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Abstract
The Vietoris monad on the category of compact Hausdorff spaces is a topological analogue
of the power-set monad on the category of sets. Exploiting Manes’ characterisation of the
compact Hausdorff spaces as algebras for the ultrafilter monad on sets, we give precise form
to the above analogy by exhibiting the Vietoris monad as induced by a weak distributive law,
in the sense of Böhm, of the power-set monad over the ultrafilter monad.

Keywords Vietoris hyperspace · Monads · Distributive laws · Weak distributive laws ·
Continuous lattices

1 Introduction

In his 1922 paper [27], Vietoris described how the set of closed subspaces of a compact Haus-
dorff space X can itself be made into a compact Hausdorff space, now often referred to as the
Vietoris hyperspace V X . The Vietoris construction is important not just in topology, but also
in theoretical computer science, where its various generalisations provide different notions of
power domain [22], and in general algebra, where its restriction to zero-dimensional spaces
links up under Stone duality with the theory of Boolean algebras with operators [14].

The assignation X �→ V X in fact underlies a monad V on the category KHaus of
compact Hausdorff spaces. This monad structure was sketched briefly by Manes in [19,
Exercise I.5.23], but received its first detailed treatment byWyler in [28]; in particular, Wyler
identified the V-algebras as Scott’s continuous lattices [21].

Clearly, the Vietoris monad is related to the power-set monad P on the category of sets. In
both cases, the monad unit and multiplication are given by inclusion of singletons and by set-
theoretic union; and both underlying functors are “power-object” constructions—differing in
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the distinction between closed subspaces and arbitrary subsets, and in the need to topologise
in the former case.

In this article, we give a new account of the Vietoris monad on KHaus which explains
its similarities with the power-set monad on Set by deriving it from it in a canonical way;
for good measure, this account also renders the slightly delicate topological aspects of the
Vietoris construction entirely automatic.

The starting point is Manes’ result [18] identifying compact Hausdorff spaces as the
algebras for the ultrafilter monad ˛ on Set. In light of this, we recognise our situation as
the following one: we have a monad—namely, the power-set monad P on sets—which we
would like to “lift” appropriately to the category of algebras for another monad on the same
base—namely, the ultrafilter monad ˛.

At this point, the categorically-minded reader will doubtless think of Beck’s theory [2]
of distributive laws. For monads S, T on C, a distributive law of S over T is a natural
transformation δ : T S ⇒ ST satisfying four axioms expressing compatibilitywith themonad
structures of S and T. As we will recall in Sect. 3.1 below, distributive laws correspond to
liftings of S to a monad on the category of T-algebras, and also to extensions of T to a monad
on the Kleisli category of S.

In particular, we can ask: is there a distributive law of P over ˛ for which the associated
lifting of P toKHaus, the category of ˛-algebras, is the Vietoris monad? Unfortunately, the
answer to this question is no, since the kind of lifting mandated by the theory of distributive
laws is too strong; if the Vietoris monad did lift the power-set monad in this sense, then the
underlying set of V X would comprise the full power-set of X , rather than just the closed
subsets.

However, we are clearly very close to having a lifting of P to ˛-algebras; and, in fact, we
are also very close to having a distributive law of P over ˛. For indeed, such a distributive law
would be the same as an extension of ˛ to the Kleisli category of P, which is the categoryRel
of sets and relations; and the extension of structure from Set to Rel was analysed in detail by
Barr [1]. As observed in [26, § 2.11], it is a direct consequence of Barr’s results that:

• A functor F : Set → Set has at most one extension to a locally monotone functor
F̃ : Rel → Rel, which exists just when F is weakly cartesian;

• If F,G are weakly cartesian, then α : F ⇒ G has at most one extension to a natural
transformation α̃ : F̃ ⇒ G̃, existing just when α is weakly cartesian.

(The definition of weak cartesianness is recalled in Sect. 4.1 below.) In the case of the
ultrafilter monad ˛ on Set, it is well known that the underlying endofunctor and the monad
multiplication are weakly cartesian, and so extend; while the unit is not, and so does not.
This not-quite extension of ˛ to Rel turns out to correspond to a not-quite distributive law
δ : βP ⇒ Pβ, which is compatible with both monad multiplications and the unit of P, but
not with the unit of ˛.

One perspective on this situation can be found in [5,10,24,25]. As was already essentially
observed in [1], the not-quite extension of ˛ to Rel is an example of a lax monad extension
in the sense of [5]. It was noted in [10, Exercise 1.I], and confirmed in [25], that such lax
monad extensions correspond to suitably-defined lax distributive laws, and further explained
in [24] that these correspond, in turn, to suitable lax liftings. These facts are important for
the area of monoidal topology; see, for example, [11].

However, for the ends wewish to pursue here, a different point of view is relevant. In 2009,
with motivation from quantum algebra, Street [23] and Böhm [3] introduced various notions
of weak distributive law of a monad S over a monad T, involving a natural transformation
δ : T S ⇒ ST satisfying Beck’s original axioms relating to the monad multiplications, but
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weakening in different ways those relating to the monad units. Each of these kinds of weak
distributive law of S over T was shown to correspond to a kind of “weak lifting” of S to
T-algebras.

In particular, one of the kinds of weak distributive law involves simply dropping from
Beck’s original notion the axiom relating to the unit of T. Thus, the not-quite distributive law
δ : βP ⇒ Pβ we described above is a weak distributive law, in this sense, of P over ˛; and
so there is a corresponding weak lifting of P to ˛-algebras. Our main result identifies this
weak lifting by proving:

Theorem The Vietoris monad on the category of compact Hausdorff spaces is the weak lifting
of the power-set monad associated to the canonical weak distributive law of the power-set
monad over the ultrafilter monad.

As an application of this result, we obtain a simple new proof of Wyler’s characterisation
of the V-algebras as the continuous lattices; and we conclude the paper with remarks on
possible variations and generalisations of our main result.

