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Deriving formal specifications from informal requirements is difficult since one

has to take into account the disparate conceptual worlds of the application

domain and of software development. To bridge the conceptual gap we propose

controlled natural language as a textual view on formal specifications in logic.

The specification language Attempto Controlled English (ACE) is a subset of

natural language that can be accurately and efficiently processed by a computer,

but is expressive enough to allow natural usage. The Attempto system translates

specifications in ACE into discourse representation structures and into Prolog.

The resulting knowledge base can be queried in ACE for verification, and it can

be executed for simulation, prototyping and validation of the specification.
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1 Bridging the Gap between Informal and Formal Methods

The derivation of formal specifications from informal requirements is difficult, and known to be

crucial for the subsequent software development process. Requirements emerge from

heterogeneous sources and express different and even varying viewpoints of the domain

specialists. Too often requirements are informal, vague, contradictory, incomplete, and

ambiguous. To derive formal specifications from deficient requirements of that kind is not an

easy task.

Nevertheless, we can help a lame dog over a stile. To bridge the conceptual gap between

application domains and formal specifications we introduce graphical and textual views as

application-oriented representations of formal specifications. Graphical and textual views allow

domain specialists and software engineers to express their concepts of the application domain

concisely and directly. By making "true statements about the intended domain of discourse"

[Kramer & Mylopoulos 92] and "expressing basic concepts directly, without encoding, taking

the objects of the language as abstract entities" [Börger & Rosenzweig 94] domain specialists

can immediately convince themselves of the adequacy of the specification.

An automatic mapping between a view and its associated formal specification in a logic

language assigns a formal semantics to the view. Though views give the impression of being

informal and having no intrinsic meaning, they are formal and have the semantics of their

associated formal specification. This dual-faced appearance of views reduces the conceptual gap

and allow users to compose and to examine specifications in concepts of the application

domain.

Since the formal specification is executable the execution can be observed on the level of the

view, and validation and prototyping in concepts close to the application domain become

possible.

 Formal
Specification

Textual View

Graphical View

Transformation Compilation

Though it is executable the formal specification is not necessarily an efficient program. To

derive an efficient program the specification is transformed by powerful source-to-source

transformations before it is compiled. A schema-based transformation system for logic

programs is described in [Vasconcelos & Fuchs 95].
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Graphical views that include transition networks for finite state automata and window oriented

user-interfaces are presented in [Fuchs & Fromherz 94].

In this paper we introduce controlled natural language – concretely Attempto Controlled English

(ACE) – as a textual view for writing functional requirements specifications. First of all, we

motivate the use of controlled natural language and present ACE (section 2); then, we give an

overview of the specification system Attempto (section 3); after describing the parsing process

(section 4), we discuss the translation from a specification in ACE to Prolog via Discourse

Representation Theory (section 5); given this translation, we investigate some issues concerning

the execution of the specification (section 6). Finally, we conclude and outline further research

(section 7).

2 Controlled Natural Language as a Textual View

2 . 1 Why Controlled Natural Language?

Natural language as a familiar means of communication has a long tradition in requirements

engineering. However, uncontrolled use of natural language leads to ambiguous, imprecise and

unclear specifications. Beyond that, requirements vary and new requirements arise so that the

specification is subject to frequent change. People have advocated the use of formal

specification languages to eliminate some of the problems associated with natural language.

However, because of the need of comprehensibility, we cannot replace documents written in

natural language by formal specifications in all cases. Many domain specialists would not

understand such a formal document and would hardly accept it as a contract for the software

system [Sommerville 92].

Though it seems that we are stuck between the over-flexibility of natural language and the

potential incomprehensibility of formal languages, there is a way out. To improve the quality of

specifications without losing their readability, we propose to restrict natural language to a

controlled subset with a well-defined syntax and semantics that can serve as a suitable view of a

logic language. On the one hand this subset should be expressive enough to allow natural usage

by domain specialists, and on the other hand the language should be accurately and efficiently

processable by a computer. This means that we have to find the right trade-off between

expressiveness and processability [Allen 91, Pulman 94].

