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i. Introduction 

When a student is learning an algorithm from 

a textbook, his first approach is frequently 

through an English description. This is normally 

easier to understand than raw code, and sometimes 

easier than a flow chart, in spite of the fact that 

programming languages are designed for algorithm 

specification while English is only pressed into 

its service. If the English is eas%er to under- 

stand, it is likely that it has many features that 

would ease programming itself. This paper inves- 

tigates some of these features. 

I am not suggesting that we program in pure 

English, even if it were possible--It is too ver- 

bose. Those who believe it would make for succinct 

programs are comparing very high level English 

specifications with relatively lower level pro- 

gramming languages whereas English descriptions 

can run the whole range of levels--down to 

Load register 5 with contents 
of memory location 190. 

At every level, there is symbolic specification 

more economlcalthan any English specification. 

Most efforts in the past to make program- 

mlnglanguages"llke" English have involved 

spreading a thin veneer of English vocabulary and 

perhaps some English syntax over a very ordinary 

programming language. This paper is an attempt 

to push toward a deeper understanding of some of 

the properties of natural language which make it 

easy for people to use, with special emphasis on 

algorithm descriptions, and a consideration of how 

these might best be carried over to very high 

level programming languages. In what follows, 

four aspects that characterize coherent English 

texts are considered in turn: 

i. redundancy, ellipsis, and contextual in- 

terpretation of words; 
t 

2. the prevalence of spatial metaphors; 

3. various anaphorlc devices; and 

4. implicit and explicit intersentence rela- 

tions. 

For each we give illustrations from the world of 

algorithms and describe how a natural language 

processing system can handle them. We then con- 

sider which features would be desirable to have 

in programming languages and whether they could 

be incorporated to gain the flexibility and com- 

fort of natural language without opening the door 

to its variability, imprecision, and ambiguity. 

The time is perhaps ripe to ask these ques- 

tions. For much progress has been made in the 

past few years in the field of natural language 

processing, and we understand more now about some 

of the mechanisms that enable one to extract 

meaning from an English text. The observations 

presented here grow out of work that has been 

done on the semantic analysis of well-written, 

carefully honed algorithm descriptions, such as 

one finds in Knuth's Art of Computer Programming 

(1973). In addition, we have analyzed sets of 

directions of how to get from one place to another 

(Hobbs 1975) as well as complex expository texts 

(Hobbs 1976). The work has been aimed toward 

characterizing coherence in English texts in gen- 

eral, so that the properties of language under 

study are not peculiar to one use, but are an im- 

portant part of what makes natural %anguage 

natural. 

2. Related Work 

Our work on algorithm descriptions is very 
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similar to Balzer's work on message distribution 

instructions (1975) in that both seek to squeeze 

a precise meaning out of an inherently imprecise 

English text. Some of the conclusions reached in 

both lines of research are also similar. However, 

where in Balzer's work there is emphasis on satis- 

fying the requirements of the program ultimately 

to beproduced, we have concentrated on methods of 

discourse analysis which are independent of domain 

of discourse. For example, where he uses a 

heuristic which says that a variable whose 

value is changed must subsequently be used, we see 

this heuristic as a specialization of a more gen- 

eral pattern common to all English discourse (el. 

Section 7). 

Our work is also related to that of Miller 

(1976) and that of Scragg (1974) on English de- 

scriptions of processes. In one sense, it is com- 

plementary to Miller's work. Where he has exam- 

ined texts in which intersentence relations are 

generally simple temporal succession and the con- 

trol information is embedded within complex noun 

phrases, we have chosen instead to examine the 

broad range of intersentence relations possible 

in process specifications in a domain of discourse 

whose noun phrases are rather spare. 

Another effort to incorporate desirable 

natural language features into programming lan- 

guages is represented by the work of Nylln & 

Harvill (1976). They have proposed a set of oper- 

ators which act something like English tenses and 

time words and allow the programmer to access 

states of the machine other than the current one. 