2 TheMonads

2.1 The Power-Set Monad

We begin by recalling the various monads of interest and their categories of algebras. Most
straightforwardly, we have:

Definition 1 The power-set monad P on Set has PX given by the set of all subsets of X ,
and P f : PX → PY given by direct image. The unit ηX : X → PX and multiplication
μX : PPX → PX are given by ηX (x) = {x} and μX (A) = ⋃

A.

The P-algebras can be identified as complete lattices in two different ways, depending on
whether we view the P-algebra structure as providing the sup operation or the inf operation;
the maps of the category of P-algebras are then respectively the sup-preserving maps and the
inf-preserving maps.

2.2 The Ultrafilter Monad

Recall that a filter on a set X is a non-empty subset F ⊆ PX such that, for all A, B ⊆ X , we
have A, B ∈ F if and only if A ∩ B ∈ F. A filter is an ultrafilter if it contains exactly one of
A and X\A for each A ⊆ X .

Definition 2 The ultrafilter monad ˛ on Set has βX given by the set of all ultrafilters on X ,
and β f : βX → βY the function taking pushforward along f :

F �→ f!(F) = {B ⊆ Y : f −1(B) ∈ F} = {B ⊆ Y : f (A) ⊆ B for some A ∈ F}.
The unit ηX : X → βX and multiplication μX : ββX → βX are defined by ηX (x) =
{A ⊆ X : x ∈ A} and μX (F) = {A ⊆ X : A# ∈ F}, where for any A ⊆ X we define
A# = {F ∈ βX : A ∈ F}.

The algebras for the ultrafilter monad were identified by Manes [18] as the compact
Hausdorff spaces. Recall that, for a topological space X , an ultrafilter F ∈ βX is said
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to converge to x ∈ X if each neighbourhood of x is in F; and that, when X is compact
Hausdorff, each F ∈ βX converges to a unique point ξ(F). Manes showed that the function
ξ : βX → X so determined endows the compact Hausdorff X with ˛-algebra structure,
and that every ˛-algebra arises thus. Under this identification, the ˛-algebra maps are the
continuous ones.

2.3 TheVietoris Monad

The Vietoris hyperspace [27] V X of a compact Hausdorff space X is the set of all closed
subspaces of X , endowed with the topology (sometimes called the “hit-and-miss” topology)
generated by the following subbasic open sets for each C ∈ V X :

C+ = {A ∈ V X : A ∩ C = ∅} and C− = {A ∈ V X : A � C}.

Definition 3 [28] The Vietoris monad V on KHaus has V X given as above, and action on
maps V f : V X → VY given by direct image. The unit ηX : X → V X and multiplication
μX : VV X → V X are given by ηX (x) = {x} and μX (A) = ⋃

A.

It was shown in [28] that the V-algebras are the continuous lattices of [21]. Recall that, for
elements x, y of a poset L , we write x 	 y if, whenever D ⊆ L is directed and y � sup D,
there exists some d ∈ D with x � d . A continuous lattice is a complete lattice L such that
every x ∈ L satisfies x = sup{s : s 	 x}. Under Wyler’s identification, a continuous lattice
L becomes a compact Hausdorff space under its Lawson topology, which is generated by the
subbasic open sets

s+ = {x ∈ L : s 	 x} and s− = {x ∈ L : s � x} for s ∈ L,

and a V-algebra via the function V L → L taking infima of closed sets.

3 Distributive Laws andWeak Distributive Laws

3.1 Distributive Laws

We now recall Beck’s classical theory [2] of distributive laws and their associated liftings
and extensions, and the generalisation of this theory to weak distributive laws [3] which will
be necessary for our main result. We begin with Beck’s original notion.

Definition 4 Let S = (S, ν, ω) and T = (T , η, μ) be monads on a category C. A distributive
law of S over T is a natural transformation δ : T S ⇒ ST rendering commutative the four
diagrams:

T SS
δS

Tω

ST S
Sδ

SST

ωT

T T S
T δ

μS

T ST
δT

ST T

Sμ

T
T ν νT

S
ηS Sη

T S
δ

ST T S
δ

ST T S
δ

ST T S
δ

ST .

The basic result about distributive laws is that they correspond both to liftings and to
extensions, in the sense of the following definition.
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Definition 5 Let S = (S, ν, ω) and T = (T , η, μ) be monads on a category C. If we write
UT : CT → C for the forgetful functor from the category of T-algebras, then a lifting of S to
CT is a monad S̃ on CT such that

UT ◦ S̃ = S ◦UT UT ◦ ν̃ = ν ◦UT and UT ◦ ω̃ = ω ◦UT.

On the other hand, if we write FS : C → CS for the free functor into the Kleisli category of
S, then an extension of T to CS is a monad T̃ on CS such that

T̃ ◦ FS = FS ◦ T η̃ ◦ FS = FS ◦ η and μ̃ ◦ FS = FS ◦ μ.

Proposition 6 [2, § 1], [20, Theorem 2.5]. For monadsS, T onC, there are bijections between
distributive laws of S over T, liftings of S to CT and extensions of T to CS.

Proof. Given a distributive law δ : T S ⇒ ST , we define the corresponding lifting of S to
T-algebras to have action on objects given by

S̃(X , T X
x−→ X) = (SX , T SX

δX−−→ ST X
Sx−−→ SX)

and remaining data inherited from S: thus S̃( f ) = S f , ν̃X = νX and ω̃X = ωX . Con-
versely, for a lifting of S to T-algebras with action S̃(X , x) = (SX , σX ,x ), the corresponding
distributive law δ : T S ⇒ ST is given by:

δX = T SX
T SηX−−−→ T ST X

σFTX−−−→ ST X . (3.1)

Next, for a distributive law δ : T S ⇒ ST , the corresponding extension of T to CS is given
on objects by T̃ X = T X and on a Kleisli map from X to Y by

T̃ (X
f−→ SY ) = T X

T f−−→ T SY
δY−→ STY ,

while the unit and multiplication have components

X
ηX−−→ T X

νT X−−→ ST X and T T X
μX−−→ T X

νT X−−→ ST X .

