
SEVENTH ILPS 95 WORKSHOP ON L OGIC PROGRAMMING ENVIRONMENTS, PORTLAND, OREGON, DECEMBER 1995

Attempto
Controlled Natural Language for

Requirements Specifications
Norbert E. Fuchs, Rolf Schwitter

Department of Computer Science, University of Zurich
CH-8057 Zurich, Switzerland

{fuchs, schwitter}@ifi.unizh.ch

Writing specifications for computer programs is not easy since one has to take into account the disparate
conceptual worlds of the application domain and of software development. To bridge this conceptual gap we
propose controlled natural language as a declarative and application-specific specification language. Controlled
natural language is a subset of natural language that can be accurately and efficiently processed by a computer,
but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are
automatically translated into Prolog clauses, hence become formal and executable. The translation uses a Definite
Clause Grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora,
are resolved with the help of Discourse Representation Theory (DRT). The generated Prolog clauses are added to a
knowledge base. We have implemented the prototypical specification system Attempto that successfully processes
the specification of a simple automated teller machine.

1 Introduction: Views as Declarative Specifications
We develop formal specifications in logic languages, specifically first-order predicate logic and Prolog.
To bridge the conceptual gap between application domains and formal specifications we introduce
graphical and textual views of formal specifications as application-oriented, i.e. in the true sense
declarative, specifications [Fuchs & Fromherz 94].

Formal
Specification

Textual View

Graphical View

An automatic mapping between a view and its associated formal specification assigns a formal
semantics to the view. Though views give the impression of being informal and having no intrinsic
meaning, they are formal and have the semantics of their associated formal specification. This dual-
faced appearance of views reduces the conceptual gap, and eases the transition from informal to formal
notations. Furthermore, if the formal specification is executable its execution can be observed on the
level of the view. Thus validation and prototyping in concepts close to the application domain become
possible.

In previous publications we presented graphical views [Fuchs & Fromherz 94], while this paper
introduces controlled natural language as a textual view of a formal specification. The paper is
structured as follows: in section 2 we define our version of controlled natural language; in section 3 we
give an overview of the Attempto specification system; sections 4 and 5 describe the translation process
from controlled natural language to Prolog; finally, in section 6 we conclude and outline further
research.

2 Controlled Natural Language as a Textual View of a Logic Program

2.1 Controlled Natural Language
Controlled natural language – a subset of natural language with a restricted grammar and an
application-specific vocabulary – can serve as a textual view for a formal specification in a logic

2

language. Our version of controlled natural language can be accurately and efficiently processed by a
computer, but is expressive enough to allow natural usage. It has a principled structure: declarative
sentences are combined by constructors (e.g. negation, if-then, and-lists, or-lists) to powerful phrases,
while restricted forms of anaphora and ellipsis render the language concise and natural.

A specification in controlled natural language is a multisentential text consisting of
• simple declarative sentences of the form subject – verb – object
• if-then sentences
• yes/no queries, wh-queries

The specification text can contain
• anaphoric references, e.g. pronouns
• relative phrases, both subject and object modifying
• comparative phrases like bigger than, smaller than and equal to
• elliptical compound phrases like and-lists, or-lists
• negation like does not, is not and has not
Controlled or simplified English has been used for technical documentation [Wojcik et al. 90], and as
data base query language [Androutsopoulos 95]. Pulman and Rayner are suggesting a computer
processable controlled language that could be used for various purposes ranging from structured
documentation over access to information to the control of devices [Pulman & Rayner 94]. However, very
few researchers have tried to employ controlled natural language for software specifications since this
leads to additional syntactic and semantic constraints for the language especially if one requires the
specifications to be executable [Ishihara et al. 92, Macias & Pulman 92, Fuchs & Schwitter 95].
Users seem to be able to construct sentences in controlled natural language, and to avoid constructions
that fall outside the bounds of the language, particularly when the system gives feedback of the
analysed sentences in a paraphrased form using the same controlled language [Capindale & Crawford
89].

2.2 Example Specification in Controlled Natural Language
The following is a small excerpt of the controlled natural language specification of a simple automated
teller machine called SimpleMat.

The customer enters a card and a numeric personal code.

If it is not valid then SM rejects the card.

