Making weak maps compose strictly

Richard Garner

Uppsala University

CT 2008, Calais

Outline

Motivation

Weak maps of bicategories

Weak maps of tricategories

Weak maps of weak ω -categories

(NB: Talk notes available at http://www.dpmms.cam.ac.uk/ \sim rhgg2)

Motivation

Consider a category & with:

- Objects being higher-dimensional ——s;
- ► *Morphisms* being strict structure-preserving maps.

Would like to derive \mathscr{C}_{wk} with:

- ► Same objects;
- ► Morphisms being *weak* structure-preserving maps.

Motivation

Idea from homotopy theory: identify

weak maps
$$X \to Y$$
 with strict maps $X' \to \tilde{Y}$

where:

- ightharpoonup X' is a cofibrant replacement for X;
- \tilde{Y} is a fibrant replacement for Y.

Ch(R), category of (positively graded) chain complexes over R.

▶ A strict map $X \rightarrow Y$ is a map of chain complexes;

Ch(R), category of (positively graded) chain complexes over R.

- ▶ A strict map $X \rightarrow Y$ is a map of chain complexes;
- ▶ A strict map $X' \to Y$ is a map which preserves the R-module structure only up to homotopy;

Ch(R), category of (positively graded) chain complexes over R.

- ▶ A strict map $X \rightarrow Y$ is a map of chain complexes;
- ▶ A strict map $X' \to Y$ is a map which preserves the R-module structure only up to homotopy;
- ▶ A strict map $X \to \tilde{Y}$ is a map which preserves the differential only up to homotopy;

Ch(R), category of (positively graded) chain complexes over R.

- ▶ A strict map $X \rightarrow Y$ is a map of chain complexes;
- ▶ A strict map $X' \to Y$ is a map which preserves the R-module structure only up to homotopy;
- ▶ A strict map $X \to \tilde{Y}$ is a map which preserves the differential only up to homotopy;
- ▶ A strict map $X' \to \tilde{Y}$ (= weak map $X \to Y$) is a map which preserves the R-module structure and the differential only up to homotopy.

Let $f: X \to Z$ in **Cat**. Can form the *interval category* $f/\mathbf{Cat}/Z$:

- ▶ *Objects* are $X \xrightarrow{g} Y \xrightarrow{h} Z$ with hg = f;
- ► *Morphisms* are commutative diamonds:

Corresponding weak maps should be pseudo-commutative diamonds:

Corresponding weak maps should be pseudo-commutative diamonds:

... and these are precisely strict maps

where:

... fibrant replacement of $X \xrightarrow{j} W \xrightarrow{k} Z$ is:

$$X \xrightarrow{\lambda_k \circ j} W \downarrow_{\cong} k \xrightarrow{\rho_k} Z$$

... fibrant replacement of $X \xrightarrow{j} W \xrightarrow{k} Z$ is:

$$X \xrightarrow{\lambda_k \circ j} W \downarrow_{\cong} k \xrightarrow{\rho_k} Z$$

and cofibrant replacement of $X \xrightarrow{g} Y \xrightarrow{h} Z$ is:

$$X \xrightarrow{l_g} g \uparrow_{\cong} Y \xrightarrow{h \circ r_g} Z.$$

How to compose weak maps?

Idea from category theory:

- ▶ Cofibrant replacement should be a *comonad* (–)': $\mathscr{C} \to \mathscr{C}$;
- ▶ Fibrant replacement should be a monad (-): $\mathscr{C} \to \mathscr{C}$;
- ▶ There should be a distributive law $d_X: (\tilde{X})' \to \widetilde{X}'$.

How to compose weak maps?

Idea from category theory:

- ▶ Cofibrant replacement should be a *comonad* (–)': $\mathscr{C} \to \mathscr{C}$;
- ▶ Fibrant replacement should be a *monad* $\widetilde{(-)}$: $\mathscr{C} \to \mathscr{C}$;
- ▶ There should be a distributive law d_X : $(\tilde{X})' \to \tilde{X}'$.

