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Pseudofunctors

◮ 2-Cat is the category of 2-categories and 2-functors between them.

◮ 2-Catψ is the category of 2-categories and pseudofunctors between

them.

◮ We have an identity-on-objects inclusion

J : 2-Cat → 2-Catψ

which has a left adjoint [Blackwell-Kelly-Power 1989]

( )′ : 2-Catψ → 2-Cat,

so that pseudofunctors K → L correspond to 2-functors K′ → L.



Explicitly, for a 2-category K, we form K′ as follows:

◮ Ignore the 2-cells and form the free category FUK on the

underlying 1-graph of K;

◮ Consider FUK as a locally discrete 2-category, and take the

factorisation of the counit map ǫ : FUK → K as

FUK
a
−→ K′ b

−→ K

where a is bijective on objects and 1-cells and b is locally fully

faithful.



Key observation

◮ The adjunction ( )′ ⊣ J induces a comonad E = (J–)′ on 2-Cat, and

we recapture 2-Catψ as the Kleisli category of this comonad.

◮ If we could give an intrinsic characterisation of the comonad E in

terms of the structure of the “strict” category 2-Cat, we could

obtain the “pseudo” notion for free.

◮ In fact, by using some ideas from homotopy theory, we can!



Weak factorisation systems

A weak factorisation system on a category C consists of two classes of

maps L and R, closed under retracts and satisfying:

◮ Factorisation: every C-map can be decomposed as an L-map

followed by an R-map; and

◮ Orthogonality: f� g for every f ∈ L and g ∈ R,

where f� g means that for every commutative square

A
h

f

C

g

B
k

D

there exists a diagonal fill-in j : B → C making both triangles commute.



Building weak factorisation systems

In a locally presentable category C, any set I of maps generates a weak

factorisation system (L,R) where:

R = { g : C → D | f� g for all f ∈ I }

L = {f : A → B | f� g for all g ∈ R} .

Intuitively:

◮ Each map f : A → B in I specifies a valid “boundary” shape (A)

together with a “cell” (B) which fills it: the map f being the

boundary inclusion.

◮ Each L-map in the resultant weak factorisation system is built by

recursively glueing in “I-cells” along their “boundaries” (and then

taking retracts).



Example: 2-Cat

[Lack 2002] In 2-Cat consider the w.f.s. (L,R) generated by the

following set of maps:

;

•

,

• •

• •

,

• •

• •

,

• •

• •

◮ A 2-functor is an R-map iff it is surjective on objects and 1-cells and

locally fully faithful.

◮ A 2-functor is an L-map iff, at the underlying category level, it is

obtained by freely adjoining new objects and 1-cells (and then

taking a retract).



Cofibrant replacements

Given a w.f.s. (L,R) on C:

◮ We call an object X ∈ C cofibrant if the unique map 0 → X lies in L;

◮ By a cofibrant replacement for an object X ∈ C, we mean a cofibrant

object Y together with an R-map Y → X.

Cofibrant replacements for X correspond to (L,R) factorisations of the

unique map 0 → X.



Example: 2-Cat

◮ For the above w.f.s. (L,R) on 2-Cat, a 2-category is cofibrant if and

only if its underlying category is free on a graph.

◮ For any 2-category K, a cofibrant replacement is given by K′

together with the counit map K′ → K.

◮ So the comonad E = (J–)′ on 2-Cat is a “cofibrant replacement

comonad”.

◮ Question: Can we make this notion precise?



Natural weak factorisation systems

A natural weak factorisation system [Grandis-Tholen 2006] on a category C

is given by:

◮ A comonad L = (L,Φ,Σ) on C→;

◮ A monad R = (R,Λ,Π) on C→;

◮ A distributive law ∆: LR ⇒ RL.

satisfying some laws:

dom · L = dom, cod · L = dom · R, cod · R = cod;

dom ·Φ = 1dom , cod · Φ = κ · R, dom · Λ = κ · L, cod · Λ = 1cod ;

and dom · Σ = 1dom , cod · Σ = dom · ∆, dom ·Π = cod · ∆, cod · Π = 1cod .



Intuitively an “algebraisation” of the notion of weak factorisation

system:

◮ The property of being an L-map is replaced with the structure of

being a coalgebra for the comonad L;

◮ The property of being an R-map is replaced with the structure of

being an algebra for the monad R;

◮ The functor part of L sends a map of C to the left half of its

(L,R)-factorisation;

◮ The functor part of R sends a map of C to the right half of its

(L,R)-factorisation;

◮ Liftings between L-coalgebras and R-algebras are built canonically

by interacting their (co)algebraic structure.