Conversely, given an extension T̃ of T, we may view each map 1SX : SX → SX as a Kleisli
map from SX to X , and applying T̃ yields a Kleisli map from T SX to T X , which provides
the X -component of the corresponding distributive law:

T̃ (SX
1SX−−→ SX) = T SX

δX−−→ ST X .

We can describe the algebras for the lifted monad S̃ associated to a distributive law in
various other ways. One is in terms of the composite monad ST on C, which is the monad
induced by the composite adjunction (CT)S̃ � CT � C; its underlying endofunctor is ST ,
its unit is νη : 1 ⇒ ST and its multiplication is ωμ ◦ SδT : ST ST ⇒ ST . Another is in
terms of “δ-algebras”:

Definition 7 Let δ : T S ⇒ ST be a distributive law of S over T. A δ-algebra is an object
X ∈ C endowed with T-algebra structure t : T X → X and S-algebra structure s : SX → X
and rendering commutative the diagram below. The category Cδ of δ-algebras is the full
subcategory of CS ×C CT on the δ-algebras.

T SX
δX

T s

ST X
St

SX

s

T X
t

X

(3.2)
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The basic result relating these notions is the following; for the proof, see [2].

Lemma 8 For any distributive law δ : T S ⇒ ST of S over T, there are canonical isomor-
phisms between the category of S̃-algebras in CT, the category of ST-algebras in C, and the
category of δ-algebras in C.

3.2 Weak Distributive Laws

As explained in the introduction, weak distributive laws generalise distributive laws by relax-
ing the axioms relating to the monad units. There are various ways of doing this, studied in
Street [23] and Böhm [3], but we will need only one, which we henceforth refer to with the
unadorned name “weak distributive law”. In the terminology of [3], our notion is that of a
monad in EMw(Cat) whose 2-cell data satisfy the conditions of Lemma 1.2(3) of ibid.

Definition 9 Let S = (S, ν, ω) and T = (T , η, μ) be monads on a category C. A weak
distributive law of S over T is a natural transformation δ : T S ⇒ ST rendering commutative
the three diagrams:

T SS
δS

Tω

ST S
Sδ

SST

ωT

T T S
T δ

μS

T ST
δT

ST T

Sμ

T
T ν νT

T S
δ

ST T S
δ

ST T S
δ

ST .

Thus, a weak distributive law in our sense simply drops from Beck’s definition the axiom
relating to the unit of T. Such weak distributive laws correspond to weak liftings and to weak
extensions, where the definitions of these are a bit more subtle.

Definition 10 Let S = (S, ν, ω) and T = (T , η, μ) be monads on a category C. A weak
lifting of S to CT comprises a monad S̃ on CT and natural transformations

UT S̃
ι��⇒ SUT π���⇒ UT S̃ (3.3)

such that πι = 1, and such that each of the following diagrams commutes:

UT S̃ S̃
ιS̃

UTω̃

SUT S̃
Sι

SSUT

ωUT

UT

UTν̃ νUT

UT S̃
ι

SUT UT S̃
ι

SUT

(3.4)

SSUT

ωUT

Sπ
SUT S̃

π S̃
UT S̃ S̃

UTω̃

UT

UTν̃νUT

SUT π
UT S̃ SUT π

UT S̃;
(3.5)

while a weak extension of T to CS comprises a functor T̃ : CS → CS and natural transfor-
mation μ̃ : T̃ T̃ ⇒ T̃ such that T̃ ◦ FS = FS ◦ T and μ̃ ◦ FS = FS ◦ μ.

Note that our “weak liftings” are exactly the simultaneous weak ι- and π-liftings of [3].
By exactly the same constructions as in Proposition 6, we have:

Proposition 11 For monads S, T on C, there is a bijective correspondence between weak
distributive laws of S over T and weak extensions of T to CS.
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The correspondence between weak distributive laws and weak liftings is more interesting.
It is proved by Proposition 4.4 and Theorem 4.5 of [3] in a more general context; however,
for the particular kind of weakness we are interested in, the following more direct proof is
possible.

To begin with, we define a semialgebra for a monad T = (T , η, μ) to be given by a pair
(X ∈ C, x : T X → X) satisfying the associativity axiom x .T x = x .μX but not necessarily
the unit axiom x .ηX = 1X . The T-semialgebras form a category CT

s , wherein a map from
(X , x) to (Y , y) is a map f : X → Y with y.T f = f .x .

Lemma 12 If idempotents split in C, then the full inclusion I : CT → CT
s has a simultaneous

left and right adjoint K : CT
s → CT.

Proof. For any (X , x) ∈ CT
s we have x .ηX .x = x .T x .ηT X = x .μX .ηT X = x =

x .μX .TηX = x .T x .TηX so that x .ηX : (X , x) → (X , x) is an idempotent ofT-semialgebras.
Splitting this idempotent yields a diagram

(X , x)
p

(Y , y)
i

(X , x) (3.6)

in CT
s with pi = 1Y and i p = x .ηX . The semialgebra (Y , y) is in fact a T-algebra since

yηY = piyηY = px .T i .ηY = px .ηX i = pipi = 1Y . Moreover, if (Z , z) is a T-algebra
and f : (X , x) → (Z , z), then f = zηZ . f = z.T f .ηX = f .x .ηX = f i p so that f factors
through p. On the other hand, if g : (Z , z) → (X , x), then g = gzηZ = x .Tg.ηZ =
x .ηX .g = i pg so that g factors through i . Thus i and p exhibit (Y , y) as the value at (X , x)
of the desired left and right adjoint K .

Proposition 13 If idempotents split in C, then for any monads S, T on C, there is a bijective
correspondence between weak distributive laws of S over T and weak liftings of S to CT.

