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Abstract. In this paper, I will show how a controlled natural language
(CNL) can be used as an interface language to the Semantic Web. Instead
of working with a formal language based on RDF that is difficult to
write and understand for non-specialists, I will argue that a CNL can be
employed to describe resources on the Web (via assertional statements)
and to construct ontologies (via terminological statements). I will present
a complete rule set written in CNL that allows for efficient reasoning over
the assertional and terminological knowledge with the help of a model
builder. There is no need to formally encode this knowledge in an RDF-
based notation. Everything can be described in a uniform way on the
level of the controlled natural language provided that we support the
user of the CNL with an intelligent writing tool.

1 Introduction

The vision of the Semantic Web is to extend the current Web in a way in which
information is given well-defined meaning enabling computers and people to
work in cooperation [2]. To a certain degree, cooperation between computers
can be achieved by annotating information (assertional knowledge) on the Web
with machine-processable data and by linking these annotations to ontologies
(terminological knowledge). In the ideal case, ontologies can be combined with
rule languages so that new (entailed) information can be inferred and questions
about assertional (and terminological) knowledge can be answered with the help
of reasoning services [7].

However, cooperation between computers and people on a world-wide scale
can hardly be achieved via RDF-based formal languages such as RDFS [3] and
OWL [14]. People (in particular non-specialists) need to be able to add new
machine-readable information to a Web site. They need to be able to express
their questions in a familiar notation, and to read and understand information
derived from a piece of potentially distributed knowledge.

What is urgently needed is a high-level interface language to the Semantic
Web that abstracts away from these RDF-based formal notations. I will show
that a well-designed controlled natural language (CNL) is an ideal candidate to
increase the transparency of the Semantic Web and to empower non-specialists
with a “seemingly informal” language to work in cooperation with computers.
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Usually a CNL is defined as a well-defined subset of a natural language that
has been restricted with respect to its grammar and its lexicon. Grammatical
restrictions result in less complex and less ambiguous sentences, while lexical
restrictions reduce the size of the lexicon and the meaning of the lexical entries
for a particular domain [10]. This definition is a good starting point for our
undertaking, but we need to keep in mind that we are going to design a CNL
that has the same formal properties as an ontology language layered on top of
RDF; this seriously restricts the expressivity of the CNL.

2 OWL and OWL Lite−

The Web Ontology Language OWL is based on description logic and comes in
three increasingly expressive layers: OWL Lite, OWL DL, and OWL Full [14].
Ironically, OWL Full and OWL DL are not suitable for reasoning over large and
distributed ontologies, since there exist no efficient reasoning algorithms for these
languages [5]. Even OWL Lite, the least expressive layer of these languages, has
constructors (e.g. equality, disjunction and negation) that considerably compli-
cate the implementation of efficient reasoning algorithms.

Recently, it has been argued that the intersection of description logic with
logic programs can provide a straightforward computational pathway for reason-
ing and interoperability on the Semantic Web [7, 9]. In particular, OWL Lite−

has been identified as the maximal subset of OWL which can be expressed in the
deductive database language Datalog [5]. Datalog corresponds to Horn clauses
with range-restricted universally quantified variables (all variables in the head
of a clause occur also in the body), without function symbols (of arity greater
than zero) and without negation (see [6]). It has been shown that about 77% of
all current ontologies developed for the Semantic Web fall under the OWL Lite−

subset [16].
OWL Lite− is layered on top of RDF which relies on eXtensible Markup Lan-

guage (XML) for syntax, Uniform Resource Identifiers (URIs) for naming and
RDFS Schema (RDFS) for describing meaning and relationships of terms. OWL
Lite− uses RDF and RDFS constructors whenever the required functionality al-
ready exists for a lower layer. In a nutshell: OWL Lite− consists of the following
constructors whose meaning will become clear in the subsequent discussion:

Individuals: rdf:type

Simple classes: owl:Class

rdfs:subClassOf

Simple properties: owl:objectProperty

rdfs:subPropertyOf

rdfs:domain, rdfs:range

Property characteristics: owl:TransitiveProperty

owl:SymmetricProperty

owl:inverseOf

Property restrictions: owl:Restriction

owl:onProperty

owl:allValuesFrom
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Additionally, OWL Lite− provides two constructors (owl:equivalentClass
and owl:equivalentProperty) that can be used to map between classes and prop-
erties from different ontologies.