While there is a rich assortment of time con- 

structions in the algorithm descriptions we have 

been examining, we have not yet studied them 

deeply enough for a useful discussion. Moreover, 

I would llke to concentrate in this paper less on 

the concepts expressed in natural language and 

more on the way natural language-works. 

More distantly related is work on automatic 

programming, exemplified by Green & Barstow (1975), 

involving user dialogs and English-like, problem- 

oriented de~crlptlons of programs. Our problem 

has been easler~ since the texts we are studying 

are highly specified and, from a human standpoint, 

require no exceptional problem-solving capabili- 

ties. 

3. The Inferencing System 

In all I have to say about processing English 

texts, I am assuming that the text has been syn- 

tactically preprocessed into some fairly simple 

representation. In our system, this is a collec- 

tion of logical propositions encoding the infor- 

mation contained in the text. Moreover, I assume 

there is available a large collection of world 

knowledge facts or axioms expressed in some sym- 

bolic representation which the processor can op- 

erate on. For us, they are represented in the 

form of predicate calculus axioms. There are 

then mechanisms in the system for building chains 

of inference out of these axioms. The mechanisms 

do two sorts of inferenclng: 

i. forward inferenclng: the mechanism 

is given a proposition in the text 

as a starting point and a pattern 

representing the inference sought, 

and it tries to find a chain of in- 

ference linking them; 

2. backward inferenclng: the mechanism 

seeks a chain of inference culmlnoting 

in a given proposition, which begins 

at some proposition in the previous 

text. 

In addition, there are means of deciding between 

chains of inference when more than one satisfies 

particular requirements. 

The two inferencing mechanisms are used by a 

set of "semantic operations" which draw inferences 

selectively to interpret and structure the text. 

Among the operations are one for interpreting gen- 

eral words in context and recovering omitted mate- 

rial (called "predicate interpretation"), one for 

resolving anaphoric expressions, and one for de- 

tecting the relations between sentences and hence 

the overall structure of the text. 

4. Redundancy, Ellipsis, and Predicate 

Interpretation 

An important characteristic of natural lan- 

guage texts is their very great redundancy. In- 

deed, we might say it is this that allows us to 

understand texts at all. Considcr the perfectly 

normal sentence 

Let link variable T point to the 
(i) 

root node of a binary tree. 
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We call T a variable, yet it is implicit in the 

fact that T is a capital letter in an algorithm 

description that T is a variable. Moreover, the 

subject of "point" is necessarily a variable. A 

link variable is a variable that points. Wecall 

the root a node but the root is necessarily a node, 

as are the object of "point to" and an element of 

a binary tree. "Tree" is more or less implicit in 

"root", "node", and "binary". 

It is this redundancy that allows ellipsis to 

occur. Material can he omitted because the infor- 

mation is implicit in what remains. For example, 

(i) can be paraphrased 

Let T point to a binary tree. (2) 

The full sentence can be recovered because of the 

interaction between the requirements of "point" 

and the nature of binary trees. In English texts 

in general, the part is frequently recoverable 

from the whole because of the whole's environment. 

Quantity words can often he omitted too. For ex- 

ample, if we are linking through two linked lists 

ordered by the value fields of their nodes, and 

we encounter 

Print out the greater of node P (3) 
and no~ Q 

we know it is the value fields of the nodes that 

is referred to, because of the requirements of 

"greater". 

In our natural language processing system, 

the recovery of omitted material is accomplished 

by means of an operation called predicate inter- 

pretation. This seeks to discover the meaning a 

word or predicate acquires by virtue of its pre- 

sence in a particular context. When the word is 

encountered in a text, the world knowledge asso- 

ciated with the syntactically related words in 

the sentence is probed in order to satisfy de- 

mands imposed by the word. 

Among other things, this acts as a kind of 

type-forclng. Stored with various operators 

are the types the operands must be, and predicate 

interpretation forces arguments of a predicate in- 

to the correct form. In (2), the predicate "point" 

requires its second argument to be a node. The 

knowledge about binary trees is searched for a 

dominant node, the root node is found and the sen- 

tence becomes 

Let T point to the root of a binary tree. 