Proof. Given a weak distributive law δ : T S ⇒ ST , we may define a strict lifting Š of S to T-
semialgebras by taking, as in Proposition 6, Š(X , x) = (SX , Sx .δX ) and with the remaining
data inherited from S. We now obtain the desired weak lifting S̃ of S to CT as the monad
generated by the composite adjunction:

(CT
s )Š

U Š

F Š

⊥ CT
s

I

K
⊥ CT.

In particular, S̃ sends a T-algebra (X , x) to the T-algebra obtained as the splitting

(SX , Sx .δX )
πX ,x

S̃(X , x)
ιX ,x

(SX , Sx .δX ) (3.7)

of the idempotent Sx .δX .ηSX : (SX , Sx .δX ) → (SX , Sx .δX ) in the category of T-
semialgebras. Applying the forgetful functor CT

s → C to (3.7) yields the components of
the ι and π required in (3.3), and it is clear from the manner of definition that the lifted unit
ν̃ is the unique map rendering the triangles in (3.4) and (3.5) commutative. As for the lifted
multiplication ω̃, a short calculation shows that, for any T-semialgebra (X , x)with T-algebra
splitting (3.6), the maps

(SX , Sx .δX )
Sp

(SY , Sy.δY )
πY ,y

S̃(Y , y)
ιY ,y

(SY , Sy.δY )
Si

(SX , Sx .δX )
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compose to the idempotent Sx .δX .ηSX , and so exhibit S̃(Y , y) as the T-algebra splitting of
Š(X , x) = (SX , Sx .δX ). Thus, for any T-algebra (X , x), the maps

Š Š(X , x)
ŠπX ,x

Š S̃(X , x)
πS̃(X ,x)

S̃ S̃(X , x)
ιS̃(X ,x)

Š S̃(X , x)
ŠιX ,x

Š Š(X , x)

exhibit S̃ S̃(X , x) as theT-algebra splitting of Š Š(X , x);whence ω̃ is theuniquemap rendering
commutative the rectangles in (3.4) and (3.5), as required.

This concludes the construction of a weak lifting from a weak distributive law. Sup-
pose conversely we have a weak lifting of S to T-algebras. For each T-algebra (X , x) with
S̃(X , x) = (Y , y), define the map σX ,x : T SX → SX as the composite

T SX
TπX ,x−−−−→ TY

y−→ Y
ιX ,x−−→ SX

and now define δ : T S ⇒ ST to have components (3.1). Direct calculation shows this to be
a weak distributive law.

Just as before, there are various ways of describing the algebras for the weakly lifted
monad S̃ associated to a weak distributive law. We can consider the composite monad S̃T
induced by the adjunction (CT)S̃ � CT � C, whose underlying endofunctor S̃T is obtained
by splitting the idempotent

ST
ηST−−−→ T ST

δT−−→ ST T
Sμ−−→ ST ,

or we can consider the category of δ-algebras defined exactly as in Definition 7. The relation
between these notions is the same as before, and we record it as follows; for the proof, we
refer the reader to [3, Proposition 3.7].

Lemma 14 For any weak distributive law δ : T S ⇒ ST of S over T, there are canonical
isomorphisms between the category of S̃-algebras in CT, the category of S̃T-algebras in C,
and the category of δ-algebras in C.

4 Weakly Lifting the Power-Set Monad

If, in the results of the previous section, we take C to be Set, S to be the power-set monad, and
T to be any Set-monad, then we establish a bijection between (weak) liftings of the power-set
monad to T-algebras and (weak) extensions of T to SetP. Now SetP is the category Rel of
sets and relations, and the possibility of extending structure from Set to Rel was analysed
by [1], as we now recall.

4.1 Extending Structure from Sets to Relations

The category Rel has sets as objects, and as morphisms R : X −�→ Y , relations R ⊆ X × Y ;
we write x R y to indicate that (x, y) ∈ R. Identity maps are equality relations, and the
composite of R : X −�→ Y and S : Y −�→ Z is given by:

x SR z ⇐⇒ (∃y ∈ Y ) (x R y) ∧ (y S z).

Under the identification of Rel as SetP, the free functor FP : Set → SetP corresponds to the
identity-on-objects embedding (–)∗ : Set → Rel which sends a function f : X → Y to its
graph f∗ = {(x, f x) : x ∈ X} ⊆ X × Y . We also have the reverse relation f ∗ = {( f x, x) :
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x ∈ X} ⊆ Y × X , and in fact, relations of these two forms generate Rel under composition,
since every R : X −�→ Y in Rel can be written as q∗ ◦ p∗ where p : X ← R → Y : q are the
two projections.

Importantly, Rel is not just a category; each hom-set is partially ordered by inclusion,
and composition preserves the order on each side, so making Rel a locally partially ordered
2-category. With respect to this structure, it is easy to see for any function f : X → Y that f∗
is left adjoint to f ∗ inRel. This observation is key to proving the following result, essentially
due to Barr [1]; for a detailed proof, see [17].

Proposition 15 Any F : Set → Set has at most one extension to a 2-functor F̃ : Rel → Rel.
This exists just when F is weakly cartesian, and is then defined on a relation R : X −�→ Y
with projections p : X ← R → Y : q by

F̃(R) = (Fq)∗(Fp)∗ : FX −�→ FY . (4.1)

Any α : F ⇒ G : Set → Set has at most one extension to a 2-natural α̃ : F̃ ⇒ G̃. This exists
just when α is weakly cartesian, and has components (α̃)X = (αX )∗.

Here, a functor F : Set → Set is weakly cartesian if it preserves weak pullback squares,
and a natural transformation α : F ⇒ G isweakly cartesian if its naturality squares are weak
pullbacks; recall that a weak pullback square is one for which the induced comparison map
into the pullback is an epimorphism.

