unrelated text: 
 

{pin code} 
 
It is now the task of the author to reformulate the sentence and use this text in 
accordance with the rules of the controlled language. 
 

Conclusions 
This proposed research bridges the gap between the use of unrestricted text in natural 
language and a controlled language with formal properties. By automatic converting a 
text into the equivalent text in a controlled language, the author does not need to learn 
the rules that govern the controlled language. We are aware that the methodology 
introduced here would not always produce 100% accuracy in the first translation step. 
However, since the controlled language is a subset of English, the author can easily 
check if the current translation is correct and act accordingly by modifying the 
original text, modifying the current translation, or starting from scratch. The system 
proposed in this paper is not an error-free complete translator that translates 
unrestricted text into controlled English. Rather, the system is a tool for the author 
who needs to produce a specification or a technical document in controlled English. 
Further work would be needed to develop human-computer interaction techniques that 
would provide supplementary aid for the author. Apart from generating paraphrases in 



a controlled language, flat logical forms can be used for other real-world applications 
where high flexibility for dealing with unrestricted text is a prerequisite. 
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