1 Factorisation axioms for type theory

Definition 1. Let C be a category, and let i: A — B and p: C' — D be maps
of C. We say that ¢ and p are an extension-lifting pair, and write i O p, if,
whenever we have a diagram of unbroken arrows

/
—

A B
bt

’LJ/ s lp

o

— D

there exists a (not necessarily unique) fill-in as indicated by the broken arrow,
making both triangles commute.

We are now going to utilise this notion to analyse intensional type theory. We
work in polymorphic intensional type theory a la Martin-Lof, which we will
denote by 7. Recall that we can generate a category C from such a type theory
whose objects are contexts I' modulo definitional equality and whose morphisms
I' — A are context substitutions: if A = (y; : By, ..., Ym : Bm), then f: ' — A
is given by judgements:

'+ fll Bl
I'E for Balf1/yi]

'+ fm: Bm[fl/ylwuafmfl/ymfl]

modulo definitional equality in 7. We will write this as
x:T'F f(x): A

for short. Moreover, every judgement of the form I' - A type induces a “dependent
projection” map
T,a:A)—-T

in C, which simply projects away the last factor. We write M for the class of all
morphisms of C of this form, and write £ for the class D M.

Proposition 2. The class M is stable under pullback; that is, given a map
p: (A, y:D)— Ain M and an arbitrary map F: T — A, there is a pullback
diagram of the form

Y

lp

A

(F, x:C) i) (A,

p’J(
r

D)

_
f

with p' € M.
Proof. Suppose that A = (y1 : B1, ..., Ym : Bm). We form the judgement
x:T'F C(x) := D[f(x)/y] type,

take p’ to be the corresponding dependent projection and take the map f’ to be
(f,). The universal property of pullback is easily verified. O

We shall now examine some of the constructions of intensional type theory.
Note that in what follows, we shall act as if there is no “ambient context”; to
make things rigourous, we should really prepend everything we do with an extra
context ©, but for the sake of clarity we shall omit it. We look first at the
intensional sum type, which obeys the following four equations:

A type x: AF B(x) type

(A, B) type M
a:A b: B(a
(a) @
(a,b) : 2(A, B)
y:X(A,B)F C(y) type a: A, b:B(a)Fd(a,b) : C({a,b)) 3)
y:2(A,B) F Ja(y) : Cly)
y:3(A,B)F C type a:Ab:B(a)Fd(a,b): C({(a,b)) @

a:Ab:B(a)F Jy({a,b)) = d(a,b) : C({a,b))

What do these say when interpreted in C? (1) merely asserts the existence of a
certain type, whilst (2) asserts the existence of a context morphism

i: (a: A, b:B(a)) — (y:3(A4,B)).

We now turn to the interpretations of (3) and (4). Let us write ¢ 0.M as an
abbreviation for ¢ O p for all p € M.

Proposition 3. Conditions (3) and (4) are equivalent to the statement that

1gM.

Proof. Suppose first that ¢ 0 .M, and that the hypotheses of (3) hold. From the
judgement y : ¥(A, B) - C(y) type we obtain as above a context morphism in
M given by

p: (y:2(A,B), c:C(y)) — (y:3(A,B)),

whilst @ : A, b : B(a) F d(a,b) : C({a,b)) asserts the existence of a context
morphism
d: (a: A, b:B(a)) — (y:3(A4,B), c: C(y))

such that p od = 4; in other words, such that the following diagram of solid
arrows commutes:

(a: A, b:B(a) —= (y:2(A,B), c: C(y))

Now since p € M we have i O p, and so there exists a diagonal fill-in
Jg: (y : E(A,B)) — (y :3(A,B), c: C(y))

for this square, making both triangles commute. Since the bottom triangle
commutes, giving .J is the same as giving a dependent element y : (A4, B) F

Ja(y) : C(y), which is what is required for the conclusion of (3); and since the
top triangle commutes, the conclusion of (4) holds.

