
WHAT THE NATURE OF NATURAL LANGUAGE TELLS US
ABOUT HOW TO MAKE NATURAL-LANGUAGE-LIKE

PROGRAMMING LANGUAGES MORE NATURAL

Jerry R. Hobbs
Department of Computer Sciences

city College, CUNY

i. Introduction

When a student is learning an algorithm from

a textbook, his first approach is frequently

through an English description. This is normally

easier to understand than raw code, and sometimes

easier than a flow chart, in spite of the fact that

programming languages are designed for algorithm

specification while English is only pressed into

its service. If the English is eas%er to under-

stand, it is likely that it has many features that

would ease programming itself. This paper inves-

tigates some of these features.

I am not suggesting that we program in pure

English, even if it were possible--It is too ver-

bose. Those who believe it would make for succinct

programs are comparing very high level English

specifications with relatively lower level pro-

gramming languages whereas English descriptions

can run the whole range of levels--down to

Load register 5 with contents
of memory location 190.

At every level, there is symbolic specification

more economlcalthan any English specification.

Most efforts in the past to make program-

mlnglanguages"llke" English have involved

spreading a thin veneer of English vocabulary and

perhaps some English syntax over a very ordinary

programming language. This paper is an attempt

to push toward a deeper understanding of some of

the properties of natural language which make it

easy for people to use, with special emphasis on

algorithm descriptions, and a consideration of how

these might best be carried over to very high

level programming languages. In what follows,

four aspects that characterize coherent English

texts are considered in turn:

i. redundancy, ellipsis, and contextual in-

terpretation of words;
t

2. the prevalence of spatial metaphors;

3. various anaphorlc devices; and

4. implicit and explicit intersentence rela-

tions.

For each we give illustrations from the world of

algorithms and describe how a natural language

processing system can handle them. We then con-

sider which features would be desirable to have

in programming languages and whether they could

be incorporated to gain the flexibility and com-

fort of natural language without opening the door

to its variability, imprecision, and ambiguity.

The time is perhaps ripe to ask these ques-

tions. For much progress has been made in the

past few years in the field of natural language

processing, and we understand more now about some

of the mechanisms that enable one to extract

meaning from an English text. The observations

presented here grow out of work that has been

done on the semantic analysis of well-written,

carefully honed algorithm descriptions, such as

one finds in Knuth's Art of Computer Programming

(1973). In addition, we have analyzed sets of

directions of how to get from one place to another

(Hobbs 1975) as well as complex expository texts

(Hobbs 1976). The work has been aimed toward

characterizing coherence in English texts in gen-

eral, so that the properties of language under

study are not peculiar to one use, but are an im-

portant part of what makes natural %anguage

natural.

2. Related Work

Our work on algorithm descriptions is very

85

similar to Balzer's work on message distribution

instructions (1975) in that both seek to squeeze

a precise meaning out of an inherently imprecise

English text. Some of the conclusions reached in

both lines of research are also similar. However,

where in Balzer's work there is emphasis on satis-

fying the requirements of the program ultimately

to beproduced, we have concentrated on methods of

discourse analysis which are independent of domain

of discourse. For example, where he uses a

heuristic which says that a variable whose

value is changed must subsequently be used, we see

this heuristic as a specialization of a more gen-

eral pattern common to all English discourse (el.

Section 7).

Our work is also related to that of Miller

(1976) and that of Scragg (1974) on English de-

scriptions of processes. In one sense, it is com-

plementary to Miller's work. Where he has exam-

ined texts in which intersentence relations are

generally simple temporal succession and the con-

trol information is embedded within complex noun

phrases, we have chosen instead to examine the

broad range of intersentence relations possible

in process specifications in a domain of discourse

whose noun phrases are rather spare.

Another effort to incorporate desirable

natural language features into programming lan-

guages is represented by the work of Nylln &

Harvill (1976). They have proposed a set of oper-

ators which act something like English tenses and

time words and allow the programmer to access

states of the machine other than the current one.