Now composition of weak maps is two-sided Kleisli composition:

$$\begin{array}{ccc} (X' \xrightarrow{f} \tilde{Y}) \ \circ \ (Y' \xrightarrow{g} \tilde{Z}) & := \\ X' \xrightarrow{\Delta_X} X'' \xrightarrow{f'} (\tilde{Y})' \xrightarrow{d_Y} \widetilde{Y'} \xrightarrow{\tilde{g}} \tilde{Z} \xrightarrow{\mu_Z} \tilde{Z}. \end{array}$$

- ► Cofibrant replacement is a comonad [Grandis—Tholen 2006];
- ► Fibrant replacement *is* a monad [loc. cit.];
- ► There *is* a distributive law between them;

and corresponding Kleisli composition is what you think it is: pasting of pseudo-commutative diamonds.

In general

If a (locally presentable) category ${\mathscr C}$ has a cofibrantly generated model structure on it, then:

- Cofibrant replacement can be made a comonad [G. 2008];
- ► Fibrant replacement can be made a monad [loc. cit.];
- ▶ But not clear how to get a distributive law between them!

So in this talk, we focus on the case where *every object is fibrant*. (As then we only need cofibrant replacement comonad).

Weak maps of bicategories

Consider the category **Bicat**_s:

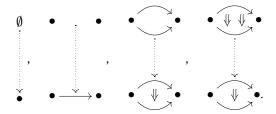
- Objects are bicategories;
- ► *Morphisms* are strict homomorphisms.

There is a cofibrantly generated model structure on **Bicat**_s [Lack, 2004], wherein:

- Weak equivalences are biequivalences;
- ► Every object is fibrant.

What are the corresponding weak maps?

First we describe cofibrant replacement comonad (–)'. It is generated by the following set of maps in **Bicat**_s:



Explicitly, if \mathfrak{B} is a bicategory, then \mathfrak{B}' is given as follows:

▶ Ignore the 2-cells and form the free bicategory $FU\mathcal{R}$ on the underlying 1-graph of \mathcal{R} ;

Explicitly, if \mathcal{B} is a bicategory, then \mathcal{B}' is given as follows:

- ▶ Ignore the 2-cells and form the free bicategory *FU*ℬ on the underlying 1-graph of ℬ;
- ▶ Factorise the counit map ε : $FU\Re \to \Re$ as

$$FU\mathfrak{B} \xrightarrow{a} \mathfrak{B}' \xrightarrow{b} \mathfrak{B}$$

where a is bijective on objects and 1-cells and b is locally fully faithful.

(NB: this is the flexible replacement of [Blackwell-Kelly-Power 1989]).

Proposition (Coherence for homomorphisms)

The co-Kleisli category of (-)': **Bicat**_s \rightarrow **Bicat**_s is isomorphic to the category **Bicat** of bicategories and homomorphisms.

Proposition (Coherence for homomorphisms)

The co-Kleisli category of (-)': **Bicat**_s \rightarrow **Bicat**_s is isomorphic to the category **Bicat** of bicategories and homomorphisms.

Proof.

- ▶ First define a comonad H on \mathbf{Bicat}_s such that $\mathbf{Kl}(H) \cong \mathbf{Bicat}$ by construction;
- ▶ Then show that $H \cong (-)'$ as comonads.

Proposition (Coherence for homomorphisms)

The co-Kleisli category of (-)': **Bicat**_s \rightarrow **Bicat**_s is isomorphic to the category **Bicat** of bicategories and homomorphisms.

Proof.

- ▶ First define a comonad H on \mathbf{Bicat}_s such that $\mathbf{Kl}(H) \cong \mathbf{Bicat}$ by construction:
- ▶ Then show that $H \cong (-)'$ as comonads.

Explicitly, given bicategory \Re , we form $H\Re$ as follows:

Start with $FU\mathcal{B}$ as above. Given $f: X \to Y$ in \mathcal{B} , write $[f]: X \to Y$ for corresponding generator in $FU\mathcal{B}$.