The example specification text employs
• declarative and if-then sentences
• elliptical compound phrases
• compound nouns, e.g. personal code
• anaphoric reference via the pronoun it
• negation
• abbreviations (SM standing for the name SimpleMat)

3 Overview of Attempto

3.1 Translation Components
The Attempto system translates specifications in controlled natural language into discourse
representation structures, and then into Prolog. Here, we briefly describe Attempto's components.
The user enters specification text in controlled natural language that the Dialog Component forwards to
the parser in tokenised form. Parsing errors and ambiguities to be resolved by the user are reported
back by the dialog component. The user can also query the knowledge base in controlled natural
language. The Parser uses a predefined Definite Clause Grammar enhanced by feature structures and a
predefined linguistic lexicon to check sentences for syntactical correctness, and to generate syntax trees
and sets of nested discourse representation structures. The Linguistic Lexicon contains an application-
specific vocabulary. The lexicon can be modified by a lexical editor invokable from the dialog
component. The Discourse Handler analyses and resolves inter-text references and updates the discourse
representation structures generated by the parser. The Translator translates discourse representation
structures into Prolog clauses.

3

Text

Dialog
Component

Linguistic
Lexicon

Knowledge
Base

Parser

Discourse
Handler

Translator
to Prolog

Knowledge
Assimilator

Answer
Generator

Inference
Engine

These Prolog clauses are passed to the knowledge assimilator, or – in case of queries – to the inference
engine. The Knowledge Assimilator adds new knowledge to the knowledge base. The Inference Engine
answers user queries with the help of the knowledge base. In a preliminary version the inference
engine is just the Prolog interpreter. The Answer Generator takes the answers of the inference engine,
reformulates them in controlled natural language, and forwards them to the dialog component.

3.2 Lexical Editor and Spelling Checker
Specification texts are incrementally developed by domain specialists. Though Attempto's lexicon
contains entries of the closed word classes, e.g. determiners, prepositions, and conjunctions, the entries
for domain specific subsets of the open word classes, e.g. nouns and verbs, have to be added as needed
for the specification text. A lexical editor – exhibiting interfaces for linguistic experts and non-experts
– allows users to interactively modify and extend the lexicon while the system parses the specification
text.
The expert interface represents lexical entries as complete feature structures and allows experts to
freely modify any lexical entry. The interface for non-experts employs templates that help users with
minimal linguistic understanding to enter information. Help texts and balloon help support both groups
of users.
A spelling checker allows users to determine whether all words of a specification text are in the
lexicon. This spelling checker is invoked automatically if (part of) a specification text cannot be
parsed.

4 Parsing
The specification text is parsed by a top-down parser using a Definite Clause Grammar enhanced by
feature structures in GULP notation [Covington 94]. The parser generates a syntax tree as syntactic
representation, and concurrently a discourse representation structure as semantic representation.
In addition, the parser generates a paraphrase – displaying all substitutions and interpretations made
– that explains how Attempto interpreted the user's input, e.g. our example specification.

the customer enters a card and the customer [same object] enters [same
predicator] a numeric personal_code.

if it [personal_code] is not valid then sm [simplemat] rejects the card
[same object].

4

The user can now decide to accept Attempto's interpretation, or to rephrase the input to achieve
another interpretation. For ambiguous input Attempto always suggests one standard interpretation as
default. It is up to the user to reformulate the input to achieve non-standard interpretations.

In addition, the parser informs the user about spelling and parsing errors. If the user enters

The customer enters a card. SimpleMat checks it.

the parser processes the first sentence successfully, then finds the unknown word checks which renders
the second sentence unparsable, and replies

First unparsable sentence: simplemat checks it.
Unknown word: checks

With the help of the lexical editor the user can add the unknown word to the lexicon and
immediately resubmit the input to the parser .

5 Semantic Translation

5.1 Contextual Semantic Translation
The specification text is translated into a discourse representation structure (DRS) which contains
discourse referents representing the objects of the discourse, and conditions for these discourse referents
[Kamp & Reyle 93].
Each sentence is translated in the context of the preceding sentences, yielding for our example the DRS

[A, B, C, D]
customer(A)
card(B)
enter(A, B)
numeric(C)
personal_code(C)
enter(A, C)
named(D, simplemat)
IF:
 []
 NOT:
 []
 valid(C)
THEN:
 []
 reject(D, B)

A DRS is a semantic representation of the input text, and is considered true if the input describes a
section of reality.
Conditions of a DRS can be simple or complex, i.e. again a DRS. This can lead to nested DRSs. In our
case, the topmost DRS contains an IF-THEN sub-DRS which itself contains a NOT sub-DRS.
Anaphoric references, e.g. the pronoun it of the second sentence referring to the compound noun
personal code of the first sentence, are automatically resolved. The resolution algorithm picks the
closest referent in a superordinate DRS that agrees in gender and number.

5.2 Translation into Prolog
Finally, the discourse representation structure is translated into Prolog clauses which are asserted as
fact/1 to the knowledge base.

fact(customer(0)).
fact(card(1)).
fact(enter(0, 1)).
fact(numeric(2)).
fact(personal_code(2)).
fact(enter(0, 2)).
fact(named(3, simplemat)).
fact((reject(3, 1):-neg(valid(2)))).