Conversely, if conditions (3) and (4) hold, then any diagram like (5) has a
diagonal fill-in making both triangles commute. This is sufficient to show that
1O p for any dependent projection p: (I',d : D) — I'. Indeed, suppose we are
given a commutative square

(a:A b:Bla)) —— (I, d: D)

d:
{ J/p (6)
(y:3(A,B)) ———T.

g

Then by Proposition 2, there is a pullback diagram of the form
(y:2(A,B),c:C) 2= (I, d:
p'l J{P

r

(y : E(A,B)) B —

D)

with p’ in M, and so the diagram (6) induces a map d: (a A b B(a)) — (y :
Y(A,B), c: C’) satisfying p’d = ¢ and g’d = f. Now consider the diagram

(a: A, b:B(a)) SN (y:3(A,B), c: C)) L) (T,

s

(y : E(A,B)) _ (y : Z(A,B)) —

D)

The left hand square is a diagram like (5), and so has a fill-in J4: (y : ©(A, B)) —
(y : (A, B), ¢: C(y)) making both triangles commute. The outer rectangle is
precisely diagram (6), and ¢’ o J; is a fill-in for it making making both outer
triangles commute. O

Remark. The last part of the above proof can also be done inside the type
theory; if we express the property that ¢ 0 M directly in type-theoretic notation,
we end up with the following two conditions (where again we use “vector notation”
for elements of T'):

x:TF D type y: (A, B)Fg(y): T a:A b:B(a)F f(a,b): D(g({a,b)))
y: X(A,B)F Jy(y) - Dig(y))
x:T'F D type y: (A, B)Fg(y): T a:Ab:B(a)F f(a,b) : D(g({a,b)))
y: Z(AaB) = Jf(<a>b>) - f(a7b) : D(g(<a>b>))

and it is almost immediately obvious that these follow from conditions (3) and

(4).

We turn now to the intensional identity type. This is given by judgements

A type

(7)
x: A y: A lda(z,y) type

a:A
r(a) : 1da(a,a)
x: A y: A,z lda(z,y) F C(z,y, 2) type a: At d(a): C(a,a,r(a))
x: Ay Az lda(z,y) F Ja(x,y, 2) : Cla,y, 2)
x: A y: A, z:lda(z,y) F C type a: At d(a): Cla,a,r(a))
a:AF Jy(a,a,r(a)) =d(a): C(a,a,r(a)) .

The pattern here is somewhat similar to before but a little more refined. Equation
(7) asserts the existence of a map

(®)

(9)

(10)

p: (x:A,y:A,z:IdA(x,y))ﬂ (x:A,y:A)
in M whilst equation (8) asserts the existence of a map
i: (m : A) — (x Ay Az IdA(x,y))

such that the composite pi is the map A = (z, z): (:c : A) — (x : A, y: A). The
proof of the following is now identical in nature to the proof of Proposition 3:

Proposition 4. Conditions (9) and (10) are equivalent to the statement that

iOM.
Thus we have shown the following:

e Given a judgement a : A+ B(a) type, we can factor the unique context
morphism into the terminal context (a : A, b: B(a)) — () as

(a: A, b:B) 5 (y:2(A,B) & (),

where p € M and iO M.
e Given a judgement F A type, we can factor the context map A: (x : A) —
(x CA Y A) as
(:E:A)L(w:A,y:A,z:IdA(x,y)) &(x:A,y:A)
where p € M and : O M.

This suggests that we could replace the axioms for the identity and sum types
with a new axiom scheme which we state in terms of C:

Axiom. Any context map F: T — A can be factored as F = pi where p € M
and i O M.

This can be seen as a categorical counterpart to the most simplistic of Dybjer’s
“inductive schemata”. If we translate it back into our type theory, we get
intensional factorisation types:

x:TF f(x): A)
y : AF ®s(y) type
x:T
i(x) : @y (f(x)) 12
YA, z:0p(y)FCly,2) type x:THd(x): C(f(x),i(x)) (13)
yilA z:@p(y) F Jaly,2) : C(y, 2)
YA z2:®p(y)FCly,2) type x:THd(x): C(f(%),i(x)) 14)

VA z:P@p(y)F Jd(f(x),i(x)) =d(x) : C’(f(x),z'(x)).

Immediately, factorisation types subsume the identity and sum type construc-
tors; they also subsume the intensional unit type, which is the factorisation type
for the unique context map () — (). What else does they let us do? Suppose
that 7 also has the intensional boolean type 2, with two canonical elements
0 and 1; then we can define a map f: () — (y : 2) picking out the canonical
element 1 : 2. The factorisation type of this map is a type = : 2 - B(x) type
satisfying the axioms

x: B(1)
y:2,z:B(y)F C(y, 2) type d:C(1,%)
y:2,z:By)F Ja(y,z) : Cly, 2)
y:2,z:B(y)F C(y, 2) type d:C(1,x%)
y:2,z:By)F Jg(l,%x) =d: C(y, 2).