Corollary 16 For any monad T = (T , η, μ) on Set:

(i) If T , η and μ are all weakly cartesian, then there is a canonical extension of T to Rel,
and so by Proposition 6, a canonical lifting of P to T-algebras;

(ii) If only T and μ are weakly cartesian, then there is still a canonical weak extension of T
to Rel, and so a canonical weak lifting of P to T-algebras.

The intended application of this takes T to be the ultrafilter monad, but before turning to
this, we consider two simpler examples.

4.2 First Example

Let T = (T , η, μ) be the commutative monoid monad. This is an analytic monad in the
sense of [15]—in fact, the terminal one—so that each of T , η and μ is weakly cartesian: thus
T extends strictly from Set to Rel. Using the formula (4.1), we see that the action of this
extension on a relation R : X −�→ Y is the relation T̃ R : T X −�→ TY with

x1 · · · xn T̃ R y1 · · · ym ⇐⇒ (∃ σ : n ∼= m)(x1 R yσ(1)) ∧ · · · ∧ (xn R yσ(n)).

Plugging this in to the proof of Proposition 6,we see that the distributive law corresponding
to this extension has components δX : T PX → PT X given by

A1 · · · An �→ {a1 · · · an : each ai ∈ Ai }. (4.2)

and so that, under the identification of T-algebras with commutative monoids, the lifted
monad P̃ takes a commutative monoid (X , ·, 1) to the commutative monoid with underlying
set PX , unit {1} and multiplication A · B = {a · b : a ∈ A, b ∈ B}. The algebras for the
lifted monad P̃ are precisely the commutative unital quantales: complete lattices X endowed
with a commutative monoid structure (X , ·, 1) whose binary multiplication preserves sups
separately in each variable.
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4.3 Second Example

We now consider the finite power-set monad P f on Set, whose algebras are idempotent
commutative monoids. Unlike the commutative monoid monad, this does not extend strictly
from Set to Rel, due to:

Lemma 17 The endofunctor and the multiplication of the finite power-set monad P f on Set
are weakly cartesian, but the unit is not.

(In fact the same is true on replacing P f by the full power-set monad P. In other words,
P does not distribute over itself; see [16].)

Proof. For the endofunctor part, see, for instance, [13, Proposition 1.4]. For themultiplication,
wemust show that, given a function f : X → Y , a finite subset A ⊆ X and a finite subset B =
{B1, . . . , Bn} ⊆ Pf Y with f (A) = B1∪· · ·∪Bn , there exists a finite subset {C1, . . . ,Cm} ⊆
Pf X with { f (C1), . . . , f (Cm)} = B and A = C1∪· · ·∪Cm . We have such on takingm = n
and Ci = A ∩ f −1(Bi ). Finally, to see the unit is not weakly cartesian, note that under the
function {0, 1} → {0}, the finite {0, 1} ⊆ {0, 1} maps to the singleton {0}, but is not itself a
singleton.

However, we still have a weak extension of P f to Rel; this observation is apparently due
to Ehrhard, and is discussed in detail in [12]. Calculating explicitly using (4.1), we see that
the action of P̃ f on a relation R : X −�→ Y is given by the “Egli–Milner relation”:

A P̃f R B ⇐⇒ (∀a ∈ A. ∃b ∈ B. a R b) ∧ (∀b ∈ B. ∃a ∈ A. a R b).

Thus, by Proposition 11, the weak distributive law corresponding to this weak extension has
components δX : Pf PX → PPf X given by

A �→ {
B ⊆ X finite : B ⊆ ⋃

A and A ∩ B �= ∅ for all A ∈ A
}
.

We now calculate the corresponding weak lifting of the power-set monad to the category
of P f -algebras. Given such an algebra (X , x), we first form the associated semialgebra
(PX , Px .δX ), whose action map Pf PX → PX is

{A1, . . . , An} �→ {a1 · · · am : each ai is in some A j , and some ai is in each A j }.
In particular, the idempotent Px .δX .ηX : PX → PX takes A ⊆ X to the set of non-empty
finite products of elements of A. Clearly A is fixed by this idempotent just when it is a
subsemigroup—i.e., closed under binary multiplication.

It follows that the liftedmonad P̃ acts on (X , x) to yield the set P•(X) of all subsemigroups
of X , under the Pf -algebra structure given as in the previous display. Reading off the monoid
structure from this, we see that the unit of P•X is given by {1}, while the binarymultiplication
is given by

A · B = {a1 · · · an · b1 · · · bm : n,m � 1, each ai ∈ A and each b j ∈ B}.
In this expression, since A and B are already subsemigroups, we have that a = a1 · · · an is
itself in A and b = b1 · · · bm is itself in B; so, more succinctly,

A · B = {a · b : a ∈ A, b ∈ B}, (4.3)

i.e., the same formula that we derived in Sect. 4.2 for the commutative monoid monad. It now
follows from Lemma 14 that the algebras for the lifted monad P̃ are exactly the commutative
(unital) quantales whose multiplication is idempotent.
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This example can be extended in various directions. Firstly, recall that a normal band is an
idempotent semigroup satisfying the axiom xyzw = xzyw. The free normal band on a set X
is the set P∗∗

f X of bipointed finite subsets of X under themultiplication (A, a, b)·(B, c, d) =
(A ∪ B, a, d). The induced monad P∗∗

f does not have weakly cartesian unit, but has weakly
cartesian endofunctor and multiplication; so we have a weak lifting of P to the category
of normal bands. Like before, P̃ takes a normal band X to the normal band P•X of sub-
semigroups under the binary operation (4.3). This construction is also given in [30], but
without the monadic context.

A second direction of extension is to consider the monad TS on Set whose algebras are
semimodules over a given commutative semiring S. In [4, Theorem 8.10] conditions are given
on S which characterise precisely when the associated TS has weakly cartesian endofunctor
and multiplication; under these conditions, then, we obtain a weak lifting of the power-set
monad to the category of S-modules. Our two preceding examples fit into this framework
on taking S = (N,×,+) and S = ({0, 1},∧,∨); as was shown in [4, Example 9.5], other
legitimate choices of S include (Q+,×,+) and (R+,×,+).