In algorithm descriptions it is reasonably 

safe to assume that the predicate "greater" re- 

qUires its arguments to be numbers. Thus, to in- 

terpret (3) we search our knowledge about nodes to 

find the most prominent associated number. We 

find that a node typically has a value field whose 

value is frequently a number, so (3) is fleshed 

out to 

Print out the greater value of the value 

fields of node P and node Q. 

Note moreover that the phrase "node P" must be ex- 

panded into "the node which P points to". 

To a limited extent, this feature already ex- 

ists in progran~ing languages, e.g., the automatic 

type conversions of FORTRAN and the fact that "+" 

can be either integer or real addition, depending 

on contex~The difficulty with bringing this facil- 

ity over wholesale into programming languages is 

that the operation sometimes requires deep searches 

through a large data base of inferences, and the 

results are chancy. For example, if (3) were 

modified to 

Print out the greater of P and Q 

it could be interpreted as referring to the values 

of P and Q or the value fields of the nodes P and 

Q point to. Which is chosen depends on the search 

order, which is somewhat accidental. 

Nevertheless, it ought to be possible for a 

programmer to specify in an expanded declaration 

portion of a program the structure and purpose of 

and relationships between data objects, and to 

specify with a procedure the nature of its param- 

eters. No increase in total programming effort 

would be involved, for this information already 

goes into the comments. Then when a procedure is 

called with the wrong type of object, that object 

is used as the starting point in a search for the 

right argument. 

Schwartz (1975) has put forwarH very similar 

ideas in connection with a proposed very high 

level language to be built on top of the set- 

theoretic language SETL. It includes a rich col- 

lection of possible type sepcifications and a 

type-coerclon operation which uses these to expand 
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elliptical dictions. Among the recommended decla- 

ration forms are the operators has which allows 

the user to specify the structure and attributes 

of a data object, is which permits complex type 

descriptions to be specified, and either which 

allows several types to be subsumed under one 

supertype. 

It should be noted that such facilities will 

not necessarily make programs shorter. Rather, 

it will shift the progranuning effort, especially 

the required attention to detail, from the dynamic 

instructional portion to the static declaration 

portion, where people are more comfortable with 

detail. 

Section 8 contains an example illustrating 

many of these points. 

5. The Spatial Metaphor 

It is very frequent in algorithm descriptions, 

as in every kind of English text, to use spatial 

metaphors to describe more abstract concepts. For 

example, we speak of the processor going from one 

step to another in an algorithm, of a variable 

going from i to N, and of a pointer movin s along 

a linked llst. 

In our system for analyzing English, the 

spatial metaphor is accommodated by the way in 

which the world knowledge is organized at its 

deepest levels. Some primitive concepts are a 

Scale or a "becoming", which is roughly a partial 

ordering; a point being o_n_n a Scale, or being a 

member of the partially ordered set; one point ex- 

ceeding another on a Scale; and an entitity 

being a_~t a point on a Scale, or an entity being 

a_~t another entity. "At" is in fact a Very gen- 

eral predicate capable of a wide variety of 

specific interpretations, depending on context. 

In a given text, the predicate interpretation 

operation seeks an interpretation or binding for 

"at" by probing the nature of its arguments. 

The three uses given above of spatial meta- 

phor can be interpreted via the following models: 

I. An algorithm is a Scale. The points on 

the Scale are instructions. For the processor to be 

at an instruction on the Scale is for it to exe- 

cute the instruction. 

2. There is a Number Scale, which is a Scale. 

The points on it are numbers. For a variable to 

be a_~t a number is for its value to equal the number. 

3. A linked list is a Scale. A node in the 

llst is a point on the Scale. For a pointer to be 

a_~t a node is for the variable to point to the node. 

Verbs of motion are then decomposable into 

expressions involving the primitive "at". For ex- 

ample, we have the axiom 

(VYl,Y2, Y 3 ) (go (Yl,Y2,Y 3) 

become(at(Yl,Y2),at(Yl,Y3))) 

That is, we can decompose "Yl goes from Y2 to Y3" 

into "Yl'S being at Y2 becomes Yl'S being at Y3"" 
Then consider the sentence 

Go to step T4. 

