
ESPRIT CompulogNet Area Meeting on Program Development, Utrecht, Netherlands, September 1995

Attempto

Specifications in Controlled Natural Language

Extended Abstract in 10 Pictures

Norbert E. Fuchs, Rolf Schwitter
Department of Computer Science, University of Zurich

{fuchs, schwitter}@ifi.unizh.ch

Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual
worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled
natural language as a declarative and application-specific specification language. Controlled natural language is a subset
of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow
natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog
clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by
feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse
representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented the
prototypical specification system Attempto that successfully processes the specification of a simple automated teller
machine.

Views
To bridge the conceptual gap between an application domain and the
formal specification of a problem of that domain we introduce graphical
and textual views as application-oriented specifications.

Formal
Specification

Textual View

Graphical View

An automatic mapping between a view and its associated formal
specification assigns a formal semantics to the view. Though views give
the impression of being informal and having no intrinsic meaning, they
are formal and have the semantics of their associated formal specification.

Controlled Natural Language
Controlled natural language – a subset of natural language with restricted
grammar and an application-specific vocabulary – can serve as a view for a
formal specification in a logic language.

A specification is a multi-sentential text consisting of
• simple declarative sentences of the form subject – predicate – object
• if-then sentences
• yes/no queries, wh-queries

The specification texts can contain
• anaphoric references
• relative clauses, both subject and object modifying
• comparative clauses like bigger than, smaller than and equal to
• elliptical compound phrases like and-lists, or-lists
• negation like does not, is not and has not

Example Specification: SimpleMat
The following is a small excerpt of the controlled natural language
specification of a simple automated teller machine called SimpleMat.

The customer enters a card and a personal code.

If the personal code is not valid then SimpleMat rejects the card.

The specification text uses
• declarative and if-then sentences
• ellipsis
• anaphoric reference
• negation
• compound nouns, e.g. personal code

Parsing
The specification text is parsed by a top-down parser using a Definite
Clause Grammar enhanced by feature structures.

The following graph shows one of the s-nodes of the syntax tree.

 s
 |--------------------|--------------------|
 s1 s1
|--------|--------| |------|------|
cj s adv s
| |-----------|-----------| | |-------|-------|
| np vp | np vp
| |-|--| |-----|-|----| | | |----|-----|
| det n1 copula neg ap | pn tv np
| | | | | | | | | |-|--|
| | nn | | a | | | det n1
| | | | | | | | | | |
| | | | | | | | | | cn
| | | | | | | | | | |
if the personal_code is not valid then simplemat rejects the
card.

Semantic Representation
The specification text is translated into a discourse representation structure
which contains discourse referents representing the objects of the
discourse, and conditions for these discourse referents.

 [A, B, C, D]
 customer(A)
 card(B)
 enter(A, B)
 personal_code(C)
 enter(A, C)
 named(D, simplemat)
 IF:
 []
 personal_code(C)
 NOT:
 []
 valid(C)
 THEN:
 []
 card(B)
 reject(D, B)

Translation into Prolog
Finally, the discourse representation structure is translated into Prolog
clauses which are asserted to a knowledge base.

 customer(1).

 card(2).

 enter(1, 2).

 personal_code(3).

 enter(1, 3).

 named(4, simplemat).

 reject(4, 2) :-
 personal_code(3),
 neg(valid(3)).

Discourse referents – which are existentially quantified variables - are
replaced by Skolem constants and functions.

Implications with disjunctive consequences are replaced by sets of Prolog
clauses, one for each disjunct.

Information for the User
A paraphrased text – displaying all substitutions and interpretations –
explains how the system interpreted the user's input.

the customer enters a card and the customer [same object] enters
[same predicator] a personal_code. if the personal_code [same
object] is not valid then simplemat rejects the card [same
object].

The system informs the user about the processing time, and about spelling
and parsing errors, e.g. if this and checked are unknown

The customer enters a card. This card is checked for validity.

After parsing the first sentence successfully the system replies

Unparsable Sentence: this card is checked for validity.

Unknown words: this checked

Further Features of the Attempto System
Questions (yes/no and wh-queries) can be used to interrogate the
knowledge base. Questions are translated into Prolog queries, and
answered by logical inference.

Formal specifications can – at least partially – be retranslated into their
equivalent controlled natural language text.

Formal specifications in the form of discourse representation structures, or
equivalent Prolog clauses, can be executed, and thus serve as a prototype of
the specified system.

A lexical editor – exhibiting interfaces for non-experts and for experts –
allows users to modify and to extend the lexicon while the systems parses
the specification text.

A spelling checker allows users to determine whether all words of a
specification text are known to the system.

References
M. A. Covington, D. Nute, N. Schmitz, D. Goodman, From English to Prolog via
Discourse Representation Theory, Research Report 01-0024, Artificial Intelligence
Programs, University of Georgia, 1988
N. E. Fuchs, R. Schwitter, Specifying Logic Programs in Controlled Natural Language,
CLNLP 95, Workshop on Computational Logic for Natural Language Processing,
Edinburgh, April 3-5, 1995
Y. Ishihara, H. Seki, T. Kasami, A Translation Method from Natural Language
Specifications into Formal Specifications Using Contextual Dependencies, in: Proceedings
of IEEE International Symposium on Requirements Engineering, 4-6 Jan. 1993, San Diego,
IEEE Computer Society Press, pp. 232 - 239, 1992
H. Kamp, U. Reyle, From Discourse to Logic, Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and Discourse Representation Theory, Kluwer Academic
Publishers, Dordrecht, 1993
B. Macias, S. Pulman, Natural Language Processing for Requirements Specifications, in: F.
Redmill, T. Anderson (eds.), Safety-Critical Systems, Current Issues, Techniques and
Standards, Chapman & Hall, pp. 67-89, 1993