3 OWL Lite− plus Rules in CNL

As discussed in the last section, the syntax of OWL Lite− relies on RDF. RDF is
based on the idea of identifying things (= resources) using URIs and describing
these things in terms of simple properties and property values.

Imagine trying to state that someone named Nora Yuen supervises someone
named John Smith. This can be encoded in RDF as follows:

<rdf:Description rdf:ID=‘‘nora_yuen’’>

<ex:supervise rdf:resource=‘‘john_smith’’>

</rdf:Description>

Here nora yuen is the identified resource, supervise is a simple property, and
john smith is a property value. The URIs for the resource and the property value
are the ones of the current document and the prefix ex indicates that the URI for
the property is the one specified in the namespace declaration of the document.
A straightforward way to express the above statement in CNL is:

Nora Yuen supervises John Smith.

In CNL (as well as in RDF terminology), the subject ‘Nora Yuen’ identifies
the resource of the statement, the predicate ‘supervises’ identifies the property of
the statement and the object ‘John Smith’ identifies the value of that property.
The namespaces for these terms are not displayed here. As we will see later in
Section 3.4, namespaces are handled by an intelligent text editor that supports
the writing process of CNL. Please note that the user does not need to learn
the syntactic rules of the CNL, since these rules are enforced by the text editor
via a look-ahead mechanism [15].

3.1 Making Assertional Statements in CNL

The basic syntactic structure for making assertional statements in CNL consists
of a simple sentences that have a subject-predicate-object pattern and variations
that can be mapped into “triples”. Here are a few assertional statements in CNL
(that we will feed later for illustration purposes to the model builder):

Nora Yuen is a linguist and supervises John Smith.

John Smith who is a friend of Kylie Miller is a PhD student.

Kylie Miller is drilled by Nora Yuen.

The first sentence with the coordinator and is a compound one and is equiv-
alent to the following two simple statements in CNL:
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Nora Yuen is a linguist. Nora Yuen supervises John Smith.

The second sentence – mentioned above – with the subordinator who is a
complex one and corresponds to the two simple statements:

John Smith is a friend of Kylie Miller. John Smith is a PhD student.

The third sentence is a passive construction and can be interpreted as the
inverse of the statement:

Nora Yuen drills Kylie Miller.

if the corresponding relationship between drill and be drilled by is specified
in the ontology via a terminological statement (see next section).

3.2 Making Terminological Statements in CNL

In contrast to assertional statements that are most likely to be made by users
with different kind of computational background, terminological statements will
most probably be uttered by knowledge engineers in order to construct an on-
tology. Terminological statements speak about classes, properties, instances of
classes, and various kinds of relationships between instances, classes and prop-
erties. The following statement in CNL

The property ‘supervise’ has the type ‘object property’.

talks for example about the ‘supervise’ property and assigns a specific type
to it. This statement can be written in an abbreviated form in CNL:

‘supervise’ has the type ‘object property’.

Below are a number of terminological statements with the corresponding
“naturalized” OWL Lite− constructors in predicate position (for example, ‘has
the domain’ or ‘is a subproperty of’):

‘supervise’ has the domain ‘professor’.

‘supervise’ has the range ‘PhD student’.

‘teach’ has the type ‘object property’.

‘teach’ has the domain ‘academic’.

‘teach’ has the range ‘student’.

‘drill’ is the inverse of ‘be drilled by’.

‘drill’ has the equivalent property ‘instruct’.

‘drill’ is a subproperty of ‘teach’.

‘professor’ is a sublcass of ‘academic’.

‘linguist’ is a subclass of ‘researcher’.

‘researcher’ is a subclass of ‘scientist’.

‘PhD student’ is a subclass of ‘student’.

This terminological knowledge is used by the model builder for reasoning
purposes and by the look-ahead text editor to guide the writing process of as-
sertional statements.

2nd Indian International Conference on Artificial Intelligence (IICAI-05)

1702



3.3 Making Conditional Statements in CNL

In contrast to OWL Lite−, the CNL allows for expressing rules in form of condi-
tional sentences to build an axiomatic framework for reasoning. The antecedent
(and consequent) of a conditional statement can be complex, for example:

If E has a property P whose value is V and R has the type ‘range

restriction’ and R is on P and R has all values from C

then E has the type R.