We know that the subject is the processor. The 

goal is an instruction. Therefore the underlying 

"at" is interpreted as "execute". In 

N goes down to 0 

N is a variable, O is a number, and therefore the 

underlying "N at 0" is interpreted to mean the 

value of N equals 0. "Move" has the same decom- 

position as "go". Consider 

PI moves along the list one node behind P. 

PI is a variable and it is located at successive 

positions on the list. In interpreting a list as 

a Scale, we discover that these positions are 

nodes, and that Pl is thus being used as a pointer. 

Since we tend to have very strong visual 

images of the entities our programs deal with and 

the actions performed on them, it is possible that 

a healthy collection of motion verbs--such as 

"move", "go", and the visual analog of "go", the 

arrow--would make a progranuuing language more con- 

venient to use. Decompositions in terms of "scale" 

and "at" could be either known by the system or 

the user could specify how "scale" and "at" were 

to be interpreted. All of this would require some 

education of the users, but it would pay off in 

more natural programming. 

Consider another example of a spatial meta- 

phor: It is not one of the mathematical properties 

of a stack that it has a vertical orientation, but 

it is the way we visualize a stack, and thus the 

way we talk about it. For example, in the algo- 

rithm description system, we can handle 

Remove the top element from the stack 
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using a mathematical definition of "top". But in 

Remove the top two elements from 

from the stack 

the mathematical definition no longer works. We 

must use the fact about "top" that it refers to a 

portion of a vertical scale whose high end coin- 

cides with the high end of the scale, and the fact 

about "stack" that it has a (metaphorical) verti- 

cal orientation. Another example requiring this 

knowledge is 

A is above B in the stack. 

To understand this we must first interpret the 

stack as a scale with upward vertical orientation. 

Then we can infer that A exceeds B on that 

scale. 

Finally consider the word "contain". In the 

basic meaning of "contain", for A to contain B 

is for the object B to be physically inside the 

enclosed region A. We can tap many of the meta- 

phorical uses of "contain" in algorithm descrip- 

tions by specifying a set as metaphorically a 

region and its members as being inside the region. 

This corresponds to a common visual image of a set, 

and is required for the following examples: 

The queue contains a node for each 

item with no predecessor. 

Each node contains two fields. 

If the matrix contains any row which 

contains a 0, .... 

Ignore any instruction containing an 

undefined operand. 

A compiler for a very hlgh-level programming lan- 

guage allowing such uses of "contain" would need 

the system-provlded or user-provlded knowledge 

that a queue is a set of nodes, that a node is a 

set of fields, and than an instruction is a se- 

quence and hence a set of symbols. It would need 

to know that a matrix may be thought of as a set 

of rows, a set of columns, or a set of elements. 

But the "set" interpretation for "contain" does not 

seem to work for the sentence 

PSUM contains the partial sum of the 

numbers input so far. 

Here it seems necessary to specify directly that a 

variable may be considered metaphorically a region. 

This may correspond to many people's most naive 

visual image of a variable. 

6. Anaphora 

The word "anaphora" is a linguistic term for 

the various devices used in natural language for 

referring to an entity occurring in or deducible 

from the previous text. For our purposes we may 

divide the kinds of anaphora that occur into two 

categories. In the first, the anaphor--a pronoun 

or a definite noun phrase--refers to an entity 

mentioned explicitly in the previous text: 

Suppose we have a binary tree. This 

algorithm traverses the binary tree. 

Suppose we have a binary tree. This 

algorithm traverses it. 

We probably do not want to introduce this feature 

into a programming language. The use of variables 

is a clear improvement over English , in clarity 

and brevity. 

However, the second kind of anaphora--a defi- 

nite noun phrase referring to an entity only im- 

plicit in the previous text--would be a desirable 

feature. 

Link through llst L, printing out 

the value fields. 

