
How to Write a Document in Controlled Natural Language

Rolf Schwitter

Centre for Language Technology
Macquarie University

Sydney, NSW 2109, Australia

schwitt@ics.mq.edu.au

Anna Ljungberg

Centre for Language Technology
Macquarie University

Sydney, NSW 2109, Australia

anna@ics.mq.edu.au

Abstract

This paper shows how a computer-processable doc-
ument can be written in a controlled natural lan-
guage (PENG) with the help of a sophisticated look-
ahead editor (ECOLE). The editor provides syntac-
tic hints after each word form entered and indicates
how the author can continue the text. This way the
author does not need to learn or to remember the
restrictions of the controlled language. PENG doc-
uments are automatically translated into first-order
logic via discourse representation structures. These
formal entities can be checked by a theorem prover
for inconsistency or consistency can be revealed by
a model builder.

Keywords Document Processing, Controlled
Languages, Authoring Tools.

1 Introduction

Documents such as software specifications or tech-
nical manuals are hard to write, as they need to be
unambiguous and precise, the opposite to the qual-
ities inherent in full natural language. Moreover,
documents written in natural language are often
hard to process automatically and inconsistency
is difficult to detect. An alternative would be to
write, for example, a software specification directly
in a formal language. However, formal languages
are hard to learn and to understand as they often
abstract away from the facts of the application do-
main [4, 7].

A better strategy is to combine the advantages
of a natural language with the advantages of a
formal language and to hide the formality as far
as possible from the authors. A controlled natural
language, which is precisely defined by a restricted
grammar and lexicon, can fulfill these requirements
[1, 5, 6, 11, 12, 13].

PENG is such a controlled language and allows
authors to write their texts in a well-defined subset
of English, a language which is familiar to them
[13]. To guarantee the painless and efficient us-

Proceedings of the 7th Australasian Document
Computing Symposium,

Sydney, Australia, December 16, 2002.

age of this language, ECOLE – a look-ahead edi-
tor – has been created and especially designed for
PENG. The look-ahead editor guides the writing
process and guarantees well-formed syntactic struc-
tures that can be translated into a formal language.

2 PENG by Example

PENG is a computer-processable controlled lan-
guage specifically designed to write formal docu-
ments. PENG consists of a strict subset of stan-
dard English. The restrictions of the language are
defined with the help of a controlled grammar and
a controlled lexicon [13].

Let us illustrate the coverage of PENG by
means of the Dreadsbury Mansion Mystery, a
simple puzzle that is used in the literature [10] to
test the capacity of automatic theorem provers.
The puzzle is usually translated first by hand
into a formal notation and the consequence of the
puzzle is then proven by a theorem prover such as
OTTER [9]. Using PENG, the manual translation
becomes unnecessary, since PENG texts can be
deterministically translated into first-order logic
via discourse representation structures. Below
follows the Dreadsbury Mansion Mystery in
PENG:

A person lives in Dreadsbury Mansion.
The person kills Agatha. Agatha is an
aunt and lives in Dreadsbury Mansion.
Agatha is a person. The butler lives
in Dreadsbury Mansion. The butler is
a person. Charles lives in Dreadsbury
Mansion. Charles is a person. Every
person that kills a person hates the person
and is not richer than the person. If
Agatha hates a person then Charles does
not hate the person. If a person is not the
butler then Agatha hates the person. If a
person is not richer than Agatha then the
butler hates the person. If Agatha hates
a person then the butler hates the person.
No person hates every person. Agatha is
not the butler. Who kills Agatha?

2.1 Controlled Lexicon

The lexicon of PENG consists of predefined func-
tion words such as

determiners: a, the, every, no, who, ...

prepositions: in, than, ...

copula: is

negation: is not, does not

coordinators: and, or

subordinators: if ... then, before, after, while

that build the structural scaffolding of the con-
trolled language. User-defined content words such
as

nouns: butler, Agatha, Dreadsbury Mansion, ...

verbs: lives, kills, hates, ...

adjectives: rich, richer ...

adverbs: deeply, ...

can be incrementally added or modified by the au-
thor during the writing process with the help of a
lexical editor. Thus, by adding content words, the
author creates his own application specific lexicon.
In addition, the author can define synonyms for
content words and acronyms or abbreviations for
nouns. Illegal words (especially intensional words)
can be defined in the lexicon by linguists.

2.2 Controlled Grammar

The controlled grammar defines the structure of
simple PENG sentences and states how simple sen-
tences can be joined into complex sentences by co-
ordinators and subordinators. The grammar also
specifies that simple sentences have by default a
linear temporal order and that sentences can be
interrelated in a well-defined way to build coherent
texts. Simple PENG sentences are:

A person lives.

A person lives in Dreadsbury Mansion.

No person hates every person.

Agatha is a person.

Agatha is not the butler.