While there is a rich assortment of time con-

structions in the algorithm descriptions we have

been examining, we have not yet studied them

deeply enough for a useful discussion. Moreover,

I would llke to concentrate in this paper less on

the concepts expressed in natural language and

more on the way natural language-works.

More distantly related is work on automatic

programming, exemplified by Green & Barstow (1975),

involving user dialogs and English-like, problem-

oriented de~crlptlons of programs. Our problem

has been easler~ since the texts we are studying

are highly specified and, from a human standpoint,

require no exceptional problem-solving capabili-

ties.

3. The Inferencing System

In all I have to say about processing English

texts, I am assuming that the text has been syn-

tactically preprocessed into some fairly simple

representation. In our system, this is a collec-

tion of logical propositions encoding the infor-

mation contained in the text. Moreover, I assume

there is available a large collection of world

knowledge facts or axioms expressed in some sym-

bolic representation which the processor can op-

erate on. For us, they are represented in the

form of predicate calculus axioms. There are

then mechanisms in the system for building chains

of inference out of these axioms. The mechanisms

do two sorts of inferenclng:

i. forward inferenclng: the mechanism

is given a proposition in the text

as a starting point and a pattern

representing the inference sought,

and it tries to find a chain of in-

ference linking them;

2. backward inferenclng: the mechanism

seeks a chain of inference culmlnoting

in a given proposition, which begins

at some proposition in the previous

text.

In addition, there are means of deciding between

chains of inference when more than one satisfies

particular requirements.

The two inferencing mechanisms are used by a

set of "semantic operations" which draw inferences

selectively to interpret and structure the text.

Among the operations are one for interpreting gen-

eral words in context and recovering omitted mate-

rial (called "predicate interpretation"), one for

resolving anaphoric expressions, and one for de-

tecting the relations between sentences and hence

the overall structure of the text.

4. Redundancy, Ellipsis, and Predicate

Interpretation

An important characteristic of natural lan-

guage texts is their very great redundancy. In-

deed, we might say it is this that allows us to

understand texts at all. Considcr the perfectly

normal sentence

Let link variable T point to the
(i)

root node of a binary tree.

86

We call T a variable, yet it is implicit in the

fact that T is a capital letter in an algorithm

description that T is a variable. Moreover, the

subject of "point" is necessarily a variable. A

link variable is a variable that points. Wecall

the root a node but the root is necessarily a node,

as are the object of "point to" and an element of

a binary tree. "Tree" is more or less implicit in

"root", "node", and "binary".

It is this redundancy that allows ellipsis to

occur. Material can he omitted because the infor-

mation is implicit in what remains. For example,

(i) can be paraphrased

Let T point to a binary tree. (2)

The full sentence can be recovered because of the

interaction between the requirements of "point"

and the nature of binary trees. In English texts

in general, the part is frequently recoverable

from the whole because of the whole's environment.

Quantity words can often he omitted too. For ex-

ample, if we are linking through two linked lists

ordered by the value fields of their nodes, and

we encounter

Print out the greater of node P (3)
and no~ Q

we know it is the value fields of the nodes that

is referred to, because of the requirements of

"greater".

In our natural language processing system,

the recovery of omitted material is accomplished

by means of an operation called predicate inter-

pretation. This seeks to discover the meaning a

word or predicate acquires by virtue of its pre-

sence in a particular context. When the word is

encountered in a text, the world knowledge asso-

ciated with the syntactically related words in

the sentence is probed in order to satisfy de-

mands imposed by the word.

Among other things, this acts as a kind of

type-forclng. Stored with various operators

are the types the operands must be, and predicate

interpretation forces arguments of a predicate in-

to the correct form. In (2), the predicate "point"

requires its second argument to be a node. The

knowledge about binary trees is searched for a

dominant node, the root node is found and the sen-

tence becomes

Let T point to the root of a binary tree.

In algorithm descriptions it is reasonably

safe to assume that the predicate "greater" re-

qUires its arguments to be numbers. Thus, to in-

terpret (3) we search our knowledge about nodes to

find the most prominent associated number. We

find that a node typically has a value field whose

value is frequently a number, so (3) is fleshed

out to

Print out the greater value of the value

fields of node P and node Q.