Controlled or simplified English is not a new idea. It has been used for quite some time for

technical documentation [Wojcik et al. 90, Adriaens & Schreurs 92, AECMA 95], and lately

both for knowledge-based machine translation in the KANT system [Mitamura & Nyberg 95]

and as data base query language [Androutsopoulos 95]. Additionally, a general computer

processable controlled language has been suggested that could be used for various purposes

ranging from structured documentation over access to information to the control of devices
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[Pulman & Rayner 94]. However, very few researchers have tried to employ controlled natural

language for software specifications since this leads to further syntactic and semantic constraints

for the language, especially if one requires the specifications to be executable [Ishihara et al. 92,

Macias & Pulman 92, Pulman 94, Fuchs & Schwitter 95].

Domain specialists seem to be able to construct sentences in controlled natural language, and to

avoid constructs that fall outside the bounds of the language, particularly when the system gives

feedback of the analysed sentences in a paraphrased form using the same controlled language

[Capindale & Crawford 89].

2 . 2 Attempto Controlled English (ACE)

As a starting-point we suggest the following basic model of ACE [Fuchs & Schwitter 96]. In

ACE declarative sentences can be combined by constructors to powerful composite sentences,

while certain forms of anaphora and ellipsis leave the language concise and natural.

Furthermore, we place interrogative sentences at the user's disposal for verifying the translated

specification text.

Specification texts consist of

• declarative sentences subject + finite verb (+ complement or object)

• composite sentences built from simpler sentences with the help of constructors that mark

coordination (and, or, either-or), subordination (if-then, who/which/that), negation (not),

and negated coordination (neither-nor)

Sentences can contain

• subject and object modifying relative sentences

• anaphoric references, e.g. personal pronouns

• coordination between equal constituents, e.g. and, or

• ellipsis as reduction of coordination

• negated noun phrases, no X

• synonyms and abbreviations

Interrogative sentences comprise

• yes/no-questions

• wh-questions

In ACE finite verbs can only be used actively, in the simple present tense, and in their third

person singular and plural forms. In this way, users are supported to express statements that are
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always true and refer to events or states which are true in the present period of time, or possibly

true when used in conditional sentences.

2 . 3 Example Specification in ACE

The following example is a small excerpt of an ACE specification for a simple automated teller

machine called SimpleMat.

The specification text employs

• composite sentences built from declarative sentences with the help of the coordinator and,

the subordinators that and if-then, and the negation not

• compound nouns, e.g. personal code

• ellipsis

• anaphoric reference by definite noun phrase, e.g. the personal code

• abbreviation (SM standing for SimpleMat)

3 Overview of Attempto
3 . 1 Translation Components

In this section we briefly describe the components of the specification system Attempto that we

have implemented. Attempto accepts specifications in ACE and translates them into discourse

representation structures (a structured form of first-order predicate logic), and then into Prolog.

The user enters specification text in ACE that the Dialog Component forwards to the parser in

tokenised form. Parsing errors and ambiguities to be resolved by the user are reported back by

the dialog component. The Parser uses a predefined Definite Clause Grammar enhanced by

feature structures and a predefined linguistic lexicon to check sentences for syntactical

correctness, and to generate syntax trees and sets of nested discourse representation structures.

The Linguistic Lexicon contains an application-specific vocabulary. The lexicon can be

modified by a lexical editor invokable from the dialog component – if necessary during the

parsing process. The Discourse Handler analyses and resolves inter-text references and updates
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the discourse representation structures generated by the parser. The Translator translates

discourse representation structures into Prolog clauses. These Prolog clauses are either passed

to the knowledge assimilator, or – in case of queries – to the inference engine. The Knowledge

Assimilator adds new knowledge incrementally to the knowledge base. The user can submit

queries in ACE to the dialog component which are processed similarly to the specification text.

Text
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Component

Linguistic
Lexicon

Knowledge 
Base

Parser

Discourse 
Handler

Translator
to Prolog

Knowledge
Assimilator

Answer
Generator

Inference
Engine

The Inference Engine answers user queries with the help of the knowledge base. In a

preliminary version the inference engine is just the Prolog interpreter. The Answer Generator

takes the answers of the inference engine, reformulates them in ACE, and forwards them to the

dialog component.

3 . 2 Tools: Lexical Editor and Spelling Checker

Specification texts are gradually developed by domain specialists. Though Attempto's lexicon

contains entries of the function word class, e.g. determiners, prepositions, pronouns and

conjunctions, the entries for domain specific subsets of the content word class, e.g. nouns,

verbs, adjectives and adverbs have to be added incrementally as needed for the specification

text. A Lexical Editor – exhibiting interfaces for linguistic experts and non-experts – allows

users to interactively modify and extend the full-form lexicon while the system parses the

specification text.

