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Pseudofunctors

> 2-Catis the category of 2-categories and 2-functors between them.

» 2-Cat, is the category of 2-categories and pseudofunctors between
them.

» We have an identity-on-objects inclusion
J: 2-Cat — 2-Cat,
which has a left adjoint [Blackwell-Kelly-Power 1989]
()': 2-Cat, — 2-Cat,

so that pseudofunctors # — £ correspond to 2-functors #' — &.



Explicitly, for a 2-category ¥, we form ¥ as follows:

» Ignore the 2-cells and form the free category FUJ{ on the
underlying 1-graph of J;

» Consider FUJ as a locally discrete 2-category, and take the
factorisation of the counit map &: FUJX — J{ as

FUX % 90 b g

where 4 is bijective on objects and 1-cells and b is locally fully
faithful.



Key observation

» The adjunction ()’ 4 J induces a comonad E = (J-)' on 2-Cat, and
we recapture 2-Caty, as the Kleisli category of this comonad.

» If we could give an intrinsic characterisation of the comonad E in
terms of the structure of the “strict” category 2-Cat, we could
obtain the “pseudo” notion for free.

» In fact, by using some ideas from homotopy theory, we can!



Weak factorisation systems

A weak factorisation system on a category ‘6 consists of two classes of
maps & and R, closed under retracts and satisfying:

» Factorisation: every ¢-map can be decomposed as an £-map
followed by an -map; and

» Orthogonality: f [0 g forevery f € £and g € R,

where f [0 g means that for every commutative square

C
Js
E—— D

A"

)

there exists a diagonal fill-in j: B — C making both triangles commute.



Building weak factorisation systems

In a locally presentable category 6, any set I of maps generates a weak
factorisation system (&£, R) where:

R={g:C—D|fOgforal fel}
$={f:A—-B|fOgforallge R}.

Intuitively:
» Each map f: A — Bin I specifies a valid “boundary” shape (4)

together with a “cell” (B) which fills it: the map f being the
boundary inclusion.

» Each ¥-map in the resultant weak factorisation system is built by
recursively glueing in “I-cells” along their “boundaries” (and then
taking retracts).



Example: 2-Cat

[Lack 2002] In 2-Cat consider the w.f.s. (£, R) generated by the
following set of maps:

TN
0 ° ° o\/o o | °

(<)
(<)

» A 2-functor is an R-map iff it is surjective on objects and 1-cells and
locally fully faithful.

> A 2-functor is an £-map iff, at the underlying category level, it is
obtained by freely adjoining new objects and 1-cells (and then
taking a retract).



Cofibrant replacements

Given a wfs. (£, R) on €:

» We call an object X € € cofibrant if the unique map 0 — X lies in &;

> By a cofibrant replacement for an object X € ‘6, we mean a cofibrant
object Y together with an R-map ¥ — X.

Cofibrant replacements for X correspond to (£, R) factorisations of the
unique map 0 — X.



Example: 2-Cat

» For the above w.f.s. (£, R) on 2-Cat, a 2-category is cofibrant if and
only if its underlying category is free on a graph.

» For any 2-category ¥, a cofibrant replacement is given by #’
together with the counit map ¥’ — .

» So the comonad E = (J-)' on 2-Cat is a “cofibrant replacement
comonad”.

» Question: Can we make this notion precise?



Natural weak factorisation systems

A natural weak factorisation system [Grandis-Tholen 2006] on a category 6
is given by:

» Acomonadl = (L,D,%) on€~;

» Amonad R = (R, A, IT) on €7;

» A distributive law A: LR = RL.

satisfying some laws:
dom - L = dom, cod-L=dom-R, cod - R = cod;

dom - @ = 14om, cod-®=«-R, dom-A=x-L, cod - A = 1c0d;
and dom - £ = 14om, cod - X =dom-A, dom - IT = cod - A, cod - IT = 1¢0q.



