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MONOIDAL KLEISLI BICATEGORIES AND THE

ARITHMETIC PRODUCT OF COLOURED SYMMETRIC SEQUENCES

NICOLA GAMBINO, RICHARD GARNER, AND CHRISTINA VASILAKOPOULOU

Abstract. We extend the arithmetic product of species of structures and symmetric sequences studied

by Maia and Méndez and by Dwyer and Hess to coloured symmetric sequences and show that it determines
a normal oplax monoidal structure on the bicategory of coloured symmetric sequences. In order to do

this, we establish general results on extending monoidal structures to Kleisli bicategories. Our approach

uses monoidal double categories, which help us to attack the difficult problem of verifying the coherence
conditions for a monoidal bicategory in an efficient way.
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1. Introduction

Context, aim and motivation. Joyal’s theory of species of structures [Joy81] provides an illuminating
and powerful approach to enumerative combinatorics, as amply illustrated in [BLL98], and finds applications
also in algebra [AM10]. By definition, a species of structures F is simply a functor from the category B
of finite sets and bijections to the category of sets and functions, mapping a finite set U of ‘labels’ to a
set F rU s of ‘F -structures’ (e.g. binary rooted trees) labelled by elements of U . Importantly for applications,
species of structures support a calculus of operations (which includes substitution, sum, product and
differentiation) that has a combinatorial interpretation and provides a ‘categorification’ of the calculus of
exponential power series widely used in combinatorics [Wil06]. This point of view is supported by the
introduction of the so-called analytic functor associated to a species of structures [Joy86], which is defined
by the formula

F pXq “
ÿ

nPN

F rns ˆXn

Sn
,

where, for n P N, rns “ t1, . . . , nu and the fraction denotes the quotient of F rns ˆ Xn by the evident
action of the n-th symmetric group Sn. The passage from species of structures to analytic functors goes
via symmetric sequences, which are defined as functors from S, the skeleton of B whose objects are finite
cardinals, into the category of sets. Under the equivalence between species of structures and symmetric
sequences, the substitution operation of species of structures corresponds to the substitution monoidal
structure on symmetric sequences defined in [Kel05], which is of interest since monoids with respect to it
are precisely symmetric operads [BV73, May72].
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In [MM08], Maia and Méndez introduced a new operation on species of structures, baptized arithmetic
product, and provided a combinatorial interpretation for it. Given species F and G, their arithmetic
product F bG is defined by letting

pF1 b F2qrU s “
ÿ

pπ1,π2qPRrUs

F1rπ1s ˆ F2rπ2s,

where RrU s denotes a certain set of partitions of U , called rectangles. Independently of the work of Maia
and Méndez, Dwyer and Hess rediscovered this operation1 in the context of symmetric sequences [DH14] in
order to extend the Boardman–Vogt tensor product of symmetric operads [BV73] to operadic bimodules.
For symmetric sequences, the arithmetic product is defined from the product of natural numbers on S
(which is functorial, even if it is not the cartesian product) by Day convolution [Day70], via the coend
formula

pF1 b F2qrms “

ż m1,m2

Srm,m1 ¨m2s ˆ F1rm1s ˆ F2rm2s. (1)

The connection between the arithmetic product for species in [MM08] and symmetric sequences in [DH14]
seems to have been first noted by Bremner and Dotsenko in [BD20].

In [DH14], the authors also observed that the arithmetic product of symmetric sequences interacts with
the substitution monoidal structure in an interesting way, in that there is a natural transformation with
components

pG1 ˝ F1qb pG2 ˝ F2q Ñ pG1 bG2q ˝ pF1 b F2q (2)

which are not necessarily invertible. Dwyer and Hess conjectured that this transformation underlies what
is usually called a duoidal or 2-monoidal structure, in which two monoidal structures interact by means
of an interchange law [AM10]. The conjecture was settled positively by the second-named author and
López Franco, who also showed that this duoidal structure is normal, in the sense that the units of the
two monoidal structures essentially coincide. This was done as part of their general study of commutative
operations [GL16], which involves introducing a general notion of commuting tensor product of ˝-monoids
in a normal duoidal category pV,b, ˝q. When this notion is instantiated at the normal duoidal category
of symmetric sequences, it re-finds the Boardman–Vogt tensor product P bBV Q of symmetric operads P
and Q. In particular, to express that the operations of P and Q commute with each other in P bBV Q
one uses a diagram of the form

P bQ pP bBV Qq ˝ pP bBV Qq P bBV Q (3)

which involves both the arithmetic product and the substitution monoidal structures. Furthermore, [FV20]
uses this duoidal structure to establish an enrichment of symmetric operads in symmetric cooperads.

The aim of this paper is to generalise the definition of the arithmetic product, and the key results
concerning it, from symmetric sequences to coloured symmetric sequences: this corresponds to the passage
from symmetric operads to coloured symmetric operads, i.e. from the single-object to the many-object
case. We will show that such generalisation not only is possible, but actually determines a new kind of
low-dimensional categorical structure.

The motivation for this work is manifold. First, it is part of a wider research programme aimed at
understanding the structure of the bicategory of coloured symmetric sequences and related bicategories,
with applications to logic and theoretical computer science, cf. [CW05, Hyl10]. In particular, it provides
the basis to extend the Garner–López Franco theory of commutativity, to re-find the Boardman–Vogt
tensor product of coloured symmetric operads (cf. (3)), and to develop a corresponding tensor product of
bimodules between them, generalising the results of Dwyer and Hess, a project that we leave for future
work. The results presented here are also useful to extend the study of enrichment in [Vas19] to relate
coloured (co)operads and their (co)modules. Finally, we hope that our results may eventually be of interest
in combinatorics, since the arithmetic product of coloured symmetric sequences defined here induces
a corresponding operation on coloured species of structures [FGHW08], which extends the arithmetic
product of Maia and Méndez to variants of Joyal’s species of structures that are particular instances of
coloured species of structures.

1Dwyer and Hess called it matrix multiplication. Here we prefer to say arithmetic product in order to avoid potential

confusion with the composition operation of the bicategory of matrices.
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Main results. Whereas the original arithmetic product is extra structure on the substitution monoidal
category of symmetric sequences, our generalised arithmetic product for coloured symmetric sequences
will be extra structure on the bicategory Sym of coloured symmetric sequences of [FGHW08]. Recall that,
for sets X and Y , an pX,Y q-coloured symmetric sequence is a functor M : SY op ˆX Ñ Set, where SY
is the free symmetric strict monoidal category on Y . Such a functor M assigns a set Mp~y, xq to each
~y “ py1, . . . , ynq P SY and x P X, the elements of which can be thought of as operations f : y1, . . . , yn Ñ x,
with inputs of sorts y1, . . . , yn and output of sort x, typically pictured as corollas. Taking X “ Y “ 1
recovers the notion of ordinary symmetric sequence since S1 “ S; and as shown in [Fio05, FGHW08],
the calculus of symmetric sequences can be extended to their coloured counterparts. In particular, the
substitution monoidal structure can be generalised to a composition operation, which is the composition
of the bicategory Sym whose objects are sets, and whose maps from X to Y are the symmetric pX,Y q-
coloured sequences [FGHW08, FGHW18]. The monads in this bicategory are then symmetric coloured
operads [BD98].

Given an pX1, Y1q-coloured symmetric sequence M and a pX2, Y2q-coloured symmetric sequence M2,
we will define their arithmetic product as the pX1 ˆX2, Y1 ˆ Y2q-coloured symmetric sequence M1 bM2

given by

pM1 bM2qp~y, px1, x2qq “

ż ~y1,~y2PSY

SpY1 ˆ Y2qr~y, ~y1 b ~y2s ˆM1p~y1, x1q ˆM2p~y2, x2q, (4)

where

b : SY1 ˆ SY2 Ñ SpY1 ˆ Y2q (5)

is an operation determined by lexicographic ordering of pairs. As expected, when X1 “ Y1 “ X2 “ Y2 “ 1,
we obtain the arithmetic product in (1) of Dwyer and Hess.

Our main result, Theorem 10.9, asserts that the said arithmetic product determines a normal oplax
monoidal structure on the bicategory Sym of coloured symmetric sequences. The notion of a normal
oplax monoidal bicategory appears to be novel and is introduced here in Definition 4.8 as the natural
‘many-object’ generalisation of the normal duoidal structure in (2). The key challenge to be overcome to
obtain our main result is the verification of the axioms for a normal oplax monoidal bicategory, which are
of the same daunting complexity as those for a monoidal bicategory [GPS95, Gur13]. As such, attempting
a direct verification seems hopelessly complicated and unlikely to result in any insight. Instead, we solve
the problem developing ideas of 2-dimensional monad theory [BKP89], obtaining some general results
that are of independent interest.

Our approach exploits crucially the notion of a (pseudo) double category, which adeptly handles the
bookwork around dealing with structures involving two kinds of morphisms. More specifically, in a double
category one has objects, two kinds of 1-cells (called horizontal and vertical), and squares (which help to
relate horizontal and vertical 1-cells). Of key importance for our development are the double category of
profunctors Prof, which has categories as objects, profunctors [Bén73, Bén00] (also known as distributors
or bimodules) as horizontal 1-cells and functors as vertical 1-cells; and the double category of matrices
Mat, which is the full double subcategory of Prof spanned by sets (viewed as discrete categories).

Double categories are important for us because they provide an efficient way of constructing three-
dimensional structures such as monoidal bicategories and, as we shall see, their oplax variants. The
basic insight, as explained in [GG09, Shu10, HS19], is that, in order to obtain a monoidal structure
on a bicategory E , it is sufficient to represent E as the horizontal bicategory of a double category and
then construct a monoidal structure on this double category. Since the coherence data and axioms for
a monoidal double category are of the same character as those of a monoidal category, rather than
a monoidal bicategory, this significantly reduces the volume and complexity of the checks required to
establish the structure.

The relevance of this to our situation is that the bicategory of coloured symmetric sequences Sym
can be represented as the horizontal bicategory of a double category Sym in which vertical 1-cells are
functions between sets. In fact, building on [CS10, FGHW18], this Sym can be seen as a full sub-double
category (on the discrete objects) of the double category CatSym of categorical symmetric sequences;
which can, in turn, be constructed as the Kleisli double category of a double monad on the double category
Prof of profunctors. The double monad in question maps a category X to its symmetric strict monoidal
completion SX, extending the corresponding 2-monad on the 2-category of categories.

Given the above, the desired normal oplax monoidal structure on the bicategory of coloured symmetric
sequences can be obtained as follows. Firstly (Theorem 4.10), we extend the results of [GG09, Shu10, HS19]



4 N. GAMBINO, R. GARNER, AND C. VASILAKOPOULOU

to establish that such a structure can be obtained from a normal oplax monoidal structure on Sym, or more
generally, CatSym. Secondly, to obtain this, we prove and apply a result (Theorem 9.4) which isolates
sufficient conditions on a double monad T on a double category C under which a monoidal structure on C
will extend to an oplax monoidal structure on the Kleisli double category KlpT q. Pleasingly, this condition
on T turns out to be a natural one, namely a suitably adapted form of the pseudo-commutativity of [HP02].
This is satisfied by the 2-monad S used in our application, and indeed, the operation (5) featured in the
definition of the arithmetic product is part of this pseudo-commutative structure on S : CatÑ Cat.

Thus, using this result, the monoidal structure on Prof given by the cartesian product of sets extends
to give the arithmetic product oplax monoidal structure on the double category CatSym of categorical
symmetric sequences, which in turn induces the desired oplax monoidal structure on the double category
Sym of coloured symmetric sequences. This general method leads exactly to the formula in (4), which is a
natural generalisation of that in (1).

While our approach offers a clear pathway to prove our main results, and others besides, we still have to
overcome significant technical challenges, dealing with coherence conditions at the double categorical level,
keeping track of strictness and weakness of the structures involved. Roughly speaking, vertical structure
tends to be stricter than horizontal one, but the two are closely related under the assumption that the
double categories under consideration are fibrant, in the sense of [Shu08]. This allows us to induce a lot of
the horizontal, weaker, structure that we need for applications from vertical, stricter, one, that is already
known, thereby keeping some control of the complexity of our calculations.

While it undoubtedly requires more groundwork to set up the abstract approach that we take, the end
result is a modular framework which is easily applicable to other, related situations. For example, although
we shall not do so here, it is entirely straightforward to adapt our results from the setting appropriate
for studying symmetric coloured operads to the setting appropriate for many-sorted algebraic theories:
it is simply a matter of replacing the double monad S for symmetric strict monoidal categories with a
corresponding double monad F for categories with strictly associative finite products, and verifying that
everything still carries through. In this setting, we obtain an oplax monoidal structure on the appropriate
Kleisli bicategory—which is essentially the bicategory of sifted-cocontinuous functors between presheaf
categories—which extends the duoidal structure on the functor category rF p1qop,Sets used in [GL16] to
study the commuting tensor product of single-sorted algebraic theories.

For expository convenience, we outlined our results above for Set-valued coloured symmetric sequences,
but in fact our development will be carried out in a more general enriched context. For any symmetric
monoidal closed cocomplete V there is an analogue of the 2-monad S leading to a bicategory of V-enriched
symmetric sequences. However, to obtain an oplax monoidal structure on this bicategory, we will restrict
to the case where the tensor product of V is in fact cartesian product. The reason for this restriction,
which was also made in [DH14, GL16], is that the 2-monad S is only pseudo-commutative when V is
cartesian, since the structure maps in (5) for this pseudo-commutativity involve a ‘duplication’ of objects
that is not available in the general symmetric monoidal closed setting.

Outline of the paper. Sections 2 and 3 recall the notions of double category, double functor, horizontal
and vertical transformation, and modification. We pay particular attention to companions, leading
to the notion of a special vertical transformation, and establish a few useful lemmas about them.
Sections 4 and 5 focus on monoidal double categories, monoidal double functors, monoidal horizontal and
vertical transformations and monoidal modifications. In particular, we show that, for monoidal double
categories C and D, monoidal double functors between them are the objects of a functor double category
(Proposition 5.6). Section 6 considers monoids in monoidal double categories. We use this notion in
Sections 7 and 8 to define double monads and monoidal double monads and obtain results on them in a
homogeneous manner. To do this, we show that the double category of monoidal double endofunctors
on a monoidal double category admits a monoidal structure, given by composition (Proposition 8.1). In
Section 9, we consider Kleisli double categories and establish sufficient conditions for a double monad
on a monoidal double category to determine a monoidal structure on the Kleisli double category. We
apply these results to coloured symmetric sequences in Section 10, leading up to our main results on the
existence of oplax monoidal structures on the relevant double category (Theorem 10.8) and bicategory
(Theorem 10.9).

Acknowledgements. We are grateful to Mike Shulman for helpful conversations and to Thomas Ehrhard
for pointing us to [PR97], which led us to formulate the notion of centrality in Definition 4.7. Gambino
acknowledges that this material is based upon work supported by the US Air Force Office for Scientific
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acknowledges the support of Australian Research Council grants FT160100393 and DP190102432. Vasi-
lakopoulou acknowledges the support of the General Secretariat of Research and Innovation (GSRI) and
the Hellenic Foundation for Research and Innovation (HFRI).

2. Double categories

By double category, we will mean a horizontally weak double category, also known as pseudo double
category; relevant material can be found in [GP99, GP04, Gar06a, HS19].