As this example shows, the CNL allows for variables (E, P, V, R, C) in rules
that directly translate into variables in the formal representation. Note that
complex consequents will be distributed automatically during the translation.

3.4 Writing in CNL

Writing in CNL is supported by a look-ahead text editor. This editor can be
used either to write an assertional specification, to construct an ontology or to
build an axiomatic rule set. The user does not need to learn the rules of the
CNL explicitly, since he is guided by the look-ahead editor while the text is
written [15].

For an assertional specification, the user first selects the ontologies he wants
to work with via a menu. Thereby the text editor becomes “ontology-aware”
and guides the writing process via look-ahead categories and handles name-
spaces. Let’s imagine that the user wants to make the subsequent assertional
statement in CNL:

Nora Yuen supervises John Smith.

The editor first displays a look-ahead category for the subject position:

[ ProperNoun ]

After entering the name ‘Nora Yuen’ (that denotes a unique individual) the
editor displays further look-ahead categories (partially) derived from the syntac-
tic information of the grammar and from the available terminological knowledge:

[ who – is – has – FullVerb ]

The user either directly types an approved word or selects it from a con-
text menu that will provide additional information about the namespaces. After
entering, for example, the verb ‘supervises’, the look-ahead editor asks for the
object of the statement, and so on.

4 Processing CNL

Specifications in CNL are translated via a Definite Clause Grammar (DCG) [13]
into a format that can directly be processed by SATCHMO [4, 12]. SATCHMO is
a model-generation based theorem prover that takes a set of first-order formulae
as input and tries to generate a finite satisfying model for them by combining
a forward chaining strategy for normal cases with a backward chaining strategy
for special cases.
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4.1 Syntax of SATCHMO Rules

In SATCHMO, all first-order formulae are uniformally represented in an impli-
cational rule format of the form:

ANTECEDENT ---> CONSEQUENT.

The antecedent ANTECEDENT of a rule is either true or a single atomic formula
or a conjunction of atomic formulae. The consequent CONSEQUENT is either a single
atomic formula or false or a disjunction of atomic formulae. Since we are working
with the Datalog subset of first-order logic, we will end up with only one single
atomic formula in the consequent of the rule but with no disjunctions.

Let’s first have a look at a few translations and then discuss in the next
section how these translations are produced automatically. For instance, the
assertional statement

Nora Yuen is a linguist and supervises John Smith.

is translated into two facts that are represented as two SATCHMO rules of
the form:

true ---> term([‘Nora’,‘Yuen’],[rdf:type],[ex:linguist]).

true ---> term([‘Nora’,‘Yuen’],[ex:supervise],[‘John’,‘Smith’]).

A terminological statement such as

‘supervise’ has the domain ‘professor’.

results in a similar translation with an rdfs constructor:

true ---> term([ex:supervise],[rdfs:domain],[ex:professor]).

And finally a conditional statement such as

If E has a property P whose value is V and R has the type ‘range

restriction’ and R is on P and R has all values from C

then E has the type R.

is translated into the following rule:

term(E,P,V), term(R,[rdf:type],[owl:restriction]),

term(R,[owl:onProperty],P), term(R,[owl:allValuesFrom],C) --->

term(E,[rdf:type],R).

Please note that variables in SATCHMO rules are range-restricted in the
same way as in Datalog. That means, whenever a variable occurs in the con-
sequent of a rule, then the same variable must also occur in the antecedent of
that rule. This restriction guarantees that the knowledge base and any derived
consequences are always variable-free.
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4.2 Translating CNL into SATCHMO Rule Format

As aforementioned, statements in CNL can be translated automatically into the
SATCHMO rule format. The syntax of the CNL is specified here by a DCG
(that can be processed by a chart parser - if required). Specifying the grammar
gives you a parser (and a generator) for free. In the following, I will show how
this can be done starting from two simple assertional statements in CNL:

Nora Yuen is a linguist.

Nora Yuen supervises John Smith.