Note moreover that the phrase "node P" must be ex-

panded into "the node which P points to".

To a limited extent, this feature already ex-

ists in progran~ing languages, e.g., the automatic

type conversions of FORTRAN and the fact that "+"

can be either integer or real addition, depending

on contex~The difficulty with bringing this facil-

ity over wholesale into programming languages is

that the operation sometimes requires deep searches

through a large data base of inferences, and the

results are chancy. For example, if (3) were

modified to

Print out the greater of P and Q

it could be interpreted as referring to the values

of P and Q or the value fields of the nodes P and

Q point to. Which is chosen depends on the search

order, which is somewhat accidental.

Nevertheless, it ought to be possible for a

programmer to specify in an expanded declaration

portion of a program the structure and purpose of

and relationships between data objects, and to

specify with a procedure the nature of its param-

eters. No increase in total programming effort

would be involved, for this information already

goes into the comments. Then when a procedure is

called with the wrong type of object, that object

is used as the starting point in a search for the

right argument.

Schwartz (1975) has put forwarH very similar

ideas in connection with a proposed very high

level language to be built on top of the set-

theoretic language SETL. It includes a rich col-

lection of possible type sepcifications and a

type-coerclon operation which uses these to expand

87

elliptical dictions. Among the recommended decla-

ration forms are the operators has which allows

the user to specify the structure and attributes

of a data object, is which permits complex type

descriptions to be specified, and either which

allows several types to be subsumed under one

supertype.

It should be noted that such facilities will

not necessarily make programs shorter. Rather,

it will shift the progranuning effort, especially

the required attention to detail, from the dynamic

instructional portion to the static declaration

portion, where people are more comfortable with

detail.

Section 8 contains an example illustrating

many of these points.

5. The Spatial Metaphor

It is very frequent in algorithm descriptions,

as in every kind of English text, to use spatial

metaphors to describe more abstract concepts. For

example, we speak of the processor going from one

step to another in an algorithm, of a variable

going from i to N, and of a pointer movin s along

a linked llst.

In our system for analyzing English, the

spatial metaphor is accommodated by the way in

which the world knowledge is organized at its

deepest levels. Some primitive concepts are a

Scale or a "becoming", which is roughly a partial

ordering; a point being o_n_n a Scale, or being a

member of the partially ordered set; one point ex-

ceeding another on a Scale; and an entitity

being a_~t a point on a Scale, or an entity being

a_~t another entity. "At" is in fact a Very gen-

eral predicate capable of a wide variety of

specific interpretations, depending on context.

In a given text, the predicate interpretation

operation seeks an interpretation or binding for

"at" by probing the nature of its arguments.

The three uses given above of spatial meta-

phor can be interpreted via the following models:

I. An algorithm is a Scale. The points on

the Scale are instructions. For the processor to be

at an instruction on the Scale is for it to exe-

cute the instruction.

2. There is a Number Scale, which is a Scale.

The points on it are numbers. For a variable to

be a_~t a number is for its value to equal the number.

3. A linked list is a Scale. A node in the

llst is a point on the Scale. For a pointer to be

a_~t a node is for the variable to point to the node.

Verbs of motion are then decomposable into

expressions involving the primitive "at". For ex-

ample, we have the axiom

(VYl,Y2, Y 3) (go (Yl,Y2,Y 3)

become(at(Yl,Y2),at(Yl,Y3)))

That is, we can decompose "Yl goes from Y2 to Y3"

into "Yl'S being at Y2 becomes Yl'S being at Y3""
Then consider the sentence

Go to step T4.

We know that the subject is the processor. The

goal is an instruction. Therefore the underlying

"at" is interpreted as "execute". In

N goes down to 0

N is a variable, O is a number, and therefore the

underlying "N at 0" is interpreted to mean the

value of N equals 0. "Move" has the same decom-

position as "go". Consider

PI moves along the list one node behind P.