Definition 2.1 (Double category). A double category C consists of the following data:

‚ a category C0, whose objects are 0-cells, and whose arrows are vertical 1-cells f : X Ñ X 1;
‚ a category C1, whose objects are horizontal 1-cells M : X ÝÞÑ Y , and whose arrows are 2-morphisms

X Y

X 1 Y 1;

f

M

óφ g

M 1

(6)

‚ two functors s, t : C1 Ñ C0 called source and target respectively;
‚ composition and identity functors ˝ : C1 ˆC0

C1 Ñ C1 and id: C0 Ñ C1;
‚ natural families of globular isomorphisms in C1:

aM,N,P : pM ˝Nq ˝ P ñM ˝ pN ˝ P q , `M : idY ˝M ñM and rM : M ˝ idX ñM. (7)

These data are required to satisfy coherence axioms analogous to those for a bicategory; see [GP99, §7.1].

In the last item of the preceding definition, we use the notion of a globular 2-morphism in a double
category C; this is a 2-morphism φ for which spφq and tpφq are identities:

X X

X 1 Y .

M

óφ

M 1

Given a double category C, we write HpCq for the its horizontal bicategory, comprising the 0-cells,
horizontal 1-cells and globular 2-morphisms; and we write VpCq for its vertical 2-category, whose objects
and morphisms are the 0-cells and vertical 1-cells of C, and where a 2-cell f ñ g is a 2-morphism in C of
the form

X X

X 1 X 1.

g óφ

idX

f

idX1

Notice that vertical composition of 2-cells in VpCq is given by pasting in the horizontal direction in C,
and vice versa.

Example 2.2 (Bicategories and monoidal categories as double categories). Any bicategory can be seen as a
double category with only identity vertical arrows. In particular, any monoidal category pV, ˝, Jq can be
regarded as a double category with a single object and only the identity vertical arrow.

Example 2.3 (The double category of matrices). Fix a monoidal category pV, ˝, Jq with small coproducts,
such that the tensor product preserves coproducts in each variable; in particular, this holds whenever
the monoidal structure is closed. Given sets X and Y , an pX,Y q-matrix M : X ÝÞÑ Y is a family of
objects

`

Mpy, xq P V : x P X, y P Y
˘

. The double category of V-matrices MatV has objects and vertical
1-cells being sets and functions, respectively; horizontal 1-cells M : X ÝÞÑ Y being pX,Y q-matrices; and
2-morphisms φ : M ñ N as in (6) being families of V-arrows

`

φyx : Mpy, xq Ñ Npgy, fxq : x P X, y P Y
˘

.
Horizontal composition N ˝M : X ÝÞÑ Y ÝÞÑ Z is given by

pN ˝Mqpz, xq “
ÿ

yPY

Npz, yq ˝Mpy, xq,
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while the horizontal identities idX : X ÝÞÑ X are defined by idXpx, x
1q “ J if x “ x1 and idXpx, x

1q “ 0
if x ‰ x1. The horizontal bicategory of this double category is the usual bicategory of enriched matrices;
see [BCSW83].

The choice of a different notation for Example 2.4 below is needed in view of Example 4.5.

Example 2.4 (The double category of profunctors). Fix a braided monoidal cocomplete category pV,b, Iq in
which the tensor product preserves colimits in each variable. Below, we use freely the standard notions of V-
category, V-functor and V-natural transformation, for which we invite readers to refer to [Kel82]. Recall
that, for small V-categories X and Y , a pY,Xq-profunctor M : X ÝÞÑ Y is a V-functor M : Y op bX Ñ V .
We may now define the double category ProfV of V-profunctors as follows. The objects and vertical 1-cells
of ProfV are small V-categories and V-functors; the horizontal 1-cells are V-profunctors, and squares as
in (6) (writing now F and G instead of f and g) are V-natural transformations φ : M ñ M 1 pG b F q,
where

Y op bX
GbF
ÝÝÝÑ Y 1

op
bX 1

M 1

ÝÝÑ V.
Horizontal composition of M : X ÝÞÑ Y and N : Y ÝÞÑ Z is given by the coend

pN ˝Mqpz, xq “

ż yPY

Npz, yq bMpy, xq. (8)

The horizontal identity idX : X ÝÞÑ X is defined by idXpx
1, xq “ Xrx1, xs2. Note that MatV can be

regarded as a sub-double category of ProfV by considering sets as discrete V-categories. The horizontal
bicategory of ProfV is the familiar bicategory of profunctors, while the vertical 2-category is the 2-category
of small V-categories.

The examples illustrate a phenomenon that pervades the paper: the vertical structure is strict, while
the horizontal structure is weaker, and thus requires careful consideration of coherence issues. The
management of these coherence issues is simplified when the horizontal and vertical structures can be
universally related in the following way.

Definition 2.5. Let C be a double category. A companion for a vertical 1-cell f : X Ñ X 1 in C is given

by a horizontal 1-cell pf : X ÝÞÑ X 1 along with 2-morphisms

X X 1

X 1 X 1

pf

f óp1

idX1

and

X X

X X 1

idX

óp2 f

pf

(9)

such that

X X

X X 1

X 1 X 1

idX

óp2 f

f

pf

óp1

idX1

“ idf and

X X X 1

X X 1 X 1

X X 1

idX

óp2 f

pf

óp1

pf
ó`

idX1

pf

“

X X X 1

X X 1.

idX

ór

pf

pf

(10)

Although companions are defined algebraically, they also have a universal characterisation:

Lemma 2.6. Let f : X Ñ X 1 be vertical 1-cell of a double category C. Giving a companion p pf, p1, p2q for
f is equivalent to giving either of the following:

‚ A horizontal 1-cell pf and 2-morphism p1 as in (9) such that, for every horizontal 1-cell M : X 1 ÝÞÑ Y 1,
the composite 2-morphism to the left below is cartesian with respect to ps, tq : C1 Ñ C0 ˆ C0; or

‚ A horizontal 1-cell pf and 2-morphism p2 as in (9) such that, for every horizontal 1-cell M : W ÝÞÑ X,
the composite 2-morphism to the right below is opcartesian with respect to ps, tq : C1 Ñ C0 ˆ C0:

2We use brackets for hom-objects of categories, and parentheses for applications of (pro)functors and other maps.



MONOIDAL KLEISLI BICATEGORIES 7

X X 1 Y 1

X 1 X 1 Y 1

X 1 Y 1

pf

f óp1

M

idX1

ór

M

M

W X

W X X

W X X 1.

M

ó`-1

M idX

óp2 f

M
pf

By virtue of this result, companions of a vertical 1-cell are unique up to a unique globular 2-isomorphism,
so that by the usual abuse of notation we may refer simply to the companion. In what follows we will often
require the existence of certain companions, but in many examples of interest we have all companions
and also all conjoints—the dual notion to companion, which associates to a vertical 1-cell f : X Ñ X 1

a horizontal 1-cell qf : X 1 ÝÞÑ X along with unit and counit 2-morphisms. In this case, we may speak of
a framed bicategory in the sense of [Shu08] or fibrant double category in other references. By the above
lemma and an appropriate dual lemma for conjoints, a double category is a framed bicategory if and only
if ps, tq : C1 Ñ C0 ˆ C0 is a Grothendieck fibration, or equivalently, a Grothendieck opfibration.

Example 2.7. The double category ProfV of V-profunctors is a fibrant double category. The companion

and conjoint of a V-functor F : X Ñ X 1 are the V-profunctors pF : X ÝÞÑ X 1 and qF : X 1 ÝÞÑ X given by

pF px1, xq “ X 1rx1, Fxs and qF px, x1q “ X 1rFx, x1s. (11)

It follows a fortiori that the double category MatV of matrices is also fibrant, where for a function f : X Ñ

X 1 its companion and conjoint pf : X ÝÞÑ X 1 and qf : X 1 ÝÞÑ X are the V-matrices given by:

pfpx1, xq “ qfpx, x1q “

#

I if fpxq “ x1,

0 otherwise.

Note that, in these examples, we have that pF % qF and pf % qf in the horizontal bicategory. In fact, it is
always true that the companion and conjoint of a vertical 1-cell are adjoint in this way.

The universality of companions in Lemma 2.6 immediately implies the following omnibus proposition.

Proposition 2.8. Let C be a double category.

(i) The vertical identity 1-cell 1X : X Ñ X has the horizontal identity idX : X ÝÞÑ X as a companion.

(ii) If the vertical 1-cells f : X Ñ X 1 and g : X 1 Ñ X2 have the companions pf and pg, then g ˝ f has

the companion pg ˝ pf .
(iii) If the vertical 1-cells f : X Ñ X 1 and g : Y Ñ Y 1 admit companions, then pasting with the

companion 2-morphisms for f and g gives a bijection between 2-morphisms φ as in (6) and
globular 2-morphisms

X Y Y 1

X X 1 Y 1.

M

ópφ

pg

pf M 1

(12)

If f and g are invertible in C0, then under this correspondence φ is invertible in C1 if and only if
pφ is.

(iv) If VpCq1 denotes the locally full sub-2-category of VpCq with the same objects, and as morphisms
just those the vertical 1-cells which admit companions, then taking companions underlies an
identity-on-objects homomorphism of bicategories VpCq1 Ñ HpCq.

(v) If f : X Ñ X 1 is a vertical 1-isomorphism in C and both f and f -1 admit companions, then pf is
an equivalence in HpCq with pseudoinverse xf -1;

(vi) If φ : f ñ g is an invertible 2-cell in VpCq, and f and g admit companions, then pφ is an invertible

globular 2-morphism pf ñ pg in C.

3. Maps of double categories

In this section, we recall the various kinds of maps existing between double categories, starting with
the notions of double functor and oplax double functor. In most of the paper we will work with double
functors, which preserve composition and identities up to isomorphism. However, we will also need oplax



8 N. GAMBINO, R. GARNER, AND C. VASILAKOPOULOU

double functors, which preserve composition and identities only up to a non-invertible 2-cell, in one
important situation, namely when we define oplax monoidal structure in Definition 4.1.

Definition 3.1 (Oplax double functor, double functor). Let C and D be double categories. An oplax
double functor F : CÑ D consists of the following data:

‚ two ordinary functors F0 : C0 Ñ D0, F1 : C1 Ñ D1, denoted by the same letter F below, such that
sF1 “ F0s and tF1 “ F0t, as displayed in:

X Y

X 1 Y 1

M

f óφ g

M 1

ÞÑ

FX FY

FX 1 FY 1;

FM

Ff óFφ Fg

FM 1

‚ two natural transformations with components

FX FZ

FX FY FZ

F pN˝Mq

óξM,N

FM FN

FX FX

FX FX.

F pidXq

óξX

idFX

(13)

These data are required to satisfy coherence conditions similar to those for an oplax functor between
bicategories, one regarding associativity and two for unitality; see [GP99, §7.2].

A (pseudo) double functor F : CÑ D is an oplax double functor for which the 2-cells ξM,N and ξX are
invertible.

Lemma 3.2. Let F : C Ñ D be an oplax (pseudo) double functor. Then F induces an oplax (pseudo)
functor of bicategories HpF q : HpCq Ñ HpDq. This assignment extends to an ordinary functor from the
category of double categories and oplax (pseudo) double functors to the category of bicategories and oplax
(pseudo) functors.

Proof. This follows from the definition, and is an oplax analogue of [HS19, Theorem 4.1]. Recall that
functors of double categories and bicategories compose strictly associatively. �

Lemma 3.3. Let F : CÑ D be a double functor and f : X Ñ X 1 a vertical 1-cell of C. Assume that f

admits a companion pf with structure cells p1, p2. Then then vertical 1-cell Ff : FX Ñ FX 1 of D admits

the companion F pf via the structure cells

FX FX 1

FX 1 FX 1

FX 1 FX 1.

F pf

Ff óFp1

F pidX1 q

óξX1

idFX1

and

FX FX

FX FX

FX 1 FX 1.

idFX

óξ-1X

F pidXq

óFp2 Ff

idFX1

In future, we will tend to suppress the unit coherence cells ξ appearing above, and simply write Fp1
and Fp2 for these pasting composites.

Since a double category has two kinds of 1-cell, vertical and horizontal, there are two kinds of natural
transformations between double functors, vertical and horizontal, depending on the directions of their
components. For our applications, it is the horizontal transformations, recalled in Definition 3.4, which
will be most important, since these induce structure on the horizontal bicategory. However, the vertical
transformations, recalled in Definition 3.5, are simpler to construct and work with, and so fundamental to
our development will be the possibility of turning a vertical natural transformation into a horizontal one
in the presence of well-behaved companions. The precise conditions needed are isolated in the the notion
of a special vertical transformation (Definition 3.6), and are justified in Proposition 3.10, where we show
that the special vertical transformations are exactly the vertical 1-cells of the functor double category
(Proposition 3.9) which admit companions.

The following definition can be found e.g. in [Gar06b, §2.4] or [GP99, §7.4] under the name ‘strong
vertical transformation’.
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Definition 3.4 (Horizontal transformation). Let F,G : CÑ D be oplax double functors. A horizontal
transformation β : F G consists of

‚ horizontal 1-cell components βX : FX ÝÞÑ GX in D for each object X P C;
‚ 2-morphism components

FX GX

FX 1 GX 1

βX

Ff óβf Gf

βX1

in D for each vertical 1-cell f : X Ñ X 1 in C;
‚ invertible globular coherence 2-morphisms

FX FY GY

FX GX GY

FM

óβM

βY

βX GM

in D for each horizontal 1-cell M : X ÝÞÑ Y in C.

These data are required to satisfy, firstly, the two axioms

FX GX

FX 1 GX 1

FX2 GX2

βX

Ff óβf Gf

βX1

Fg óβg Gg

βX2

“

FX GX

FX2 GX2

βX

F pgfq óβgf Gpgfq

βX2

and

FX GX

FX FX

βX

F p1Xq óβ1X Gp1Xq

βX

“

FX GX

FX GX

βX

ó1βX

βX

(14)

expressing that βp–q : C0 Ñ D1 is a functor; then the axiom

FX FY GY

FX GX GY

FX 1 GX 1 GY 1

FM

óβM

βY

βX
Ff óβf

GM

óGφGf Gg

βX1 GM 1

“

FX FY GY

FX 1 FY 1 GY 1

FX 1 GX 1 GY 1

Ff

FM

óFφ Fg óβg

βY

Gg

FM 1

óβM1

βY 1

βX1 GM 1

(15)

expressing that the 2-morphisms βM are components of a natural transformation; and finally, the axioms

FX FZ GZ

FX FY FZ GZ

FX FY GY GZ

FX GX GY GZ

F pN˝Mq

óξM,N

βZ

FM FN

óβN

βZ

FM

óβM

βY GM

βX GM GN

“

FX FZ GZ

FX GX GZ

FX GX GY GZ

F pN˝Mq

óβN˝M

βZ

βX GpN˝Mq

óξM,N

βX GM GN
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FX FX GX

FX GX GX

FX GX GX

FX GX

F pidXq

óβid

βX

βX GpidXq

óξX

βX idGX

βX

“

FX FX GX

FX FX GX

FX GX

F pidXq

óξX

βX

idFX βX

βX

expressing compatibility of β with the double structure of F and G.

The following definition can be found e.g. in [Gar06b, §2.3] or [HS19, Definition 2.8] under the name
‘tight transformation’.

