Representing Knowledge in Controlled Natural
Language: A Case Study

Rolf Schwitter

Centre for Language Technology, Macquarie University,
Sydney, NSW 2109, Australia
{schwitt}@ics.mqg.edu.au

Abstract. In this case study I argue for the usage of a machine-oriented
controlled natural language as interface language to knowledge systems.
Instead of using formal languages that are difficult to learn and to remem-
ber for non-specialists, authors should be able to write specification texts
in a well-defined subset of English that can be unambiguously processed
by a computer. This subset of computer-processable English (PENG)
consists of a restricted grammar and lexicon and is used together with
an intelligent text editor that guides the writing process. The editor of
the PENG system communicates with a language processor that gener-
ates logical structures while the author writes a specification text. The
language processor is connected via a server with reasoning services that
allow for acceptability checking and question answering. Texts written
in PENG look seemingly informal and are easy to write and understand
for humans but have first-order equivalent properties.

1 Introduction

Natural languages are the most powerful knowledge representation languages
that exist. They can be easily learned in early childhood and have been opti-
mised through evolution to support all aspects of human communication using
one single notation. Natural languages serve as their own meta-language and
have a greater flexibility and expressive power than any formal (artificial) lan-
guage. However, natural languages used for writing precise specifications for
knowledge representation have some serious disadvantages: they are difficult for
computers to process because of their inherent ambiguity and vagueness, and
their expressive power turns out to be one of the greatest obstacles for auto-
matic reasoning [11].

Instead formal languages have been used to write specifications because these
languages have an unambiguous syntax and clean semantics and help to avoid
errors in the interpretation of the represented knowledge. Most of these formal
languages are either directly or indirectly related to formal logic. However, such
formal languages suffer from a number of unpleasant shortcomings: they are
difficult to learn, difficult to use, and difficult to remember for non-specialists,
since their notation very often abstracts away from the expressions used in a
concrete application domain [2] [3].

Machine-oriented controlled natural languages [5] overcome most of these lim-
itations and preserve the advantages of natural languages and formal languages.
Some of these controlled natural languages have very interesting properties, since
they seem informal at first glance but are formal languages with a precise syntax
and semantics.

Different kinds of machine-oriented controlled languages have been devel-
oped to make multilingual machine translation of technical documents more ef-
ficient [9] and to make it feasible for machines to acquire and process knowledge
expressed in a subset of natural language [10]. Provided that we support authors
with an intelligent writing tool, even non-specialists can use such a controlled
natural language to write specification texts for knowledge representation in a
familiar notation without the need to formally encode the information [2].

PENG is a machine-oriented controlled natural language that has been de-
signed for non-specialists to write precise specification texts in a seemingly infor-
mal notation [12]. To guarantee the efficient usage of this controlled natural lan-
guage, a text editor with an intelligent feedback mechanism has been developed
that guides the writing process and guarantees well-formed linguistic structures
that can be translated unambiguously into first-order logic via discourse repre-
sentation structures (DRSs) [6]. The arising specification text can be checked
on the fly for its acceptability constraints using third-party reasoning services.
Additionally, the author can query a specification text in controlled natural lan-
guage. In the case of PENG, the semantic representation of a specification is
built up incrementally while the author writes the text and the interpretation
of the machine is mediated by a paraphrase in controlled language.

2 PENG (Processable ENGlish)

PENG consists of a strict subset of standard English. The restrictions of the
language are defined with the help of a controlled grammar and a controlled
lexicon [12] and are enforced by ECOLE, an intelligent text editor [13].

The controlled grammar defines the structure of simple sentences and states
how simple sentences can be combined by coordinators (and, or) and subordina-
tors (e.g. before, after, if-then) to build complex sentences. In PENG, the scope
of quantifiers (e.g. every, no, a) can be determined from the surface order. A
small number of constructors (e.g. there is a/no, for every) is available to change
the relative scope explicitly on the surface level.