PI is a variable and it is located at successive

positions on the list. In interpreting a list as

a Scale, we discover that these positions are

nodes, and that Pl is thus being used as a pointer.

Since we tend to have very strong visual

images of the entities our programs deal with and

the actions performed on them, it is possible that

a healthy collection of motion verbs--such as

"move", "go", and the visual analog of "go", the

arrow--would make a progranuuing language more con-

venient to use. Decompositions in terms of "scale"

and "at" could be either known by the system or

the user could specify how "scale" and "at" were

to be interpreted. All of this would require some

education of the users, but it would pay off in

more natural programming.

Consider another example of a spatial meta-

phor: It is not one of the mathematical properties

of a stack that it has a vertical orientation, but

it is the way we visualize a stack, and thus the

way we talk about it. For example, in the algo-

rithm description system, we can handle

Remove the top element from the stack

88

using a mathematical definition of "top". But in

Remove the top two elements from

from the stack

the mathematical definition no longer works. We

must use the fact about "top" that it refers to a

portion of a vertical scale whose high end coin-

cides with the high end of the scale, and the fact

about "stack" that it has a (metaphorical) verti-

cal orientation. Another example requiring this

knowledge is

A is above B in the stack.

To understand this we must first interpret the

stack as a scale with upward vertical orientation.

Then we can infer that A exceeds B on that

scale.

Finally consider the word "contain". In the

basic meaning of "contain", for A to contain B

is for the object B to be physically inside the

enclosed region A. We can tap many of the meta-

phorical uses of "contain" in algorithm descrip-

tions by specifying a set as metaphorically a

region and its members as being inside the region.

This corresponds to a common visual image of a set,

and is required for the following examples:

The queue contains a node for each

item with no predecessor.

Each node contains two fields.

If the matrix contains any row which

contains a 0,

Ignore any instruction containing an

undefined operand.

A compiler for a very hlgh-level programming lan-

guage allowing such uses of "contain" would need

the system-provlded or user-provlded knowledge

that a queue is a set of nodes, that a node is a

set of fields, and than an instruction is a se-

quence and hence a set of symbols. It would need

to know that a matrix may be thought of as a set

of rows, a set of columns, or a set of elements.

But the "set" interpretation for "contain" does not

seem to work for the sentence

PSUM contains the partial sum of the

numbers input so far.

Here it seems necessary to specify directly that a

variable may be considered metaphorically a region.

This may correspond to many people's most naive

visual image of a variable.

6. Anaphora

The word "anaphora" is a linguistic term for

the various devices used in natural language for

referring to an entity occurring in or deducible

from the previous text. For our purposes we may

divide the kinds of anaphora that occur into two

categories. In the first, the anaphor--a pronoun

or a definite noun phrase--refers to an entity

mentioned explicitly in the previous text:

Suppose we have a binary tree. This

algorithm traverses the binary tree.

Suppose we have a binary tree. This

algorithm traverses it.

We probably do not want to introduce this feature

into a programming language. The use of variables

is a clear improvement over English , in clarity

and brevity.

However, the second kind of anaphora--a defi-

nite noun phrase referring to an entity only im-

plicit in the previous text--would be a desirable

feature.

Link through llst L, printing out

the value fields.

The natural language processor recognizes the re-

ference of the definite noun phrase by means of a

backward search through the collection of axioms

for a chain of inference beginning in the preceding

text and implying the existence of the definite en-

tity. In this example, we find first the fact

about nodes that a node contains a value field and

next the fact about lists that a list consists of

nodes, and finally we find the occurrence of "list"

in the preteding text. Thus, it is the value

fields of the nodes in llst L.

If a similar capability were incorporated into

a programming language, the compiler could resolve

the reference by accessing the structural and re-

lational information discussed in Section 4. In a

sense, this is the other side of th~ coln--the part

is specified and not the whole.

7. Intersentence Relations

The implicit and explicit intersentence rela-

tions in algorithm descriptions encode much of the

flow of control of the algorithm. Looping strut-

89

tures simply do not occur in ordinary English dis-

course; in algorithm descriptions they are encoded

in verbs llke "go", "repeat", and "perform". Other

patterns do occur, however, and it is worthwhile to

see what they are and how they are recognized.