So informally, B is the “closure under propositional equality” of

B(0) =10 and B(1) = {x}.

In general, our factorisation axiom, when applied to a context map f: ' — A,
yields a type @ in context A which is inductively generated by the elements of
I'; the map f picks out which fibre of ¢ over A each generating element of I'
will land in.

Remark. Our factorisation axiom is inspired by the categorical structure of a
weak factorisation system. Given a category C and two classes Z and P of its
morphisms, we say that (Z,P) is a weak factorisation system if the following
two conditions are satisfied:

1. Every map f € C can be factored as f = pi with i € Z and p € P;
2. Z=UP and P =10

where we write

DF.={ieCc:i0F} and FZ:={peC:Fap}.

It is easy to see that (‘:'/\/l, (DM)D) is a weak factorisation system on the
category of contexts. However, our axiom requires somewhat more than this,
since the factorisation f = pi we construct always has p € M rather than merely
p e (DE’M). The class M “fibrantly generates” our factorisation system.

Our factorisation axiom does not directly imply the existence of a weak
factorisation system. In our case, we have classes £ and M satisfying property
(1), but not property (2): though we have £ = B M, in general we only have
M C EB. We can fix this by replacing M with the larger class M’ = £5; then
(€, M) will form a weak factorisation system on the category of contexts C.
However, we cannot recover M from M’, and since it is M that we are interested
in rather than M’, we will stick with the stronger formulation that we have
given.

Remark. We have not so far shown how to reintroduce the “ambient context”
for our new factorisation types. If we present the axioms type-theoretically, this
is trivial; we merely add a © on the front of all our contexts and add definitional
equalities saying that factorisation types are stable under substitution.

If we present them category-theoretically, on the other hand, we must be
slightly more careful. Given a context O, we write Co for the full subcategory of
the slice category C/© on the objects f: A — O where f is a composite of maps
from M. In other words, Cg is the category of “contexts in context ©”. Any
map of contexts F': ©' — O induces a substitution functor F*: Cg — Cgr, and
there is an evident forgetful functor U: Co — C. We write Mg for the class of
arrows of Cg whose image under U lies in M, and &g for B (Mg). We can now
state our factorisation axiom more precisely:

Axiom. We can factorise any map f € Co as f = pi wherep € Mg andi € Eg;
moreover, these factorisations are strictly preserved by the reindexing functors
F*: C@ — C@/.

Despite the usefulness of our factorisation types, we cannot do everything we
would like with them. As it stands, we cannot use them to capture the intensional
product types; the reason for this is that intensional type theory is only first
order, in the sense that we do not have judgements like

(z: AF ¢(z) : B(z)) - C(¢) type

available. In the next section, we shall describe a system with higher order types
(z : A)B, in which the above judgement can be expressed, as

¢:(x: A)BF C(¢) type.

In this new system, we will be able to capture the intensional product type
II(A, B) as the factorisation type of the context map

(gb (o A)B) - ().

2 A framework for type theory

The system we shall describe in this section can be seen as a superstructure
which we erect around an intensional type theory; as well as judgements - A type

we shall have judgements - A sort. The idea is that whilst the types continue
to form a model of an intensional type theory, the sorts will form a model of
a (extensional) dependently-typed lambda calculus. We view the types as an
“intensional reflection” of the sorts; thus every type is a sort whilst every sort
can be approximated by a type in a universal way.' All the constructions in the
theory of types will arise by reflecting down the corresponding constructions in
the theory of sorts.

This system is not the same as the “Logical Framework” which is commonly
used to present intensional dependent type theory. This is also a (extensional)
dependently-typed lambda calculus of sorts surrounding an intensional theory
of types, but differs from our framework in that the theory of types is internal
to the theory of sorts; we have type : sort together with a “universal small map”
t : type - EI(t) sort, and all the structure in the theory of types is encoded as
structure on type in the theory of sorts. So in this system, types are both smaller
and more intensional than sorts.

In our system, by contrast, types are not smaller than sorts. The reflection
of sorts into types will say (amongst other things) that every sort inductively
generates a type, which immediately makes it clear that if we did have type : sort
then type : type style paradoxes would await. A more correct intuition would be
to think of the types as being the inductively generated sorts.