The expert interface represents lexical entries as complete feature structures and allows experts

to freely modify any lexical entry. The interface for non-experts employs templates that help
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users to enter information – presupposing minimal linguistic knowledge. The rest of the

information is automatically derived. Help texts and balloon help support both groups of users.

The following screen shot shows how a non-expert would add the common noun customer

to the lexicon. The user has to enter the singular and the plural forms, to select the gender and to

decide between the classes of count nouns and mass nouns. Optionally, the user can connect

each word with a number of synonyms or abbreviations.

Attempto shifts the responsibility to check for lexical ambiguity onto the users; they decide how

to use a word in a specification text – and bear the consequences.

Another tool is the Spelling Checker that allows users to determine whether all words of a

specification text are in the lexicon. This spelling checker is invoked automatically if (part of) a

specification text cannot be parsed.

4 Parsing

The specification text is parsed by a top-down recursive-descent parser coming free with

Prolog. It uses a Definite Clause Grammar enhanced by feature structures written in GULP

(Graph Unification Logic Programming) – a syntactic extension of Prolog that supports the

implementation of unification-based phrase structure rules by adding a notation for linearised

feature structures [Covington 94]. GULP adds to Prolog two operators and a number of system

predicates. The first operator ':' binds a feature name to its value that can be another feature

structure. The second operator '..' joins one feature-value pair to the next. Thus, we can write

grammar rules like

sentence --> noun_phrase(case:nom .. agr:Person_Number),
verb_phrase(agr:Person_Number).
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where the argument stands for a complex feature structure in which the feature case has the

value nom for nominative and the feature agr enforces agreement of person and number

between the noun phrase and the verb phrase.

The parser generates a syntax tree as syntactic representation, and concurrently a discourse

representation structure as semantic representation.

In addition, the parser builds the following paraphrase for the example specification of section

2.3. Displaying all substitutions and interpretations made, the paraphrase reflects how Attempto

interpreted the user's input.

The user can now decide to accept Attempto's interpretation, or to rephrase the input to achieve

another interpretation. For ambiguous input Attempto always suggest one interpretation as

default. It is up to the user to reformulate the input to achieve another interpretation. If the user

intends to express that the money dispenser should check both the card and the personal code he

would have to formulate this intended meaning explicitly, for instance as

The customer enters a card and a numeric personal code.
 SimpleMat checks the card and the personal code.

In addition, the parser informs the user about spelling and parsing errors. If the spelling checker

finds an unknown word the user can immediately add the word to the lexicon with the help of

the lexical editor and resubmit the input to the parser.

5 Semantic Representation via Discourse Representation Theory

Correct understanding of a specification requires not only processing of individual sentences

and their constituents, but also taking into account the way sentences are interrelated to express

complex propositional structures. We do this by employing Discourse Representation Theory

(DRT) [Kamp & Reyle 93], and by extending our parser to extract the semantic structure of a

sentence in the context of the preceding sentences [Covington et al. 88].

DRT represents a multisentential natural language discourse in a single logical unit called a

discourse representation structure (DRS). The specification text is translated into a DRS which

contains discourse referents representing the objects of the discourse, and conditions for these
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discourse referents. A DRS gives some kind of schematic picture of the real world that is true if

the discourse referents can be taken as representations of real objects satisfying the conditions.

The picture shows that the first sentence of our example specification (section 2.3) contributes

the discourse referents [A, B, C, D] and a number of conditions – with white background –

to the DRS.

The second sentence is analysed in the context of the first sentence thus making the resolution

of anaphoric references possible. This sentence contributes further discourse referents E, F, G,

and the conditions with shaded background.

Conditions can be simple – e.g. customer(A) – or complex, i.e. again a DRS. This can lead

to nested DRSs. In our case, the topmost DRS for the second sentence contains an IF-THEN

sub-DRS which itself contains a NOT sub-DRS.

Note that discourse referents and conditions for proper names, e.g. named(D, simplemat)

appear always in the topmost DRS.

Anaphoric references, e.g. the definite noun phrase the personal code of the second

sentence referring to the phrase already introduced in the first sentence as the numeric

personal code, are represented as conjunctive conditions the(personal_code(E))
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and E=C. Synonyms are treated similarly, they are associated with their reference word in the

superordinated DRS, e.g. synonym(named(F,sm),named(F,simplemat)) and F=D.