Definition 3.5 (Vertical transformation). Let F, F 1 : C Ñ D be oplax double functors. A vertical
transformation σ : F ñ F 1 consists of the following data:

‚ vertical 1-cell components σX : FX Ñ F 1X in D for each object X P C;
‚ 2-morphism components

FX FY

F 1X F 1Y

FM

σX óσM σY

F 1M

(16)

in D for each horizontal 1-cell M : X Y in C.

These data are required to satisfy, firstly, the axiom

FX FY

F 1X F 1Y

F 1X 1 F 1Y 1

FM

σX óσM σY

F 1M

F 1f óF 1φ F 1g

F 1M 1

“

FX FY

FX 1 FY 1

F 1X 1 F 1Y 1

FM

Ff óFφ Fg

FM 1

σX1 óσM1 σY 1

F 1M 1

(17)

expressing that we have two ordinary natural transformations F0 ñ F 10 and F1 ñ F 11; then the axiom

FX FZ

FX FY FZ

F 1X F 1Y F 1Z

F pN˝Mq

óξM,N

FM

σX óσM

FN

σY óσN σZ

F 1M F 1N

“

FX FZ

F 1X F 1Z

F 1X F 1Y F 1Z

F pN˝Mq

σX óσN˝M σZ

F 1pN˝Mq

óξM,N

F 1M F 1N

(18)

expressing compatibility with horizontal composition; and finally, the axiom

FX FX

FX FX

F 1X F 1X

F pidXq

óξX

idFX

σX óidσX σX

idF 1X

“

FX FX

F 1X F 1X

F 1X F 1X

F pidXq

σX óσidX
σX

F 1pidXq
óξX

idF 1X

(19)

expressing compatibility with horizontal identities.

It is easy to see that a horizontal transformation β : F F 1 between double functors induces a pseudo-
natural transformation Hpβq : HpF q ñ HpF 1q between the associated homomorphisms of bicategories. On
the other hand, from a vertical transformation σ : F ñ F 1, there is no direct way of inducing anything
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HpF q ñ HpF 1q. However, there is an indirect way of doing so, if we can first turn the vertical transforma-
tion σ : F ñ F 1 into a horizontal one pσ : F F 1. The following definition isolates the properties required
of σ for this to be possible.

Definition 3.6 (Special vertical transformation). Let σ : F ñ F 1 be a vertical transformation between
oplax double functors CÑ D. We say that σ is special if for every X P C, the vertical 1-cell component
σX : FX Ñ F 1X has a companion pσX : FX ÝÞÑ F 1X in D, and the companion transposes

FX FY F 1Y

FX F 1X F 1Y

FM

ópσM

pσY

pσX F 1M

(20)

of the 2-morphism components (16) of σ are invertible.

A special vertical transformation was called a transformation with loosely strong companions in [HS19,
Definition 4.10], characterised precisely by the following proposition; when considered in the setting of
fibrant categories, it was called a horizontally strong transformation in [CS10, Definition A.4].

Proposition 3.7. Let σ : F ñ F 1 be a special vertical transformation between oplax double functors. The
companion 1-cells pσX : FX F 1X are the horizontal 1-cell components of a horizontal transformation
pσ : F F 1, whose 2-morphism components pσf are the companion transposes of the equalities of vertical
1-cells σX1 ˝ Ff “ F 1f ˝ σX as in:

FX F 1X

FX 1 F 1X 1

pσX

Ff ópσf F 1f

pσX1

and whose globular coherence 2-morphisms are given by (20). In particular, σ induces a pseudonatural
transformation Hpσ̂q : HpF q ñ HpF 1q between the induced oplax functors of horizontal bicategories.

Proof. The horizontal transformation axioms are a straightforward diagram chase using the universal
property of companions. �

We could now proceed to verify by hand further desirable properties of the construction σ ÞÑ pσ (for
example, its functoriality); however, this turns out to be unneccessary, as we can in fact characterise pσ as
a companion for σ in a suitable functor double category, and then apply results such as Proposition 2.8.
We first define these functor double categories.

Definition 3.8 (Modification). Let β : F G and β1 : F 1 G1 be horizontal transformations and
let σ : F ñ F 1 and τ : G ñ G1 be vertical transformations between oplax double functors C Ñ D. A
modification

F G

F 1 G1

β

σ

V

γ τ

β1

consists of 2-morphisms

FX GX

F 1X G1X

βX

σX óγX τX

β1X

in D for every object X P C, subject to the naturality axiom:

FX GX

F 1X G1X

F 1X 1 G1X 1

βX

σX óγX τX

β1X
F 1f óβ1f G1f

β1
X1

“

FX GX

FX 1 GX 1

F 1X 1 G1X 1

βX

Ff óβf Gf

βX1
σX1 óγX1 τX1

β1
X1

;
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and the following axiom expressing compatibility with β, β1, σ, τ :

FX FY GY

FX GX GY

F 1X G1X G1Y

FM

óβM

βY

βX
óγXσX τX

GM

óτM τY

β1X G1M

“

FX FY GY

F 1X F 1Y G1Y

F 1X G1X G1Y .

σX

FM

óσM σY óγY

βY

τY

F 1M

óβ1M

β1Y

β1X G1M

Proposition 3.9 (Functor double categories). Let C and D be double categories. There is a double
category DblCatrC,Ds (resp., DblCatoplaxrC,Ds) composed of double functors from C to D (resp., oplax
double functors), vertical transformations, horizontal transformations and modifications.

Proof. Each of the forms of vertical and horizontal composition is given by composing the relevant
component data in the same direction; verifying the axioms is routine. The only point requiring any
further note is that, for composable horizontal transformations β : F G and δ : G H, the globular
coherence 2-isomorphisms of the composite δ ˝ β : F H are given by

FX FY GY HY

FX GX GY HY

FX GX HX HY .

FM

óβM

βY δY

βX

óδM

GM δY

βX δX HM

�

Proposition 3.10. Let σ : F ñ F 1 be a vertical transformation between double functors (resp., oplax
double functors). Then σ has a companion as a vertical 1-cell in the double category DblCatrC,Ds (resp.,
DblCatoplaxrC,Ds) if and only if it is special in the sense of Definition 3.6.

Proof. If σ is special, then we have an associated horizontal transformation pσ : F F 1 via Proposition 3.7.
Moreover, we can define modifications

F F 1

F 1 F 1

pσ

σ óp1

idF 1

and

F F

F F 1

idF

óp2 σ

pσ

(21)

whose component 2-morphisms are those witnessing that each pσX is a companion of σX ; the modification
axioms of Definition 3.8 are now easily verified, and it is clear that these modifications satisfy the
companion axioms since they do so componentwise.

Suppose conversely that σ has a companion in the functor double category, namely a horizontal
transformation pσ with the modifications witnessing this given as in (21). The components of these
modifications witness that each horizontal 1-cell pσX is a companion for the vertical 1-cell σX . Furthermore,
the second modification axiom for p1 ensures that the invertible coherence 2-morphism pσM is the companion
transpose of the 2-morphism component σM ; in particular, this says that σ is special as required. �

As a sample application of the utility of this result, let us use it to give an efficient proof of:

Proposition 3.11. Let σ : F ñ F 1 : CÑ D be an invertible vertical transformation between oplax double
functors. If the 1-cell components of σ and σ-1 have companions, then they induce a horizontal equivalence
pσ : F F 1 and so a pseudonatural equivalence pσ : HpF q ñ HpF 1q between oplax functors of bicategories.

Proof. Since σ is invertible and its components have companions, it is special; likewise, σ-1 is special. So by
Proposition 3.10, both σ and σ-1 admit companions in DblCatoplaxrC,Ds. It follows by Proposition 2.8(v)
that pσ is an equivalence in HpDblCatoplaxrC,Dsq as desired. �

We conclude this section with a miscellaneous technical lemma concerning components of a vertical
transformation, which will be used in Sections 6, 9 and 10.
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Lemma 3.12. Let σ : F ñ F 1 be a vertical transformation and f : X Ñ X 1 be a vertical 1-cell in C. If f

has a companion pf , then the component σ
pf is the transpose of the naturality vertical identity as in

FX FX 1

F 1X F 1X 1

F pf

σX óσ
pf

σX1

F 1 pf

“

FX FX FX FX 1

F 1X F 1X FX 1 FX 1

F 1X F 1X 1 F 1X 1 F 1X 1.

id

σX

id

σX

F pf

Ff óFp1

id

óF 1p2 F 1f σX1

id

σX1

F 1 pf id id

Proof. It suffices to show these two 2-morphisms have the same companion transposes, which follows by
the calculation (in which we again suppress unit coherence 2-morphisms for F and F 1):

FX FX

FX FX 1

F 1X F 1X 1

F 1X 1 F 1X 1

id

óFp2 Ff

F pf

σX óσ
pf

σX1

F 1 pf
F 1f óF 1p1

id

“

FX FX

FX FX 1

FX 1 FX 1

F 1X 1 F 1X 1

id

óFp2 Ff

F pf

Ff óFp1

F pidq
σX1 óσid σX1

id

“

FX FX

FX 1 FX 1

F 1X 1 F 1X 1

id

Ff Ff

σX1 σX1

id

using naturality of σ; the companion axiom (10); and axiom (19) for a vertical transformation. �

4. Monoidal double categories

The aim of this section is to introduce the notions of monoidal double category and oplax monoidal
double category, and to prove some useful facts about them. Both notions describe double categories
endowed with a monoidal product: the key difference is that in the former case, this tensor product is
a double functor, while in the latter case, it is merely an oplax double functor as in Definition 3.1. In
particular, it should be emphasised that ‘oplax’ only modifies the functoriality of the tensor product,
rather than the nature of the associativity and unit constraints for this tensor, which for us will always be
invertible.

In what follows, we will be concerned with the the question of extending a monoidal structure on a
double category to an oplax monoidal structure on an associated Kleisli double category. Since we need
both notions, we here define them simultaneously.

Definition 4.1 (Oplax monoidal double category, monoidal double category). Let C be a double category.
An oplax monoidal structure on C consists of the following data:

‚ an oplax double functor b : Cˆ CÑ C;
‚ an oplax double functor I : 1 Ñ C;
‚ invertible vertical transformations α : b ˝ p1 ˆ bq ñ b ˝ pb ˆ 1q, λ : b ˝ pI ˆ 1q ñ 1 and
ρ : b ˝ p1ˆ Iq ñ 1

satisfying the usual Mac Lane coherence axioms for α, λ and ρ. Said another way, this structure amounts
to the following:

‚ monoidal structures pb0, I0q and pb1, I1q on the categories C0 and C1;
‚ strict monoidality of s, t : C1 Ñ C0. For example, the associativity constraint for C1 has compo-

nents

pX1 bX2q bX2 pY1 b Y2q b Y3

X1 b pX2 bX3q Y1 b pY2 b Y3q;

pM1bM2qbM3

αX1,X2,X3 óαM1,M2,M3
αY1,Y2,Y3

M1bpM2bM3q

(22)
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‚ globular 2-morphisms

X1 bX2 Z1 b Z2

X1 bX2 Y1 b Y2 Z1 b Z2

pN1˝M1qbpN2˝M2q

óτ

M1bM2 N1bN2

and

X1 bX2 X1 bX2

X1 bX2 X1 bX2,

idX1
bidX2

óη

idX1bX2

(23)

subject to axioms that make b into an oplax double functor;
‚ globular 2-morphisms

I0 I0

I0 I0 I0

I1

óδ

I1 I1

and

I0 I0

I0 I0,

I1

óι

idI0

(24)

subject to axioms that make I into an oplax double functor;
‚ two axioms ensuring that the associativity constraint α is a vertical transformation between oplax

double functors;
‚ four axioms ensuring that the unit constraints λ and ρ are vertical transformations between oplax

double functors.

The above axioms are written explicitly in Appendix A.1. We have a monoidal double category when the
tensor and unit are specified by double functors, rather than oplax double functors; said another way,
when each of the 2-morphisms in (23) and (24) is invertible.

What we call here an oplax monoidal double category is what is called simply a monoidal double
category in [GP04, §5.5]; it is equally well a pseudomonoid in the cartesian monoidal 2-category of double
categories, oplax double functors and vertical transformations.

Remark 4.2. We defined a monoidal double category to be an oplax monoidal double category satisfying
some additional properties; but these additional properties in fact allow us to simplify the structure
further, as explained in [HS19, Page 8]. Indeed, in a monoidal double category, the monoidal unit I1 of C1

is always canonically isomorphic to idI0 via ι; and it does no harm to assume that, in fact, I1 is idI0 and
ι is the identity 2-morphism—which in turn forces δ “ `idI0 “ ridI0 for the globular isomorphisms (7)
for horizontal identities in C. As such, if in specifying a monoidal double category we follow these
conventions, then we need only provide the invertible structure 2-morphisms τ and η satisfying the
appropriate coherence axioms. By contrast, in an oplax monoidal double category, none of the data are
redundant: indeed, δ and ι as in (24) now specify a comonad structure on I1 in HpCq, see (78).

Moreover, notice that just as a double category is an internal pseudocategory in the 2-category of small
categories, functors and natural transformations, a monoidal double category is an internal pseudocategory
in the 2-category of monoidal categories, lax monoidal functors and monoidal transformations for which
the source and target functors are strict monoidal.

As mentioned in the introduction, the notion of oplax monoidal structure will be exploited in future
work in order to provide a general notion of commuting tensor product, generalising the theory of [GL16],
which will in particular recover the Boardman–Vogt tensor product of symmetric coloured operads and its
extension to operadic bimodules in [DH14]. For these applications, it will be important that the oplax
monoidal structure is normal in the sense of the following definition.

Definition 4.3 (Normal oplax monoidal double category). An oplax monoidal double category C is said
to be normal if:

(i) I : 1 Ñ C is a (pseudo) double functor;
(ii) for all objects X1, X2 P C, the following restricted oplax double functors are (pseudo) double

functors:

X1 b p–q : C – 1ˆ C X1ˆC
ÝÝÝÝÑ Cˆ C b

ÝÑ C and p–q bX2 : C – Cˆ 1
CˆX2
ÝÝÝÝÑ Cˆ C b

ÝÑ C. (25)

Said another way, both 2-morphisms δ and ι in (24) are invertible; while in (23), η is invertible, and
each τ for which M1 “ N1 “ idX1 or M2 “ N2 “ idX2 is also invertible.

We give now some examples of monoidal double categories and oplax monoidal double categories. The
example of profunctors in Example 4.6 will be fundamental for our application in Section 10.
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Example 4.4 (Duoidal categories). Recall from Example 2.2 that a monoidal category pV, ˝, Jq is the same
thing as a double category with a single object and only identity vertical arrow. To equip this double
category with an oplax monoidal structure in the sense of Definition 4.1 is the same thing as equipping V
with additional structure making it into a duoidal category [AM10]. Explicitly, this amounts to providing
a second monoidal structure pb, Iq on V, along with maps

ξ : pY1 ˝X1q b pY2 ˝X2q Ñ pY1 b Y2q ˝ pX1 bX2q,

µ : J b J Ñ J , γ : I Ñ I ˝ I, ν : I Ñ J,

satisfying appropriate axioms. Here, the interchange law ξ corresponds to the square τ in (23).
This oplax monoidal structure is a genuine monoidal structure whenever all of ξ, µ, γ and ν are

invertible. In this case, by the Eckmann–Hilton argument, the identity functor underlies a monoidal
isomorphism pV,b, Iq Ñ pV, ˝, Jq, and the two isomorphic monoidal structures are each braided. Loosely,
then, we may say that in this situation, V ‘is’ a braided monoidal category. In particular, if we merely
start with a braided monoidal category pV,b, Iq, then it becomes duoidal on taking ˝ “ b, J “ I, ν “ id,
µ “ rI , γ “ r-1I , and ξ the canonical constraint built from associativity and braiding maps.

