

When pseudo comes for free

Richard Garner

Uppsala University

PSSL 85, Nice

Outline

Pseudofunctors

Some 2-category theory

Some homotopy theory

Some algebraic homotopy theory

Pseudoalgebras

Cat-operads

Globular operads

(NB: Talk notes available at <http://www.dpmms.cam.ac.uk/~rhgg2>)

Pseudofunctors

- ▶ $\mathbf{2}\text{-Cat}$ is the category of 2-categories and 2-functors between them.
- ▶ $\mathbf{2}\text{-Cat}_\psi$ is the category of 2-categories and pseudofunctors between them.
- ▶ We have an identity-on-objects inclusion

$$J: \mathbf{2}\text{-Cat} \rightarrow \mathbf{2}\text{-Cat}_\psi$$

which has a left adjoint [Blackwell-Kelly-Power 1989]

$$(\)': \mathbf{2}\text{-Cat}_\psi \rightarrow \mathbf{2}\text{-Cat},$$

so that pseudofunctors $\mathcal{K} \rightarrow \mathcal{L}$ correspond to 2-functors $\mathcal{K}' \rightarrow \mathcal{L}$.

Explicitly, for a 2-category \mathcal{K} , we form \mathcal{K}' as follows:

- ▶ Ignore the 2-cells and form the free category $FU\mathcal{K}$ on the underlying 1-graph of \mathcal{K} ;
- ▶ Consider $FU\mathcal{K}$ as a locally discrete 2-category, and take the factorisation of the counit map $\varepsilon: FU\mathcal{K} \rightarrow \mathcal{K}$ as

$$FU\mathcal{K} \xrightarrow{a} \mathcal{K}' \xrightarrow{b} \mathcal{K}$$

where a is bijective on objects and 1-cells and b is locally fully faithful.

Key observation

- ▶ The adjunction $(\)' \dashv J$ induces a comonad $E = (J-)'$ on **2-Cat**, and we recapture **2-Cat_ψ** as the Kleisli category of this comonad.
- ▶ If we could give an intrinsic characterisation of the comonad E in terms of the structure of the “strict” category **2-Cat**, we could obtain the “pseudo” notion for free.
- ▶ In fact, by using some ideas from homotopy theory, we can!

Weak factorisation systems

A *weak factorisation system* on a category \mathcal{C} consists of two classes of maps \mathcal{L} and \mathcal{R} , closed under retracts and satisfying:

- ▶ Factorisation: every \mathcal{C} -map can be decomposed as an \mathcal{L} -map followed by an \mathcal{R} -map; and
- ▶ Orthogonality: $f \square g$ for every $f \in \mathcal{L}$ and $g \in \mathcal{R}$,

where $f \square g$ means that for every commutative square

$$\begin{array}{ccc} A & \xrightarrow{h} & C \\ f \downarrow & & \downarrow g \\ B & \xrightarrow{k} & D \end{array}$$

there exists a diagonal fill-in $j: B \rightarrow C$ making both triangles commute.

Building weak factorisation systems

In a locally presentable category \mathcal{C} , any set I of maps generates a weak factorisation system $(\mathcal{L}, \mathcal{R})$ where:

$$\mathcal{R} = \{ g: C \rightarrow D \mid f \square g \text{ for all } f \in I \}$$

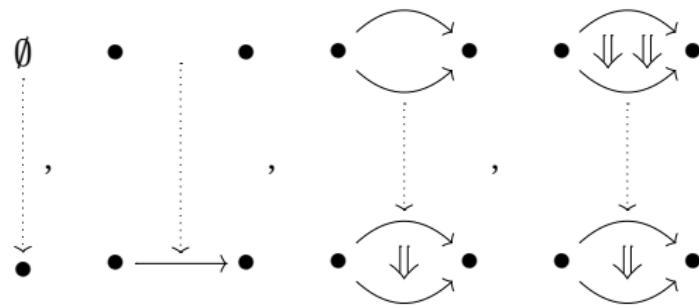
$$\mathcal{L} = \{ f: A \rightarrow B \mid f \square g \text{ for all } g \in \mathcal{R} \}.$$

Intuitively:

- ▶ Each map $f: A \rightarrow B$ in I specifies a valid “boundary” shape (A) together with a “cell” (B) which fills it: the map f being the boundary inclusion.
- ▶ Each \mathcal{L} -map in the resultant weak factorisation system is built by recursively glueing in “ I -cells” along their “boundaries” (and then taking retracts).