5 The Vietoris Monad andWeak Distributive Laws

5.1 Recovering theVietoris Monad

We now prove our main theorem, recovering the Vietoris monad as the weak lifting of the
power-set monad associated to the canonical weak distributive law of P over ˛. We begin
with the following well known result; see, for example, [10, Examples III.1.12.3 and Propo-
sition III.1.12.4].

Lemma 18 The endofunctor and multiplication of the monad ˛ are weakly cartesian, but the
unit is not.

As such, we have a canonical weak extension of ˛ to Rel. The action of β̃ : Rel → Rel
on a relation R : X −�→ Y is given by

F β̃R G ⇐⇒ (A ∈ F �⇒ R(A) ∈ G) (5.1)

where we write R(A) for {y ∈ Y : (∃a ∈ A)(a R y)}; see, for example, [10, Exam-
ples III.1.10.3(3)]. Corresponding to thisweak extension,we have aweak distributive lawofP
over ˛; calculating from the above expression, we see that its components δX : βPX → PβX
are given by

δX (F) = {
F ∈ βX : ⋃

A ∈ F for all A ∈ F
}
. (5.2)

We now wish to calculate the associated weak lifting of P to ˛-algebras, i.e., to compact
Hausdorff spaces. We begin with:

Lemma 19 Let (X , ξ : βX → X) be a ˛-algebra. The action map βPX → PX of the
semialgebra (PX , Pξ.δX ) is given by

F �→
⋂

A∈F

⋃
A (5.3)

where ( ) denotes closure in the topology on X. It follows that the idempotent function
Pξ.δX .ηPX : (PX ,

Pξ.δX ) → (PX , Pξ.δX ) sends each B ∈ PX to its closure.
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Proof. Given x ∈ X , we have x ∈ ⋂
A∈F

⋃
A if and only if each open neighbourhood of x

meets each
⋃

A, if and only if there exists an ultrafilter containing each
⋃

A and converging
to x . But by (5.2), this happens just when x ∈ Pξ(δX (F)). Finally, since ηPX : PX → βPX
sends B to the ultrafilter {A ⊆ PX : B ∈ A}, the idempotent Pξ.δX .ηPX sends each
B ∈ PX to

⋂
B∈A

⋃
A = B.

Theorem 20 The Vietoris monad on the category of compact Hausdorff spaces is the weak
lifting of the power-set monad associated to the canonical weak distributive law of the power-
set monad over the ultrafilter monad.

Proof. Let X be a compact Hausdorff space seen as a ˛-algebra (X , ξ : βX → X). The ˛-
algebra P̃(X , ξ) is obtained by splitting the idempotent Pξ.δX .ηPX on (PX , Pξ.δX ); so by
the previous lemma, its underlying set is the set V X of closed subsets of X , and its ˛-algebra
structure is given by the same formula as in (5.3). By naturality in (3.3), the action of P̃ on
maps is given by direct image, while by the formulae in (3.4), the unit and multiplication of
P̃ are once again given by inclusion of singletons and set-theoretic union.

As such, it remains only to show that the ˛-algebra structure on P̃(X , ξ) describes the
Vietoris topology; in light of Lemma 19, we must thus show that any F ∈ βV X converges
in the Vietoris topology to the unique point L = ⋂

A∈F
⋃

A. This follows from Lemma 22
below, since the Vietoris topology on V X is the Lawson topology on the continuous lattice
(V X ,⊇).

5.2 Vietoris Algebras

The composite monad associated to the weak distributive law of P over V is easily seen to be
the well known filter monad F; as such, Lemma 14 asserts a canonical isomorphism between
the categories of V-algebras in KHaus and of F-algebras in Set. This was originally proven
as [28, Theorem 6.3] and is, in fact, how Wyler identified the V-algebras as the continuous
lattices—by first identifying the F-algebras as such (a result originally proved by Day [6]).

Now Lemma 14 also identifies V-algebras with δ-algebras for the weak distributive law
δ : βP ⇒ Pβ, i.e., as sets X endowed with ˛-algebra structure ξ : βX → X and P-algebra
structure i : PX → X subject to commutativity in

βPX
δX

βi

PβX
Pξ

PX

i

βX
ξ

X .

(5.4)

In [28], Wyler does note that a V-algebra is a ˛-algebra and a P-algebra subject to some
compatibility—see, for example, Proposition 6.4 of ibid.—but does not express this in terms
of the square (5.4). In fact, by using (5.4) it is easy to give a direct proof that Vietoris algebras
are continuous lattices, as we will now do.

In what follows, given a filterF on a topological space, we write adhF for
⋂

A∈F A; recall
that, for an ultrafilter F, the points in adhF are precisely those to which F converges. On the
other hand, for a filter F on a complete lattice, we write lim inf F for sup{inf A : A ∈ F}.
Proposition 21 Let X be a complete lattice and a compact Hausdorff space, seen as a ˛-
algebra ξ : βX → X via ultrafilter convergence and as a P-algebra i : PX → X by taking
infima. The following are equivalent:
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(i) (X , ξ, i) is a δ-algebra, i.e., renders (5.4) commutative.
(ii) lim inf F = inf adhF for any filter F on X.