Now adjoin 2-cells to $FU\Re$ as follows:

► For each
$$\alpha$$
: $f \Rightarrow g$ in \Re , a 2-cell

$$[\alpha]: [f] \Rightarrow [g];$$

► For each
$$X \in \mathcal{B}$$
, a 2-cell $\eta_X : id_X \Rightarrow [id_X]$;

► For each
$$X \xrightarrow{f} Y \xrightarrow{g} Z \in \mathcal{B}$$
, a 2-cell
$$\mu_{\sigma, f} \colon [g] \circ [f] \Rightarrow [g \circ f];$$

Now adjoin 2-cells to FUR as follows:

► For each
$$\alpha$$
: $f \Rightarrow g$ in \Re , a 2-cell

$$[\alpha] \colon [f] \Rightarrow [g];$$

► For each
$$X \in \mathcal{B}$$
, a 2-cell $\eta_X : id_X \Rightarrow [id_X]$;

► For each
$$X \xrightarrow{f} Y \xrightarrow{g} Z \in \mathcal{B}$$
, a 2-cell
$$\mu_{g,f} \colon [g] \circ [f] \Rightarrow [g \circ f];$$

And quotient out the 2-cells by equations making:

- ► [–] be functorial on 2-cells;
- $\blacktriangleright \mu_{g,f}$ be natural in g and f;
- ► The $\mu_{g,f}$'s and η_X 's satisfy the unit and associativity laws.

The result of this is H \Re .

▶ By construction, maps H \Re → \mathscr{C} are in bijection with

homomorphisms $\mathfrak{B} \to \mathscr{C}$.

- ▶ By construction, maps H \Re → \mathscr{C} are in bijection with
- homomorphisms $\mathcal{B} \to \mathcal{C}$. ▶ We can now make *H* into a comonad so that $Kl(H) \cong Bicat$

(comonad structure on *H* is combinatorial essence of composition

of homomorphisms—compare [Hess-Parent-Scott 2006]).

- ▶ By construction, maps H \Re → \mathscr{C} are in bijection with
- homomorphisms $\mathcal{B} \to \mathcal{C}$.
- ► We can now make H into a comonad so that $\mathbf{Kl}(H) \cong \mathbf{Bicat}$

(comonad structure on *H* is combinatorial essence of composition

▶ Finally, we show that $H \cong (-)'$ as comonads (a normalization proof).

of homomorphisms—compare [Hess-Parent-Scott 2006]).

Weak maps of tricategories

Consider the category **Tricat**_s:

- ► *Objects* are tricategories;
- ► *Morphisms* are strict homomorphisms.

We use an algebraic definition of tricategory, so \mathbf{Tricat}_s is l.f.p. and in particular cocomplete.

Weak maps of tricategories

Consider the category **Tricat**_s:

- Objects are tricategories;
- ► *Morphisms* are strict homomorphisms.

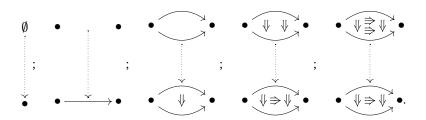
We use an algebraic definition of tricategory, so \mathbf{Tricat}_s is l.f.p. and in particular cocomplete.

No-one has written down the cofibrantly generated model structure on $Tricat_s$ yet, but it should have:

- Weak equivalences being triequivalences;
- Every object being fibrant.

Can we describe the corresponding weak maps?

Yes: because we can describe the cofibrant replacement comonad (-)'. It's generated by the following set of maps in **Tricat**₃:



Length the 2 and 2 calls and form the free trigategory FIIT on the

Explicitly, if \mathcal{T} is a tricategory, then \mathcal{T}' is given as follows:

▶ Ignore the 2- and 3-cells and form the free tricategory $FU\mathcal{T}$ on the underlying 1-graph of \mathcal{T} . Write $\varepsilon \colon FU\mathcal{T} \to \mathcal{T}$ for the counit map.

Explicitly, if \mathcal{T} is a tricategory, then \mathcal{T}' is given as follows:

▶ Ignore the 2- and 3-cells and form the free tricategory $FU\mathcal{T}$ on the

the result $\mathcal{T}^{\#}$, and write $\varepsilon^{\#} : \mathcal{T}^{\#} \to \mathcal{T}$ for the induced counit.