Example: 2-Cat

[Lack 2002] In **2-Cat** consider the w.f.s. $(\mathcal{L}, \mathcal{R})$ generated by the following set of maps:



- ▶ A 2-functor is an \mathcal{R} -map iff it is surjective on objects and 1-cells and locally fully faithful.
- ▶ A 2-functor is an \mathcal{L} -map iff, at the underlying category level, it is obtained by freely adjoining new objects and 1-cells (and then taking a retract).

Cofibrant replacements

Given a w.f.s. $(\mathcal{L}, \mathcal{R})$ on \mathcal{C} :

- ▶ We call an object $X \in \mathcal{C}$ *cofibrant* if the unique map $0 \rightarrow X$ lies in \mathcal{L} ;
- ▶ By a *cofibrant replacement* for an object $X \in \mathcal{C}$, we mean a cofibrant object Y together with an \mathcal{R} -map $Y \rightarrow X$.

Cofibrant replacements for X correspond to $(\mathcal{L}, \mathcal{R})$ factorisations of the unique map $0 \rightarrow X$.

Example: 2-Cat

- ▶ For the above w.f.s. $(\mathcal{L}, \mathcal{R})$ on **2-Cat**, a 2-category is cofibrant if and only if its underlying category is free on a graph.
- ▶ For any 2-category \mathcal{K} , a cofibrant replacement is given by \mathcal{K}' together with the counit map $\mathcal{K}' \rightarrow \mathcal{K}$.
- ▶ So the comonad $E = (J-)'$ on **2-Cat** is a “cofibrant replacement comonad”.
- ▶ Question: Can we make this notion precise?

Natural weak factorisation systems

A *natural weak factorisation system* [Grandis-Tholen 2006] on a category \mathcal{C} is given by:

- ▶ A comonad $\mathbb{L} = (L, \Phi, \Sigma)$ on \mathcal{C}^\rightarrow ;
- ▶ A monad $\mathbb{R} = (R, \Lambda, \Pi)$ on \mathcal{C}^\rightarrow ;
- ▶ A distributive law $\Delta: LR \Rightarrow RL$.

satisfying some laws:

$$\begin{array}{lll} \text{dom} \cdot L = \text{dom}, & \text{cod} \cdot L = \text{dom} \cdot R, & \text{cod} \cdot R = \text{cod}; \\ \text{dom} \cdot \Phi = 1_{\text{dom}}, & \text{cod} \cdot \Phi = \kappa \cdot R, & \text{dom} \cdot \Lambda = \kappa \cdot L, \quad \text{cod} \cdot \Lambda = 1_{\text{cod}}; \\ \text{and } \text{dom} \cdot \Sigma = 1_{\text{dom}}, & \text{cod} \cdot \Sigma = \text{dom} \cdot \Delta, & \text{dom} \cdot \Pi = \text{cod} \cdot \Delta, \quad \text{cod} \cdot \Pi = 1_{\text{cod}}. \end{array}$$

Intuitively an “algebraisation” of the notion of weak factorisation system:

- ▶ The *property* of being an \mathcal{L} -map is replaced with the *structure* of being a coalgebra for the comonad \mathbb{L} ;
- ▶ The *property* of being an \mathcal{R} -map is replaced with the *structure* of being an algebra for the monad \mathbb{R} ;
- ▶ The functor part of \mathbb{L} sends a map of \mathcal{C} to the left half of its $(\mathcal{L}, \mathcal{R})$ -factorisation;
- ▶ The functor part of \mathbb{R} sends a map of \mathcal{C} to the right half of its $(\mathcal{L}, \mathcal{R})$ -factorisation;
- ▶ Liftings between \mathbb{L} -coalgebras and \mathbb{R} -algebras are built canonically by interacting their (co)algebraic structure.