Proof. (ii) ⇒ (i). Let F ∈ βPX . By Lemma 19, the upper path around (5.4) takes F to
inf adh

⋃
F where

⋃
F is the filter generated by

⋃
A for each A ∈ F. The lower path takes

F to the limit point inf adhF of the ultrafilter F generated by the sets Ai = {inf A : A ∈ A}
for all A ∈ F. So given (ii), it suffices to show that lim inf

⋃
F = lim inf F, which follows

since inf Ai = inf(
⋃

A) for all A ∈ F.
(i) ⇒ (ii) We first show that for all a ∈ X , the principal upset ↑ a and downset ↓ a are

closed. Consider for any ultrafilter F on X the ultrafilter F on PX generated by the sets
{a, B} = {{a, b} : b ∈ B} for all B ∈ F. Note that:

• If ↓ a ∈ F, then for each B ∈ F also Ba = B ∩ ↓ a ∈ F. Thus B ⊇ Ba = i({a, Ba}) ∈
βi(F), so that βi(F) = F and ξ(βi(F)) = ξ(F).

• If ↑ a ∈ F, then {a} ∈ βi(F) whence ξ(βi(F)) = a.

In either case, Pξ(δX (F)) = ⋂
B∈F {a} ∪ B = {a} ∪ ⋂

B∈F B = {a, ξ(F)} by Lemma 19,
and so i(Pξ(δX (F))) = a ∧ ξ(F). So by the assumption, if ↓ a ∈ F then ξ(F) = a ∧ ξ(F)

so that ξ(F) ∈ ↓ a; while if ↑ a ∈ F then a = a ∧ ξ(F) so that ξ(F) ∈ ↑ a. This proves that
both ↓ a and ↑ a are closed.

We now prove (ii). Given a filter F on X , the family of subsets of PX given by F together
with ↓ A for each A ∈ F has the finite intersection property; let F be any ultrafilter on PX
which extends it. Now, for each A ∈ F we have ↓ A ∈ F and so A = ⋃ ↓ A ∈ ⋃

F. On
the other hand, each A ∈ F meets F, say in A and so

⋃
A ⊇ A is in F. So

⋃
F = F, and

so by Lemma 19 the upper path around (5.4) takes F to inf adhF. As for the lower path,
βi(F) contains {inf A : A ∈ F} and ↑(inf A) for each A ∈ F; so ξ(βi(F)) is contained
in the intersection of closed sets

⋂ ↑(inf A) = ↑(lim inf F), but also in the closed set
↓(lim inf F) ⊇ {inf A : A ∈ F} and so must equal lim inf F. Thus inf adhF = lim inf F as
desired.

The remainder of the argument is standard continuous lattice theory, contained in, say, [8];
we include it here for the sake of a self-contained presentation.

Lemma 22 An ultrafilter F on a continuous lattice converges in the Lawson topology to the
unique point � = lim inf F.

Proof. We first show F contains every subbasic open neighbourhood of �. First, if � ∈ s+,
i.e., s 	 �, then s 	 inf A for some A ∈ F, and so s 	 a for all a ∈ A; whence A ⊆ s+
and so s+ ∈ F. Next, if � ∈ s−, i.e., s � � then s � inf A for all A ∈ F. So for each A ∈ F,
we have s � a for some a ∈ A, i.e., each A ∈ F meets s−, and so, since F is an ultrafilter,
we have s− ∈ F. Thus F converges to �; suppose it also converges to y. Then for each s 	 y
we have s+ ∈ F and so s � inf s+ � �. Since y = ∨{s : s 	 y} we must have y � �. We
claim � � y, i.e., inf A � y for each A ∈ F. If not, then inf A � y for some A ∈ F, so that
(inf A)− is in F. So (inf A)− and A are disjoint sets in F, a contradiction.

Proposition 23 Let X be a complete lattice and a compact Hausdorff space. The following
are equivalent:

(i) lim inf F = inf adhF for any filter F on X;
(ii) X is a continuous lattice and its topology is the Lawson topology.
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Proof. (i) ⇒ (ii). By the proof of Proposition 21, each principal upset ↑ x is closed in X .
We now show that, if U is up-closed and open and x ∈ U , then inf U 	 x . Indeed, suppose
x � sup D for some directed D ⊆ X . Then ↑(sup D) ⊆ U since U is up-closed, and so
∅ = (X\U )∩↑(sup D) = (X\U )∩⋂{↑ d : d ∈ D}. By compactness of X and downward-
directedness of {↑ d : d ∈ D}, it follows that ∅ = (X\U ) ∩ ↑ d for some d ∈ D; thus d ∈ U
and so inf U � d as required.

We now show that X is continuous. Let x ∈ X and let F be the neighbourhood filter of
x . Since X is Hausdorff, we have adhF = {x} and so by (i) that lim inf F = x . Clearly
lim inf F is the supremum of {inf U : U up-closed in F}, and by above inf U 	 x for each
such U . It follows that x = sup{s : s 	 x} so that X is continuous. Finally, the condition
lim inf F = inf adhF applied to an ultrafilter implies by Lemma 22 that the topology on X
is the Lawson topology.

(ii) ⇒ (i). We first show inf A = inf A for any A ⊆ X . Clearly inf A � inf A; while
if x ∈ A, then x is the convergence point of some ultrafilter F containing A, whence x =
lim inf F � inf A, so that inf A � inf A. We now prove (i). Given a filter F, we have for
each A ∈ F that inf A = inf A � inf adhF and so lim inf F � inf adhF. It remains to
show inf adhF � lim inf F. By continuity, we can write inf adhF as

∨{s : s 	 inf adhF},
so it suffices to show s 	 inf adhF implies s � lim inf F. We prove the contrapositive: if
s � lim inf F then s �	 inf adhF. Now if s � lim inf F, then s � inf A = inf A for each
A ∈ F. Thus, for each A ∈ F there is some a ∈ A with s � a and hence s �	 a. This says
that the closed set X\s+ meets Ā for each A ∈ F; whence {A : A ∈ F} ∪ {X\s+} has the
finite intersection property, so that by compactness, X\s+ meets

⋂
A∈F A = adhF. This

means s �	 a for some a ∈ adhF, and so s �	 inf adhF as desired.

So δ-algebras are continuous lattices, and it is easy to identify the corresponding δ-algebra
maps as the inf- and directed-sup preserving functions. We thus recover:

Theorem 24 [28] The category of V-algebras is isomorphic to the category of continuous
lattices with inf- and directed sup-preserving maps.