Both sentences are instantiations of a subject-predicate-object pattern. The
first sentence starts with a proper noun in subject position followed by a verb
(copula) in predicate position, and a noun phrase consisting of an indefinite arti-
cle plus a noun in object position. The second sentence starts also with a proper
noun, followed by a full verb but has a proper noun in object position. These
structures can easily be described by a DCG extended by additional arguments
and Prolog goals in the body of the grammar rules:

sentence(C1-C2) -->

proper_noun(N,S),

verb_phrase(a,_,N,S,C1-C2),

[‘.’].

verb_phrase(a,-,N,S,C1-[true--->term(S,P,O)|C2]) -->

verb(N,P),

noun_phrase(a,N,O,C1-C2).

noun_phrase(T,s,O,C-C) -->

( [a], noun(s,O) ; proper_noun(s,O) ).

verb(s,M) -->

{ lexicon([v,s],W,M) }, W.

noun(s,M) -->

{ lexicon([n,s],W,M) }, W.

proper_noun(s,M) -->

{ lexicon([pn,s],W,M) }, W.

lexicon([n,s],[linguist],[ex:linguist]).

lexicon([n,s],[linguist],[ex:professor]).

lexicon([pn,s],[‘Nora’,‘Yuen’],[‘Nora’,‘Yuen’]).

lexicon([pn,s],[‘John’,‘Smith’],[‘John’,‘Smith’]).

lexicon([v,s],[is],[rdf:type]).

lexicon([v,s],[supervises],[ex:supervise]).

As these grammar rules show, each non-terminal symbol in the grammar has
been extended by one or more arguments. For example, the term C1-C2 represents
a difference list and is responsible for building up the required SATCHMO rule(s)
while the sentence is parsed. The constant a in the verb phrase indicates that
this grammar rule is designed for processing assertional statements in CNL, and
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the variable N is used to control number agreement between the proper noun
and the verb. Finally, the variables S, P, and O guarantee that a SATCHMO
rule of the form true--->term(S,P,O) can be constructed in the verb phrase via
unification using information available from the lexicon.

The above DCG processes the two input sentences and produces the required
SATCHMO rules:

true ---> term([‘Nora’,‘Yuen’],[rdf:type],[ex:linguist]).

true ---> term([‘Nora’,‘Yuen’],[ex:supervise],[‘John’,‘Smith’]).

Sentences written in CNL can be coordinated and thereby have the potential
to express complex statements such as:

Nora Yuen is a linguist and supervises John Smith.

The subsequent DCG rule deals with verb phrase coordination:

verb_phrase(T,+,N,S,C1-C3) -->

verb_phrase(T,-,N,S,C2-C3),

[and],

verb_phrase(T,_,N,S,C1-C2).

The constants + and - in the second argument position stand for a ‘coordi-
nated’ and ‘non-coordinated’ verb phrase. The underscore stands for an anony-
mous variable and indicates that this verb phrase can be either coordinated or
non-coordinated.

Sentences in CNL can be embedded into other sentences such as the relative
sentence who is a linguist in:

Nora Yuen who is a linguist supervises John Smith.

The following DCG rules takes care of relative sentences:

sentence(C1-C3) -->

proper_noun(N,S),

rel_sentence(a,_,N,S,C2-C3),

verb_phrase(a,_,N,S,C1-C2),

[‘.’].

rel_sentence(T,-,N,S,C1-C2) -->

[who],

verb_phrase(T,-,N,S,C1-C2).

noun_phrase(T,s,O,C1-C2) -->

( [a], noun(s,O) ; proper_noun(s,O) ),

rel_sentence(T,_,N,O,C1-C2).

Not only verb phrases, but also relative sentences can be coordinated in CNL
as the subsequent DCG rule illustrates:
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rel_sentence(T,+,N,S,C1-C3) -->

rel_sentence(T,-,N,S,C2-C3),

[and],

rel_sentence(T,_,N,S,C1-C2).

This rule deals with coordinated relative sentences such as in:

Nora Yuen who is a linguist and who is a professor

supervises John Smith.

The DCG presented so far has two interesting properties: it is declarative and
bi-directional. Bi-directionality allows us not only to analyse sentences in CNL
and to produce rules in SATCHMO format but also to generate sentence starting
from a set of rules. This is of particular interest, if we intend, for instance, to
display all statements in CNL that are entailed in a theory or answer questions
in CNL using a given theory. For example, if we take the three SATCHMO rules
in

generate(S) :-

C = [true--->term([‘Nora’,‘Yuen’],[rdf:type],[ex:linguist]),

true--->term([‘Nora’,‘Yuen’],[rdf:type],[ex:professor]),

true--->term([‘Nora’,‘Yuen’],[ex:supervise],[‘John’,‘Smith’])],

sentence([]-C,S,[]).

as starting point, then our DCG fragment will generate a number of syntactically
different sentences in CNL that have the all same meaning, for example:

Nora Yuen is a linguist and is a professor and supervises John Smith.