Building natural weak factorisation systems

[G. 2007] For a locally presentable category \mathcal{C} , any set I of maps in \mathcal{C} generates a natural weak factorisation system $(\mathbb{L}, \mathbb{R}, \Delta)$ where:

- ▶ \mathbb{R} -algebras are maps $g: C \rightarrow D$ of \mathcal{C} equipped with a *chosen* lifting against every element of I .
- ▶ \mathbb{L} -algebras are maps $f: A \rightarrow B$ of \mathcal{C} equipped with a specification of *how* we recursively glued in “ I -cells” along their “boundaries” (think of computads).

[Universal property: this $(\mathbb{L}, \mathbb{R}, \Delta)$ is in a suitable sense *freely* generated by the set I .]

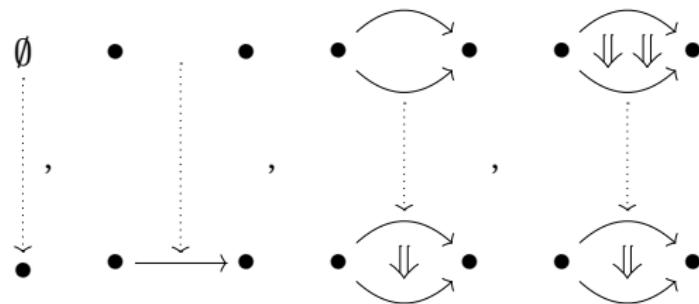
Cofibrant replacements

Given a n.w.f.s. $(\mathbb{L}, \mathbb{R}, \Delta)$ on \mathcal{C} :

- ▶ A cofibrant structure on X is an \mathbb{L} -map structure on the unique map $!: 0 \rightarrow X$.
- ▶ Applying L to a map $!: 0 \rightarrow X$ sends it to the left half of its (\mathbb{L}, \mathbb{R}) -factorisation: i.e., to an object EX for which $!: 0 \rightarrow EX$ is an \mathbb{L} -map.
- ▶ Thus L restricts to a cofibrant replacement comonad $E: \mathcal{C} \rightarrow \mathcal{C}$.
- ▶ We define the *weak morphism* category \mathcal{C}_{wk} to be the Kleisli category of E .

Example: 2-Cat

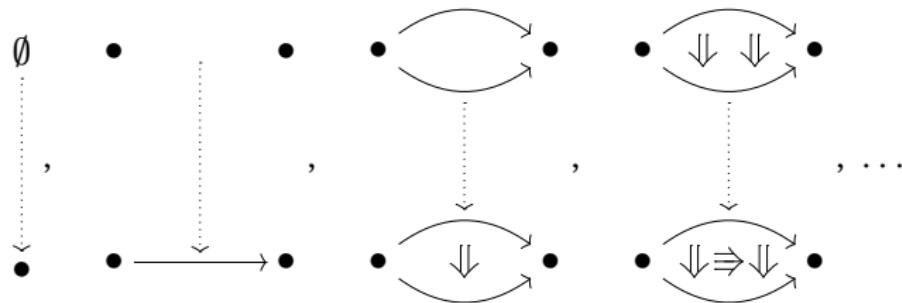
Consider once again the following set of maps in 2-Cat:



- ▶ The cofibrant replacement comonad E they generate is the comonad $(J-)^t$ from above;
- ▶ So the weak morphism category is precisely 2-Cat_ψ .

Example: ω -Cat

Let ω -Cat be the category of strict ω -categories and strict morphisms. Consider the following set of maps:



and let E be the cofibrant replacement comonad they generate.

- ▶ E -Coalg is the category of ω -computads;
- ▶ Arrows of the weak morphism category ω -Cat_{wk} are sensible weak morphisms of ω -categories.

