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Abstract. Employing the theory of belief change, we study the imple-
mentation of a simple causal model that can capture how the blood sugar
level changes in a diabetes patient. For this purpose we use distance mea-
sures between worlds as the underlying mathematical foundation. Using
a simple example in the medical domain we investigate how an agent
with initially incomplete and/or incorrect knowledge can iteratively de-
velop a simple causal model by interacting with an oracle that represents
the complete and correct model of a diabetic patient.
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1 Introduction

The omnipresence of medical devices and the interconnectivity of the information
age has overwhelmed the biomedical field with vast amounts of data. Researchers
in the field of medical artificial intelligence are already harnessing the powers
of traditional statistical and more novel data mining and (statistical) machine
learning techniques to deal with this abundance of data. Nonetheless, the appro-
priateness of these approaches is still being debated. For instance, as Patel et al
[9] argue:

[such techniques only tend to uncover] relatively simple relationships in
data and have not yet demonstrated the ability to discover the complex
causal chains of relationships that underlie our human understanding
from molecular biology to the complex multi-organism and environmen-
tal factor in the epidemiology of diseases such as malaria. Human exper-
tise developed over centuries of experience and experimentation cannot
be discarded in the hope that it will all be re-discovered (more accu-
rately) by analyzing data’.

The primary objective of this paper is to develop computable causal models of
domains of interest.



The earliest approaches to AI in medicine were used for the diagnosis of
patients either by using flow charts or by using Bayesian models [12]. Flow
charts had no place for any of the conceptual structures associated with medical
reasoning. Bayesian models, though very successful, are highly sensitive to the
data from which the prior probabilities in question are derived. Even expert
systems like MYCIN are not quite satisfactory since, as [12] pointed out,

The programs knowledge was mostly based on associations between dis-
eases and their observable consequences, and lacked any explicit patho-
physiologic model in terms of which those consequences could be grouped
and explained. An adequate medical explanation, however, often de-
mands that the associations which may have suggested the right di-
agnosis then be backed up by a consistent account of how the patients
condition could have arisen from the suspected etiologies.

Thus we may conclude that causal modelling of physiology is an essential
component of representing health information. A simple model with a few rele-
vant parameters and states of clinical interest can provide more valuable infor-
mation than a complex model with hundreds of parameters. Such models may
be used both for diagnostic and therapeutic reasoning[12]. If the model is used
for diagnosis, the observable parameters can be used as input to the model and
the model predicts outcomes depending on the input.

In this paper, we attempt to understand how a simple causal model of the
physiology, in particular the glucose metabolism, of a diabetes patient can be
built incrementally by an agent using belief revision and update which have a
well recognised theoretical foundation [1–3]. Although belief revision and up-
date can be accomplished in several ways, our main approach is to use distance
measure between sets of possible worlds to arrive at a stable causal model. We
are interested in the use of distance measures to build causal models and the
analysis of their effects on the revision and update process.

To gauge the effectiveness of the distance measures on the evolving model, we
consider a simple scenario, namely that of a diabetic patient who may either be
alert or non-responsive depending on her blood sugar-level. The agent starts with
a preconceived model of the system and uses probing actions to elicit an output
from the system. Available to us are two actions namely administer insulin
and administer glucose that change the blood sugar level of her system. This
discrepancy between the prediction and observation, if any, is used to successively
revise the agent’s model. It is hoped that the discrepancy between the predicted
and observed outcome will eventually become stable. By evaluating the difference
in the observation and expected output, the agent incrementally modifies its
causal model so that after a number of iterations the model becomes stable.

2 Belief Change

2.1 Revision and Update

Revision In the AGM model [1, 3], epistemic states of an agent are represented
by a belief set, which is a set of sentences or beliefs from a given language that is



closed under classical logical consequence operation. In light of new information,
a belief set may need to be modified. These modifications are generally classified
as being expansion (the addition of new sentences to the belief set), a contraction
(the removal of beliefs from the belief set) or a revision (incorporation of some
information inconsistent with a belief set while maintaining consistency) .

In the case of contraction, a sentence must be removed along with other
sentences that may logically entail it in the belief set. Sentences may collectively
entail it and a decision must be made as to which other sentences should be
removed. Similarly, with revision, if the new sentence to be added is inconsistent
with the belief set, some sentences may first need to be removed in order to
maintain consistency after adding the new sentence and this again presents us
with a dilemma alike to that of contraction. Given this connection, it has been
shown that contraction may be defined in terms of revision using the Harper
Identity and revision may be defined in terms of contraction using the Levi
Identity [3].