The natural language processor recognizes the re- 

ference of the definite noun phrase by means of a 

backward search through the collection of axioms 

for a chain of inference beginning in the preceding 

text and implying the existence of the definite en- 

tity. In this example, we find first the fact 

about nodes that a node contains a value field and 

next the fact about lists that a list consists of 

nodes, and finally we find the occurrence of "list" 

in the preteding text. Thus, it is the value 

fields of the nodes in llst L. 

If a similar capability were incorporated into 

a programming language, the compiler could resolve 

the reference by accessing the structural and re- 

lational information discussed in Section 4. In a 

sense, this is the other side of th~ coln--the part 

is specified and not the whole. 

7. Intersentence Relations 

The implicit and explicit intersentence rela- 

tions in algorithm descriptions encode much of the 

flow of control of the algorithm. Looping strut- 
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tures simply do not occur in ordinary English dis- 

course; in algorithm descriptions they are encoded 

in verbs llke "go", "repeat", and "perform". Other 

patterns do occur, however, and it is worthwhile to 

see what they are and how they are recognized. 

In the natural language processor, intersen- 

tence relations are determined by matching succes- 

sive sentences against a small number of patterns, 

stated in terms of inferences to be drawn from the 

sentences. The most common pattern is Overlapping 

Temporal Succession. Instructions it relates are 

translated into successive lines of code. We give 

one variety of the pattern. (In all the pattern 

specifications, S 2 refers to the current clause 

or sentence and S 1 to the previous.) 

S 1 asserts a change whose final 

state is presupposed by S 2. 

More precisely, the patterns tells us to seek from 

the previous sentence an inference of the form 

"become(A,B)", where "become" is a predicate indi- 

cating a chang e from state A to state B, and to 

seek to infer from the current sentence some form 

of state B. This pattern occurs most frequently 

in algorithm descriptions when S 1 describes a 

change in vlaue for some variable and S 2 uses 

that variable, as in 

Decrease N by J. If it is 0, reset 

it toM/IX. 

Using pre-stored knowledge of the word "decrease", 

we can infer from the first sentence, 

become(equal(N,X),equal(N,X-J)) (4) 

for some X. The second sentence decomposes into 

imply(equal(it,0),become(equal(it,0), 

equal(it,MAX))). 

The appearance of "equal(it,0)" as the first argu- 

ment of "imply" means that "it" is equal to some- 

thing. If "it" is identified with N, we have a 

match with the final state of (4) and hence a 

match with the Overlapping Temporal Succession pat- 

tern. Note that if we had assumed that "it" refer- 

red to J, we would not have matched the pattern. 

Recognizing intersentence relations frequently aids 

in pronoun resolution in precisely this fashion. 

Contrast is another particularly important 

pattern, because as Balzer (1975) has noted, a 

contrast between implications translates into a 

"CASE" statement. Letting "element" refer to 

either the predicate or one of the arguments of a 

proposition, the Contrast pattern may be stated as 

follows: 

1. S 1 and S 2 have one corresponding pair 

of elements which are contradictory or 

lie at opposite ends of some Scale; 

2. the other corresponding pairs of ele- 

ments are identical or belong to the 

same small set (i.e., are "similar"). 

In the sentences 

If INFO(M) < INFO(N), then set M to 

LINK(M). If INFO(M) > INFO(N), 

then set N to LINK(N). If (5) 

INFO(M) = INFO(N), add one to 

COUNT and advance on both lists. 

the highest level predicate is "imply". The first 

arguments of "imply"--"INFO(M) < INFO(N)", 

"INFO(M) > INFO(N)". and "INFO(M) = INFO(N)"--are 

contradictory conditions. The second arguments 

are similar assignment statements, although recog- 

nizing this in the case of the final sentence of 

(5) requires accessing knowledge about how one 

represents and talks about data structures. In 

particular, we must know that to advance is to 

move forward and here "forward" is determined by 

the direction of the pointers in the linked llst. 

One moves along a linked llst by following the 

links, in this case by setting M to LINK(M) 

and N to LINK(N). 

Thus are the sentences recognized as fitting 

the Contrast pattern, not as Temporal Succession, 

and hence are interpreted as a branching condition 

rather than as successive instructions. 