\mathcal{V} -operads

- Let \mathcal{V} be a cocomplete monoidal category: $[\mathbb{N}, \mathcal{V}]$ is the monoidal category of \mathcal{V} -collections, with “substitution” tensor product

$$(F \diamond G)(n) = \sum_{\substack{k, n_1, \dots, n_k \\ n_1 + \dots + n_k = n}} F(k) \otimes G(n_1) \otimes \dots \otimes G(n_k).$$

- $\mathcal{V}\text{-}\mathbf{Opd}$ = category of monoids in $[\mathbb{N}, \mathcal{V}]$. We have a monadic adjunction:

$$\begin{array}{c} \mathcal{V}\text{-}\mathbf{Opd} \end{array} \begin{array}{c} \xrightarrow{U} \\ \xleftarrow{F} \end{array} [\mathbb{N}, \mathcal{V}].$$

Cat-operads

- ▶ **Cat-Opd** is the category of **Cat**-operads and operad morphisms;
- ▶ **Cat-Opd_ψ** is the category of **Cat**-operads and operad pseudomorphisms;
- ▶ We have an identity-on-objects inclusion

$$J: \mathbf{Cat}\text{-}\mathbf{Opd} \rightarrow \mathbf{Cat}\text{-}\mathbf{Opd}_\psi$$

which has a left adjoint [BKP89]

$$()': \mathbf{Cat}\text{-}\mathbf{Opd}_\psi \rightarrow \mathbf{Cat}\text{-}\mathbf{Opd},$$

so that operad pseudomorphisms $S \rightarrow T$ correspond to operad morphisms $S' \rightarrow T$.

Explicitly, for a **Cat**-operad S , we form S' as follows:

- ▶ View S as a plain **Set**-operad and form the free **Set**-operad FUS on the underlying collection of S ;
- ▶ Consider FUS as a discrete **Cat**-operad, and take the factorisation of the counit map $\varepsilon: FUS \rightarrow S$ as

$$FUS \xrightarrow{a} S' \xrightarrow{b} S$$

where a is componentwise bijective on objects and b is componentwise fully faithful.

Algebras for Cat-operads

... or, “why we care about operad pseudomorphisms”.

- ▶ Any category \mathcal{C} induces a **Cat**-operad $\langle \mathcal{C}, \mathcal{C} \rangle$:

$$\langle \mathcal{C}, \mathcal{C} \rangle(n) = \mathbf{Cat}(\mathcal{C}^n, \mathcal{C});$$

- ▶ An *algebra* for a **Cat**-operad S is a category \mathcal{C} together with an operad morphism $S \rightarrow \langle \mathcal{C}, \mathcal{C} \rangle$.
- ▶ A *pseudoalgebra* for a **Cat**-operad S is a category \mathcal{C} together with an operad pseudomorphism $S \rightarrow \langle \mathcal{C}, \mathcal{C} \rangle$.

But now

Pseudo- S -algebra structures on \mathcal{C}

Operad pseudomorphisms $S \rightarrow \langle \mathcal{C}, \mathcal{C} \rangle$

Operad morphisms $S' \rightarrow \langle \mathcal{C}, \mathcal{C} \rangle$

Strict S' -algebra structures on \mathcal{C} .

So *pseudo- S -algebras are just strict S' -algebras*.

Example: monoidal categories

Let S be the terminal **Cat**-operad, $S(n) = 1$ for all $n \in \mathbb{N}$.

- ▶ An S -algebra is a strict monoidal category;
- ▶ A pseudo- S -algebra is an unbiased monoidal category;
- ▶ S' is the operad for unbiased monoidal categories.

We can extend this formalism to deal with “many object” algebras, and then:

- ▶ A many-objects S -algebra is a 2-category;
- ▶ A many-objects S' -algebra is an unbiased bicategory.

Are “operad pseudomorphisms” an instance of our “weak morphism” formalism?