Returning to the general situation, the oplax monoidal structure on V qua double category is normal
if, and only if, the duoidal structure on V is normal meaning that ν, γ and µ are all invertible. The
only non-obvious point is that V being normal duoidal implies Definition 4.3(ii); but this latter condition
amounts to the invertibility of ξ when X1 “ Y1 “ J or X2 “ Y2 “ J , and these follow from the oplax
monoidality of the unit constraints for b. The notion of normal duoidal category as an enrichment base
was central to the theory of commuting tensor products developed in [GL16], and in future work, we will
see that normal oplax monoidal double categories are a suitable setting for a generalisation of that theory.

Example 4.5 (Oplax monoidal structure on MatV). Recall from Example 2.3 that, for a monoidal
category pV, ˝, Jq in which the tensor product preserves coproducts in each variable, we have a double
category MatV of V-matrices. If V is further equipped with a second monoidal structure pb, Iq which
also preserves coproducts in each variable, and data as above making it into a duoidal category, then
MatV acquires an oplax monoidal structure. The tensor product is given by the cartesian product of
sets and functions on the vertical level, and for V-matrices M1 : X1 ÝÞÑ Y1 and M2 : X2 ÝÞÑ Y2 the tensor
M1 bM2 : X1 ˆX2 ÝÞÑ Y1 ˆ Y2 defined by letting

pM1 bM2qppy1, y2q, px1, x2qq “M1py1, x1q bM2py2, x2q.

The monoidal unit is I : 1 ÝÞÑ 1 with unique component I˚,˚ “ I. The structure cells (23) and (24)
are formed using the duoidal structure maps, with the most complex case being that the 2-morphism
τ : pN1 ˝M1q b pN2 ˝M2q Ñ pN1 bN2q ˝ pM1 bM2q has components:

`
ř

y1
N1pz1, y1q ˝M1py1, x1q

˘

b
`
ř

y2
N2pz2, y2q ˝M2py2, x2q

˘

ř

y1,y2

`

N1pz1, y1q ˝M1py1, x1q
˘

b
`

N2pz2, y2q ˝M2py2, x2q
˘

ř

y1,y2

`

N1pz1, y1q bN2pz2, y2q
˘

˝
`

M1py1, x1q bM2py2, x2q
˘

.

–

ř

y1,y2
ξ

It is not hard to see that this oplax monoidal structure is normal precisely when V is normal as a duoidal
category in the sense of the preceding example, and that it is genuinely monoidal just when the duoidal
structure of V comes from a braided monoidal structure.

Example 4.6 (Monoidal structure on ProfV). Let V be a braided monoidal category in which the tensor
product preserves colimits in each variable and recall the double category ProfV of Example 2.4. This
double category admits a monoidal structure extending that of MatV in the braided case. On objects
and vertical 1-cells, this is simply the monoidal structure of the 2-category CatV . On horizontal 1-cells,
given V-profunctors M1 : X1 ÝÞÑ Y1 and M2 : X2 ÝÞÑ Y2, the V-profunctor M1 bM2 : X1 b Y2 ÝÞÑ Y1 b Y2
is given by

pM1 bM2q
`

py1, y2qpx1, x2q
˘

“M1py1, x1q bM2py2, x2q, (26)

with a corresponding definition on 2-morphisms. The key structure isomorphism τ in (23) is formed using
the braiding of the tensor product on V and the fact that it preserves colimits in each variable.
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One can carry out the construction above also when V is merely a duoidal category, thereby extending
Example 4.5, but we shall not need this level of generality for our application in Section 10.

One of the main results of [HS19], building on [Shu10, GG09], is that under suitable assumptions, the
horizontal bicategory of a monoidal double category is a monoidal bicategory in the sense of [GPS95];
see Theorem 1.1 of op. cit. In view of our application in Section 10, we would like a generalisation of
this result which endows the horizontal bicategory of an oplax monoidal double category with an oplax
monoidal structure.

The first obstacle to be faced is the definition of oplax monoidal structure on a bicategory K. As
before, ‘oplax’ refers to the strictness of the tensor product functor, and so we might attempt the following
naive adaptation of the usual notion of monoidal bicategory. Firstly, we would require oplax functors of
bicategories b : K ˆKÑ K and I : 1 Ñ K; then pseudonatural equivalences

K3 K2

K2 K

bˆ1

1ˆb óα b

b

K2

K K

b

óλ
Iˆ1

1

and
K2

K K

b

óρ
1ˆI

1

(27)

giving the associativity and unit constraints; then invertible modifications

K3 K2

K4 K3 K

K3 K2

bˆ1

óαˆ1
b

óα

1ˆ1ˆb

1ˆbˆ1

bˆ1ˆ1
bˆ1

1ˆbó1ˆα

1ˆb

b

π

K3 K2

K4 K2 K

K3 K2

bˆ1

1ˆb

“

b

1ˆ1ˆb

bˆ1ˆ1

b

óα

óα

1ˆb

bˆ1
b

(28)

K3

K2 K2

K K

bˆ1

óρˆ1

1ˆIˆ1

1

b “ b

1

µ

K3

K2 K2 K2

K K

bˆ1
1ˆb

1ˆIˆ1

ó1ˆλ

1 b

óα

“ b1

b

(29)

K3

K2 K2

K K

bˆ1

óλˆ1

Iˆ1ˆ1

1

b “ b

1

L

K3

K2 K2 K2

K K

bˆ1
1ˆb

Iˆ1ˆ1

“

b b

óα

óλ bIˆ1

1

and

K3

K2 K2 K2

K K

bˆ1
bˆ1

1ˆ1ˆI

b

“
b

“

óρ b

1

1ˆI

R

K3

K2 K2 K2

K K

bˆ1
1ˆb

1ˆ1ˆλ

ó1ˆρ

1 b

óα

“ b1

b

(30)

witnessing the pseudo-coherence of the constraint cells; and, finally, the appropriate coherence axioms for
these pseudo-coherences, as found, for example, in [McC99, §A.1].

The problem with this definition can be seen in (28) above. In the domain of π we have, among other
things, the pseudonatural transformation αˆ1 whiskered by the oplax functor b : K2 Ñ K. However, such
a composition does not yield another pseudonatural transformation, nor even a lax or oplax transformation.
So π is not well-posed; and similar issues arise for µ, L and R in (29) and (30).

We will resolve this issue by imposing a further constraint on the components of the pseudonatural
equivalences α, λ, ρ of (27) which we will term centrality, loosely inspired by the nomenclature of [PR97].
Centrality of the components of a pseudonatural transformation γ will ensure that composites of the
form γ b 1 :“ b ˝ pγ ˆ 1q and 1b γ :“ b ˝ p1ˆ γq are well-posed pseudonatural transformations; and,
furthermore, that the same pseudonaturality holds for any iterated tensorings such as pp1b γq b 1q b 1.
Applied to the case of α, λ and ρ, this will ensure that the transformations appearing in (28) to (30), as
well as all of those appearing in the corresponding coherence axioms, make sense.

Definition 4.7. Let K be a bicategory endowed with an oplax functor pb, τ, ηq : K ˆKÑ K, an oplax
functor pI, δ, ιq : 1 Ñ K and pseudonatural equivalences as in (27). A 1-cell f : X Ñ Y of K is said to be
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central when for all maps g : X 1 Ñ X, h : Y Ñ Y 1, k : W ÑW 1 and ` : Z Ñ Z 1, the following composite
oplax structure cells are invertible:

pW bXq b Z pW 1 b Y 1q b Z 1

pW b Y q b Z

ppkbgq˝pidbfqqb`

pkbpg˝fqqb`

pidbfqbid
óτ

óτb1`

pkbgqb`

pW 1 bX 1q b Z 1 pW b Y q b Z .

pW bXq b Z

ppidbfq˝pkbhqqb`

pkbpf˝hqqb`

pkbhqb`
óτ

óτb1`

pidbfqbid

(31)

Note that in (31), we consider three-fold tensor products bracketed to the left. We could equally
have chosen to bracket to the right, but this would make no difference, since composing (31) with the
components of α and their pseudoinverses would yield invertibility of the corresponding cells for the other
bracketing.

Now, by taking k “ idI or ` “ idI in (31), and composing with the components of λ or ρ and their
pseudoinverses, we obtain the invertibility of oplax constraints of the following forms:

X b Z Y 1 b Z 1

Y b Z

óτ

pg˝fqb`

fbid gb`

X 1 b Z 1 Y b Z

X b Z

óτ

pf˝hqb`

hb` fbid

W bX W 1 b Y 1

W b Y

óτ

kbpg˝fq

idbf kbg

W 1 bX 1 W b Y .

W bX

óτ

kbpf˝hq

kbh idbf

Because of this, if γ : F ñ G : LÑ K is a pseudonatural transformation with central components, then
both γ b 1 and 1b γ will also be pseudonatural; for example, in the case of γ b 1, the pseudonaturality of
the object components γX b idC : FX b C Ñ GX b C is witnessed by the invertible 2-cells

FX b C FY bD

GX b C GY bD .

Ffbg

γXbidC

pγY ˝Ffqbg

óτ´1

pGf˝γXqbg

óγfbidg

óτ

γY bidD

Gfbg

In a similar way, the general form of (31) implies that p1 b γq b 1 is also pseudonatural; note that
this does not seem to follow from the pseudonaturality of 1 b γ and γ b 1. However, once we have
pseudonaturality of p1b γq b 1, we obtain a fortiori that of, say, p1b γq b p1b 1q and so by composing
with the equivalence components of α, the pseudonaturality of pp1b γq b 1q b 1. By following this pattern,
we see that any tensoring of γ with identity pseudonatural transformations will again be pseudonatural.

In particular, if we require the pseudonatural transformations α, λ and ρ to themselves have central
components, then we see that every 2-cell pasting which appears in the axioms (28) to (30) will be a
well-posed pseudonatural transformation, and likewise for the pastings appearing in the coherence axioms.
Thus, we are justified in giving:

Definition 4.8. Let K be a bicategory. An oplax monoidal structure on K consists of:

‚ an oplax functor of bicategories b : K ˆKÑ K;
‚ an oplax homomorphism I : 1 Ñ K;
‚ pseudonatural equivalences α, λ, ρ as in (27), whose components are central;
‚ invertible modifications π, µ, L,R as in (28)–(30);

satisfying the coherence axioms for a monoidal bicategory as found, for example, in [McC99, §A.1]. Like in
Definition 4.3, we say that the oplax monoidal structure on K is normal if I : 1 Ñ K is a homomorphism of
bicategories, and b is pseudo in each variable, i.e. for each X,Y P K the oplax functors X b p–q : KÑ K
and p–q b Y : KÑ K are homomorphisms of bicategories.

We now explain how a normal oplax monoidal double category C gives rise to a normal oplax monoidal
bicategory. First of all, the oplax double functor b and the pseudo double functor I induce functors on
the horizontal bicategory

b : HpCq ˆHpCq Ñ HpCq, I : 1 Ñ HpCq (32)
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which we denote with the same symbol. Here, as per Lemma 3.2, b is an oplax functor of bicategories
(which is pseudo in each variable) and I is a homomorphism of bicategories. If now we assume that the
components of the invertible vertical transformations α, λ and ρ associated to the monoidal structure on
C have companions, then they will induce pseudonatural equivalences

pα : b ˝ p1ˆbq ñ b ˝ pb ˆ 1q pλ : b ˝ pI ˆ 1q ñ 1 pr : 1 ñ b ˝ p1ˆ Iq (33)

between oplax functors of bicategories, according to Proposition 3.11 and since H is functorial. To proceed

further, we need the components of pα, pλ and pρ to be central. This will be a consequence of the following
lemma. Note that normality of the oplax monoidal structure on C is important for the proof. It is not
clear to us if the corresponding result without it would hold; however, since normality will be present in
our applications, we have not pursued this point any further.

Lemma 4.9. Let C be a normal oplax monoidal double category in which the vertical 1-cells giving
associativity, left and right unit constraints have companions. If f : X Ñ X 1 is any vertical isomorphism

in C that has a companion, then pf : X X 1 is central in the horizontal bicategory HpCq with respect to
the structure of (32) and (33).

Proof. We must show that each structure cell (31), as displayed left below, is invertible. Because b is

pseudo in each variable and f has companion pf , it follows that p1b fq b 1 has companion pidb pfq b id.
Thus, τpτ b 1q as displayed to the left will be invertible just when its companion transpose, as to the
right, is also invertible:

pX b Y q b Z pW b Uq b V

pX b Y q b Z pX b Y 1q b Z pW b Uq b V

pkbpg˝ pfqqb`

óτpτb1q

pidb pfqbid pkbgqb`

pX b Y q b Z pW b Uq b V

pX b Y 1q b Z pW b Uq b V .

p1bfqb1

pkbpg˝ pfqqb`

ó {τpτb1q

pkbgqb`

We claim that this companion transpose is, in fact, the tensor product in C of the three 2-morphisms
displayed below, and hence invertible:

˜ X W

X W

p1bfqb1

k

ó1k

k

b

Y Y U

Y 1 Y 1 U

f

pf

óp1

g

ó1g

id g

¸

b

Z V

Z V .

1

`

ó1`

`

This claim can be verified by pasting both 2-morphisms with p1 b p2q b 1 and using the axioms (10)
and naturality of the components of τ . In an analogous way, but pasting with p1b p´1

1 q b 1 in place of
p1b p2q b 1, we can verify that the other composite structure cell of (31) is also invertible. �

Theorem 4.10. If C is a normal oplax monoidal double category in which the vertical 1-cells giving
associativity, left and right unit constraints have companions, then the horizontal bicategory HpCq inherits
a normal oplax monoidal structure with underlying data (32) and (33).

Proof. Since the pseudonatural transformations pα, pλ and pρ of (33) have as their components the horizontal
companions of vertical isomorphisms, we can apply Lemma 4.9 to see that these components are all central
in the sense of Definition 4.7. We now need to provide the four invertible modifications of Definition 4.8
for HpCq to have the structure of a normal oplax monoidal bicategory. The components of (28)–(30) are
of the form

óπ

pX1 bX2q b pX3 bX4q

ppX1 bX2q bX3q bX4

pX1 b pX2 bX3qq bX4 X1 b ppX2 bX3q bX4q

X1 b pX2 b pX3 bX4qq

pαpα

pαbid

pα

idbpα



MONOIDAL KLEISLI BICATEGORIES 19

pX1 b Iq bX2 X1 b pI bX2q

X1 bX2

pX1 bX2q b I X1 b pX2 b λq

X1 bX2

pI bX1q bX2 I b pX1 bX2q

X1 bX2

pα

pρbid

óµ

idbpλ

pα

pρ

óR

idbpρ

pα

pλbid

óL

pλ

Notice that the two sides in each case are companions of the corresponding sides of the pentagon axiom,
the triangle axiom and two known equations for the ordinary monoidal category C0, due to Proposition 2.8
and Lemma 3.3. For example, since b is a pseudo double functor in each variable, each p–q b X and
Y b p–q preserves companions thus pαb idX is canonically a companion of αb 1X . As a result, we take
π, µ, L,R to be the unique isomorphisms between companions of the same vertical 1-cells. It can then be
verified that these invertible cells form a modification between pseudonatural transformations of oplax
double functors by [Shu10, Lemma 4.8]3.