Building natural weak factorisation systems

[G. 2007] For a locally presentable category C, any set I of maps in C

generates a natural weak factorisation system (L,R,∆) where:

◮ R-algebras are maps g : C → D of C equipped with a chosen lifting

against every element of I.

◮ L-algebras are maps f : A → B of C equipped with a specification

of how we recursively glued in “I-cells” along their “boundaries”

(think of computads).

[Universal property: this (L,R,∆) is in a suitable sense freely generated

by the set I.]



Cofibrant replacements

Given a n.w.f.s. (L,R,∆) on C:

◮ A cofibrant structure on X is an L-map structure on the unique

map ! : 0 → X.

◮ Applying L to a map ! : 0 → X sends it to the left half of its

(L,R)-factorisation: i.e., to an object EX for which ! : 0 → EX is an

L-map.

◮ Thus L restricts to a cofibrant replacement comonad E : C → C.

◮ We define the weak morphism category Cwk to be the Kleisli

category of E.



Example: 2-Cat

Consider once again the following set of maps in 2-Cat:

;

•

,

• •

• •

,

• •

• •

,

• •

• •

◮ The cofibrant replacement comonad E they generate is the

comonad (J–)′ from above;

◮ So the weak morphism category is precisely 2-Catψ.



Example: ω-Cat

Let ω-Cat be the category of strict ω-categories and strict morphisms.

Consider the following set of maps:

;

•

,

• •

• •

,

• •

• •

,

• •

• •

, . . .

and let E be the cofibrant replacement comonad they generate.

◮ E-Coalg is the category of ω-computads;

◮ Arrows of the weak morphism category ω-Catwk are sensible weak

morphisms of ω-categories.



V-operads

◮ Let V be a cocomplete monoidal category: [N,V] is the monoidal

category of V-collections, with “substitution” tensor product

(F ⋄ G)(n) =
∑

k,n1,...,nk
n1+···+nk=n

F(k) ⊗ G(n1) ⊗ · · · ⊗ G(nk).

◮ V-Opd = category of monoids in [N,V]. We have a monadic

adjunction:

V-Opd
U

⊤ [N,V].
F



Cat-operads

◮ Cat-Opd is the category of Cat-operads and operad morphisms;

◮ Cat-Opdψ is the category of Cat-operads and operad

pseudomorphisms;

◮ We have an identity-on-objects inclusion

J : Cat-Opd → Cat-Opdψ

which has a left adjoint [BKP89]

( )′ : Cat-Opdψ → Cat-Opd,

so that operad pseudomorphisms S → T correspond to operad

morphisms S′ → T.



Explicitly, for a Cat-operad S, we form S′ as follows:

◮ View S as a plain Set-operad and form the free Set-operad FUS on

the underlying collection of S;

◮ Consider FUS as a discrete Cat-operad, and take the factorisation

of the counit map ǫ : FUS → S as

FUS
a
−→ S′

b
−→ S

where a is componentwise bijective on objects and b is

componentwise fully faithful.



Algebras for Cat-operads

. . . or, “why we care about operad pseudomorphisms”.

◮ Any category C induces a Cat-operad 〈C,C〉:

〈C,C〉(n) = Cat(Cn,C);

◮ An algebra for a Cat-operad S is a category C together with an

operad morphism S → 〈C,C〉.

◮ A pseudoalgebra for a Cat-operad S is a category C together with an

operad pseudomorphism S → 〈C,C〉.



But now

Pseudo-S-algebra structures on C

Operad pseudomorphisms S → 〈C,C〉

Operad morphisms S′ → 〈C,C〉

Strict S′-algebra structures on C.

So pseudo-S-algebras are just strict S′-algebras.



Example: monoidal categories

Let S be the terminal Cat-operad, S(n) = 1 for all n ∈ N.

◮ An S-algebra is a strict monoidal category;

◮ A pseudo-S-algebra is an unbiased monoidal category;

◮ S′ is the operad for unbiased monoidal categories.

We can extend this formalism to deal with “many object” algebras, and

then:

◮ A many-objects S-algebra is a 2-category;

◮ A many-objects S′-algebra is an unbiased bicategory.