Yes! Let’s give a set of maps generating a suitable n.w.f.s. on **Cat-Opd**. First note that:

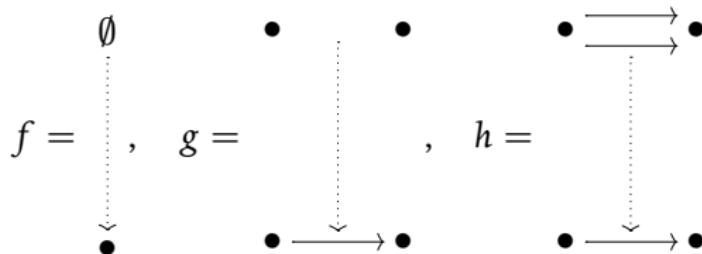
- We have functors $\Sigma_n: \mathbf{Cat} \rightarrow [\mathbb{N}, \mathbf{Cat}]$ left adjoint to evaluation at n :

$$\Sigma_n(\mathcal{C})(m) = \begin{cases} \mathcal{C} & \text{if } m = n; \\ 0 & \text{otherwise.} \end{cases}$$

- We have a monadic adjunction

$$\mathbf{Cat-Opd} \begin{array}{c} \xrightarrow{U} \\ \xleftarrow{F} \end{array} [\mathbb{N}, \mathbf{Cat}].$$

Now using the maps



in **Cat**, we can give a set I of generating maps in **Cat-Opd**:

$$I = \{ F\Sigma_i(f), F\Sigma_i(g), F\Sigma_i(h) \mid i \in \mathbb{N} \}.$$

- ▶ The cofibrant replacement comonad E generated by these maps is the composite $(J-)'$ from above;
- ▶ So the weak morphism category is precisely **Cat-Opd** $_{\psi}$.
- ▶ (NB: cofibrant replacements for the terminal **Cat**-operad are precisely [Leinster 2004]'s “algebraic notions of bicategory”.)

Globular operads

[Batanin 1998; Leinster 2004]

- ▶ \mathbb{G} is the *globe category*:

$$0 \xrightarrow[s]{t} 1 \xrightarrow[s]{t} 2 \dots$$

satisfying cosource and cotarget equations $ss = ts$ and $st = tt$.

- ▶ $\mathbf{GSet} = [\mathbb{G}^{\text{op}}, \mathbf{Set}]$ is the category of *globular sets*.
- ▶ We have a monadic adjunction

$$\omega\text{-}\mathbf{Cat} \mathop{\rightleftarrows} \mathbf{GSet},$$

and write T for the induced monad on \mathbf{GSet} .

- ▶ The category \mathcal{N} of *globular pasting diagrams* is the category of elements of $T1: \mathbb{G}^{\text{op}} \rightarrow \mathbf{Set}$.
- ▶ The category **GColl** of *globular collections* is the functor category $[\mathcal{N}, \mathbf{Set}]$; it has a monoidal structure given by substitution of pasting diagrams.
- ▶ **GOpd** = category of monoids in **GColl**. We have a monadic adjunction:

$$\mathbf{GOpd} \begin{array}{c} \xrightarrow{U} \\ \perp \\ \xleftarrow{F} \end{array} \mathbf{GColl}.$$

Algebras for globular operads

- ▶ Any globular set $X \in \mathbf{GSet}$ induces a globular operad $\langle X, X \rangle$:

$$\langle X, X \rangle(\pi) = \mathbf{Set}(X^{\hat{\pi}}, X(m)) \quad \text{for } \pi \in T1(m);$$

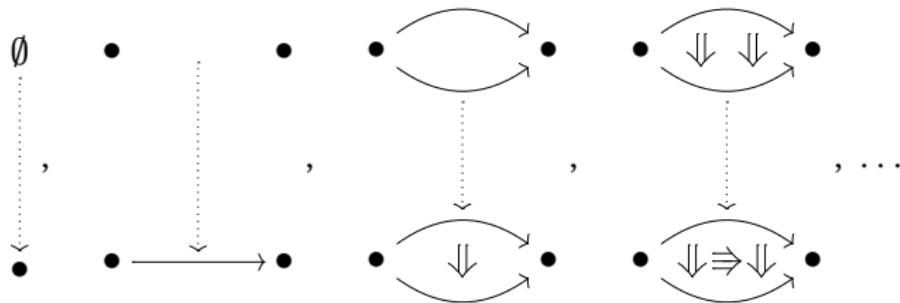
- ▶ An algebra for a globular operad S is a globular set X together with a globular operad morphism $S \rightarrow \langle X, X \rangle$.
- ▶ If S is the terminal globular operad:

$$S(\pi) = 1 \quad \text{for all } \pi \in \mathcal{N},$$

then an S -algebra is a strict ω -category.