Finally, the three equations that relate those π, µ, L,R can be checked in exactly the same way
as in the proof of [Shu10, Theorem 5.1]. In more detail, the domain and codomain of the pasted
2-cells involved in the equations are companions of the same isomorphism in C0, namely the unique
pppX1bX2qbX3qbX4qbX5 – X1bpX2bpX3bpX4bX5qqq as well as the associator pX1bX2qbX3 –

X1 b pX2 b X3q. Using a collection of technical lemmas [Shu10, Lemma 3.11, 3.14, 3.15, 3.19, 4.10]
concerning the composition as well as the tensoring of the unique isomorphisms between companions (the
latter adjusted in the normal oplax monoidal case in a straightforward way), we deduce that there can
only be a unique invertible 2-cell inside each one of the diagrams, hence the equations must hold. �

5. Maps of monoidal double categories

For our development in Sections 7 and 8, we will need results concerning both double monads and
pseudomonoidal double monads. It turns out that many of these results can be proved uniformly across
the two cases, by exhibiting both kind of structure as monoids in suitable endofunctor double categories.
This is much as ordinary monads and monoidal monads can be seen as monoids in appropriate endofunctor
categories. In order to do this for the case of pseudomonoidal double monads, we need to construct a
suitable double category of (lax) monoidal double functors and monoidal transformations. While the
notions of lax monoidal double functor and monoidal horizontal transformation (recalled in Definition 5.1
and Definition 5.2 below) are as expected, it turns out that in our motivating examples, the vertical
transformations which we need are not monoidal in the obvious way but only pseudomonoidal. While this
may seem an innocuous change, it adds an additional layer of subtlety to our development, very much in
analogy with what happens in the purely 2-categorical setting [HP02].

We being with the notion of lax monoidal double functor. If we view monoidal double categories as
pseudomonoids in a 2-category of double categories, double functors and vertical transformations, then
the lax monoidal functors are simply the lax morphisms of pseudomonoids. This definition can also be
found in [HS19, Definition 2.14], although with the orientations of the (invertible) τ and η reversed.

Definition 5.1 (Lax monoidal double functor). Let C and D be monoidal double categories. A lax
monoidal double functor F : CÑ D is a (pseudo) double functor equipped with:

3Although the cited result refers to vertical transformations between pseudo double functors, the proof is identical in the

oplax setting.
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‚ a vertical transformation F 2 : b ˝ pF ˆ F q ñ F ˝ b, whose vertical 1-cell components we denote
by F 2

X1,X2
: FX1 b FX2 Ñ F pX1 bX2q, and whose 2-morphism components we denote by:

FX1 b FX2 FY1 b FY2

F pX1 bX2q F pY1 b Y2q;

FMbFN

F 2
X1,X2

óF 2
M,N F 2

Y1,Y2

F pMbNq

(34)

‚ a vertical transformation F 0 : ID ñ F ˝ IC, whose vertical 1-cell component is F 0 : I Ñ FI and
whose 2-morphism component is:

I I

FI FI;

idI

F 0 ó F 0

F pidIq

(35)

subject to axioms expressing that the vertical 1-cells F 2
X1,X2

: FX1bFX2 Ñ F pX1bX2q and F 0 : I Ñ FI

endow F0 : C0 Ñ D0 with the structure of a lax monoidal functor, and that the 2-morphisms of (34)
and (35) do the same for F1 : C0 Ñ D0.

The reader will notice that we have not named the 2-morphism in (35). This is because its definition
is forced: for indeed, since F 0 is a vertical transformation between double functors, the axiom (18)
causes (35) to be equal to idF 0 followed by the unit structure isomorphism of F .

We now turn to monoidal transformations between lax monoidal double functors. We begin with the
horizontal case, which is as expected, though we could not find it in the literature.

Definition 5.2 (Monoidal horizontal transformation). Let F,G : CÑ D be lax monoidal double functors.
A monoidal horizontal transformation β : F G is a horizontal transformation endowed with cells

FX1 b FX2
�βX1
bβX2 //

F 2
X1,X2

��

óβ2
X1,X2

GX1 bGX2

G2
X,X2

��

F pX1 bX2q
�

βX1bX2

// GpX1 bX2q

and

I �idI //

F 0

��

óβ0

I

G0

��

FI �
βI

// GI

(36)

which, firstly, make βp–q : C0 Ñ D1 into a lax monoidal functor; in other words, such that the naturality
condition

FX1 b FX2 GX bGX2

F pX1 bX2q GpX1 bX2q

F pX 11 bX2
1
q GpX 11 bX2

1
q

βXbβX2

F 2
X1,X2

óβ2
X1,X2

G2
X1,X2

βX1bX2

F pfbgq óβfbg Gpfbgq

βX11bX2
1

“

FX1 b FX2 GX1 bGX2

FX 11 b FX2
1 GX 11 bGX2

1

F pX 11 bX2
1
q GpX 11 bX2

1
q

βX1
bβX2

FfbFg óβfbβg GfbGg

βX11
bβX2

1

F 2
X11,X2

1 óβ2
X11,X2

1 G2
X11,X2

1

βX11bX2
1

is satisfied, along with the usual associativity and unitality conditions, identifying the two evident 2-
morphisms pβX1

b βX2
q b βX3

Ñ βX1bpX2bX3q, the two 2-morphisms βX1
b idI Ñ βX1bI and the two

2-morphisms idI b βX2
Ñ βIbX1

. We moreover require the equality of the pastings:

FX1 b FX2
�FMbFN
//

F 2
X,Z

��

óF 2
M,N

FY1 b FY2
�βY bβW //

F 2
Y1,Y2

��

óβ2
Y1Y2

GY2 bGY2

G2
Y1,Y2

��

F pX1 bX2q
�F pMbNq
//

óβMbN

F pY1 b Y2q
�βY1bY2 // GpY1 b Y2q

F pX1 bX2q
�

βX1bX2

// GpX1 bX2q
�

GpMbNq
// GpY1 b Y2q

“

FX1 b FX2
�FMbFN
//

óβMbβN

FY1 b FY2
�βY1bβY2// GY1 bGY2

FX1 b FX2
�

βX1
bβX2

//

F 2
X1,X2

��

óβ2
X1,X2

GX1 bGX2
�

GMbGN
//

G2
X1,X2

��

óG2
M,N

GY1 bGY2

G2
Y1,Y2

��

F pX1 bX2q
�

βX1bX2

// GpX1 bX2q
�

GpMbNq
// GpY1 b Y2q
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expressing that the natural transformation giving the globular cell components of β is a monoidal natural
transformation. (Note that the ‘nullary’ axiom corresponding to this ‘binary’ axiom holds automatically
and need not be stated explicitly.)

We now consider monoidality of vertical transformations. Given the view of monoidal double categories
and lax monoidal double functors as pseudomonoids and lax pseudomonoid maps, the obvious thing to
consider would be the corresponding transformations of pseudomonoids, and this would yield the notion of
monoidal vertical transformation considered in [HS19, Definition 2.15]. However, we will need something
slightly more general for our applications (cf. Remark 5.4), which we will term a pseudomonoidal vertical
transformation. The difference can be appreciated by noting that the monoidal vertical transformations
of loc. cit. reduce to a Cat-enriched monoidal transformation on the vertical 2-category, while our
transformations only yield a monoidal pseudonatural transformation in the sense of [DS97, Definition 3].

Definition 5.3 (Pseudomonoidal vertical transformation). Let F , F 1 : CÑ D be lax monoidal double
functors. A pseudomonoidal vertical transformation σ : F ñ F 1 is a vertical transformation equipped with
squares

FX1 b FX2 FX1 b FX2

F pX1 bX2q F 1X1
b F 1X2

F 1pX1 bX2q F 1pX1 bX2q

id

F 2
X,Y

óσ2
X1,X2

σX1
bσX2

σX1bX2 F 12X1,X2

id

and

I I

FI

F 1I F 1I,

F 0

id

óσ0
F 10

σI

id

(37)

which are invertible in the vertical 2-category VpDq and satisfying the following five coherence axioms:

FX1 b FX2 FY1 b FY2 FY1 b FY2

F pX1 bX2q F pY1 b Y2q F 1Y1 b F
1Y2

F 1pX1 bX2q F 1pY1 b Y2q F 1pY1 b Y2q

FMbFN

F 2
X1,X2

óF 2
M,N

óσ2

F 2
Y1,Y2

id

σY1bσY2

F pMbNq

σX1bX2 óσMbN σY1bY2 F 12Y1,Y2

F 1pMbNq id

“

FX1 b FX2 FX1 b FX2 FY1 b FY2

F pX1 bX2q F 1X1 b F
1X2 F 1Y1 b F

1Y2

F 1pX1 bX2q F 1pX1 bX2q, F 1pY1 b Y2q,

id

óσ2

F 2
X1,X2

FMbFN

σX1
bσX2 óσMbσN σY1bσY2

σX1bX2

F 1MbF 1N

F 12X1,X2
óF 12M,N F 12Y1,Y2

id F 1pMbNq

(38)

FX1 b FX2 FX1 b FX2

FX 11 b FX
1
2 FX 11 b F

1
2

F pX 11 bX
1
2q F 1X 11 b F

1X 12

F 1pX 11 bX
1
2q F 1pX 11 bX

1
2q

FfbFg

id

óidFfbFg FfbFg

id

F 2
X11,X

1
2

óσ2

σX11
bσX12

σX11bX
1
2

F 12
X11,X

1
2

id

“

FX1 b FX2 FX1 b FX2

F pX1 bX2q F 1X1 b F
1X2

F 1pX1 bX2q F 1pX1 bX2q

F 1pX 11 bX
1
2q F 1pX 11 bX

1
2q,

id

F 2
X1,X2

óσ2

σX1
bσX2

σX1bX2 F 12X1,X2

óidF 1pfbgq

id

F 1pfbgq F 1pfbgq

id
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pFX1 b FX2q b FX3 pFX1 b FX2q b FX3 pFX1 b FX2q b FX3

FX1 b pFX2 b FX3q FX1 b pFX2 b FX3q FX1 b pFX2 b FX3q

FX1 b F pX2 bX3q FX1 b F pX2 bX3q FX1 b pF
1X2 b F

1X3q

FX1 b F
1pX2 bX3q FX1 b F

1pX2 bX3q

F pX1 b pX2 bX3qq F 1X1 b F
1pX2 bX3q F 1X1 b F

1pX2 bX3q

F 1pX1 b pX2 bX3qq F 1pX1 b pX2 bX3qq F 1pX1 b pX2 bX3qq

α

id

α

id

α

1bF 2
X2,X3

1bF 2
X2,X3

id

óidbσ2

1bσX2
bσX3

F 2
X1,X2bX3

id

óσ2

1bσX2bX3 1bF 12X2,X3

σX1
b1

id

σXb1

σX1bX2bX3 F 12X1,X2bX3
F 12X1,X2bX3

id id

“

pFX1 b FX2q b FX3 pFX1 b FX2q b FX3 pFX1 b FX2q b FX3 pFX1 b FX2q b FX3

F pX1 bX2q b FX3 F pX1 bX2q b FX3 pFX1 b FX2q b F
1X3 pFX1 b FX2q b F

1X3

F pX1 bX2q b F
1X3 F pX1 bX2q b F

1X3 pF 1X1 b F
1X2q b F

1X3

F ppX1 bX2q bX3q F 1pX1 bX2q b F
1X3 F 1pX1 bX2q b F

1X3 F 1pX1 bX2q b F
1X3

F 1ppX1 bX2q bX3q F 1ppX1 bX2q bX3q F 1ppX1 bX2q bX3q

F 1pX1 b pX2 bX3qq F 1pX1 b pX2 bX3qq F 1pX1 b pX2 bX3qq,

F 2
X1,X2

b1

id

F 2
X1,X2

b1

id

1bσX3

id

1bσX3

F 2
X1bY2,X3

óσ2

id

1bσX3 F 2
X1,X2

b1

id

óσ2
bid

σXbσY b1

σX1bX2
b1

id

σX1bX2
b1 F 12X1,X2

b1

σpX1bX2qbX3 F 12X1bX2,X3

id id

F 12X1bX2,X3

id

F pαq F pαq F pαq

id id

FX b I FX b I

FX b FI FX b FI

F pX b Iq F 1X b F 1I

F 1pX b Iq F 1pX b Iq

1bF 0

id

1bF 0

id

F 2
X,I

óσ2

σXbσI

σXbI F 12X,I

id

“

FX b I FX b I

FX b FI

FX b F 1I FX b F 1I

F 1X b F 1I F 1X b F 1I

F 1pX b Iq F 1pX b Iq,

1bF 0

id

óidbσ0 1bF 10

1bσI

id

σXb1 σXb1

F 12X,I F 12X,I

id

I b FX I b FX

FI b FX FI b FX

F pI bXq F 1I b F 1X

F 1pI bXq F 1X

F 0
b1

id

F 0
b1

id

F 2
I,X

óσ2

σIbσX

σIbX F 12I,X

id

“

I b FX I b FX

FI b FX

F 1I b FX F 1I b FX

F 1I b F 1X F 1I b F 1X

F 1pI bXq F 1pI bXq.

F 0
b1

id

óσ0
bid F 10b1

σIb1

id

1bσX 1bσX

F 12I,X F 12I,X

id

Note that the final four of these axioms only involve structure in the vertical 2-category VpDq; and in
fact, they correspond exactly to the axioms for a monoidal pseudonatural transformation from [DS97,
Definition 3]. More explicitly, the second axiom expresses that the 2-cells σ2

X1,X2
are components of a

modification, while the third through fifth axioms are precisely the three coherence axioms of loc. cit.
If σ0 and the components of σ2 are identity 2-cells, then σ becomes a monoidal vertical transformation

in the sense of [HS19, Definition 2.15]. In that case, σ0 : F0 ñ F 10 and σ1 : F1 ñ F 11 are monoidal
transformations in the usual sense between lax monoidal functors.

Remark 5.4. The notion of a monoidal (rather than pseudomonoidal) vertical transformation is insufficiently
general for the situation we are interested in: the monoidality of the free symmetric monoidal category
double monad on the double category of small categories, functors and profunctors, as considered in
Section 10. The underlying double functor of this double monad can be equipped with lax monoidal
structure, with respect to which the monad unit is a monoidal vertical transformation; however, the
monad multiplication is not a monoidal as a vertical transformation, but only pseudomonoidal. This can
be seen as a consequence of the fact that the free symmetric monoidal category monad is not commutative,
but only pseudocommutative in the sense of [HP02].

We now describe the final piece of structure needed for a double category of monoidal double functors.
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Definition 5.5 (Monoidal modification). Let β, β1 be monoidal horizontal transformations and let σ, τ
be pseudomonoidal vertical transformations, as displayed on the boundary of:

F G

F 1 G1.