Complex PENG sentences are composed of sim-
pler PENG sentences:

Every person that kills a person hates the per-
son and is not richer than the person.

If Agatha hates a person then the butler hates
the person.

3 ECOLE User Interface

The most important feature of ECOLE are the
syntactic hints. After each word form entered, the
author is given a list of choices of how to continue
the sentence. These syntactic constraints ensure
that the document remains unambiguous and pre-
cise. For example, when the author starts typing
the sentence The butler hates a person, ECOLE
displays the following look-ahead categories as sub-
scripts in angle brackets:

The [adjective | noun]

The butler [relative clause | verb | negation]

The butler hates [determiner | name] ...

As the example shows, the editor makes use of
graphical means to display these syntactic hints as
a help to the author. Not much linguistic knowl-
edge is required to use this information as signpost.
If something is unclear, then the author will be able
to click on the displayed syntactic categories to get
more information about that particular item.

The editor also handles compound nouns such
as Dreadsbury Mansion. When the first noun
Dreadsbury has been entered, the editor will
respond with the second part of the compound
noun Mansion and all other suitable look-ahead
categories.

Another feature of ECOLE is the paraphrase
that informs the author how the machine inter-
preted the input. Below follows an example of an
input sentence and the paraphrase that is gener-
ated:

Input:

Agatha is not the butler.

Paraphrase:

Agatha is not [identical to] the butler.

The paraphrase thus makes it clear to the au-
thor that the copula (is) followed by a definite noun
phrase (the butler) is interpreted as identity. If
the copula had been followed by an indefinite noun
phrase such as (a butler), then the machine would
interpret this as a property and introduce a state.

PENG allows only well-defined forms of
anaphoric references (definite descriptions and
names, but no personal pronouns). The paraphrase
displays how anaphoric references are resolved
during parsing. An anaphoric expression is always
replaced by the complete antecedent and the
form is put within curly brackets. In PENG an
anaphoric expression refers to the most recent
accessible noun phrase that is suitable in terms of
agreement, gender, and type, with respect to the
nominal head and the pre- and postmodifiers.

Input:

A greedy butler lives in Dreadsbury Mansion.

The butler is a person.

Paraphrase:

A greedy butler lives in Dreadsbury Mansion.

{The greedy butler} is a person.

Another feature of the editor is the discourse
representation structure (DRS) [8], which may be
of interest to anyone wishing to see how the seman-
tics of the information processed is represented.
This feature can be used, for example, to teach stu-
dents logic and computational semantics. A DRS
captures the information in a multi-sentence dis-
course and shows the relations between the enti-
ties, the states, and the events in the application
domain. From the following input the user will see
the corresponding DRS:

Input:

Agatha kills the butler.

DRS:

[A,B,C]

named(A,agatha)

event(B,kill(A,C))

butler(C)

The first part of the DRS consists of a list of
discourse referents A, B, C for the two individuals
and the underlying event. These discourse referents
are then used in the second part, which consists of
conditions for the discourse referents. When a noun
phrase is found to be anaphoric during parsing, it
is directly resolved and not added to the DRS:

Input:

Agatha kills the butler. The butler is a person.

DRS:

[A,B,C,D,E]

named(A,agatha)

event(B,kill(A,C))

butler(C)

state(D,be(C,E))

person(E)

The example above shows that butler only ap-
pears once even though it is entered twice in the
input sentence.

At first glance, PENG documents look informal
and are easy to read, but they are in fact formal
entities with all the nice properties of a formal lan-
guage. Once translated into first-order logic these
documents can be checked for inconsistency by a
theorem prover or consistency can be revealed by
a model builder [2].

4 How ECOLE Works

When the author types a word form into the ed-
itor then the current (partial) sentence is sent to
the chart parser via a socket interface. The chart
parser processes the input and generates the look-
ahead categories. These syntactic categories are
then displayed together with the paraphrase, the
DRS, and the syntactic tree for the input for the
options chosen by the author.

The grammar of PENG is implemented in
the definite clause grammar (DCG) format. This
unification-based approach allows us to resolve
anaphoric references and to build up the DRS, the
paraphrase, and the syntactic tree during parsing
[3, 13]. Here is a typical grammar rule in DCG
format:

n2(Agr, Index, Quant, Drs, Scope, ParaIn-
ParaOut, [np,T1,T2], Gap-Gap, Ana)
-->
det(Agr, Index, Quant, Drs, Rest,

Scope, ParaIn-Para, T1),
n1(cat:cn, Agr, Index, Quant, Rest,

Para-ParaOut, T2, Gap-Gap, Ana).