A guiding principle when devising a revision/contraction operation is to con-
form to the criterion of information economy, i.e., to retain as much of the old
beliefs as possible. It is also vital that changes to the belief state be rational and
this is guided by a set of rationality postulates for the given operation. Given
a belief set K and a proposition α, a contraction function prescribes a method
for choosing which sentences to delete from K so that α is not a logical con-
sequence of the contracted belief set K. The largest subset of K that does not
entail α and satisfies the two criteria above is called a maximal subset of K. In
general, such maximal subsets do not purge sufficient information and exhibit
undesirable behaviour [1, 3]. A way out of this problem is to use a method is
called the partial meet contraction. This requires an ordering of the maximal
subsets so that the selection function may select the best subsets. Though this
and other methods describe general ways of constructing contraction functions,
determining the content of the maximal subsets can be computationally costly.

An alternative method to forming contraction and revision functions is based
on the notion of epistemic entrenchment [3, 4]. Some sentences may be believed
to be more important than others in particular settings and hence are said to be
more epistemically entrenched. When trying to decide between two sentences one
of which should be given up during contraction, the less epistemically entrenched
of the two is chosen to be discarded.

In our case, we are interested in viewing revision semantically as in Grove’s
account of system of spheres [5] where the beliefs are sentences in propositional
logic and there are a set of possible worlds [K] in which all the sentences in
the the belief set K are true. If [A] represents the possible worlds of a sentence
A, then A is accepted in K only if [K] ⊆ [A]. If A is consistent with K, then
[A]

⋂
[K] 6= {} and if A is rejected in K (i.e. ¬A is accepted in K), [A] and [K]

are disjoint. In Grove’s system of spheres [K] constitutes the central innermost
sphere and is surrounded by larger and larger concentric spheres Si that are
totally ordered and are analogous to the epistemic entrenchment of sentences.
[K], [A], each sphere Si are all subsets of M which is the set of all possible worlds.



The revision of K by a sentence A is represented by the intersection of [A] with
the smallest sphere SA (including [K]) that intersects [A]. This set, [A]

⋂
SA

represents the set of closest elements in M in which A is true. Since there is
a direct correspondence between a set of possible worlds and a belief set, the
system of spheres may be used as a method for implementing revision functions.

Update In [7] it is argued that a new piece of information may be learned by
an agent either when the world is static or when it is dynamic, and that the
revision operation will not suffice when modifying the belief set in the latter
case. The required operation in the second scenario is called an update and can
be understood as follows: As seen in the system of spheres, if a belief set K is
to modified by a sentence A, revision methods select from the models, i.e., set
of possible worlds, for A that are closest to the set of models of K. In other
words, given an ordering of the relationship between each and every model of A
and K, an element of [A] that is closest to [K] is selected. On the other hand,
while performing an update, for each element in [K], it is assumed that there is
a system of spheres centred on each world in [K], and the closest element in [A]
is selected and the union of all such models represents the updated belief set.

2.2 Motivation for distance measure

The ordering relationship between models over a language (or sentences in a
belief set) may be defined by a distance. The way this distance is defined will
affect the outcome of the resulting belief set after revision (or update). Revi-
sion and update are typically not one-step processes. There is a succession of
these operations and therefore it is vital that the same operation must be ap-
plied during each iteration. In the system of spheres, each revised belief set is
represented by a new system of spheres which is in general different from the
preceding one. Similarly for epistemic entrenchment, for every revised belief set
new epistemic entrenchment relations must be defined. In both cases, the num-
ber of spheres or epistemic entrenchment relations are exponential to the number
of models. Distance measure uses only a polynomial number of distances in the
number of models considered and furthermore it is coherent because the same
revision/update functions are used during each operation [8, 11].

3 Causal Models

3.1 Causality

Causality in essence may be understood as the study of the relationship be-
tween two events, the first of which is the cause and the second, its consequence
or effect. A preliminary analysis of causality shows that the two events have a
temporal relationship where the cause is preceded by the effect. However, the
effect may not be an immediate consequent of the cause but rather there may
be subsequent unrelated events in between which makes it difficult to identify



the real cause. Effects can also be associated with more than one cause and
different combinations of these causes can in turn be seen as necessary or suffi-
cient. Identifying and categorising causes presents another challenge. The study
of causality is complex. Nevertheless given the importance of causal inference in
learning about the world and in decision making, simple causal models can be
used to improve one’s understanding of the world.