Since this framework is not standard, we shall give a thorough presentation of
it from the ground up; we start by presenting the calculus of sorts. This can be
summarised by saying that it is the framework for the monomorphic version of
intensional type theory which is presented in [Nordstrom, et al., Part III], but
without type : sort. We have four standard forms of judgement:

I'+ A sort I'ta:A I'A= B sort I'Fa=b:A

where I' is a well-formed contezt of sorts, I' = (x1 : A1,...,z, : A,). To say
that T" is well-formed, is to say that the following judgements hold:
~ A; sort
Xy - Al = AQ sort
T Al,{L'Q : A2 F A3 sort

€Ty - A17 ey Lpp—1 An—l = An sort.
We have other requirements for well-formed judgements:
e for the judgement I' - a : A to be well-formed, we must have first the

judgement I' -+ A sort;

e for the judgement I' A = B sort to be well-formed, we must have first
the judgements I' = A sort and I' - B sort;

e for the judgement I' - a = b : A to be well-formed, we must have first the
judgements 'Fa: Aand I'Fb: A.

We now give our rules of inference. For the sake of clarity, we omit premisses
that can be inferred from the context: for instance, when we write the premise

1Though as we shall see, this universality does not amount to a reflection in the usual
category-theoretic sense, since it is only universal “up to propositional equality”.

'k a: A, we implicitly presume also that I' = A sort. We suppress any mention
of a context that is common to both the premisses and the conclusion of a rule;
finally, given a judgement - 7 in an empty context, we omit the - entirely.

o Assumption

A sort
r:AFz: A

e Fquality of sorts

A sort A = B sort A = B sort B =C sort

A= A sort B = A sort A= C sort
e Fquality of elements
a:A a=b:A a=b:A b=c: A
a=a:A b=a:A a=c:A

Sort rules

a:A A = B sort a=b:A A = B sort
a:B a=b:B

Substitution in sorts
r:AAF C sort a:A r: A AF C sort a=b:A
Ala/x] - Cla/x] sort Ala/x]) - Cla/x] = C[b/x] sort
z: A A+ B=C sort a:A
Ala/z] F Bla/x] = Cla/x] sort
Substitution in elements
z: A AFc:C a:A z: A AFc: C a=b:A
Ala/z]) & cla/z] : Cla/x] Ala/z]) F cla/z] = c[b/z] : Cla/x]

z: A AFb=c:C a:A
Ala/x] - bla/z] = cla/z]

This completes the list of core structural rules of the theory of sorts. We continue
by adding in constructors for higher-order sorts.

e Function sort formation

A sort x:AF B sort A; = Ay sort x: A F By = By sort

(z: A)B sort (x:A1)B; = (z: A2) By sort
o Abstraction
x:AFb: B
(x)b: (x:A)B

r:AFb: B a: A
()b = (y)(bly/]) : (x: A)B

y not free in b

e £-conversion
z:AF bl = bQ : B

()by = (z)be : (x: A)B

e Application
f:(z:A)B a:A fi=fa:(z: A)B a1 =as: A
f-a: Bla/z] fi-a1 = fa-az: Blai/x]

e [(3-conversion

x:AFb: B a:A
(2)b-a =bla/x] : Bla/x]

® 7)-COnversion

f:(z:A)B
F= @)z A)B

We augment this extensional dependently typed lambda calculus of sorts with
the following rules for types. We have one new form of judgement:

' A type

where as before I' is a context of sorts. We have that all types are sorts:
'k A type
T'F A sort.
And that being a type is stable under substitution:
x: A AFC type a:A
Ala/x]) F Cla/x] type

Finally, we have laws for factorisation types. As before, we write x : I' F f(x) : A
as shorthand for an arbitrary map of contexts f: ' — A.

e Factorisation type formation:
x: Tk f(x): A x:TFf(x)=gx): A
y:AF Os(y) type V:AFOs(y) = P4(y) sort

e Factorisation type introduction:

i(x) (Df(f(x))
e Fuctorisation type elimination:
v:A z:Pp(y)F Cly,z) type x:THd(x): C(f(x),i(x))
VA z:Pp(y) F Jaly,2): Cly,2)
y:iA, z:P(y) FC(y, 2) type x:THd(x): C(f(x),i(x))
VA z:Q4(y)F Jd(f(x),i(x)) =d(x): C’(f(x),i(x)).