The controlled lexicon consists of predefined function words (determiners,
prepositions, coordinators, subordinators), a set of illegal words (especially in-
tensional words), and user defined content words (nouns, verbs, adjectives, ad-
verbs). Content words can be incrementally added or modified by the author
during the writing process with the help of a lexical editor (that is part of the
intelligent text editor). Thus, by adding content words, authors create their own
application specific lexicon. In addition, authors can define synonyms, acronyms,
and abbreviations for content words.

JR1=TE

Specification Lexical Editor Help

Guestion: 1= it true that no grocer is & cyclist?

wvery grocer iz a person. Every cyclist iz a perzon. Every honest perzon wwha iz industrious is
ealthy. Mo grocers are healthy. &l industrious grocers are honest. All oyclists are industrious.

Il cyelists who are not healthy are not honest [full_stop,conjunction, preposition, adverb]

DR=: -
[de=([] [dr=([A] [~dr=([B] [pred(E [be] A),evI(E state) prop[healthy], A0 obil[cyclist] &0, 2tru

A group]=drs(]] [~dra([C] [pred(C [he], &) evti(C state) propihonest], 237010 drs([D], [obil[c
vili=t] D0, struciD group)] =des([E] [pred(E [be] [0 eyt E state]) propfindustrious] Do) dr=([F],
[obil[grocer] F1 struciF group) proplindustrious] P =drs([G] [pred(G [be] FiestlG state) pr
opi[honest] FI] drs([H] [obil[grocer] H) struciH groupd[=des([] [~des0], [predd [be] H estidl,
state]) propiheathy] HIDD des([d K] [predd [be] K el state) propdlindustrious] K ,obil [pe
rzan] K, strucik atomic) propihonest] BKO=dra(L] [prediL [be] K1 evtiL state) prop[health

y1 KD dr=(M] [obil[eyclist] k) struciM atomic)=drs([M] [prediM [be] M) et state) obil[pe
rzan] M) strucii atomic], drs([O0], [obil[grocer] 00, struciO atomic)] =drs([P] [pred(P [bhe] 00,
evtllP state’)obillper som], O, struciO atomic 11 LI

Fig. 1. The ECOLE editor with the Grocer puzzle, look-ahead categories and DRS

The text in Fig. 1 is a reformulation of Lewis Carroll’s Grocer Puzzle in
PENG. Note that ECOLE displays after each word form that the author enters
look-ahead categories (e.g. full_stop, conjunction, preposition, adverb). These
syntactic hints guide the writing process and constrain the subsequent input.

The main restrictions in the context of our puzzle are the use of present tense
verbs and the control of plural constructions by disambiguation markers that
reflect the interpretation in a paraphrase (e.g. All cyclists [each] are industrious).
Other restrictions that are important are the scope of quantifiers and the scope
of negation that can be determined from the surface order in PENG.

3 The Architecture of the PENG System

The top-level architecture of the PENG system consists of four main components
(see Fig. 2): an intelligent text editor, a controlled language (CL) processor, a
server, and reasoning services (consisting of a theorem prover and model builder).
The text editor communicates with the CL processor via a socket interface. The
CL processor is running as a client and is connected via the server with the rea-
soning services that are running separate client processes. The server implements
a blackboard on which the CL processor writes a specification text (= theory)
for which the theorem prover searches a proof and the model builder looks for
a countermodel. These reasoning services are used to check the acceptability
constraints (= consistency and informativeness) of a specification text and to
answer questions about a specified piece of knowledge.

¥

Theorem Prover

CL Processor @ Reasoning Services

Model Builder

Text Editor

&
L 4

L 4

Fig. 2. Architecture of the PENG system

3.1 The Text Editor

The author interacts with the PENG system in controlled natural language using
the text editor ECOLE and does not have to worry about the formal backbone
of the system. Neither does the author need to know the grammar rules of the
controlled language explicitly. ECOLE displays after each word form that the
author enters what kind of syntactic structures can follow the current input
(see Fig. 1). These look-ahead categories are generated on the fly while the
text is written using the information produced by the chart parser of the CL
processor [13].