Intuitively an “algebraisation” of the notion of weak factorisation

system:

>

The property of being an &-map is replaced with the structure of
being a coalgebra for the comonad L;

The property of being an R-map is replaced with the structure of
being an algebra for the monad R;

The functor part of L sends a map of € to the left half of its

(£, R)-factorisation;

The functor part of R sends a map of € to the right half of its

(£, R)-factorisation;

Liftings between L-coalgebras and R-algebras are built canonically
by interacting their (co)algebraic structure.



Building natural weak factorisation systems

[G. 2007] For a locally presentable category €, any set I of maps in €
generates a natural weak factorisation system (L, R, A) where:

> R-algebras are maps g: C — D of € equipped with a chosen lifting
against every element of I.

> L-algebras are maps f: A — B of € equipped with a specification
of how we recursively glued in “I-cells” along their “boundaries”
(think of computads).

[Universal property: this (L, R, A) is in a suitable sense freely generated
by the set I.]



Cofibrant replacements

Given a n.w.fs. (L, R, A) on €:
» A cofibrant structure on X is an L-map structure on the unique
map!: 0 — X.
> Applying L to amap !: 0 — X sends it to the left half of its
(L, R)-factorisation: i.e., to an object EX for which !: 0 — EX is an
L-map.
» Thus L restricts to a cofibrant replacement comonad E: € — 6.

> We define the weak morphism category €y to be the Kleisli
category of E.



Example: 2-Cat

Consider once again the following set of maps in 2-Cat:
Y

+
NN

|
(<)
(<)

» The cofibrant replacement comonad E they generate is the
comonad (J-)' from above;

» So the weak morphism category is precisely 2-Cat,.



Example: w-Cat

Let w-Cat be the category of strict w-categories and strict morphisms.
Consider the following set of maps:

N N
o NP
g : /V\ /VN
e 2l ed

and let E be the cofibrant replacement comonad they generate.

» E-Coalg is the category of w-computads;

» Arrows of the weak morphism category w-Catyy are sensible weak
morphisms of w-categories.



V'-operads

» Let ¥ be a cocomplete monoidal category: [N, ¥] is the monoidal
category of V'-collections, with “substitution” tensor product

(FoG)(m) = > Fk)®G(n)®- - @Gm).

k,ny,....ng
ny+--Hne=n

» V-Opd = category of monoids in [N, ¥]. We have a monadic
adjunction:

U
V-Opd T " [N,V].
F



Cat-operads

> Cat-Opd is the category of Cat-operads and operad morphisms;

> Cat-Opd,, is the category of Cat-operads and operad
pseudomorphisms;

» We have an identity-on-objects inclusion
J: Cat-Opd — Cat-Opd,,
which has a left adjoint [BKP89]
()': Cat-Opd, — Cat-Opd,

so that operad pseudomorphisms S — T correspond to operad
morphisms ' — T.



Explicitly, for a Cat-operad S, we form S’ as follows:

> View S as a plain Set-operad and form the free Set-operad FUS on
the underlying collection of S;

» Consider FUS as a discrete Cat-operad, and take the factorisation
of the counit map e: FUS — S as

FUS & 82 s

where a is componentwise bijective on objects and b is
componentwise fully faithful.



Algebras for Cat-operads

.. or, “why we care about operad pseudomorphisms”.

» Any category % induces a Cat-operad (€, 6):
(€,€6)(n) = Cat(€",€);

> An algebra for a Cat-operad S is a category ‘6 together with an
operad morphism S — (€, 6).

> A pseudoalgebra for a Cat-operad S is a category 6 together with an
operad pseudomorphism S — (€, 6).



But now

Pseudo-S-algebra structures on 6

Operad pseudomorphisms S — (6, €)

Operad morphisms §' — (6, 6)

Strict §'-algebra structures on 6.

So pseudo-S-algebras are just strict S'-algebras.



Example: monoidal categories

Let S be the terminal Cat-operad, S(n) = 1 foralln € N.
> An S-algebra is a strict monoidal category;
> A pseudo-S-algebra is an unbiased monoidal category;
» S is the operad for unbiased monoidal categories.

We can extend this formalism to deal with “many object” algebras, and
then:

» A many-objects S-algebra is a 2-category;

» A many-objects $'-algebra is an unbiased bicategory.