Causal models may be idealised in the following way: initially a model of the
system under consideration is posited and a hypothesis is formulated from which
inferences are made about the expected outcomes that may result when the
environment changes. The outcomes are compared with actual observations that
are made and the model and the hypothesis are rectified so that the discrepancies
between the expected and observed outcome is reduced. Rectifications can also
occur in static domains when there is a transfer of knowledge from sources that
can communicate with the learner. This is analogous to belief update and belief
revision, and it is easy to see that both of these operations are necessary for
developing causal models.

Belief sets along with the operations of revision and update provide a solid
base that can be used to build causal models. Bayesian approaches to developing
causal models are very common; they are probabilistic and face problems when
encountering inconsistent observations. On the other hand belief revision and
belief update with their ability to handle inconsistent information allow the
development of a non-probabilistic account of causality. As distance measures
serve as a fundamental tool for performing both revision and update, their choice
and their influence on the correctness of rectifying causal models is of much
interest.

3.2 Motivating Example

We consider a simple medical scenario of a diabetic patient whose blood sugar
level can be low, normal or high, and she may be either alert or not alert.
Accordingly, there are six possible states (worlds or models) denoted S1...S6 as
listed in the table below.

Table 1. States of the system

Blood Sugar Level
Patient Status ↓ low normal high

Alert S1 S2 S3

Not Alert S4 S5 S6

There is also an agent whose task is to develop a causal model which repre-
sents its knowledge of the system. By system, in this case, we mean the blood
sugar level of the patient and how it is affected by various actions which we
describe later. However, we assume the agent doesn’t have access to any glucose



measuring device and hence cannot observe the patient’s blood sugar level. It
can however observe whether the patient is alert or not alert. There are two ac-
tions that the agent can use to experiment with the system - administer insulin
which has the direct effect of lowering the patient’s blood sugar level (from high
to normal, normal to low, and low to low), and we can also administer glucose
which increases the blood sugar level (from low to normal, normal to high, and
high to high). The causal model of the patient is called the black box since it is
assumed the agent does not have direct access to the relevant causal mechanism
that drives the patient’s behaviour. The current knowledge of the agent is rep-
resented by its causal model that we call the white box since the agent has full
access to this mechanism.

It is also assumed that the black box is a deterministic system and there is a
measurable distance between the different states of the black box. For the sake of
example, let Figure 1 represent the causal mechanism at work in terms of the real
distance between the states of the black box. The distance between any two states
is the sum of the segment lengths on the shortest path between those two states.
For example, the distance between states S5 and S3 is 8 + 4 + 2 = 14. State S5
which is highlighted represents the current state of the system where the patient’s
blood sugar level is normal but she is not alert. Now if the agent administers
glucose to the patient, the immediate effect of this action is to increase the
patient’s sugar level from normal to high. There are two states, S3 and S6 in
which the sugar level is high and of the two, the former is closer to the current
state than the latter and hence the patient will be in state S3.

Administer Glucose

2 4 81 16

s1 s6s5s4s3s2

Fig. 1. The Black Box (Oracle) representing the system under observation

The agent meanwhile does not have access to the causal mechanism of the
black box. Its causal knowledge evolves based on the observable outcomes of
different actions performed on the black box. Figure 2 represents the evolving
causal model of the agent. Whereas the system is really in state S5 as shown
in Figure 1, the agent believes the real state is either state S4 or S6, consistent
with its observation that the patient is not alert. Nevertheless, the agent makes
a prediction based on its current causal model. The agent has administered
glucose into the patient and therefore the agent makes a prediction by reasoning
as follows:

1. The system is either in state S4 or S6.
a) Consider the first case, S4 (low sugar level, not alert). If the patient is

administered glucose, then it would move to one of the state S2 and S5



where the sugar level is normal. Since S5 is colser that S2 to S4, the
new state will be S5.

b) In the second case, S6, the new state be one in the set {S3, S6} that is
closer to S6, namely itself.

c) The new state will be therefore be either S5 or S6.
2. In neither S5 or S6 is the patient alert so the agent predicts administering

glucose will not result in any observable difference in the condition of the
patient.
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Fig. 2. The White Box representing the agent’s knowledge

Steps 1 and 2 above comprise an update operation. Since the agent believes
the patient is not alert which contradicts with the observation of the patient as
actually being alert, it must perform a revision operation by taking into consid-
eration that the patient may be in one of the three states in the set {S1, S2, S3}.
The revision process goes as follows:

1. The agent believes the patient is in S5 or S6 and the observation requires
that the system is either in one of the states in the set {S1, S2, S3}.
a) From S5, it is closest to S2 with a distance of 1.
b) From S6 it is closest to S3 also with a distance of 1.
c) Since there is no unique state with a minimum distance, both S2 and

S3 are what the agent now believes to be potential current states of the
real system.