The next two patterns reflect a common phe- 

nomenon--a stretch of text acts as an attempt at 

the successive approximation of a meaning, or an 

attempt to avoid misunderstanding. The first 

pattern is Paraphrase 

S 1 and S 2 are (inferrably) the same 

exce~ that either 

1. an argument of S 2 is more fully 

specified than the corresponding 

argument of SI; or 

2. S 2 has adverbial modification S 1 lacks. 
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An example is 

Initialize. Set stack A to empty and 

set llnk variable P to ROOT. 

Note that it is necessary to recognize this rela- 

tion if we are to realize "Initialize" does not re- 

fer to some kind of initialization other than what 

is in the second sentence. Recognizing the pattern 

in this example is quite complex. We must know 

that by convention the implied subject in each of 

the clauses is the "processor". To initialize is 

to cause to be in an initial state, and the only 

thing the processor can cause, beyond a change in 

the order in which it executes instructions, is a 

change in the value of a data structure. We then 

recognize that stack A and link variable P are 

data structures, and that "empty" and "ROOT" are 

plausible initial states. 

In algorithm descriptions, it is common for 

one of the sentences in a Paraphrase to relate the 

action to the overall course of the algorithm and 

the other to relate it more directly to code. In 

a sense, the one is for the benefit of the human 

reader, the other for the benefit of the machine. 

Next is the Example pattern: 

The elements of S 2 are subsets or 

members of the corresponding 

elements of S I. 

An instance is 

Reverse list L. If L is "A B C", 

then set L to "C B A". 

If we failed to recognize the Example pattern and 

assumed they were successive instructions, the 

two instructions would cancel each other whenever 

L began as "C B A". The Example pattern is re- 

cognized here by decomposing "reverse" into a de- 

scription of the change it effects on an ordered 

set, and recognizing "A B C" as a specific member 

of the class of lists. 

To what extent can a very high level pro- 

gramming language profit from these relations? 

The Contrast pattern is simply "CASE" and suggests 

nothing new. Temporal Succession is just succes- 

sive instructions, but the "Overlapping" imposes 

a coherence on texts that programs could profit 

from. If the compiler for our very high level lan- 

guage does not find sufficiently proximate pairings 

between assignments to and uses of variables, a 

warning is issued. This could catch such insidi- 

ous errors as 

N1 = NI - i; 

IF (N = 0) THEN NI = MAX; 

where NI is meant instead of N. This is just 

the sort of error that can escape detection for 

months in a large program. 

The feature of successive approximation of 

meaning, or clarification, or simply redundant 

specification becomes more important as our pro- 

gramming language becomes more English-like and 

thus more open to ambiguity. To an extent, it ex- 

ists already, in that a comment next to a line of 

code may be considered a paraphrase. In a sense 

we want to break down the sharp distinction be- 

tween comment and code. There is a difficulty in 

that in English texts, deep inferencing is fre- 

quently required to recognize the patterns. But 

this can be overcome by introducing the operators 

"IE" and "EG" which would signal Paraphrase and 

Example respectively. The compiler could then use 

the line so tagged to check its interpretation of 

the previous llne, or to try again for an inter- 

pretation if it failed on the previous. 

8. An Example 

In this section we will look at a "program" 

written in an imaginary programming language in- 

corporating some of the ideas discussed above. We 

will then examine the work a compiler would have 

to do in order to turn it into correct "lower- 

level" code, say PL/I. 

REVERSE(LIST); 

LIST points to head of linked list L; 

L contains nodes NODE; 

NODE contains 2 fields: INFO, LINK; 

P pointer, moves along L; 

P1 moves along L one node behind P; 

P2 moves along L one node ahead of P; 

REVERSE reverses L; EG REVERSE 

( <A,B,C >) = <C,B,A>; 

REVERSE returns pointer to head of 

reversed llst; 

FOR EACH NODE P 

RESET LINK FROM P2 TO PI; 

END REVERSE; 
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The following points may be noted about this 

"program" : 

i. Assignments to temporary variables are 

allowed in the declaration segment via apposl- 

tlves--"linked llst L", "nodes NODE". This allows 

us to avoid using anaphora referring to explicitly 

mentioned entities. 