Are “operad pseudomorphisms” an instance of our “weak morphism”
formalism?

Yes! Let’s give a set of maps generating a suitable n.w.f.s. on Cat-Opd.
First note that:

» We have functors 2, : Cat — [N, Cat] left adjoint to evaluation at

n:
@ ifm=n;
2,(6)(m) = ’
(€)m) {0 otherwise.

» We have a monadic adjunction

U
Cat-Opd _ T " [N, Cat].
F



Now using the maps

1] ° ° e e
f: s g: N h:
° o—— e °e— e

in Cat, we can give a set I of generating maps in Cat-Opd:

» The cofibrant replacement comonad E generated by these maps is
the composite (J-)' from above;
> So the weak morphism category is precisely Cat-Opd,,.

» (NB: cofibrant replacements for the terminal Cat-operad are
precisely [Leinster 2004]’s “algebraic notions of bicategory”.)



Globular operads

[Batanin 1998; Leinster 2004]

> G is the globe category:

N N
oéﬁléﬁz...

satisfying cosource and cotarget equations ss = ts and st = tt.
> GSet = [G°P, Set] is the category of globular sets.

» We have a monadic adjunction

—_—
w-Cat T GSet,

and write T for the induced monad on GSet.



» The category N of globular pasting diagrams is the category of
elements of T1: G°? — Set.

> The category GColl of globular collections is the functor category
[N, Set]; it has a monoidal structure given by substitution of pasting
diagrams.

> GOpd = category of monoids in GColl. We have a monadic
adjunction:

U
GOpd GColl.
F



Algebras for globular operads

» Any globular set X € GSet induces a globular operad (X, X):
(X, X)(n) = Set(X", X(m)) form € T1(m);

> An algebra for a globular operad S is a globular set X together with
a globular operad morphism S — (X, X).

» If S is the terminal globular operad:
S(nr) =1 forallm e N,

then an S-algebra is a strict w-category.

» But what about weak algebras?



Let’s build a set I of generating maps for a n.w.f.s. on GOpd. We start
with this familiar set of maps in GSet:

0 ° ° o\_/o o@o
g : /V\/‘ /V\’
Poee 2 WGeR

Taking the preimage of this set under the forgetful functor
2ri1: GSet/T1 — GSet

gives us a set of maps in GSet/T1 = GColl.



» Explicitly, for every object m € N, we give a map k, of
GColl = [N, Set] by
Ys() + Yi(m)

<ys,yt>J
Yn
(where yy: NP — [N, Set] is the Yoneda embedding).
» Now we take I to be the set of maps { Fk, | € N'} in GOpd.
Let E be the cofibrant replacement comonad generated by this set of

maps in GOpd, and let GOpd,,; be the corresponding weak morphism
category. So we have an adjunction

J
GOpd _ T ' GOpd,,.
)



Now we define:
> A weak algebra for a globular operad S is a globular set X together
with a weak globular operad morphism S — (X, X).
» Arguing as before, a weak S-algebra is precisely a §'-algebra.

» And we find that, if S is the terminal globular operad:
S(m) =1 forallm e N,

then §' is precisely the “initial globular operad with contraction”:
that is, (Leinster’s) operad for weak w-categories.

> So a weak S-algebra is a weak w-category!



Future directions

>

>

>

We can combine the ideas of the previous two sections to get a
category of weak w-categories and weak morphisms.

“Unbiased” versions of A-algebras and their morphisms — using a
n.w.f.s. on chain complexes which is enriched over R-Mod.

Globular computads.

Homotopy limits:

>

>

IfV is a category with a n.w.f.s., we can define a n.w.f:s. on [, V).

Now define a homotopy limit weighted by H € [s4, V] to be a strict
limit weighted by the cofibrant replacement H'.

E.g.: for V" = Cat, we regain the notion of pseudolimit.

E.g.: for ¥ = Ch(R), the homotopy colimit of an arrow is its
mapping cylinder (again using an enriched n.w.fs.).
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