- ▶ But what about weak algebras?

Let's build a set I of generating maps for a n.w.f.s. on **GOpd**. We start with this familiar set of maps in **GSet**:



Taking the preimage of this set under the forgetful functor

$$\Sigma_{T1} : \mathbf{GSet}/T1 \rightarrow \mathbf{GSet}$$

gives us a set of maps in $\mathbf{GSet}/T1 \cong \mathbf{GColl}$.

- ▶ Explicitly, for every object $\pi \in \mathcal{N}$, we give a map k_π of $\mathbf{GColl} = [\mathcal{N}, \mathbf{Set}]$ by

$$\begin{array}{c} y_{s(\pi)} + y_{t(\pi)} \\ \langle y_s, y_t \rangle \downarrow \\ y_\pi \end{array}$$

(where $y_{(-)}: \mathcal{N}^{\text{op}} \rightarrow [\mathcal{N}, \mathbf{Set}]$ is the Yoneda embedding).

- ▶ Now we take I to be the set of maps $\{ Fk_\pi \mid \pi \in \mathcal{N} \}$ in \mathbf{GOpd} .

Let E be the cofibrant replacement comonad generated by this set of maps in \mathbf{GOpd} , and let $\mathbf{GOpd}_{\text{wk}}$ be the corresponding weak morphism category. So we have an adjunction

$$\mathbf{GOpd} \begin{array}{c} \xrightarrow{J} \\ \xleftarrow[\text{ ()' }]{\top} \end{array} \mathbf{GOpd}_{\text{wk}}.$$

Now we define:

- ▶ A weak algebra for a globular operad S is a globular set X together with a weak globular operad morphism $S \rightarrow \langle X, X \rangle$.
- ▶ Arguing as before, a weak S -algebra is precisely a S' -algebra.
- ▶ And we find that, if S is the terminal globular operad:

$$S(\pi) = 1 \quad \text{for all } \pi \in \mathcal{N},$$

then S' is precisely the “initial globular operad with contraction”: that is, (Leinster’s) operad for weak ω -categories.

- ▶ So a weak S -algebra is a weak ω -category!

Future directions

- ▶ We can combine the ideas of the previous two sections to get a category of weak ω -categories and weak morphisms.
- ▶ “Unbiased” versions of A_∞ -algebras and their morphisms – using a n.w.f.s. on chain complexes which is *enriched* over $R\text{-Mod}$.
- ▶ Globular computads.

Homotopy limits:

- ▶ If \mathcal{V} is a category with a n.w.f.s., we can define a n.w.f.s. on $[\mathcal{A}, \mathcal{V}]$.
- ▶ Now define a homotopy limit weighted by $H \in [\mathcal{A}, \mathcal{V}]$ to be a strict limit weighted by the cofibrant replacement H' .
- ▶ E.g.: for $\mathcal{V} = \mathbf{Cat}$, we regain the notion of *pseudolimit*.
- ▶ E.g.: for $\mathcal{V} = \mathbf{Ch}(R)$, the homotopy colimit of an arrow is its mapping cylinder (again using an enriched n.w.f.s.).

Bibliography

- ▶ Two-dimensional monad theory
[R. Blackwell, G.M. Kelly, J. Power, JPAA 59:1–41, 1989]
- ▶ A Quillen model structure for 2-categories
[S. Lack, K-Theory 26:171-205, 2002]
- ▶ Natural weak factorisation systems
[M. Grandis, W. Tholen, Archivum Mathematicum 42:397–408, 2006]
- ▶ Cofibrantly generated natural weak factorisation systems
[R. Garner, arXiv preprint math.CT/0702290, 2007]
- ▶ Monoidal globular categories [...]
[M. Batanin, Adv. Math. 136:39–103, 1998]
- ▶ Higher operads, higher categories
[T. Leinster, LMS Lecture Notes 298, 2004]