Are “operad pseudomorphisms” an instance of our “weak morphism”

formalism?

Yes! Let’s give a set of maps generating a suitable n.w.f.s. on Cat-Opd.

First note that:

◮ We have functors Σn : Cat → [N,Cat] left adjoint to evaluation at

n:

Σn(C)(m) =

{

C if m = n;

0 otherwise.

◮ We have a monadic adjunction

Cat-Opd
U

⊤ [N,Cat].
F



Now using the maps

f =

;

•

, g =

• •

• •

, h =

• •

• •

in Cat, we can give a set I of generating maps in Cat-Opd:

I = { FΣi(f), FΣi(g), FΣi(h) | i ∈ N } .

◮ The cofibrant replacement comonad E generated by these maps is

the composite (J–)′ from above;

◮ So the weak morphism category is precisely Cat-Opdψ.

◮ (NB: cofibrant replacements for the terminal Cat-operad are

precisely [Leinster 2004]’s “algebraic notions of bicategory”.)



Globular operads

[Batanin 1998; Leinster 2004]

◮ G is the globe category:

0
s

t
1

s

t
2 . . .

satisfying cosource and cotarget equations ss = ts and st = tt.

◮ GSet = [Gop, Set] is the category of globular sets.

◮ We have a monadic adjunction

ω-Cat ⊤ GSet,

and write T for the induced monad on GSet.



◮ The category N of globular pasting diagrams is the category of

elements of T1 : G
op → Set.

◮ The category GColl of globular collections is the functor category

[N, Set]; it has a monoidal structure given by substitution of pasting

diagrams.

◮ GOpd = category of monoids in GColl. We have a monadic

adjunction:

GOpd
U

⊤ GColl.
F



Algebras for globular operads

◮ Any globular set X ∈ GSet induces a globular operad 〈X, X〉:

〈X, X〉(π) = Set(Xπ̂, X(m)) for π ∈ T1(m);

◮ An algebra for a globular operad S is a globular set X together with

a globular operad morphism S → 〈X, X〉.

◮ If S is the terminal globular operad:

S(π) = 1 for all π ∈ N,

then an S-algebra is a strict ω-category.

◮ But what about weak algebras?



Let’s build a set I of generating maps for a n.w.f.s. on GOpd. We start

with this familiar set of maps in GSet:

;

•

,

• •

• •

,

• •

• •

,

• •

• •

, . . .

Taking the preimage of this set under the forgetful functor

ΣT1 : GSet/T1 → GSet

gives us a set of maps in GSet/T1 ∼= GColl.



◮ Explicitly, for every object π ∈ N, we give a map kπ of

GColl = [N, Set] by

ys(π) + yt(π)

〈ys,yt〉

yπ

(where y(–) : N
op → [N, Set] is the Yoneda embedding).

◮ Now we take I to be the set of maps {Fkπ | π ∈ N} in GOpd.

Let E be the cofibrant replacement comonad generated by this set of

maps in GOpd, and let GOpdwk be the corresponding weak morphism

category. So we have an adjunction

GOpd
J

⊤ GOpdwk.
( )′



Now we define:

◮ A weak algebra for a globular operad S is a globular set X together

with a weak globular operad morphism S → 〈X, X〉.

◮ Arguing as before, a weak S-algebra is precisely a S′-algebra.

◮ And we find that, if S is the terminal globular operad:

S(π) = 1 for all π ∈ N,

then S′ is precisely the “initial globular operad with contraction”:

that is, (Leinster’s) operad for weak ω-categories.

◮ So a weak S-algebra is a weak ω-category!



Future directions

◮ We can combine the ideas of the previous two sections to get a

category of weak ω-categories and weak morphisms.

◮ “Unbiased” versions of A∞-algebras and their morphisms – using a

n.w.f.s. on chain complexes which is enriched over R-Mod.

◮ Globular computads.

Homotopy limits:

◮ If V is a category with a n.w.f.s., we can define a n.w.f.s. on [A,V].

◮ Now define a homotopy limit weighted by H ∈ [A,V] to be a strict

limit weighted by the cofibrant replacement H′.

◮ E.g.: for V = Cat, we regain the notion of pseudolimit.

◮ E.g.: for V = Ch(R), the homotopy colimit of an arrow is its

mapping cylinder (again using an enriched n.w.f.s.).
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