This concludes the list of formal axioms for our system, which we shall call
system S§. What might not immediately obvious is that the types in this system
form a full model of the (polymorphic) intensional dependent type theory 7.
Let us show that this is the case. First observe that we can define the notion of
a “context of types”; this is a context of sorts I' = (z7 : Ay,...,x, : A,) such
that the following judgements hold:

F A; type

x1: Al Asg type

r1: A1, a0 0 Ao b As type

xy: Ay, o1t Apo1 B A, type.
Using this notion, we can interpret the four basic judgements of 7:
e To say that A is a type in context I' is to say that I is a context of types
and that I' - A type holds in S;

e To say that A and B are equal types in context I' is to say that I" is a
context of types and that I' - A = B sort holds in S;

e To say that a is an element of the type A in context I' is to say that I is a
context of types and that I' - a : A holds in S;

e To say that a and b are equal elements of the type A in context I is to say
that I is a context of types and that ' a =5b: A holds in S.

So we have a subsystem of types and contexts of types which is trivially checked
to satisfy all the core structural rules of 7. What about the type constructors
of 77 All of these will arise as a result of the factorisation types.

e The unit type 1 arises as the factorisation type of !: () — ();

e Given a type A, the identity type z,y : A F Ida(z,y) type arises as the
factorisation type of A: (z: A) — (x: A, y: A);

e Given a judgement = : A+ B type, the intensional sum type (A, B) arises
as the factorisation type of I: (a: A4,b: B(a)) — ();

e Given a judgement x : A+ B type, the intensional product type II(A, B)
arises as the factorisation type of !: (¢ : (z: A)B) — ().

3 Categorical models of system S

Definition 5 (Taylor). In a category C, a class of display maps D is a
subclass of the arrows of C such that pullbacks of D-maps along C-maps exist,
and are D-maps.

Definition 6. A categorical model for system S is given by the following data:

e A category C (modelling “contexts of sorts”) with finite products;

e A class of display maps D in C (modelling “dependent projections of sorts”),
and

e A class of display maps M C D (modelling “dependent projections of
types”).

10

Given an object X € C, we single out three full subcategories of the slice category

C/X:

e 7x (modelling “types in context X”) is the full subcategory whose objects
are M-maps;

e Sx (modelling “sorts in context X”) is the full subcategory whose objects
are D-maps, and

e Cx (modelling “contexts in context X”) is the full subcategory whose
objects are composites of zero or more D-maps.

We also write M x for the subclass of arrows of Cx whose image under the
forgetful functor Cx — C lies in M, and write Ex for U (M x). We now require
that:

e For any map f: X — Y in D, the pullback functor f*: Sy — Sx has
a right adjoint II;, and these right adjoints satisfy the Beck-Chevalley
condition: given a pullback square

77—t x
gl f
W——Y

with f,g € D, the canonical natural transformation A*Il; = II k" is a
natural isomorphism.

e Every map g: A — B in Cx has a chosen factorisation f: A - &, 2B
where p € Mx and 7 € £x; moreover, given a context map f: Y — X in
C, the pullback functor f*: Cx — Cy preserves the factorisations, in that
there is an isomorphism 6: ® ., — f*®, making the following diagram
commute in Cy:

N\

0 *
Pprg ———— [

\ /
pf*g\ f*B /f*pg

Remark. To be faithful with the type theory, we should require these factorisa-
tions to be strictly preserved. However, in keeping with the rest of the definition,
which is fairly laissez-faire about coherence, we only demand isomorphisms. If
we wanted to be really precise we would restate everything in terms of split
fibrations a la Jacobs. However the translation is routine and the display map
formulation is more convenient so we shall stick to it.

Note that there is actually a further weakening that we could make, namely
to require that f* sends the chosen factorisation in M x to some factorisation
in My that is, we demand merely that f*p, € My? and f*i, € Ey.

if*V f A \f*ig
/

Remark. We said earlier that the types would be an “intensional reflection”
of the kinds. We make this precise as follows. Fix an object X € C; then

2which is automatic.

11

since M C D (“types are sorts”) we have an inclusion functor 7x — Sx. This
inclusion functor is trying very hard to have a left adjoint, which sends a D-map
(f: A— X) to the M-map (p;: &; — X).

Unfortunately, this operation is not functorial on the nose, but only “up to
propositional equality”; and even if it were, then it is not a left adjoint on the
nose, because one of the triangle identities does not commute on the nose, but
again only “up to propositional equality”.

12