- underlying 1-graph of \mathcal{T} . Write $\varepsilon \colon FU\mathcal{T} \to \mathcal{T}$ for the counit map.
- ▶ For each pair of 1-cells $f, g: X \to Y$ in $FU\mathcal{T}$ and each 2-cell $\alpha : \varepsilon(f) \Rightarrow \varepsilon(g)$ in \mathcal{T} , adjoin a 2-cell $(f, g, \alpha) : f \Rightarrow g$ to $FU\mathcal{T}$. Call

Explicitly, if \mathcal{T} is a tricategory, then \mathcal{T}' is given as follows:

- ▶ Ignore the 2- and 3-cells and form the free tricategory $FU\mathcal{T}$ on the
 - underlying 1-graph of \mathcal{T} . Write $\varepsilon \colon FU\mathcal{T} \to \mathcal{T}$ for the counit map. ▶ For each pair of 1-cells $f, g: X \to Y$ in $FU\mathcal{T}$ and each 2-cell
 - $\alpha : \varepsilon(f) \Rightarrow \varepsilon(g)$ in \mathcal{T} , adjoin a 2-cell $(f, g, \alpha) : f \Rightarrow g$ to $FU\mathcal{T}$. Call the result $\mathcal{T}^{\#}$, and write $\varepsilon^{\#}: \mathcal{T}^{\#} \to \mathcal{T}$ for the induced counit.
 - Factorise $\varepsilon^{\#}$ as $\mathfrak{I}^{\#} \xrightarrow{a} \mathfrak{I}' \xrightarrow{b} \mathfrak{I}$

where a is bijective on 0-, 1- and 2-cells and b is locally locally fully

faithful.

► As before (–)′ underlies a comonad, so we obtain a category **Kl**_{(−)′} of "tricategories and weak maps".

- ► As before (–)' underlies a comonad, so we obtain a category **Kl**_{(−)'} of "tricategories and weak maps".
- ► *A priori* quite surprising, because trihomomorphisms à la [Gordon-Power-Street 1995] do not compose associatively: there *is* no category of tricategories and (ordinary) trihomomorphisms.

- ► As before (–)′ underlies a comonad, so we obtain a category **Kl**_{(−)′} of "tricategories and weak maps".
- ► *A priori* quite surprising, because trihomomorphisms à la [Gordon-Power-Street 1995] do not compose associatively: there *is*
- no category of tricategories and (ordinary) trihomomorphisms.So what *do* these new weak morphisms look like? Can they really

be as weak as trihomomorphisms?

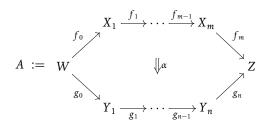
Definition

An unbiased trihomomorphism $F: \mathcal{T} \to \mathcal{U}$ is given by:

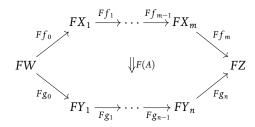
- For each object $X \in \mathcal{T}$, an object $FX \in \mathcal{U}$;
- ▶ For each 1-cell $f: X \to Y \in \mathcal{T}$, a 1-cell $Ff: FX \to FY$ in \mathcal{U} ;

Plus...

► For every bracketed pasting diagram

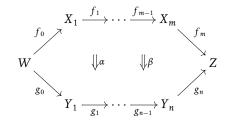


in \mathcal{T} , a 2-cell



 $\text{in } \mathcal{U}.$

▶ For every pair of bracketed pasting diagrams A, B with the same boundary in \mathcal{T} ; i.e.,

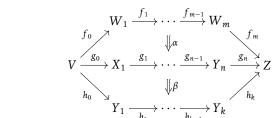


and for every 3-cell Γ : $\alpha \Rightarrow \beta$ between them, a 3-cell

$$F\Gamma \colon F(A) \Rightarrow F(B)$$

in \mathcal{U} .