5

Discourse referents – being existentially quantified variables – are replaced by Skolem constants, or – if
they are in the scope of a universal quantor – by Skolem functions.
IF-THEN DRSs with disjunctive consequences are represented by sets of Prolog clauses to avoid
disjunctive clauses.

Questions (yes/no and wh-queries) can be used to interrogate the contents of the knowledge base.
Questions are translated first into QUERY DRSs and then into Prolog queries, and are answered by
logical inference.

6 Conclusions and Further Research
The present prototypical implementation of Attempto proves that controlled natural language can be
used for the non-trivial specification of an automated teller machine, and that the specification can be
translated as coherent text into Prolog clauses. Much more work needs to be done, however.

6.1 Controlled Natural Language
Our current version of controlled English was derived in an attempt to represent typical constructs in
natural language specifications in a structured and concise way. It seems that other researchers have
chosen similar ad hoc approaches to define their versions of controlled natural languages. However, a
more systematic definition of controlled English based on a small number of easily remembered
principles has to be found.

6.2 Retranslation
To hide the internal representation of a formal specification it will be retranslated into controlled
natural language when the user wants to examine or query the knowledge base. Formal specifications in
the form of a DRS can – at least partially – be retranslated into their equivalent controlled natural
language text since the grammar of the Attempto system is reversible. Another approach would use
predefined translation schemata with variable parts. During the retranslation the lexicon is accessed
to instantiate these variable parts.

6.3 Executing the Specification
The internal representation of a specification can be used for simulation or prototyping by executing it.
In our example specification, this means executing/running the specification of the automated teller
machine. However, the specification does not yet provide all the necessary information and needs to be
enhanced in three ways. First, an order of events has to be established. In our approach based on
discourse representation theory the order of events is to a great extent established when we introduce
eventualities (events and states) into the processing of our controlled natural language. Second, many
relations representing events are not only truth-functional, but also cause side-effects, e.g. I/O
operations. The required side-effects can be defined by interface predicates that depend on the
simulation environment. Third, the execution needs some situation specific information, or scaffolding.
We can either provide the relevant facts in the knowledge base, or more conveniently, get the
information by querying the user.

6

References
[Androutsopoulos 95] I. Androutsopoulos, G. D. Ritchie, P. Thanisch, Natural Language

Interfaces to Databases – An Introduction, Journal of Natural
Language Engineering, vol 1, no. 1, Cambridge University Press, 1995

[Capindale & Crawford 89] R. A. Capindale, R. G. Crawford, Using a natural language interface
with casual users, International Journal Man-Machine Studies, 32, pp.
341-362, 1989

[Covington 94] M. A. Covington, GULP 3.1: An Extension of Prolog for Unification-
Based Grammar, Report AI-1994-06, Artificial Intelligence Center,
University of Georgia, 1994

[Fuchs & Fromherz 94] N. E. Fuchs, M. P. J. Fromherz, Transformational Development of
Logic Programs from Executable Specifications, in C. Beckstein, U.
Geske (eds.), Entwicklung, Test und Wartung deklarativer KI-
Programme, GMD Studien Nr. 238, 1994

[Fuchs & Schwitter 95] N. E. Fuchs, R. Schwitter, Specifying Logic Programs in Controlled
Natural Language, CLNLP 95, Workshop on Computational Logic for
Natural Language Processing, Edinburgh, 1995

[Ishihara et al. 92] Y. Ishihara, H. Seki, T. Kasami, A Translation Method from Natural
Language Specifications into Formal Specifications Using Contextual
Dependencies, in: Proceedings of IEEE International Symposium on
Requirements Engineering, 4-6 Jan. 1993, San Diego, IEEE Computer
Society Press, pp. 232 - 239, 1992

[Kamp & Reyle 93] H. Kamp, U. Reyle, From Discourse to Logic, Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and
Discourse Representation Theory, Kluwer Academic Publishers,
Dordrecht, 1993

[Macias & Pulman 92] B. Macias, S. Pulman, Natural Language Processing for Requirements
Specifications, in: F. Redmill, T. Anderson (eds.), Safety-Critical
Systems, Current Issues, Techniques and Standards, Chapman & Hall,
pp. 67-89, 1993

[Pulman & Rayner 94] S. Pulman, M. Rayner, Computer Processable Controlled Language,
SRI International Cambridge Computer Science Research Centre, 1994

[Wojcik et al. 90] R. H. Wojcik, J. E. Hoard, K. C. Holzhauser, The Boeing Simplified
English Checker, Proc. Internatl. Conf. Human Machine Interaction
and Artificial Intelligence in Aeronautics and Space, Centre d'Etude
et de Recherche de Toulouse, pp. 43-57, 1990