2. "Contain" occurs twice, but it must be in- 

terpreted differently in each case. In llne 4, 

it leads to the declaration of a structure array 

or of two parallel arrays. In llne 3, it is not 

reflected directly in the code but aids the com- 

piler in interpreting the phrases "moves along L" 

and "FOR EACH NODE P". 

3. "Pointer" in llne 5 is probably implicit 

in "moves along L", but its inclusion insures the 

correct interpretation of "moves along". In in- 

terpreting "moves along" the compiler will access 

the knowledge that a linked llst is a scale whose 

orientation is determined by the direction of the 

links. That is, it is a partially ordered set 

whose partial ordering is the transitive closure 

of the relation between A and B defined by 

"the LINK field of A points to B". This fact 

in turn will enable us to interpret "behind" and 

"ahead of". 

4. While lines 5-7 describe the purposes or 

functions of variables P, PI, and P2, they allow 

us to reconstruct the actions of the variables 

in the instructional portion of the program. 

This is an example of static details about pur- 

poses, which people feel comfortable with, re- 

placing dynamic details about successive values, 

which people have trouble integrating into their 

overall view of the program. 

5. Line 8 may play no role in the final 

program beyond that of a cou,nent. On the other 

hand, a sophisticated compiler might use it to 

check the code it has constructed, or alterna- 

tively, to decide among several Rossible inter- 

pretations in the instructional portion. The 

example tagged by "EG" gives a means of checking 

the code that is less general than "REVERSE re- 

verses L", b~t the case to be checked is easier 

to construct. This assumes that the compiler 

can make the translation from the triple < A,B,C > 

into its correspondlng representation as a linked 

list. 

6. Since the instructional portion does not 

specify what value is returned, this must be de- 

duced from llne 9. The compiler must know enough 

about "reverse" to know that the head of the re- 

versed list is the last node in the original llst, 

and it must keep track of which variable points 

there after the loop. 

7. "FOR EACH NODE P" does not specify the 

range of P nor the order in which P visits the 

nodes. These must be recovered from llne 5 and 

the information about the ordering of L that was 

inferred to interpret "moves along". 

8. "LINK" is an anaphoric reference to the 

LINK field implied by "NODE" of the preceding line. 

The resolution uses the information given in llne 

4. "LINK" is expanded into "LINK(P)". 

9. Most of the instructions in the body of 

the loop come from the declaration segment. The 

compiler uses the facts of lines 5 and 7 to move 

P along L by the assignment "P = P2". To remain 

one node behind P, PI must be reset to the old P 

at the same time, and to keep one node ~head of P, 

P2 must follow the link--"P2 = LINK(P2)". 

i0. In a sense "from P2" in line ii is re- 

dundant, since it is implicit in the definition 

of P2 in line 7. But in addition to serving as a 

check on the interpretation of line 7, it insures 

that P2 is set before LINK(P) is changed. 

Ii. The length of this "program" is roughly 

the same as the length of the corresponding pro- 

gram in "lower-level" code. But the balance be- 

tween the static, purpose-orlented declaration 

segment and the dynamic, action-orlented instruc- 

tional segment has shifted completely. Indeed, 

the instructional segment is confined to a brief 

statement of the key trick. As a result, the 

"program" has a natural quality that obviates the 

use of comments. 

9. Conclusion 

The observations we have made about natural 

language come out of the careful investigation of 

algorithm descriptions and other English texts. 

The suggestions for a very high level programming 

language, on the other hand, are still at the 

stage of speculation. Whether they can be imple- 

mented without sacrificing the precision required 

of a programming language is an open question. 
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But of the many features that could be built into 

such a programming language, it seems reasonable 

to choose those that make natural language easy to 

use. It seems reasonable to aim for programming 

languages that have the flexibility and richness 

of natural language and for programs that have the 

texture and coherence of a natural language 

paragraph. 
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