Nora Yuen who is a linguist and who is a professor

supervises John Smith.

Nora Yuen who is a linguist is a professor and supervises John Smith.

4.3 Model Generation

Starting from the empty interpretation, SATCHMO works by attempting to
generate a model of its input rules of the form A--->C by searching for a violated
rule of which the antecedent A is true in the current model but the consequent
is not. In the simplest case, a new consequent C is satisfied by adding a single
atomic formula to the model. Thereby the consequent is made true in the model
and the rule under investigation is no longer violated. This procedure iterates
and if no violated rule remains left, then the model is complete (for details
see [1]).

A modified version of the original SATCHMO program [12] that uses an
accumulator instead of the (Prolog) knowledge base is given below:

generate_model(M) :-

generate_model([],M).

generate_model(M1,M2) :-

violated_instance(C,M1), !,
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disjunction_consequent(A,C),

generate_model([A|M1],M2).

generate_model(M,M).

violated_instance(C,M) :-

(A--->C),

satisfy_antecedent(A,M),

\+ satisfy_consequent(C,M).

satisfy_antecedent(true,M).

satisfy_antecedent(A,M) :-

member(A,M).

satisfy_antecedent((A,As),M) :-

member(A,M),

satisfy_antecedent(As,M).

satisfy_consequent(A,M) :-

member(A,M).

satisfy_consequent((A;As),M) :-

member(A,M).

satisfy_consequent((A;As),M) :-

satisfy_consequent(As,M).

disjunction_consequent(X,X) :-

\+ X = false,

\+ X = (Y;Ys).

disjunction_consequent(X,(X;Ys)).

disjunction_consequent(X,(Y;Ys)) :-

disjunction_consequent(X,Ys).

Note that in our case we do not need to test for disjunctions in the conse-
quent of a rule, since OWL Lite− does not allow for disjunction.

5 Rule Set for Reasoning in CNL

In this section, I will introduce the rule set – written in CNL – that is required
for reasoning over assertional and terminological knowledge. Note that this rule
set is not available in the ontology language OWL Lite− and would have to
be encoded in a completely separate rule language such as TRIPLE [8]. In the
subsequent discussion, I will follow the discussion in Harth and Decker [8] but
show how class and property hierarchies as well as property characteristics can
be directly expressed in CNL.

5.1 Class and Property Hierarchies

Subclass property. The most important taxonomic construction to model class
hierarchies is the subclass property. This property relates a specific class to a
more general class. The subclass property is transitive and can be used to model
class hierarchies via the following rule written in CNL:
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If C1 is a subclass of C2 and C2 is a subclass of C3

then C1 is a subclass of C3.

This rule guarantees, for example, that if ‘linguist’ is a subclass of ‘researcher’
and ‘researcher’ is a subclass of ‘scientist’, then ‘linguist’ is a subclass of ‘scien-
tist’.

Additionally, we need a rule that makes sure that the type of an individual
takes the class hierarchy into account:

If C1 is a subclass of C2 and E has the type C1

then E has the type C2.

This rule ensures, for example, that if ‘linguist’ is a subclass of ‘researcher’
and ‘Nora’ has the type ‘linguist’, then ‘Nora’ has the type ‘researcher’.

Subproperty. The subproperty relation behaves in a similar way as the
subclass property and allows for defining hierarchies of properties in CNL using
the following rule:

If P1 is a subproperty of P2 and P2 is a subproperty of P3

then P1 is a subproperty of P3.

This rule states, for example, that if ‘drill’ is a subproperty of ‘teach’ and
‘teach’ is a subproperty of ‘inform’, then ‘drill’ is a subproperty of ‘inform’.

Additionally, we need a rule that applies a property hierarchy to individuals:

If P1 is a subproperty of P2 and E has P1 whose value is V

then E has P2 whose value is V.

This rule ensures, for example, that if ‘drill’ is a subproperty of ‘teach’ and
‘Nora’ has the property ‘drill’ whose value is ‘Kylie’, then ‘Nora’ has the property
‘teach’ whose value is ‘Kylie’.