In the natural language processor, intersen-

tence relations are determined by matching succes-

sive sentences against a small number of patterns,

stated in terms of inferences to be drawn from the

sentences. The most common pattern is Overlapping

Temporal Succession. Instructions it relates are

translated into successive lines of code. We give

one variety of the pattern. (In all the pattern

specifications, S 2 refers to the current clause

or sentence and S 1 to the previous.)

S 1 asserts a change whose final

state is presupposed by S 2.

More precisely, the patterns tells us to seek from

the previous sentence an inference of the form

"become(A,B)", where "become" is a predicate indi-

cating a chang e from state A to state B, and to

seek to infer from the current sentence some form

of state B. This pattern occurs most frequently

in algorithm descriptions when S 1 describes a

change in vlaue for some variable and S 2 uses

that variable, as in

Decrease N by J. If it is 0, reset

it toM/IX.

Using pre-stored knowledge of the word "decrease",

we can infer from the first sentence,

become(equal(N,X),equal(N,X-J)) (4)

for some X. The second sentence decomposes into

imply(equal(it,0),become(equal(it,0),

equal(it,MAX))).

The appearance of "equal(it,0)" as the first argu-

ment of "imply" means that "it" is equal to some-

thing. If "it" is identified with N, we have a

match with the final state of (4) and hence a

match with the Overlapping Temporal Succession pat-

tern. Note that if we had assumed that "it" refer-

red to J, we would not have matched the pattern.

Recognizing intersentence relations frequently aids

in pronoun resolution in precisely this fashion.

Contrast is another particularly important

pattern, because as Balzer (1975) has noted, a

contrast between implications translates into a

"CASE" statement. Letting "element" refer to

either the predicate or one of the arguments of a

proposition, the Contrast pattern may be stated as

follows:

1. S 1 and S 2 have one corresponding pair

of elements which are contradictory or

lie at opposite ends of some Scale;

2. the other corresponding pairs of ele-

ments are identical or belong to the

same small set (i.e., are "similar").

In the sentences

If INFO(M) < INFO(N), then set M to

LINK(M). If INFO(M) > INFO(N),

then set N to LINK(N). If (5)

INFO(M) = INFO(N), add one to

COUNT and advance on both lists.

the highest level predicate is "imply". The first

arguments of "imply"--"INFO(M) < INFO(N)",

"INFO(M) > INFO(N)". and "INFO(M) = INFO(N)"--are

contradictory conditions. The second arguments

are similar assignment statements, although recog-

nizing this in the case of the final sentence of

(5) requires accessing knowledge about how one

represents and talks about data structures. In

particular, we must know that to advance is to

move forward and here "forward" is determined by

the direction of the pointers in the linked llst.

One moves along a linked llst by following the

links, in this case by setting M to LINK(M)

and N to LINK(N).

Thus are the sentences recognized as fitting

the Contrast pattern, not as Temporal Succession,

and hence are interpreted as a branching condition

rather than as successive instructions.

The next two patterns reflect a common phe-

nomenon--a stretch of text acts as an attempt at

the successive approximation of a meaning, or an

attempt to avoid misunderstanding. The first

pattern is Paraphrase

S 1 and S 2 are (inferrably) the same

exce~ that either

1. an argument of S 2 is more fully

specified than the corresponding

argument of SI; or

2. S 2 has adverbial modification S 1 lacks.

90

An example is

Initialize. Set stack A to empty and

set llnk variable P to ROOT.

Note that it is necessary to recognize this rela-

tion if we are to realize "Initialize" does not re-

fer to some kind of initialization other than what

is in the second sentence. Recognizing the pattern

in this example is quite complex. We must know

that by convention the implied subject in each of

the clauses is the "processor". To initialize is

to cause to be in an initial state, and the only

thing the processor can cause, beyond a change in

the order in which it executes instructions, is a

change in the value of a data structure. We then

recognize that stack A and link variable P are

data structures, and that "empty" and "ROOT" are

plausible initial states.