The text editor comes with a spelling checker and an integrated lexical ed-
itor. If a content word is unknown and not misspelled, then the lexical editor
pops up and allows the author to add the word to the lexicon. As soon as the
word is available, the parsing process is resumed. If the corresponding options
are selected, then the system checks the text for its acceptability constraints
after each new sentence. If a new sentence violates these constraints, then the
author gets immediate feedback. The author can also query a specification text
in controlled language — in our case the author might be interested in finding
out whether it is true or not that no grocer is a cyclist.

3.2 The CL Processor

After the author types a word form into the text editor, the token is immediately
sent to the chart parser of the CL processor. The chart parser uses a unification-
based (definite clause) grammar as syntactic scaffolding and constructs DRS
conditions, look-ahead categories, information for a paraphrase, and resolves
anaphoric definite references dynamically.

In our implementation a DRS is represented as a term of the form drs (U, Con)
consisting of a list (U) of discourse referents [T, I, . . . I,] denoting entities and
a list (Con) of conditions [Cy,Cs, .. .C,J that describe properties or relations

that these discourse referents must satisfy. DRSs can occur as constituents of
larger (complex) DRSs. Complex DRS conditions are those involving implication,
disjunction, and negation (see also Fig. 1).

In contrast to Kamp & Reyle’s original DRS construction algorithm [6], se-
mantic information is threaded through grammar rules in PENG and a flattened
notation for DRS conditions is used that treats concepts as typed individuals.
Concepts do not introduce predicate symbols anymore and can therefore be re-
ferred to by simple terms (see also [4]). The domain of discourse in PENG is
divided into the domain of objects and the domain of eventualities (= events
and states). The domain of objects is a lattice-theoretic one and is subdivided
into groups, individuals and mass objects.

Using a flattened notation has a number of advantages: First, quantification
over complex terms that would require higher-order quantification can now be
conducted via first-order quantification. Second, the flattened notation simplifies
the formalization of logical axioms to express various forms of linguistic and non-
linguistic knowledge. Third, this notation increases — as a neat side-effect — the
efficiency of the inference processes.

3.3 The Reasoning Services

Standard reasoning services are not able to process DRSs directly. Therefore,
a DRS that represents a (part of a) specification text is translated into a set
of first-order formulas with the help of an efficient compiler that behaves linear
on the size of the input [1]. These first-order formulas build a logical theory
that can be investigated by a theorem prover (OTTER; [8]) and a model builder
(MACE; [7]) that run in parallel.

Acceptability Constraints In PENG, we are especially interested in check-
ing the acceptability constraints of a theory finding out whether the theory is
consistent and informative after new information has been added to that theory.
For example, if the author writes

All cyclists are industrious.
and later accidentally adds the information
No bikers are industrious.

then the consistency of the theory is violated. As we will see below, the
PENG system can detect such inconsistencies provided that cyclists and bikers
are stored as synonyms in the lexicon. In a similar way, if the author writes

Every cyclist is a person.
and later adds the information
Every biker is a person.

then the informativeness constraint is violated, since the second sentence
does not add any new information to the specification text. Here, we would end
up with a theory that contains redundant information.

Checking Acceptability Constraints To detect the inconsistency of a theory
@, we can use a theorem prover such as OTTER and give it the negation of the
theory —®. If a proof is found for the negated theory, then the original theory is
inconsistent (or unsatisfiable). To detect the consistency of a theory @, we can
use a model builder such as MACE. MACE is a program that takes a theory and
tries to build a model M for that theory. This is done with an interpretation
function 7 that systematically maps predicates and constants of the language to
members of a domain D. A theory @ is satisfiable (or consistent) if the model
builder can find at least one model M that satisfies all the formulas in the
theory. In general, model builders are only able to construct finite models and
require a parameter that constrains the domain size of the model. OTTER and
MACE can help each other out checking for inconsistency and satisfiability. The
same reasoning services can also be used to check a theory for its informativness.
Testing whether a piece of information ¥ is new and informative with respect
to its previous context @ can be done by giving the theorem prover @ — W¥. If
it finds a proof, then ¥ is not informative. The model builder can do a similar
test, provided that we give it @ A ¥ and then @ A —V; if the model builder finds
a model M in both cases, then ¥ is informative.