Domain restriction. In OWL Lite− the domain of a property can be re-
stricted to a specific class ensuring that only individuals of this class occur in
the subject position. The following rule handles this:

If E has the property P whose value is V and P has the domain D

then E has the type D.

This rule guarantees, for example, that if ‘Nora’ has the property ‘supervise’
whose value is ‘John’ and the property ‘supervise’ has the domain ‘professor’,
then ‘Nora’ has the type ‘professor’.

Range restriction. The range of a property can be restricted in a similar
way to a specific class making sure that only individuals of this class occur in
the object position:

If E has the property P whose value is V and P has the range R

then V has the type R.

This rule states, for example, that if ‘Nora’ has the property ‘supervise’ whose
value is ‘John’ and the property ‘supervise’ has the range ‘PhD student’, then
‘John’ has the type ‘PhD student’.
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5.2 Property Characteristics

Object property. In OWL Lite− only object properties are allowed, but no
datatypes as in OWL Lite. That means that the subject and object position
must be realised by an individual of a specific class:

‘object property’ has the domain ‘class’.

‘object property’ has the range ‘class’.

The rules for domain and range restriction introduced above cover the re-
quired inferences.

Transitive property. The next rule generalizes transitivity for properties
of type ‘transitive property’:

If E has the property P whose value is W and W has P whose value is V

and P has the type ‘transitive property’

then E has P whose value is V.

The rule ensures, for example, that if ‘Nora’ has the property ‘is ancestor
of’ whose value is ‘Carla’, and ‘Carla’ has also the property ‘is ancestor of’, but
with the value ‘Fabian’, and the property ‘is ancestor of’ has the type ‘transitive
property’, then ‘Nora’ has the property ‘is ancestor of’ whose value is ‘Fabian’.

Symmetric property. A symmetric property is a property that is true in
both directions:

If E has the property P whose value is V

and P has the type ‘symmetric property’

then V has P whose value is E.

This rule states, for example, that if ‘John’ has the property ‘is a friend of’
whose value is ‘Kylie’ and the property ‘is a friend of’ has the type ‘symmetric
property’, then ‘Kylie’ has the property ‘is a friend of’ whose value is ‘John’.

Similar to a subproperty, we can restrict the range and the domain of a
symmetric property:

If P has the type ‘symmetric property’ and has the range R

then P has the domain R.

If P has the type ‘symmetric property’ and has the domain D

then P has the range D.

Inverse property. A property is the inverse property of another property
when the variables in the subject and object position of the first property switch
their argument positions in the second property:

If E has the property P1 whose value is V

and the property P2 is the inverse of P1

then V has P2 whose value is E.
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This rule guarantees, for example, that if ‘Nora’ has the property ‘drill’ whose
value is ‘Kylie’ and the property ‘be drilled by’ is the inverse of ‘drill’, then ‘Kylie’
has the property ‘be drilled by’ whose value is ‘Nora’.

The following statements in CNL define that the inverse property is a sym-
metric property and that the subject position and object position of an inverse
property are realised by individuals (as indicated by ‘object property’).

‘inverse of’ has the type ‘symmetric property’.

‘inverse of’ has the domain ‘object property’.

‘inverse of’ has the range ‘object property’.

Class equivalence. In order for ontologies to have the maximum impact,
they need to be sharable and re-usable. When two ontologies describe the same
class, then a mechanism is needed to state that the two classes are equivalent.
That means we need to be able to systematically describe that every individual
of one class is also an individual of the other class.

Here are two statements in CNL that describe specific characteristics of class
equivalence:

‘equivalent class’ has the type ‘symmetric property’.

‘equivalent class’ has the type ‘transitive property’.

The first statement says that class equivalence is a symmetric property. The
rules for symmetry introduced above take this statement into consideration. The
second statement says that class equivalence is transitive. The general rule for
transitivity introduced above takes care of this statement.

The following rule performs the needed inferences on the type hierarchy and
infers that an individual of one class is equivalent to an individual of another
class:

If C1 is an equivalent class of C2 and E has the type C2

then E has the type C1.

The next rule is used for completion of the rule set and states that class
equivalence is reflexive:

If C1 is an equivalent class of C2 and E has C1 whose value is V

then E has C1 whose value is V.

The subsequent three rules guarantee that all occurrences of equivalent classes
in either subject, predicate, or object position of a statement are replaced:

If C1 is an equivalent class of C2 and E has C1 whose value is V

then E has C2 whose value is V.