In algorithm descriptions, it is common for

one of the sentences in a Paraphrase to relate the

action to the overall course of the algorithm and

the other to relate it more directly to code. In

a sense, the one is for the benefit of the human

reader, the other for the benefit of the machine.

Next is the Example pattern:

The elements of S 2 are subsets or

members of the corresponding

elements of S I.

An instance is

Reverse list L. If L is "A B C",

then set L to "C B A".

If we failed to recognize the Example pattern and

assumed they were successive instructions, the

two instructions would cancel each other whenever

L began as "C B A". The Example pattern is re-

cognized here by decomposing "reverse" into a de-

scription of the change it effects on an ordered

set, and recognizing "A B C" as a specific member

of the class of lists.

To what extent can a very high level pro-

gramming language profit from these relations?

The Contrast pattern is simply "CASE" and suggests

nothing new. Temporal Succession is just succes-

sive instructions, but the "Overlapping" imposes

a coherence on texts that programs could profit

from. If the compiler for our very high level lan-

guage does not find sufficiently proximate pairings

between assignments to and uses of variables, a

warning is issued. This could catch such insidi-

ous errors as

N1 = NI - i;

IF (N = 0) THEN NI = MAX;

where NI is meant instead of N. This is just

the sort of error that can escape detection for

months in a large program.

The feature of successive approximation of

meaning, or clarification, or simply redundant

specification becomes more important as our pro-

gramming language becomes more English-like and

thus more open to ambiguity. To an extent, it ex-

ists already, in that a comment next to a line of

code may be considered a paraphrase. In a sense

we want to break down the sharp distinction be-

tween comment and code. There is a difficulty in

that in English texts, deep inferencing is fre-

quently required to recognize the patterns. But

this can be overcome by introducing the operators

"IE" and "EG" which would signal Paraphrase and

Example respectively. The compiler could then use

the line so tagged to check its interpretation of

the previous llne, or to try again for an inter-

pretation if it failed on the previous.

8. An Example

In this section we will look at a "program"

written in an imaginary programming language in-

corporating some of the ideas discussed above. We

will then examine the work a compiler would have

to do in order to turn it into correct "lower-

level" code, say PL/I.

REVERSE(LIST);

LIST points to head of linked list L;

L contains nodes NODE;

NODE contains 2 fields: INFO, LINK;

P pointer, moves along L;

P1 moves along L one node behind P;

P2 moves along L one node ahead of P;

REVERSE reverses L; EG REVERSE

(<A,B,C >) = <C,B,A>;

REVERSE returns pointer to head of

reversed llst;

FOR EACH NODE P

RESET LINK FROM P2 TO PI;

END REVERSE;

91

The following points may be noted about this

"program" :

i. Assignments to temporary variables are

allowed in the declaration segment via apposl-

tlves--"linked llst L", "nodes NODE". This allows

us to avoid using anaphora referring to explicitly

mentioned entities.

2. "Contain" occurs twice, but it must be in-

terpreted differently in each case. In llne 4,

it leads to the declaration of a structure array

or of two parallel arrays. In llne 3, it is not

reflected directly in the code but aids the com-

piler in interpreting the phrases "moves along L"

and "FOR EACH NODE P".

3. "Pointer" in llne 5 is probably implicit

in "moves along L", but its inclusion insures the

correct interpretation of "moves along". In in-

terpreting "moves along" the compiler will access

the knowledge that a linked llst is a scale whose

orientation is determined by the direction of the

links. That is, it is a partially ordered set

whose partial ordering is the transitive closure

of the relation between A and B defined by

"the LINK field of A points to B". This fact

in turn will enable us to interpret "behind" and

"ahead of".

4. While lines 5-7 describe the purposes or

functions of variables P, PI, and P2, they allow

us to reconstruct the actions of the variables

in the instructional portion of the program.

This is an example of static details about pur-

poses, which people feel comfortable with, re-

placing dynamic details about successive values,

which people have trouble integrating into their

overall view of the program.