► For every pair of composable bracketed pasting diagrams *A*, *B* in *T*; i.e.,



a 3-cell

$$\mu_{A,B} \colon F(B) \cdot F(A) \Rightarrow F(B \cdot A)$$

in ${\mathscr U}.$

▶ For every identity pasting diagram $id_{\{f_i\}}$, i.e.

$$Y_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{m-1}} Y_m$$

$$Y_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{m-1}} Y_{m}$$

$$X \qquad \qquad \downarrow \text{id} \qquad Z$$

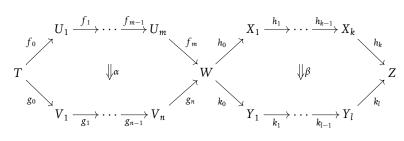
$$Y_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{m-1}} Y_{m}$$

 $\eta_{\{f_i\}} : \mathrm{id}_{\{F_f\}} \Rightarrow F(\mathrm{id}_{\{f_i\}})$

in \mathcal{T} , a 3-cell

in \mathcal{U} .

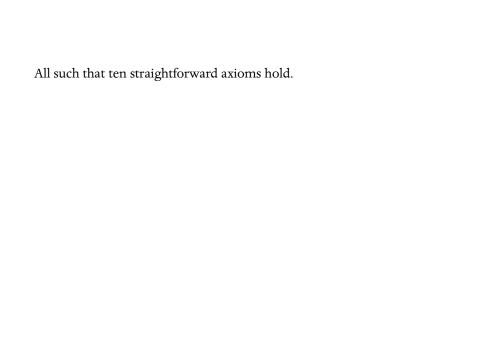
► For every pair *A*, *B* of horizontally composable bracketed pasting diagrams:



in \mathcal{T} , a 3-cell

$$\gamma_{A,B} \colon F(B) \otimes F(A) \Rightarrow F(B \otimes A)$$

in \mathcal{U} .



All such that ten straightforward axioms hold.

Proposition (Coherence for unbiased trihomomorphisms)

The co-Kleisli category of (-)': **Tricat**_s \rightarrow **Tricat**_s is isomorphic to the category **UTricat** of tricategories and unbiased trihomomorphisms.

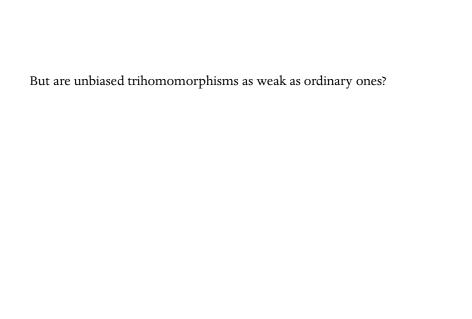
All such that ten straightforward axioms hold.

Proposition (Coherence for unbiased trihomomorphisms)

The co-Kleisli category of (-)': **Tricat**_s \rightarrow **Tricat**_s is isomorphic to the category **UTricat** of tricategories and unbiased trihomomorphisms.

Proof.

- ▶ First define a comonad H on $Tricat_s$ such that $Kl(H) \cong UTricat$ by construction;
- ▶ Then show that $H \cong (-)'$ as comonads.



But are unbiased trihomomorphisms as weak as ordinary ones?

Proposition

Every unbiased trihomomorphism $\mathcal{T} \to \mathfrak{U}$ gives rise to an ordinary trihomomorphism; and vice versa.

But are unbiased trihomomorphisms as weak as ordinary ones?

Proposition

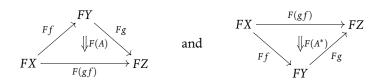
Every unbiased trihomomorphism $\mathcal{T} \to \mathfrak{U}$ gives rise to an ordinary trihomomorphism; and vice versa.

E.g., given an unbiased trihomomorphism $F \colon \mathcal{T} \to \mathcal{U}$ let us show that it preserves 1-cell composition up to equivalence.

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{T} . We have bracketed pasting diagrams $A, A^* :=$

$$X \xrightarrow{gf} Z$$
 and $X \xrightarrow{gf} Z$ $X \xrightarrow{gf} Z$

in \mathcal{T} , and so obtain 2-cells



in \mathcal{U} . Moreover, $A \circ A^* = \text{id implies } F(A) \circ F(A)^* \cong \text{id and dually.}$

Can formalise the above equivalence using a <i>bicategory of tricategories</i> .

Can formalise the above equivalence using a bicategory of tricategories.