If C1 is an equivalent class of C2 and C2 has the property P

whose value is V

then C1 has P whose value is V.

If C1 is an equivalent class of C2 and E has the property P

whose value is C1

then E has P whose value is C2.
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Property equivalence. Similar to class equivalence, we can formulate state-
ments and rules in CNL that deal with property equivalence.

The subsequent two statements are straightforward and state symmetry and
transitivity of equivalent properties:

‘equivalent property’ has the type ‘symmetric property’.

‘equivalent property’ has the type ‘transitive property’.

The following two rules deal with property hierarchies and reflexivity of
equivalent properties:

If P1 is an equivalent property of P2 and E has P1 whose value is V

then E has P1 whose value is V.

If P1 is an equivalant property of P2 and E has P1 whose value is V

then E has P2 whose value is V.

and finally the next two rules take care of the replacement of equivalent
properties in the subject and object position of a statement:

If P1 is an equivalent property of P2 and P2 has the property P

whose value is V

then P1 has P whose value is V.

If P1 is an equivalent property of P2 and E has the property P

whose value is V

then E has P whose value is P2.

5.3 Property Restrictions

So far, we have seen how to restrict the range and the domain of properties
in a global way. The following rule allows to set a local range restriction on a
property taking both the property and the domain of a statement into account:

If E has a property P whose value is V and R has the type ‘range

restriction’ and R is on P and R has all values from C

then E has the type R.

The rule ensures, for example, that if ‘Nora’ has the property ‘teach’ whose
value is ‘Kylie’ and the class ‘academic’ has the type ‘range restriction’, and the
restricted property is ‘teach’, and all values are from the domain ‘student’, then
‘Nora’ has the type ‘academic’. In brief, the rule licenses the inference: if Nora
teaches Kylie and Kylie is a student, then Nora is an academic.

6 Evaluation

Given the rule set introduced in the previous section, the terminological knowl-
edge presented in Section 3.2, and the assertional knowledge in Section 3.1,
SATCHMO can generate a satisfying model.

Since this model consists of terms of the form
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term([‘John’,‘Smith’],[rdf:type],[ex:student]).

it is straightforward to extract all entailed assertional statements in CNL:

John Smith is a student. Kylie Miller is a student.

Nora Yuen is a scientist. Nora Yuen is a researcher.

Nora Yuen is an academic. Nora Yuen is a professor.

Nora Yuen instructs Kylie Miller. Nora Yuen teaches Kylie Miller.

Nora Yuen drills Kylie Miller.

as well as all entailed terminological statements (only a small subset of them
is displayed here):

‘linguist’ is a subclass of ‘scientist’.

‘drills’ has the type ‘object property’.

‘drills’ is a subproperty of ‘instructs’.

‘is drilled by’ is the inverse of ‘drills’.

‘is drilled by’ has the type ‘object property’.

The generated model can now be used to answer questions in CNL, such as:

Who instructs Kylie?

Does Nora teach Kylie Miller and instruct John?

What does Nora do?

What type does John Smith have?

Questions are first translated into SATCHMO format, solution(s) are looked
up in the model, and answers are generated in CNL.

7 Conclusions

In this paper, I presented a CNL that can be used to express the same sort
of knowledge as the Web Ontology Language OWL Lite− but in a “seemingly
informal” notation. In contrast to OWL Lite− that does not have direct rule
support, I showed how a complete rule set for reasoning with the assertional and
terminological knowledge can be specified in CNL. Statements and rules written
in CNL can be translated automatically into a format that can be further pro-
cessed by a model builder. The model builder generates all entailed statements
in CNL and allows for question answering over the generated model. The writing
of statements and rules in CNL is supported by a look-ahead text editor. The
user does not need to worry about the syntactic rules of the CNL and is guided
while writing a specification. In summary: CNL can replace an RDF-based on-
tology language, allows for expressing rules for reasoning in a transparent way,
and can empower people to work in cooperation with computers without the
need to formally encode the knowledge.
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Appendix

% =======================================================================

% Translated Rule Set for OWL Lite- Reasoning

% =======================================================================

% -----------------------------------------------------------------------

% Subclass property

% -----------------------------------------------------------------------

term(C1,[rdfs:subClassOf],C2),

term(C2,[rdfs:subClassOf],C3) --->

term(C1,[rdfs:subClassOf],C3).

term(C1,[rdfs:subClassOf],C2),

term(E,[rdf:type],C1) --->

term(E,[rdf:type],C2).