5. Line 8 may play no role in the final

program beyond that of a cou,nent. On the other

hand, a sophisticated compiler might use it to

check the code it has constructed, or alterna-

tively, to decide among several Rossible inter-

pretations in the instructional portion. The

example tagged by "EG" gives a means of checking

the code that is less general than "REVERSE re-

verses L", b~t the case to be checked is easier

to construct. This assumes that the compiler

can make the translation from the triple < A,B,C >

into its correspondlng representation as a linked

list.

6. Since the instructional portion does not

specify what value is returned, this must be de-

duced from llne 9. The compiler must know enough

about "reverse" to know that the head of the re-

versed list is the last node in the original llst,

and it must keep track of which variable points

there after the loop.

7. "FOR EACH NODE P" does not specify the

range of P nor the order in which P visits the

nodes. These must be recovered from llne 5 and

the information about the ordering of L that was

inferred to interpret "moves along".

8. "LINK" is an anaphoric reference to the

LINK field implied by "NODE" of the preceding line.

The resolution uses the information given in llne

4. "LINK" is expanded into "LINK(P)".

9. Most of the instructions in the body of

the loop come from the declaration segment. The

compiler uses the facts of lines 5 and 7 to move

P along L by the assignment "P = P2". To remain

one node behind P, PI must be reset to the old P

at the same time, and to keep one node ~head of P,

P2 must follow the link--"P2 = LINK(P2)".

i0. In a sense "from P2" in line ii is re-

dundant, since it is implicit in the definition

of P2 in line 7. But in addition to serving as a

check on the interpretation of line 7, it insures

that P2 is set before LINK(P) is changed.

Ii. The length of this "program" is roughly

the same as the length of the corresponding pro-

gram in "lower-level" code. But the balance be-

tween the static, purpose-orlented declaration

segment and the dynamic, action-orlented instruc-

tional segment has shifted completely. Indeed,

the instructional segment is confined to a brief

statement of the key trick. As a result, the

"program" has a natural quality that obviates the

use of comments.

9. Conclusion

The observations we have made about natural

language come out of the careful investigation of

algorithm descriptions and other English texts.

The suggestions for a very high level programming

language, on the other hand, are still at the

stage of speculation. Whether they can be imple-

mented without sacrificing the precision required

of a programming language is an open question.

92

But of the many features that could be built into

such a programming language, it seems reasonable

to choose those that make natural language easy to

use. It seems reasonable to aim for programming

languages that have the flexibility and richness

of natural language and for programs that have the

texture and coherence of a natural language

paragraph.

BIBLIOGRAPHY

i. Balzer, R., Imprecise Program Specification,
Proc. Meeting on 20 Years of Computer Science,
Pisa, 1975.

2. Green, C., and D. Barstow, Some Rules for the
Automatic Synthesis of Programs, Advance Papers
Fourth IJCAI, Tbillsl, USSR, 1975, pp. 232-239.

3. Hobbs, J., A General System for Semantic Anal-
ysis of English and Its Use in Drawing Maps
from Directions, American Journal of Computa-
tional Linguistics, Microfiche 32, 1975.

4. Hobbs, J., A Computational Approach to Dis-
course Analysis, Dept. Computer Sciences Re-
search Report 76-2, City College, CUNY,
December 1976.

5. Knuth, D., The Art of Computer Programming,
Vol. i, Reading, Mass., 1973.

6. Miller, L., Natural Language Procedures: Guides
for Programming Language Design, Sixth Congress,
Intl. Ergonomics Association, College Park, Md.,
July 1976.

7. Nylin, W., and J. Harvill, Multiple Tense Com-
puter Progr~-,,ing, SIGPLAN Notices, December
1976.

8. Schwartz, J°T., Reflections on some very-hlgh
level Dictions having an English/'Automatle
Progr~mmlng' Flavor, SETL Newsletter 141,
January 1975, Courant Institute, New York.

9. Scragg, G., Answering Questions about Processes,
University of California, San Diego, 1974.

93