β

σ

V

γ τ

β1

A monoidal modification γ filling this boundary is a modification of the displayed shape satisfying the
axioms:

FX1 b FX2 GX1 bGX2 GX1 bGX2

F pX1 bX2q GpX1 bX2q G1X1 bG
1X2

F 1pX1 bX2q G1pX1 bX2q G1pX1 bX2q

F 2
X1,X2

βX1
bβX2

óβ2 G2
X1,X2

id

óτ2

τX1
bτX2

σX1bX2

βX1bX2

óγX1bX2
τX1bX2 G12X1,X2

β1X1bX2
id

“

FX1 b FX2 FX1 b FX2 GX1 bGX2

F pX1 bX2q F 1X1 b F
1X2 G1X1 bG

1X2

F 1pX1 bX2q F 1pX1 bX2q G1pX1 bX2q

id

F 2
X1,X2

óσ2

σX1
bσX2

βX1
bβX2

óγX1
bγX2

τX1
bτX2

σX1bX2 F 12X1,X2

β1X1
bβ1X2

óβ12 G12X1,X2

id β1X1bX2

I I I

FI GI

F 1I G1I G1I

F 0 óβ0

id

G0

id

óτ0
G10

βI

óγIσI τI

β1I id

“

I I I

FI

F 1I F 1I G1I.

F 0

id

óσ0
óβ10F 10

id

G10

σI

id β1I

(39)

We now provide an analogue of Proposition 3.9 in the monoidal setting, by constructing a double
category of monoidal double functors between two monoidal double categories C and D. It would be
routine to construct a double category of lax monoidal double functors, monoidal vertical transformations,
monoidal horizontal transformations, and monoidal modifications; however, because we wish to involve
pseudomonoidal vertical transformations, a little more care is needed in checking the details.

Proposition 5.6 (Functor double categories, monoidal case). Let C, D be monoidal double categories.
There is a double category MonDblCatrC,Ds of lax monoidal (pseudo) double functors, pseudomonoidal
vertical transformations, monoidal horizontal transformations, and monoidal modifications.

Note that in Proposition 3.9, we considered oplax double functors; here we consider only (pseudo)
double functors, but endowed with lax monoidal structure. While it certainly would be possible to consider
“lax monoidal oplax double functors”, this is not needed for our applications.

Proof. We first show that lax monoidal double functors and pseudomonoidal vertical transformations form
a category. Given pseudomonoidal vertical transformations σ : F ñ F 1 and τ : F 1 ñ F 2, we endow the
composite vertical transformation τ ¨σ : F ñ F 2 with pseudomonoidal structure via the pasting composites:

FX1 b FX2 FX1 b FX2 FX1 b FX2

F pX1 bX2q F 1X1 b F
1X2 F 1X1 b F

1X2

F 1pX1 bX2q F 1pX1 bX2q F 2X1 b F
2X2

F 2pX1 bX2q F 2pX1 bX2q F 2pX1 bX2q

F 2
X1,X2

id

óσ2

σX1
bσX2

id

σX1
bσX2

σX1bX2 F 12X1,X2

id

óτ2

τX1
bτX2

τX1bX2

id

τX1bX2 F22X1,X2

id id

I I I

FI

F 1I F 1I

F 2I F 2I F 2I.

F 0

id

óσ0

id

F 10

óτ0
F20σI

τI

id

τI

id id

(40)

It is now routine to verify the pseudomonoidal vertical transformation axioms for τ ¨ σ, and to check that
this composition law is associative and unital, so yielding the desired category.
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We next show that monoidal horizontal transformations and monoidal modifications form a category;
for which it suffices to verify that, given a pair of composable monoidal modifications, their composite qua
modification, as in Definition 5.5, is again monoidal. This is straightforward.

We now provide the horizontal composition law for MonDblCatrC,Ds. Given monoidal horizontal
transformations β : F G and γ : G H, we endow the composite horizontal transformation γ ˝ β with
monoidal structure via the pastings:

FX1 b FX2
�pγX1

˝βX1
qbpγX2

˝βX2
q

//

óτ

GX1 bGX2

FX1 b FX2
�βX1
bβX2 //

F 2
X1,X2

��

óβ2
X1,X2

GX1 bGX2
�γX1
bγX2 //

G2
X,X2

��

óγ2
X1,X2

HX1 bHX2

G2
X,X2

��

F pX1 bX2q
�

βX1bX2

// GpX1 bX2q
�

γX1bX2

// HpX1 bX2q

and

I �idI //

–

I

I

F 0

��

�idI //

óβ0

I

G0

��

�idI //

óγ0

I

H0

��

FI
�
βI

// GI
�
γI

// HI.

Direct verification yields the horizontal transformation axioms. To make the assignment β, γ ÞÑ γ ˝ β into
a functor, it now suffices to observe that that the horizontal composition of two monoidal modifications qua
modification is again monoidal; this is again a matter of direct verification. Finally, the globular constraints
a, `, r of MonDblCatrC,Ds are inherited from DblCatrC,Ds, and it is simply a matter of checking that
these are indeed monoidal modifications. �

The next result builds on Proposition 3.10.

Proposition 5.7. A pseudomonoidal vertical transformation σ : F ñ F 1 has a companion as a vertical
1-cell of MonDblCatrC,Ds if and only if the underlying vertical transformation of σ has a companion as a
vertical 1-cell of DblCatrC,Ds, i.e. it is special.

Proof. The ‘only if’ direction is trivial: if σ has a companion in MonDblCatrC,Ds, then applying the
forgetful double functor MonDblCatrC,Ds Ñ DblCatrC,Ds shows it has a companion in DblCatrC,Ds. For
the ‘if’ direction, given a pseudomonoidal transformation σ as in Definition 5.3, the additional necessary
data for the induced horizontal transformation pσ : F F 1 as described in the proof of Proposition 3.10
to be monoidal are the cells of (36). We obtain these as companion transposes of the structure data (37)
of the pseudomonoidal vertical transformation σ, as in:

ppσq2X1,X2
:“

FX1 b FX2 F 1X1 b F
1X2

FX1 b FX2 F 1X1 b F
1X2

F pX1 bX2q F 1pX1 bX2q

pσX1
bpσX2

–

F 2
X1,X2

{σX1
bσX2

óxσ2 F 12X1,X2

{σX1bX2

ppσq0 :“

I I

FI F 1I

idI

F 0 óxσ0 F 10

pσI

where the top-left isomorphism arises due to the double functor b preserving companions. That this
makes pσ into a monoidal horizontal transformation can now be checked by lengthy, but straightforward,
calculations. Similarly, it is straightforward to verify that with respect to this structure, the companion
2-morphisms p1 and p2 in DblCatrC,Ds are monoidal, and so lift to MonDblCatrC,Ds as required. �

6. Monoids in monoidal double categories

In this section, we consider horizontal and vertical monoids in a monoidal double category. When
instantiated in the monoidal double categories DblCatrC,Cs and MonDblCatrC,Cs of Propositions 3.9
and 5.6, these will give us the notions of horizontal and vertical double monad, and of monoidal horizontal
and vertical double monad respectively, to be considered in Sections 7 and 8.

We begin with the notion of a horizontal monoid in a monoidal double category. This is analogous to a
pseudomonoid in a monoidal bicategory, in that the associativity and unit axioms do not hold on the
nose, but rather up to invertible squares.

Definition 6.1. Let C be a monoidal double category. A horizontal monoid in C consists of:

‚ an object A;
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‚ horizontal 1-cells m : AbA ÝÞÑ A and e : I ÝÞÑ A;
‚ invertible cells

pAbAq bA AbA A

Ab pAbAq AbA A

α

mbid

óa

m

idbm m

Ab I AbA A

A A

ρ ór

idbe m

id

and

I bA AbA A

A A.

λ

ebid

ól

m

id

(41)

These data are required to satisfy the coherence axioms that:

ppAbAq bAq bA pAbAq bA AbA A

pAb pAbAqq bA pAbAq bA AbA A

Ab ppAbAq bAq Ab pAbAq AbA A

Ab pAb pAbAqq Ab pAbAq AbA A

αb1

pmbidqbid

óab1

mbid m

ó1m

pidbmqbid

α óα α

mbid

óa

m

idbpmbidq

1bα ó1ba

idbm m

ó1m

idbpidbmq idbm m

=

ppAbAq bAq bA pAbAq bA AbA A

pAbAq b pAbAq Ab pAbAq AbA A

pAbAq b pAbAq pAbAq bA AbA A

Ab pAb pAbAqq Ab pAbAq AbA A

α

pmbidqbid

óα α

mbid

óa

m

mbid

ó–

idbm m

ó1m

idbm

α óα

mbid

α
óa

m

idbpidbmq idbm m

pAb Iq bA pAbAq bA AbA A

Ab pI bAq Ab pAbAq AbA A

AbA AbA A

pidbeqbid

α óα

mbid

α
óa

m

1bλ ó1bl

idbpebidq idbm

ó1m

m

id m

=

pAb Iq bA pAbAq bA AbA A

AbA AbA A

ρb1

pidbeqbid

órb1

mbid m

ó1m

id m

Remark 6.2. As discussed in Section 4, under fairly mild conditions the horizontal bicategory HpCq of
a monoidal double category C will have the structure of a monoidal double category, whose monoidal
associativity and unit constraint 1-cells are the companions of the corresponding constraints for C. In
this situation, horizontal monoids in C correspond to pseudomonoids in HpCq by taking the companion
transposes of the coherence data (41).

Definition 6.3 (Vertical monoid). Let C be a monoidal double category. A vertical monoid in C
is a monoid in the monoidal category C0. Explicitly, it is an object A endowed with vertical 1-cells
m : AbAÑ A and e : I Ñ A satisfying the usual associativity and unit laws.

The next result shows how we may induce horizontal monoids from vertical ones, and will be applied
in Theorem 7.4, relating horizontal and vertical double monads, and Theorem 8.4, relating monoidal
horizontal and vertical double monads.

Theorem 6.4. Let C be a monoidal double category and pA,m, eq be a vertical monoid in C, such that
m and e have companions. The companion transposes

pAbAq bA AbA A

Ab pAbAq AbA A

óa

xmbid

α

xm

idbxm xm

Ab I AbA A

A A

órρ

idbpe
xm

id

I bA AbA A

A A

pebid

ólλ

xm

id

of the monoid identities endow pA, pm, peq with the structure of a horizontal pseudomonoid.

Proof. The displayed 2-morphisms are constructed using transpose operations like (12) from the vertical
associativity and unitality monoid axioms for A. They are vertically invertible since α, ρ and λ are, so
that a-1 may be constructed as companion transposes of the identities m ˝ p1bmq ˝ α-1 “ m ˝ pmb 1q,
and similarly for l-1 and r-1.

The coherence axioms of Definition 6.1 for a horizontal pseudomonoid can now be checked by computing
appropriate transposes of the required diagrams and making use of Lemma 3.12. �
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7. Double monads

For an ordinary category C, the category of endofunctors of C has a monoidal structure given by
composition, and a monoid therein is precisely a monad on C. In the case of double categories, we can do
something similar by exploiting our work in Sections 3 and 6, so leading to a notion of double monad: or
rather, two notions of double monad, horizontal and vertical.

To begin with, observe that Proposition 3.9 states in particular that for any double category C, there is a
double category DblCatrC,Cs of double endofunctors, vertical transformations, horizontal transformations
and modifications (Definitions 3.1, 3.4, 3.5 and 3.8). In fact, as is well-known, this double category is
monoidal:

Proposition 7.1 (Composition monoidal structure). Let C be a double category. The double category
DblCatrC,Cs admits a monoidal structure given by composition.

Proof. We only sketch the proof; for a full treatment see, for example, [Gar06a, Proposition 39].
Given double endofunctors F1, F2 : CÑ C, we define F1 b F2 to be the double endofunctor F2F1 with

underlying ordinary functors pF2q0 ˝ pF1q0 : C0 Ñ C0 and pF2q1 ˝ pF1q1 : C1 Ñ C1, and with coherence
data obtained by vertically pasting those for F and G. Given vertical transformations σ1 : F1 ñ F 11 and
σ2 : F2 ñ F 12, we define σ1 b σ2 to be the vertical transformation σ2σ1 : F2F1 ñ F 12F

1
1 with underlying

ordinary natural transformations given by the horizontal composites pσ2q0 ˚ pσ1q0 and pσ2q0 ˚ pσ1q0. With
the identity double functor as unit, this yields a strict monoidal structure on the category of double
endofunctors and vertical transformations.

Next, given horizontal transformations β1 : F1 G1 and β2 : F2 G2 we define β1 b β2 to be the
horizontal transformation β2β1 : F2F1 G2G1 with horizontal 1-cell components4

pβ2β1qX “ F2F1X
pβ2qF1X

G2F1X
G2pβ1qX

G2G1X (42)

and remaining data obtained in an analogous way; whereas for modifications γ1, γ2 as in

F1 G1

F 11 G11

β1

σ1

V

γ1 τ1

β11

F2 G2

F 12 G12

β2

σ2

V

γ2 τ2

β12

(43)

we define γ1b γ2 to be the modification γ2γ1 : β2β1 V β12β
1
1 with vertical source and target σ2σ1 and τ2τ1,

and 2-morphism components:

F2F1X G2F1X G2G1X

F 12F1X G12F1X G12G1X

F 12F
1
1X G12F

1
1X G12G

1
1X.

pσ2qF1X

pβ2qF1X

ópγ2qF1X

G2pβ1qX

pσ2qF1X
ópσ2qpβ1qX

pσ2qG1X

F 12pσ1qX

pβ12qF1X

ópβ12qpσ1qX G12pσ1qX

G12pβ1qX

óG12pγ1qX G12pτ1qX

pβ12qF 11X
G12pβ

1
1qX

(44)

These data endow the category of horizontal 1-cells and 2-morphisms with a non-strict monoidal struc-
ture; for the monoidal constraints, given horizontal transformations β1 : F1 G1, β2 : F2 G2 and
β3 : F3 G3, the composites β3pβ2β1q and pβ3β2qβ1 have respective horizontal 1-cell components

G3pG2pβ1qX ˝ pβ2qF1Xq ˝ pβ3qF2F1X and G3G2pβ1qX ˝ pG3pβ2qF1X ˝ pβ3qF2F1Xq (45)

and the desired globular associativity modification pβ1 b β2q b β3 V β1 b pβ2 b β3q has components
given by the evident globular 2-isomorphisms between these composites, built from associativity and
functoriality of G3. The unit constraints are handled similarly.

4In the provided reference, the alternate choice pβ2β1qX “ pβ2qG1X ˝ F2pβ1qX is used; this results in a different but

equivalent monoidal structure.
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Finally, we must provide the globular 2-isomorphisms τ and η of (23). We describe only the case of τ ; for
which, consider horizontal transformations β1 : F1 G1, δ1 : G1 H1, β2 : F2 G2 and δ2 : G2 H2.
The two composite horizontal transformations pδ1 ˝β1qb pδ2 ˝β2q and pδ1b δ2q ˝ pβ1bβ2q have respective
horizontal 1-cell components

H2ppδ1qX ˝ pβ1qXq ˝ ppδ2qF1X ˝ pβ2qF1Xq and pH2pδ1qX ˝ pδ2qG1Xq ˝ pG2pβ1qX ˝ pβ2qF1Xq, (46)

which are related by globular 2-isomorphisms built from functoriality constraints of H2, associativity
constraints of C and the coherence 2-isomorphism pδ2qpβ1qX of the horizontal transformation δ2. �

By looking at horizontal and vertical monoids (as introduced in Definition 6.1 and Definition 6.3) in the
endofunctor double category, we obtaine notions of horizontal and vertical double monad. These notions
differ by the direction of the transformations for the the multiplication and unit and by their strictness: a
horizontal monad induces a pseudomonad on the horizontal bicategory, while a vertical monad induces a
2-monad on the vertical 2-category. We shall relate these notions in Theorem 7.4.