5.3 Variations

It is natural to consider variations on Theorem 20, involving different weak distributive laws
on possibly different categories. Treating these in detail must await further work, but it is
worth sketching a couple of possibilities.

On the one hand, we may replace P by the non-empty power-set monad P+ on Set, while
keeping ˛ the same. In this case, we expect to obtain a weak distributive law of P+ over ˛
whose corresponding weak lifting to the categoryKHaus of ˛-algebras is the proper Vietoris
monad V+. This monad, considered in [29], sends a compact Hausdorff space X to its set of
non-empty closed subsets under the Vietoris topology, and has as its algebras the continuous
semilattices.

On the other hand, we can replace P by the upper-set monad P↑ on the category of posets,
and ˛ by the prime filter monad Pf. As in [7], this latter monad has as algebras the compact
pospaces—compact spaces X with a partial order � which is closed in X × X . In this case,
via the partially ordered version of Barr’s relation lifting [17, Section 3.3], we expect to
find a weak distributive law of P↑ over Pf, with corresponding weak lifting the “ordered
Vietoris monad” V↑ on compact pospaces. This takes a compact pospace X to its space V ↑X
of closed upper-sets ordered by reverse inclusion, with a modified version of the Vietoris
topology; see [8, Example VI-3.10]. As explained in [9], the V↑-algebras are, once again,
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the continuous lattices. In fact, [9] describes other Vietoris-like monads, and it is natural to
hope that these may arise in a similar manner; but again, we leave this to future work.

References

1. Barr, M.: Relational algebras. In: Reports of the Midwest Category Seminar, IV. Lecture Notes in Math-
ematics, vol. 137, pp. 39–55. Springer (1970)

2. Beck, J.:Distributive laws. In: Seminar onTriples andCategoricalHomologyTheory (Zürich, 1966/1967),
vol. 80, pp. 119–140. Lecture Notes in Mathematics. Springer (1969)

3. Böhm, G.: The weak theory of monads. Adv. Math. 225, 1–32 (2010)
4. Clementino, M.M., Hofmann, D., Janelidze, G.: The monads of classical algebra are seldom weakly

cartesian. J. Homotopy Relat. Struct. 9, 175–197 (2014)
5. Clementino, M.M., Hofmann, D., Tholen, W.: One setting for all: metric, topology, uniformity, approach

structure. Appl. Categorical Struct. 12, 127–154 (2004)
6. Day, A.: Filter monads, continuous lattices and closure systems. Can. J. Math. Journal Canadien de

Mathématiques 27, 50–59 (1975)
7. Flagg, B.: Algebraic theories of compact pospaces. Topol. Its Appl. 77, 277–290 (1997)
8. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: A Compendium of

Continuous Lattices. Springer, Berlin (1980)
9. Hofmann, D.: The enriched Vietoris monad on representable spaces. J. Pure Appl. Algebra 218, 2274–

2318 (2014)
10. Hofmann, D., Seal, G.J., Tholen, W.: Lax algebras. In: Monoidal Topology, vol. 153, pp. 145–283.

Encyclopedia of Mathematics and its Applications. CUP (2014)
11. Hofmann, D., Seal, G.J., Tholen, W., Eds.: Monoidal Topology, vol. 153 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, Cambridge. A categorical approach to order, metric,
and topology (2014)

12. Hyland, M., Nagayama, M., Power, J., Rosolini, G.: A category theoretic formulation for engeler-style
models of the untyped lambda. Electronic Notes Theor. Comput. Sci. 161, 43–57 (2006)

13. Johnstone, P., Power, J., Tsujishita, T., Watanabe, H., Worrell, J.: On the structure of categories of coal-
gebras. Theoret. Comput. Sci. 260, 87–117 (2001)

14. Jónsson, B., Tarski, A.: Boolean algebras with operators. I. Am. J. Math. 73, 891–939 (1951)
15. Joyal, A.: Foncteurs analytiques et espèces de structures. In Combinatoire énumérative (Montreal, 1985),

vol. 1234, pp. 126–159. Lecture Notes in Mathematics. Springer (1986)
16. Klin, B., Salamanca, J.: Iterated covariant powerset is not a monad. In: Proceedings of the Thirty-Fourth

Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIV), vol. 341, pp.
261–276. Electron. Notes Theor. Comput. Sci. Elsevier, Amsterdam (2018)

17. Kurz, A., Velebil, J.R.: Relation lifting, a survey. J. Logical Algebraic Methods Program. 85, 475–499
(2016)

18. Manes, E.: A triple theoretic construction of compact algebras. In: Sem. on Triples and Categorical
Homology Theory (ETH, Zürich, 1966/1967, pp. 91–118. Springer (1969)

19. Manes, E.: Algebraic Teories, vol. 26 of Graduate Texts in Mathematics. Springer (1976)
20. Meyer, J.-P.: Induced functors on categories of algebras. Math. Z. 142, 1–14 (1975)
21. Scott, D.: Continuous lattices. In:Toposes, Algebraic Geometry and Logic, vol. 274, pp. 97–136. Lecture

Notes in Mathematics, Springer (1972)
22. Smyth, M.B.: Power domains and predicate transformers: a topological view. In: Automata, Languages

and Programming (Barcelona, 1983), vol. 154, pp. 662–675. Lecture Notes in Comput. Sci. Springer
(1983)

23. Street, R.: Weak distributive laws. Theory Appl. Categories 22, 313–320 (2009)
24. Tholen, W.: Quantalic topological theories. Tbilisi Math. J. 10(3), 223–237 (2017)
25. Tholen, W.: Lax distributive laws for topology, I. Cahiers de Topologie et Géométrie Différentielle Caté-

goriques 60, 311–364 (2019)
26. Trnková, V.: Relational automata in a category and their languages. In: Fundamentals of Computation
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