References are only possible to discourse referents in superordinated DRSs. The resolution

algorithm always picks the closest referent that agrees in gender and number (the number

feature is not displayed in the DRS).

In a further step the DRS is cleaned up – gender information that was only necessary for

anaphoric resolution is eliminated, and all unifications are performed – yielding the final

semantic representation of the complete specification text as one (nested) DRS

Finally, the discourse representation structure is translated into Prolog clauses which are

asserted as fact/1 to the knowledge base.

Discourse referents – being existentially quantified variables – are replaced by Skolem constants

0, 1, ... or – if they are in the scope of a universal quantor – by Skolem functions.



11

IF-THEN DRSs with disjunctive consequences cannot directly be translated into Prolog since

they would lead to disjunctive clauses. Instead they are represented by sets of Prolog clauses,

one clause for each disjunct.

Interrogative sentences (yes/no-questions and wh-questions) can be used to query the contents

of the knowledge base. Questions are translated first into QUERY DRSs and then into Prolog

queries, and are answered by logical inference.

6 Towards Executable Specifications

6.1 Order of Events, Side-Effects, and Situation Specific Information

The knowledge base can be used for simulation or prototyping by executing it. In our example

specification, this means executing the specification of the automated teller machine. As it

stands, however, the specification does not provide all the necessary information and needs to

be enhanced in three ways.

First and most importantly, a chronological order of events has to be established, e.g. we have

to make sure that during the simulation the event of entering a card has to precede the event of

checking the personal code. [Ishihara et al. 92] who translate natural language specifications

into algebraic ones use contextual dependency and properties of data types to establish the

correct order of events. In our approach based on Discourse Representation Theory the order of

events is to a great extent established when we introduce eventualities (events and states) into

the processing of our controlled natural language. Following Kamp [Kamp & Reyle 93] we

interpret the text

The customer enters a card and a personal code
that SimpleMat checks.

as an entering event temporally followed by a checking event. Thus the sequence of the

sentences of the specification text leads automatically to an ordering of events. On the basis of

this information a simple meta-interpreter can execute the conditions of the DRS generated for

the specification text in their correct order.

Second, many relations representing events, e.g. I/O operations, are not only truth-functional,

but also cause side-effects. These side-effects can be defined by interface predicates in the form

of Prolog clauses, e.g. for the verb checks

check(X, Y) :- write(['event: ', X, 'checks', Y]).

that depend on the simulation environment. The above interface predicate just traces events, one

could, however, envisage that the interface predicates do not simply simulate the automated

teller machine but cause the execution of a real automated teller machine.
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Finally, the execution needs some situation specific information, or scaffolding. For example,

to execute the specification

Every customer has a card.

the condition customer(X) must be provable for an instance of X. We can either provide this

information as a statement in an ACE definition file, e.g.

John is a customer.

or more conveniently, get the information by querying the user.

6 . 2 Executing the Specification

If the user enters the specification text

its execution needs situation specific information and queries the user, e.g. to get an instance of

a specific customer.

The execution of the above specification text leads to the following dialog with the user. Side-

effects of events are simulated by simply printing out a trace, informing the user – step-by-step

– about the relevant events that have been triggered.
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7 Conclusion and Future Research
The present prototypical implementation of our specification system Attempto proves that ACE

can be used for the non-trivial specification of an automated teller machine. The specification

can be translated as coherent text into Prolog via Discourse Representation Theory, and it can be

executed.

More work needs to be done, however, to turn the prototype into a useful tool. Our current

version of ACE was derived experimentally to represent typical constructs in natural language

specifications in a structured and concise way. But, what we need, is a more systematic

definition of ACE based on a small number of easily remembered principles. Furthermore, we

plan to optimise the parsing strategy and to extend the internal syntactic and semantic

representation. Especially, we intend to introduce event semantics into the DRSs to express the

order of events in a more fine-grained manner, and expect an advantageous effect on the

execution of the specification text.

Though natural language – even in a controlled form – is a universal specification notation, we

believe that it is not always the optimal one. Thus we will bring together controlled natural

language and graphical notations, e.g. for window-oriented user interfaces, and specific

notations for algorithms.
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