% -----------------------------------------------------------------------

% Subproperty

% -----------------------------------------------------------------------

term(P1,[rdfs:subPropertyOf],P2),

term(P2,[rdfs:subPropertyOf],P3) --->

term(P1,[rdfs:subPropertyOf],P3).

term(P1,[rdfs:subPropertyOf],P2),

term(E,P1,V) --->

term(E,P2,V).

% -----------------------------------------------------------------------

% Domain restriction

% -----------------------------------------------------------------------

term(E,P,V),

term(P,[rdfs:domain],D) --->

term(E,[rdf:type],D).

% -----------------------------------------------------------------------

% Range restriction

% -----------------------------------------------------------------------

term(E,P,V),

term(P,[rdfs:range],R) --->

term(V,[rdf:type],R).
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% -----------------------------------------------------------------------

% Object property

% -----------------------------------------------------------------------

true ---> term([owl:objectProperty],[rdfs:domain],[owl:class]).

true ---> term([owl:objectProperty],[rdfs:range],[owl:class]).

% -----------------------------------------------------------------------

% Transitive property

% -----------------------------------------------------------------------

term(E,P,W),

term(W,P,V),

term(P,[rdf:type],[owl:transitiveProperty]) --->

term(E,P,V).

% -----------------------------------------------------------------------

% Symmetric property

% -----------------------------------------------------------------------

term(E,P,V),

term(P,[rdf:type],[owl:symmetricProperty]) --->

term(V,P,E).

term(P,[rdf:type],[owl:symmetricProperty]),

term(P,[rdfs:range],R) --->

term(P,[rdfs:domain],R).

term(P,[rdf:type],[owl:symmetricProperty]),

term(P,[rdfs:domain],D) --->

term(P,[rdfs:range],D).

% -----------------------------------------------------------------------

% Inverse property

% -----------------------------------------------------------------------

term(E,P1,V),

term(P2,[owl:inverseOf],P1) --->

term(V,P2,E).

true --->

term([owl:inverseOf],[rdf:type],[owl:symmetricProperty]).

true --->

term([owl:inverseOf],[rdfs:domain],[owl:objectProperty]).

true --->

term([owl:inverseOf],[rdfs:range],[owl:objectProperty]).
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% -----------------------------------------------------------------------

% Class equivalence

% -----------------------------------------------------------------------

true --->

term([owl:equivalentClass],[rdf:type],[owl:symmetricProperty]).

true --->

term([owl:equivalentClass],[rdf:type],[owl:transitiveProperty]).

term(C1,[owl:equivalentClass],C2),

term(E,[rdf:type],C2) --->

term(E,[rdf:type],C1).

term(C1,[owl:equivalentClass],C2),

term(E,C1,V) --->

term(E,C1,V).

term(C1,[owl:equivalentClass],C2),

term(E,C1,V) --->

term(E,C2,V).

term(C1,[owl:equivalentClass],C2),

term(C2,P,V) --->

term(C1,P,V).

term(C1,[owl:equivalentClass],C2),

term(E,P,C1) --->

term(E,P,C2).

% -----------------------------------------------------------------------

% Property equivalence

% -----------------------------------------------------------------------

true --->

term([owl:equivalentProperty],[rdf:type],[owl:symmetricProperty]).

true --->

term([owl:equivalentProperty],[rdf:type],[owl:transitiveProperty]).

term(P1,[owl:equivalentProperty],P2),

term(E,P1,V) --->

term(E,P1,V).

term(P1,[owl:equivalentProperty],P2),

term(E,P1,V) --->

term(E,P2,V).
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term(P1,[owl:equivalentProperty],P2),

term(P2,P,V) --->

term(P1,P,V).

term(P1,[owl:equivalentProperty],P2),

term(E,P,P1) --->

term(E,P,P2).

% -----------------------------------------------------------------------

% Property restriction

% -----------------------------------------------------------------------

term(E,P,V),

term(R,[rdf:type],[owl:restriction]),

term(R,[owl:onProperty],P),

term(R,[owl:allValuesFrom],C) --->

term(E,[rdf:type],R).
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