The chart parser processes such grammar rules
top-down and produces edges according to the rules
of chart parsing [5]. The edges have the following
general form:

edge(START,END,HEAD,BODY)

Such edges simply tell us, what categories of
a grammar rule (HEAD → BODY) can span the
substring of words found between the START point
and the END point. We can distinguish two types
of edges: active and inactive edges. An active
edge is a hypothesis about a structure and an in-
active edge is a result. For example, if the author
types the determiner the into the editor, then the
chart parser produces the following edges (simpli-
fied here):

edge(0,1,[det],[])

edge(0,0,[s],[n2,v2])

edge(0,0,[n2],[det,a2,n1])

edge(0,1,[n2],[a2,n1])

edge(1,1,[a2],[a1])

edge(1,1,[a1],[a0])

edge(0,0,[n2],[det,n1])

edge(0,1,[n2],[n1])

edge(1,1,[n1],[n0])

The first edge at the beginning of the chart is an
inactive edge which contains an empty list []. It
represents a confirmed hypothesis and shows that
a determiner has been parsed sucessfully between
the nodes 0 and 1. All other edges are active.
That means that the chart is maintaining hypoth-
esis about other structures that might follow.

The look-ahead categories are generated in
the following way: During chart initialization the
length L of the intput string is calculated and as
soon as active edges are added to the chart that
end at L then the leftmost category on the right
hand side of a grammar rule is collected in a list.
This results in two look-ahead trees from which
the lexical categories noun and adjective can be
easily derived.

5 Conclusions

This paper demonstrates how an unambiguous and
precise document can be written in a computer-
processable controlled natural language using a so-
phisticated look-ahead editor. Writing PENG puts
no demands on the author when it comes to learn
or to remember the rules of the controlled language
as they are efficiently taken care of by ECOLE, the
look-ahead editor.

The use of the look-ahead categories guarantees
well-formed expressions and provides the necessary
structural basis for the semantics of the controlled
language in a completely compositional manner.
PENG texts are deterministically translated into
first-order logic and can be checked for consistency.

Acknowledgments

This research was supported by Macquarie Univer-
sity’s New Staff Grant (MUNS 9601/0078). We
would like to thank Mitko Razboynkov for devel-
oping the first version of the look-ahead editor, and
David Hood for integrating the controlled grammar
with the look-ahead editor.

References

[1] AECMA. 1988. The European Association
of Aerospace Industries. AECMA Simplified
English, AECMA Document PSC-85-16598. A
Guide for the Preparation of Aircraft Main-
tenance Documentation in the International

Aerospace Maintenance Language. Issue 1, Re-
vision 1, January.

[2] J. Bos. 2001. DORIS 2001: Underspecification,
Resolution and Inference for Discourse Represen-
tation Structures. In Blackburn and Kohlhase
(eds): ICoS-3. Inference in Computational Se-
mantics. Workshop Proceedings, Siena, Italy,
June.

[3] M. A. Covington, D. Nute, N. Schmitz, D.
Goodman. 1988. From English to Prolog
via Discourse Representation Theory. Research
Report 01-0024. Artificial Intelligence Programs,
University of Georgia.

[4] N. E. Fuchs, U. Schwertel, and R. Schwitter.
1999. Attempto Controlled English - Not Just
Another Logic Specification Language. Lecture
Notes in Computer Science 1559, Springer.

[5] G. Gazdar, C. Mellish. 1989. Natural Lan-
guage Processing in PROLOG. An Introduction
to Computational Linguistics, Addison-Wesley,
Wokingham.

[6] C. Grover, A. Holt, E. Klein, and M. Moens.
2000. Designing a controlled language for inter-
active model checking. Proceedings of the Third
International Workshop on Controlled Language
Applications. 29-30 April 2000, Seattle, pp. 29–
30.

[7] M. Jackson. 1995. Software Requirements and
Specifications, a lexicon of practice, principles
and prejudices. Addison-Wesley, Wokingham.

[8] H. Kamp and U. Reyle. 1993. From Discourse
to Logic. Kluwer, Dordrecht.

[9] W. W. McCune. 1995. Otter 3.0 Reference
Manual and Guide, Argonne National Labora-
tory, ANL-94/6, Revision A, August.

[10] F. J. Pelletier. 1986. Seventy-five Problems for
Testing Automatic Theorem Provers, Journal of
Automated Reasoning 2, pp. 191-216.

[11] S. G. Pulman. 1996. Controlled Language
for Knowledge Representation. Proceedings of
the First International Workshop on Controlled
Language Applications, Katholieke Universiteit
Leuven, Belgium, pp. 233–242.

[12] R. Schwitter. 1998. Kontrolliertes Englisch
für Anforderungsspezifikationen. Dissertation,
Institut für Informatik, Universität Zürich.

[13] R. Schwitter. 2002. English as a Formal
Specification Language. Proceedings of the Thir-
teenth International Workshop on Database and
Expert Systems Applications (DEXA 2002), Aix-
en-Provence, France, pp. 228-232.