Question Answering A variation of the basic proof procedure can be used
to answer questions formulated in PENG. During a proof with OTTER, vari-
ables can be bound explicitly to values by substitutions with the help of answer
literals. These bindings can be interpreted as a question answering process. On
the other hand, a model builder such as MACE constructs flat structures with
no explicit quantification or Boolean operators and allows for looking up the
answer(s) to a question in the model [1]. As discussed, a DRS needs to be first
translated into a set of first-order formulas before it can be processed by the
reasoning services. Apart from the DRS, the reasoning services use additional
lattice-theoretic axioms for the inference tasks. For instance, the following axiom

(all X Y (struc(X,atomic) & part_of(X,Y) -> struc(Y,group))).

is used in PENG to relate a noun phrase (e.g. every X) that introduces an
atomic object into the domain to a noun phrase (e.g. all Xs) that introduces a
group. This linguistic axiom is necessary to answer the question of the puzzle.
Since OTTER is a refutation-based theorem prover, we need to feed it the nega-
tion of the original question Is it true that no grocer is a cyclist? so that the
result (in our case the empty clause) can be deduced automatically.

4 Conclusions

In this case study I presented the controlled natural language PENG together
with the PENG system that allow non-specialists to write and process precise
and unambiguous specification texts for knowledge representation. This case
study shows that PENG is easy to write for non-specialists with the help of a

look-ahead editor that guides the writing process, easy to read for non-specialists
in contrast to formal languages, and easy to translate into first-order logic via
discourse representation structures in contrast to unrestricted natural language.
PENG can serve as a high-level interface language to any kind of knowledge
systems and improve the knowledge acquisition process as well as increase the
transparency of the knowledge representation for various kinds of applications.
In the future, I am planning to study decidable subsets of PENG that can be
translated automatically into a variant of description logic.

Acknowledgements

This research project was kindly supported by the Australian Research Council
(DP0449928). T would also like to thank Marc Tilbrook for his work on the
look-ahead text editor ECOLE and two anonymous reviewers for their valuable
comments.

References

1. Bos, J.: DORIS 2001: Underspecification, Resolution and Inference for Discourse
Representation Structures. In: Blackburn and Kohlhase (eds): IC0S-3. Inference in
Computational Semantics. Workshop Proceedings, Siena Italy June (2001)

2. Fuchs, N. E., Schwertel, U., Schwitter, R.: Attempto Controlled English — Not Just
Another Logic Specification Language. In: LNCS 1559, Springer (1999) 1-20

3. Hall, A.: Seven Myths of Formal Methods. IEEE Software. Vol. 48, No. 1, (1990)
67-79

4. Hobbs, J.R.: Discourse and Inference. Draft. USC Information Science Institute,
Marina del Rey, California, November 3 (2003)

5. Huijsen, W.O.: Controlled Language — An Introduction. In: Proceedings of CLAW
1998. Pittsburgh, (1998) 1-15

6. Kamp, H., Reyle, U.: From Discourse to Logic. Dordrecht: Kluwer (1993)

7. McCune, W.: MACE 2.0 Reference Manual and Guide. ANL/MCS-TM-249. Math-
ematics and Computer Science Division, Argonne National Laboratory, Argonne
(2001)

8. McCune, W.: OTTER 3.3 Reference Manual. ANL/MCS-TM-263. Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne (2003)

9. Mitamura, T.: Controlled Language for Multilingual Machine Translation (invited
paper). In: Proceedings of MT Summit (1999).

10. Pulman, S.G.: Controlled Language for Knowledge Representation. In: Proceedings
of CLAW 1996. Katholieke Universiteit Leuven, Belgium (1996) 233-242

11. Sowa, J. F.: Knowledge Representation — Logical, Philosophical and Computational
Foundations. Brooks/Cole (2000)

12. Schwitter, R.: English as a Formal Specification Language. In: Proceedings of the
Thirdteenth International Workshop on Database and Expert Systems Applications
(DEXA 2002). Aix-en-Provence (2002) 228-232

13. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE: A Look-ahead Editor for a Con-
trolled Language. In: Proceedings of EAMT-CLAWO03, Controlled Language Trans-
lation, May 15-17, Dublin City University (2003) 141-150