Definition 7.2 (Horizontal double monad). Let C be a double category. A horizontal double monad
on C is a horizontal monoid in the monoidal double category DblCatrC,Cs. Explicitly, it consists of:

‚ a double functor T : CÑ C;
‚ a horizontal transformation m : TT T , with components mX : TTX ÝÞÑ TX,

TTX TX

TTX 1 TX 1

mX

TTf ómf Tf

mX1

and

TTX TTY TY

TTX TX TY

TTM

ómM

mY

mX TM

(47)

for each object X, vertical 1-cell f : X Ñ X 1 and horizontal 1-cell M : X ÝÞÑ Y ;
‚ a horizontal transformation e : 1 T , with components eX : X ÝÞÑ TX,

X TX

X 1 TX 1

eX

f óef Tf

eX1

and

X Y TY

X TX TY

M

óeM

eY

eX TM

(48)

for each object X, vertical 1-cell f : X Ñ X 1 and horizontal 1-cell M : X ÝÞÑ Y ;
‚ invertible modifications a, l and r with respective components at X P C given by:

TTTX TTX TX

TTTX TTX TX

TmX

óaX

mX

mTX mX

TX TTX TX

TX TX

órX

eTX mX

idTX

TX TTX TX

TX TX

TeX

ólX

mX

idTX

(49)

These data are subject to the axioms of Definition 6.1, noting carefully the order-reversal stemming from
the fact that F1 b F2 “ F2F1.

A horizontal double monad is exactly the structure we need to define a horizontal Kleisli double category,
as we shall do in Theorem 9.1 below. However, horizontal double monads involves non-trivial coherence
axioms for associativity and unit; it is therefore useful in practice to have some ways of constructing them
from simpler kinds of data. For this purpose, we recall from [GP04, §7] the following definition:

Definition 7.3 (Vertical double monad). Let C be a double category. A vertical double monad on C is
a vertical monoid in DblCatrC,Cs. Explicitly, it consists of the following data:

‚ a double endofunctor T : CÑ C;
‚ a vertical transformation m : TT ñ T , with components mX : TTX Ñ TX and

TTX TTY

TX TY

TTM

mX ómM mY

TM

(50)

for each object X and horizontal 1-cell M : X ÝÞÑ Y ;
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‚ a vertical transformation e : 1 ñ T , with components eX : X Ñ TX and

X Y

TX TY

M

eX óeM eY

TM

(51)

for each object X and horizontal 1-cell M : X ÝÞÑ Y .

These data are required to satisfy associativity and unitality conditions, as in Definition 6.3.

The notion of a vertical monad is stricter than that of a horizontal monad and thus easier to exhibit in
examples. Once we have a vertical monad, the following result allows us to enhance it to a horizontal one.

Theorem 7.4. Let C be a double category and T : CÑ C be a vertical double monad. Assume that its
multiplication m : TT ñ T and unit e : 1C ñ T are special vertical transformations. Then T induces a
horizontal double monad pT, pm, peq on C.

Proof. If we consider T as a vertical monoid in DblCatrC,Cs, Theorem 6.4 ensures that it induces a
horizontal monoid therein (namely a horizontal double monad) whenever the unit e and multiplication m
have companions as vertical transformations. By Proposition 3.10, this will happen if and only if they are
special. �

While a direct proof of Theorem 7.4 would certainly be possible, the more abstract approach we take
has the advantage of being equally applicable to the case of monoidal double monads (Theorem 8.4), for
which a direct approach seems less practicable. It is to this that we now turn.

8. Monoidal double monads

In this section, we retread the material of the previous section in the context of monoidal double
categories, leading to the notions of a monoidal horizontal and monoidal vertical double monad, and
results relating the two. In Section 9, we will exploit these notions in order to impose monoidal structure
on the Kleisli double category of a horizontal double monad.

As a first step, we show that when C is a monoidal double category, we can extend the composition
monoidal structure on the endofunctor double category DblCatrC,Cs as recalled in Proposition 7.1, to a
monoidal structure on the monoidal endofunctor double category MonDblCatrC,Cs of Proposition 5.6.

Proposition 8.1 (Composition monoidal structure on MonDblCatrC,Cs). Let C be a monoidal double
category. The composition monoidal structure of the double category DblCatrC,Cs lifts to a monoidal
structure on the double category MonDblCatrC,Cs of monoidal endofunctors, pseudomonoidal vertical
transformations, monoidal horizontal transformations and monoidal modifications.

Proof. We must lift each of the pieces of data exhibited in the proof of Proposition 7.1 to the monoidal
context. We first lift the strict monoidal structure on the category of 0-cells and vertical 1-cells. If
F1, F2 : CÑ C are lax monoidal double endofunctors of C, then their composite F2F1 bears lax monoidal
structure with vertical 1-cell components

pF2F1q
2
X1,X2

“ F2F1X1 b F2F1X2
F 2

2
ÝÝÑ F2pF1X1 b F1X2q

F2F
2
1

ÝÝÝÑ F2F1pX1 bX2q,

pF2F1q
0 “ I

F 0
2
ÝÝÑ F2I

F2F
0
1

ÝÝÝÑ F2F1I

and 2-morphism components given similarly by pF2F1q
2
M,N “ F2pF

2
1 qM,N ¨ pF

2
2 qF1M,F1N . Next, if

σ1 : F1 ñ F 11 and σ2 : F2 ñ F 12 are pseudomonoidal vertical transformations, then the composite vertical
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transformation σ2σ1 : F2F1 ñ F 12F
1
1 bears pseudomonoidal structure witnessed by the 2-morphisms

pσ2σ1q
2“

F2F1X1 b F2F1X2 F2F1X1 b F2F1X2 F2F1X1 b F2F1X2 F2F1X1 b F2F1X2

F2pF1X1 b F1X2q F2pF1X1 b F1X2q F 12F1X1 b F
1
2F1X2 F 12F1X1 b F

1
2F1X2

F2F1pX1 bX2q F 12pF1X1 b F1X2q F 12pF1X1 b F1X2q F 12F
1
1X1 b F

1
2F

1
1X2

F 12F1pX1 bX2q F 12F1pX1 bX2q F 12pF
1
1X1 b F

1
1X2q F 12pF

1
1X1 b F

1
1X2q

F 12F
1
1pX1 bX2q F 12F

1
1pX1 bX2q F 12F

1
1pX1 bX2q F 12F

1
1pX1 bX2q

F 2
2

id

F 2
2

id

óσ2
2

σ2bσ2

id

σ2bσ2

id

F2F
2
1

σ2 F 122

id

F 12σ1bF
1
2σ1

σ2

óF 12σ
2
1

id

F 12F
2
1 F 12pσ1bσ1q F 122

id

F 12σ1 F 12σ1

id

F 12F
12
1 F 12F

12
1

id id id

pσ2σ1q
0“

I I I

F2I F2I

F2F1I F 12I F2F1I

F 12F1I F 12F1I

F 12F
1
1I F 12F

1
1I F 12F

1
1I

id

F 0
2

id

F 0
2

óσ0
2 F 102

F2F
0
1

id

σ2

σ2

id

F 12F
0
1

óF 12σ
0
1 F 12F

10
1

F 12σ1

id

F 12σ1

id id

where the empty squares are horizontal identities existing due to naturality of σ2 and F 122 . It is direct
to check that these pseudomonoidal constraint cells are stable under vertical composition, so that
we have a functorial tensor product on the category of lax monoidal functors and pseudomonoidal
vertical transformations. Taking this tensor product together with the (strict) monoidal 1C as unit, we
obtain a strict monoidal category: indeed, for any lax monoidal double endofunctors F3, F2, F1 of C,
pF3F2qF1 “ F3pF2F1q as lax monoidal double functors, since both have coherence vertical 1-cells given by

F3F2F1X1bF3F2F1X2
F 2

3
ÝÝÑ F3pF2F1X1bF2F1X2q

F3F
2
2

ÝÝÝÑ F3F2pF1X1bF1X2q
F3F2F

2
1

ÝÝÝÝÝÑ F3F2F1pX1bX2q,

using the fact that double functors strictly preserve vertical composition; and correspondingly for the
coherence 2-morphisms.

We now show that the category of horizontal monoidal transformations and monoidal modifications
is monoidal. If β1 : F1 G1 and β2 : F2 G2 are two monoidal horizontal transformations, then the
horizontal transformation β2β1 : F2F1 G2G1 given as in (42) is monoidal, via the structure 2-morphisms

pβ2β1q
2 “

F2F1X1 b F2F1X2 G2G1X1 bG2G1X2

F2F1X1 b F2F1X2 G2F1X1 bG2F1X2 G2G1X1 bG2G1X2

F2pF1X1 b F1X2q G2pF1X1 b F1X2q G2pG1X1 bG1X2q

F2F1pX1 bX2q G2F1pX1 bX2q G2G1pX1 bX2q

pG2β1˝β2qbpG2β1˝β2q

óτ

F 2
2

β2bβ2

óβ2
2 G2

2

G2β1bG2β1

ópG2
2qβ1,β1 G2

2

F2pF
2
1 q

β2

ópβ2qF2
1

G2pβ1bβ1q

G2pF
2
1 q óG2pβ

2
1q G2pG

2
1q

β2 G2β1
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pβ2β1q
0 “

I I I

F2I G2I G2I

F2F1I G2F1I G2G1I.

F 0
2

id

óβ0
2 G0

2

id

G0
2

F2F
0
1

β2

ópβ2qF0
1

id

G2F
0
1 óG2pβ

0
1q G2G

0
1

β2 G2β1

Moreover, given monoidal modifications γ1, γ2 as in (43), their composite γ2γ1 : β2β1 V β12β
1
1 given

by (44) can be verified to satisfy the axioms (39) that render it monoidal, using, among other things, the
monoidality of γ1 and γ2. The functoriality of this tensor product is now inherited from DblCatrC,Cs1, given
that monoidality is a mere condition on a modification. It is moreover easy to check that the associativity
and unitality modifications in DblCatrC,Cs1 become monoidal on lifting them to MonDblCatrC,Cs1, so
providing the last pieces of data for the desired monoidal structure.

It remains to lift τ and η from DblCatrC,Cs to MonDblCatrC,Cs: and this is again simply a matter of
checking that the modifications obtained from DblCatrC,Cs do indeed become monoidal modifications. �

Using this result, and paralleling the developments of Section 7, we can now give succinct definitions of
the notions of monoidal horizontal and vertical double monad.

Definition 8.2 (Monoidal horizontal double monad). Let C be a monoidal double category. A monoidal
horizontal double monad on C is a horizontal monoid in the monoidal double category MonDblCatrC,Cs.
Explicitly, it is a horizontal double monad pT,m, eq on C in the sense of Definition 7.2 such that:

‚ the double functor T : C Ñ C is lax monoidal, i.e., it comes equipped with structure vertical
1-cells T 2

X1,X2
: TX1 b TX2 Ñ T pX1 bX2q, T

0 : I Ñ TI and 2-morphisms

TX1 b TX2 TY1 b TY2

T pX1 bX2q T pY1 b Y2q

T 2
X1,X2

óT 2
M,N

TMbTN

T 2
Y1,Y2

T pMbNq

satisfying the axioms of Definition 5.1;
‚ the horizontal transformation m : TT T is monoidal, i.e., it comes equipped with structure

2-morphisms:

TTX1 b TTX2 TX1 b TX2

T pTX1 b TX2q

TT pX1 bX2q T pX1 bX2q

mXbmY

T 2
TX1,TX2

óm2 T 2
X1,X2

T pT 2
X1,X2

q

mX1bX2

and

I I

TI

TTI TI

idI

T 0

óm0
T 0

T pT 0
q

mI

(52)

satisfying the axioms of Definition 5.2;
‚ the horizontal transformation e : 1 T is monoidal, i.e. comes with structure 2-morphisms

X1 bX2 TX1 b TX2

X1 bX2 T pX1 bX2q

eX1
beX2

óe2 T 2
X1,X2

eX1bX2

and

I I

I TI

idI

óe0 T 0

eI

(53)

satisfying the axioms of Definition 5.2;
‚ the modifications a, l, r of (49) are monoidal as in Definition 5.5.

Definition 8.3 (Pseudomonoidal vertical double monad). Let C be a monoidal double category. A
pseudomonoidal vertical double monad on C a vertical monoid in MonDblCatrC,Cs. Explicitly, it is a
vertical double monad pT,m, eq on C in the sense of Definition 7.3, such that:

‚ the double functor T : CÑ C is lax monoidal, as in Definition 5.1;
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‚ the vertical transformation m : TT ñ T is pseudomonoidal, i.e., it comes equipped with 2-
morphisms

TTX1 b TTX2 TTX1 b TTX2

T pTX1 b TX2q TX1 b TX2

TT pX1 bX2q

T pX1 bX2q T pX1 bX2q

id

T 2
TX,TY

óm2

mX1
bmX2

T pT 2
X1,X2

q

T 2
X1,X2

mX1bX2

id

I I

TI

TTI

TI TI

T 0

id

óm0
T 0T pT 0

q

mI

id

(54)

satisfying the axioms of Definition 5.3;
‚ the vertical transformation e : 1 ñ T is pseudomonoidal , i.e., it comes equipped with 2-morphisms

X1 bX2 X1 bX2

TX1 b TX2

T pX1 bX2q T pX1 bX2q

id

eX1bX2 óe2

eX1
beX2

T 2
X1,X2

id

I I

TI TI

id

óe0eI T 0

id

(55)

satisfying the axioms of Definition 5.3;
‚ the pseudomonoidal structures of the composites m ˝Tm and m ˝mT : TTT ñ T are equal, while

the pseudomonoidal structures of m ˝ Te and m ˝ eT : T ñ T are both trivial.

For a horizontal monad that arises from a vertical one via Theorem 7.4, we are naturally interested in
conditions on the vertical monad such that the induced horizontal monad is monoidal. Thankfully, the
conditions under which a pseudomonoidal vertical double monad induces a monoidal horizontal double
monad are the same as for the non-monoidal case of Theorem 7.4, as the next theorem shows.

Theorem 8.4. Let C be a monoidal double category and pT,m, eq be a pseudomonoidal vertical double
monad on C. Assume that the underlying vertical transformations m : TT ñ T and e : 1C ñ T are special.
Then pT,m, eq induces a monoidal horizontal double monad pT, pm, peq on C.