Definition (G.-Gurski 2008)

Given ordinary trihomomorphisms $F,G: \mathcal{T} \to \mathcal{U}$, a tricategorical icon $\Gamma: F \Rightarrow G$:

- ► Exists only if *F* and *G* agree on 0- and 1-cells;
- ▶ Is then given by 3-cells Γ_{α} : $F\alpha \Rightarrow G\alpha$ for each 2-cell $\alpha \in \mathcal{T}$;
- ▶ Plus some coherence data.

Can formalise the above equivalence using a bicategory of tricategories.

Definition (G.-Gurski 2008)

Given ordinary trihomomorphisms $F,G: \mathcal{T} \to \mathcal{U}$, a tricategorical icon $\Gamma: F \Rightarrow G$:

- Exists only if *F* and *G* agree on 0- and 1-cells;
- ▶ Is then given by 3-cells Γ_{α} : $F\alpha \Rightarrow G\alpha$ for each 2-cell $\alpha \in \mathcal{T}$;
- ▶ Plus some coherence data.

Similar definition of unbiased tricategorical icon.

There is a bicategory **Tricat**₂ with:

- ► Objects being tricategories;
- ► Morphisms being (ordinary) trihomomorphisms;
- ▶ 2-cells being tricategorical icons.

There is a bicategory **Tricat**² with:

- Objects being tricategories;
- Morphisms being (ordinary) trihomomorphisms;
- 2-cells being tricategorical icons.

There is also a 2-category **UTricat**₂ with:

- ► Objects being tricategories;
- Morphisms being unbiased trihomomorphisms;
- 2-cells being unbiased tricategorical icons.

The bicategory $Tricat_2$ is equivalent to the 2-category $UTricat_2$.

The bicategory $Tricat_2$ is equivalent to the 2-category $UTricat_2$.

Proof.

- ► First extend the category **Tricat**_s to a 2-category, with icons as 2-cells;
- ► Then define a 2-comonad H on \mathbf{Tricat}_s such that $\mathbf{Kl}(H) \cong \mathbf{UTricat}_2$ by construction;
- ► Then define a pseudo-comonad K on \mathbf{Tricat}_s such that $\mathbf{Kl}(K) \cong \mathbf{Tricat}_2$ by construction;
- ▶ Finally show that $H \simeq K$ as pseudo-comonads.

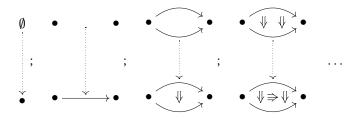
Weak maps of weak ω -categories

Consider the category ω -**Cat**_s:

- *Objects* are (algebraic) weak ω -categories;
- ► *Morphisms* are strict homomorphisms.

We can play the same game as before to obtain a category ω -**Cat** of weak ω -categories and weak homomorphisms.

This time the cofibrant replacement comonad (–)' is generated by the following set of maps in ω -Cat_s:



Explicitly, (–)': ω -Cat_s $\rightarrow \omega$ -Cat_s is the comonad arising from the adjunction

$$\omega$$
-Cptd $\xrightarrow{U}_{E} \omega$ -Cat_s

where ω -**Ctpd**_s is the category of ω -computads.

And by now natural to define...

Explicitly, (-)': ω -**Cat**_s $\to \omega$ -**Cat**_s is the comonad arising from the adjunction

$$\omega$$
-Cptd \xrightarrow{U}_{F} ω -Cat_s

where ω -**Ctpd**, is the category of ω -computads.

And by now natural to define...

Definition

The category ω -**Cat** of weak ω -categories and weak morphisms is the co-Kleisli category of (–)': ω -**Cat**_s $\rightarrow \omega$ -**Cat**_s.

Bibliography

Two-dimensional monad theory

[R. Blackwell, G.M. Kelly, J. Power, JPAA 59:1–41, 1989]

Understanding the small object argument

[R. Garner, Applied Categorical Structures, to appear]

► The low-dimensional structures formed by tricategories

[R. Garner, N. Gurski, Math. Proc. Camb. Phil. Soc., to appear]

Natural weak factorisation systems

[M. Grandis, W. Tholen, Archivum Mathematicum 42:397–408, 2006]

Co-rings over operads characterize morphisms

[K. Hess, P.-E. Parent, J. Scott, preprint 2006]

A Quillen model structure for bicategories

[S. Lack, K-Theory 33:185–197, 2004]