By thus iteratively performing an action on the patient, followed by an update
and a revision operation, the agent tries to rectify its causal knowledge of the
system.



4 Implementation

Since we are primarily interested in the use of distance measures by an agent
to model this causal system, for illustrative purpose, we use the Dalal distance
which is the Hamming distance between worlds [2]. We restrict ourselves to the
use of propositional logic with a finitary language. The distance between states
in Figure 2 above is indeed calculated using the Dalal distance. For instance,
the Dalal distance between states S5(normal, not alert) and S3(high, alert) is 2
because these states differ in two propositional variables. A snapshot of a part
our implementation in Java of the diabetes example is shown below in Figure 3.

Fig. 3. Snapshot of a part of the interface for the diabetes patient causal model ap-
plication. The topmost figure shows the initial states of the black box (S5) and white
box (S4, S6). The middle figure shows the transition states after administering glu-
cose: (S3) and (S5, S6). The bottom most diagram shows the transition states after
the agent performs a revision operation.

4.1 Results and Discussion

Since the number of states and the number of actions is small, the white box
stabilises after an average of 5-6 iterations of the learning process when the
actions are chosen randomly. In most instances, both the black box and white
box arrive in either of states {S1, S2, S3} where upon both models stabilise and
under any action the transition states are identical.



Stability need not necessarily mean that the agent now has both a complete
and correct knowledge of the system. Instead, the black box could be as in the
case above, stuck in a cycle. If we take the black box to be a directed graph
with actions as the arcs, this means that there is no path from any state in
{S1, S2, S3} to any state outside this set and by virtue of the distance measure
the white box predicts the same outcome in these states.

The agent’s choice of action may also give the impression that its model
has stabilised. For example, if the black box is in S4 and the white box is in
{S4, S5}, when the agent administers glucose the black box moves to S5 where
the patient is not alert. The agent also updates its knowledge and believes that it
is in either {S5, S6}. Since the patient is also not alert in both {S5, S6}, revision
will not result in any noticeable change. Administering insulin will result in both
the black and white box moving to their former states and again revision has
no effect. In such circumstances, alternating the actions results in repeatedly
identical results giving the false notion of stability. It is also worth noting that
whenever the agent and system are both in state S5, upon administering glucose
the agent will always believe it is in S6 where as the system will actually be in
state S3 leading to a discrepancy between the prediction and observation.

5 Conclusion and Future Work

In this paper we presented a simple non-probabilistic causal inference model of
the glucose metabolism in a diabetes patient based on belief revision and update.
An action performed by an agent trying to model the causal system is followed by
updates of its knowledge. Comparison of the predicted behaviour of the system
and observed outcome leads to further rectification in its model of the system.
The distance measure which is the underlying mechanism for improving the
model itself may need to be corrected so that predicted and observed outcomes
are identical.

Our experiment is a preliminary investigation into the use of a rudimentary
distance measure for building causal models and the scenario we considered is
simple. Nevertheless, it can be seen that distance measures can help the agent to
reduce the discrepancy between its predicted and the system’s actual outcome.
Presently we are investigating other kinds of distance measures in order to be
able to compare different approaches, with the aim of choosing the best among
them. In our experiment, we only considered one observable variable namely
whether the patient is alert or not alert. Presumably this limited ability to
observe the system behaviour tends to get very quickly into a cycle in the process
of modifying the causal model. We intend to study the effect of enhancing the
agent’s ability to observe. Similarly, we would also have to consider systems
with more that just two actions that we have used. This would mean that it is
important for the agent to adopt policies that can help choose actions judiciously
so it can arrive at a stable causal model in a shorter time.

In our approach, the final belief state that results after revision may not be
a necessary consequence under the given action because of incorrect distance



measures. In an interesting but different approach [6] Hunter and Delgrande
propose the use of action history trajectories to revise prior beliefs that are
identified as the cause of the erroneous revised belief states given that the actions
are infallible. It will be interesting to incorporate and exploit the advantages
offered by this method in our context. It will also be interesting to explore
these issues, keeping Sattar and Goebel’s account of theory choice [10] in mind,
while representing belief sets as Horn clause theories under appropriate integrity
constraints. We also believe that the software developed in the process can be
used as a pedagogical tool to help students and health care workers develop and
rectify mental models of a given domain of interest.
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