Proof. If we consider T as a vertical monoid in MonDblCatrC,Cs, Theorem 6.4 ensures that it induces a
horizontal pseudomonoid therein (namely a monoidal horizontal monad) when m and e have companions
as pseudomonoidal vertical transformations. By Proposition 5.7, this is true if and only if m and e are
special (Definition 3.6). For example, the unit of the induced monoidal horizontal double monad structure
on T is the horizontal transformation pe : 1 T which becomes monoidal with structure cells

X1 bX2 TX1 b TX2

X1 bX2 T pX1 bX2q

peX1
bpeY2

ó T 2
X1,X2

peX1bX2

I I

I TI

idI

ó T 0

peI

(56)

that bijectively correspond, under transpose operations, to those of (55). �

While a direct proof of Theorem 8.4 should be possible, the construction of all the data for a monoidal
horizontal double monad from that of a pseudomonoidal vertical double monad using companions, let
alone the verification of the coherence axioms, would be a daunting task. It is at this point that the
advantage of our abstract view becomes clear; as an added bonus, the proofs of Theorems 7.4 and 8.4
become essentially the same.
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9. Monoidal Kleisli double categories

In this section, we first introduce the (horizontal) Kleisli double category KlpT q for a horizontal double
monad T (Definition 7.2) on a double category C, with a particularly important case being where T is
induced from a vertical double monad (Definition 7.3) as in Theorem 7.4.

We next consider what happens when the double category C is monoidal and the double monad T
is also monoidal. We would naturally expect the monoidal structure of C to extend to KlpT q, just as
happens with an ordinary monoidal monad on an ordinary monoidal category. However, because the
monoidal constraint data for a horizontal double monad does not point exclusively in the horizontal
direction, things are slightly more subtle. To even obtain monoidal structure we must assume certain
companions exist, and even then, this structure is only oplax monoidal in general (Theorem 9.4). Again,
the situation where T is induced from a vertical double monad will be important, and in this special
case, we describe sufficient conditions for this oplax monoidal structure on KlpT q to be normal oplax
(Proposition 9.7) or (pseudo) monoidal (Corollary 9.8).

We begin with the construction of the horizontal Kleisli double category of a horizontal double monad.
This construction is essentially contained in [CS10]; there, the authors start from a vertical double monad
pT,m, eq, and define from it a horizontal Kleisli double category (Definition 4.1 of op. cit.) which in
general is only a so-called virtual double category. These are weaker structures than double categories, in
which horizontal 1-cells do not compose, but instead are formed into a structure of “multi-2-morphisms”;
however, [CS10, Theorem A.8] shows that, when the vertical transformations e : 1 ñ T and m : TT ñ T
are special, this virtual double category is in fact a double category. In this case, the horizontal Kleisli
double category of loc. cit. can be obtained as follows: first apply Theorem 7.4 to form the horizontal
double monad pT, pm, peq associated to pT,m, eq; and then apply the following result.

Theorem 9.1. Let C be a double category and pT,m, eq be a horizontal double monad on it. There is a
double category KlpT q, called the horizontal Kleisli double category of C, wherein:

‚ objects are objects of C;
‚ vertical 1-cells are vertical 1-cells of C;
‚ horizontal 1-cells M : X ù Y are horizontal 1-cells X ÝÞÑ TY of C;
‚ 2-morphisms as to the left below, are the 2-morphisms of C as to the right:

X
M //

f

��

óφ

Y

g

��

X 1
M 1

// Y 1

X
�M //

f

��

óφ

TY

Tg

��

X 1 �
M 1

// TY 1.

Proof. Vertical composition in KlpT q is the same as in C; horizontal composition of Kleisli 1-cells
M : X ù Y and N : Y ù Z is given by

N ˝Kl M :“ X
M

TY
TN

TTZ
mZ

TZ; (57)

while horizontal pasting of Kleisli 2-morphisms φ and ψ is given by

X

f

��

�M //

óφ

TY
�TN //

Tg

��

óTψ

TTZ
�mZ //

TTh

��

ómh

TZ

Th

��

X 1 �
M 1

// TY 1 �
TN 1

// TTZ 1 �
mZ1

// TZ 1 .

The horizontal identity 1-cell on X is

idKl
X :“ X TX

eX (58)

and the horizontal identity 2-morphism on f : X Ñ X 1 is

X

f

��

�eX //

óef

TX

Tf

��

X 1
�

eX1
// TX 1.
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It is easy to see that horizontal composition of 2-morphisms is vertically functorial, and so it remains
to give the coherence constraints. Given Kleisli 1-cells M : X ù Y and N : Y ù Z and P : Z ù W ,
the associativity constraint is given by the following pasting, in which the horizontal 1-cell at the top is
pP ˝Kl Nq ˝Kl M and the one at the bottom is P ˝Kl pN ˝Kl Mq:

X TY TTW TW

TY TTZ TTTW TTW TW

TTZ TTTW TTW TW

X TY TTZ TZ TTW TW.

M

óξ

T pmW ˝TP˝Nq mW

TN TTP

óa

TmW mW

ómP

TTP mTW mW

M TN mZ TP mW

The unit constraints are as follows, where the horizontal top 1-cells are idKl
Y ˝Kl M and M ˝Kl idKl

X :

X TY TTY TY

X TY TY

M TeY

ól

mY

M idTY

X TX TTY TY

X TY TTY TY

X TY TY .

ópeM q
-1

eX TM mY

M

ór

eTY mY

M idTY

Above, the 2-cells labelled a, l, r are as in (49) and the components of m, e are as in (47, 48). The coherence
axioms follow by the usual argument for a Kleisli bicategory, cf. [CS10, FGHW18]. �

We have not ascribed any kind of universal property to the construction of the Kleisli double category,
and for our purposes we do not need to; however, if we were to do so, then, following [Str72], we would
express it in terms of universal opalgebra structure on the canonical embedding of C into KlpT q:

Definition 9.2. Let C be a double category and pT,m, eq be a horizontal double monad on it. The
canonical embedding FT : CÑ KlpT q is the double functor which is the identity on objects and vertical
1-cells; sends a horizontal 1-cell M : X ÝÞÑ Y to eY ˝M : X ù Y , and correspondingly for 2-morphisms
between horizontal 1-cells.

Applying Lemma 3.3 to this canonical embedding, we immediately obtain the following result concerning
companions in Kleisli double categories (cf. [CS10, Proposition 7.5]):

Proposition 9.3. Let C be a double category, T a horizontal double monad on C, and f : X Ñ X 1 a
vertical 1-cell of C. If f has a companion as a vertical 1-cell of C, then it has a companion also as a
vertical 1-cell of KlpT q. �

We now consider the Kleisli double category when C is a monoidal double category and T is a monoidal
horizontal double monad (Definition 8.2). As discussed above, it does not seem to be true in general that
the monoidal structure of C will extend to KlpT q; however, under mild assumptions which are satisfied in
our applications, we do obtain at least an oplax monoidal structure (Definition 4.1) on KlpT q:

Theorem 9.4. Let C be a monoidal double category and T a monoidal horizontal double monad on
C. If the vertical 1-cell T 0 : I Ñ TI and each vertical 1-cell T 2

X1,X2
: TX1 b TX2 Ñ T pX1 bX2q has a

companion, then the monoidal structure of C induces an oplax monoidal structure on KlpT q.

Proof. The monoidal structure on the category of objects and vertical 1-cells KlpT q0 “ C0 is inherited
from C. For the monoidal structure on the category KlpT q1 of horizontal 1-cells and 2-morphisms, we
define the tensor product of M1 : X1 ù Y1 and M2 : X2 ù Y2 and the monoidal unit J to be:

M1 bM2 :“ X1 bX2
M1bM2

TY1 b TY2

xT 2
Y1,Y2

T pY1 b Y2q, J :“ I
xT 0

TI;
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while the binary tensor product of 2-morphisms is given by:

X1 TY1, X2 TY2 X1 bX2 TY1 b TY2 T pY1 b Y2q

X 11 TY 11 , X 12 TY 12 X 11 bX
1
2 TY 11 b TY

1
2 T pY 11 b Y

1
2q

óφ

M1

f1 Tg1 óψ

M2

f2 ÞÑTg2 óφbψ

M1bM2

f1bf2

xT 2
Y1,Y2

Tg1bTg2 ó T pg1bg2q

M 1
1 M 1

2 M 1
1bM

1
2

xT 2
Y 11,Y

1
2

where the right-hand 2-morphism is a companion transpose of the equality T pg1 b g2q ˝ T
2
Y1,Y2

“ T 2
Y 11 ,Y

1
2
˝

Tg1 b Tg2 of vertical 1-cells expressing naturality of T 2. The associativity constraint is given by the
following pasting, where the horizontal composite at the top is pM1 bM2qbM3 and the one at the bottom
is M1 b pM2 bM3q:

pX1 bX2q bX3 T pY1 b Y2q b TY3 T ppY1 b Y2q b Y3q

pX1 bX2q bX3 pTY1 b TY2q b TY3 T pY1 b Y2q b TY3 T ppY1 b Y2q b Y3q

X1 b pX2 bX3q TY1 b pTY2 b TY3q TY1 b T pY2 b Y3q T pY1 b pY2 b Y3qq

X1 b pX2 bX3q TY1 b T pY2 b Y3q T pY1 b pY2 b Y3qq.

pxT 2˝pM1bM2qqbM3

óτ(23)

xT 2

αX1,X2,X3

pM1bM2qbX3

óαM1,M2,M3
(22) óp˚qαTY1,TY2,TY3

xT 2bid xT 2

TαY1,Y2,Y3

óτ -1(23)

M1bpM2bM3q idbxT 2 xT 2

M1bp
xT 2˝pM2bM3qq

xT 2

Here, the 2-cell p˚q is the transpose of the equality pTαqT 2pT 2 b 1q “ T 2p1 b T 2qα of vertical 1-cells
expressing the associativity axiom for the vertical part of the monoidal double functor T ; note that p˚q is
invertible (as all other 2-cells in the above composite) by Proposition 2.8(iii) and (vi). The unit constraints
are formed similarly as follows, where the top horizontal 1-cells are J bM and M b J , respectively:

I bX TI b TY T pI b Y q

I bX I b TY TI b TY T pI b Y q

X TY TY ,

xT 0bM

óτ

xT 2
I,Y

λ

idbM

óλM λ óp˚q

xT 0bid
xT 2
I,Y

Tλ

M id

X b I TY b TI T pY b Iq

X b I TY b I TY b TI T pY b Iq

X TY TY .

MbxT 0

óτ

xT 2
Y,I

ρ óρM

Mbid

ρ

idbxT 0

óp˚q

xT 2
Y,I

Tρ

M id

(59)
Here, the 2-cells p˚q are the transposes of the unit axioms for the vertical part of the monoidal double
functor T , and are invertible by the same reasoning as before.

The oplax monoidal structure map to the left of (23) has the form:

X1 bX2

óτ

pN1˝KlM1qbpN2˝KlM2q
// Z1 b Z2

X1 bX2
M1bM2

// Y1 b Y2
N1bN2

// Z1 b Z2
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where ˝Kl is defined as in (57); we obtain it as the pasting composite

X1 bX2 TZ1 b TZ2 T pZ1 b Z2q

X1 bX2 TY1 b TY2 TTZ1 b TTZ2 TZ1 b TZ2 T pZ1 b Z2q

TY1 b TY2 TTZ1 b TTZ2 T pTZ1 b TZ2q TT pZ1 b Z2q T pZ1 b Z2q

TY1 b TY2 T pY1 b Y2q T pTZ1 b TZ2q TT pZ1 b Z2q T pZ1 b Z2q

X1 bX2 TY1 b TY2 T pY1 b Y2q TT pZ1 b Z2q T pZ1 b Z2q

ó–

pm˝TN1˝M1qbpm˝TN2˝M2q xT 2

M1bM2 TN1bTN2

óym2

mbm xT 2

TN1bTN2

óxT 2
N1,N2

xT 2 T xT 2 m

xT 2

ó–

T pN1bN2q T xT 2 m

M1bM2 xT 2 T pxT 2˝pN1bN2qq
m

(60)

where the top left isomorphism is the monoidal interchange (23) applied twice, the 2-morphism labelled
xm2 is a companion transpose of the structure 2-morphism m2 of the monoidal horizontal transformation

m as in (52), and the 2-morphism xT 2
N1,N2

is a companion transpose of the component T 2
N1,N2

of the lax

monoidal structure on the double functor T as in (34).
The globular 2-morphism η to the right of (23) is obtained as follows, where the horizontal 1-cell at

the top is idKl
X1

b idKl
X2

and the one at the bottom is idKl
X1bX2

:

X1 bX2 TX1 b TX2 T pX1 bX2q

X1 bX2 T pX1 bX2q.

óxe2

eX1
beX2

xT 2
X1,X2

eX1bX2

(61)

where idKl is defined as in (58). Here, the 2-morphism filling the square is a companion transpose of the
structure 2-morphism e2 of the monoidal horizontal transformation e as in (53). Finally, the globular
structure 2-morphisms δ and ι of (24) are defined to be

δ “

I TI

I TI TTI TI

xT 0

óym0

xT 0 T xT 0 mI

ι “

I TI

I TI

xT 0

óxe0

eI

(62)

obtained as the companion transpose of the structure 2-morphism m0 from (52) (using that TxT 0 is a
companion of TT 0 by Lemma 3.3); and the companion transpose of the structure 2-morphism e0 from
(53) respectively.

With some effort, one may show that with these structure cells, the horizontal double Kleisli cate-
gory KlpT q is an oplax monoidal double category in the sense of Definition 4.1. We do not provide the
details here, but in Appendix A.2 we give some sample verifications, along with a number of technical
lemmas used repeatedly in the calculations. �

It is very natural to ask when the oplax monoidal structure of the preceding definition is in fact a
genuine (pseudo) monoidal structure, or at least a normal oplax monoidal structure. For our purposes,
we will only answer this question in the case of primary interest, where our monoidal horizontal monad
is induced from a pseudomonoidal vertical monad (Definition 8.3). To start with, putting together
Theorem 8.4 and Theorem 9.4 gives us:

Corollary 9.5. Let C be a monoidal double category and T be a pseudomonoidal vertical double monad.
If it is true that:

(i) the multiplication and unit of T are special; and
(ii) all vertical 1-cells T 2

X1,X2
: TX1 b TX2 Ñ T pX1 bX2q and T 0 : I Ñ TI have companions,

then the Kleisli double category KlpT q of the induced monoidal horizontal monad pT, pm, peq admits an oplax
monoidal structure found as in Theorem 9.4. �

Remark 9.6. Notice that in the situation of the above corollary, it is only the interchange 2-morphisms
τ of the oplax monoidal structure which may not be invertible. Indeed, each of the other structure
2-morphisms η, δ, ι, as displayed in (61) and (62), must be invertible; for example, in this case η is the
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transpose of the 2-morphism (56) which is, in turn, the transpose of the VpCq-invertible 2-morphism e2

(55) of the pseudomonoidal vertical transformation e, and as such, is invertible by Proposition 2.8(vi).

As explained above, we will now investigate when, in the situation of Corollary 9.5, the oplax monoidal
structure on KlpT q is in fact normal in the sense of Definition 4.3. To this end, motivated by the theory
of pseudo-commutative monads [HP02], we define for a pseudomonoidal vertical monad pT,m, eq as in
Definition 8.3 a vertical double transformation κ : p–q b T p?q ñ T ˝ p– b ?q called the strength; this is
given as the vertical composite T 2 ˝ peb 1q with components

X1 b TX2 Y1 b TY2

T pX1 bX2q T pY1 b Y2q

M1bTM2

κX1,X2 óκM1,M2
κY1,Y2

T pM1bM2q

:“

X1 b TX2 Y1 b TY2

TX1 b TX2 TY1 b TY2

T pX1 bX2q T pY1 b Y2q .

M1bTM2

eX1
b1 óeM1

b1TM2
eY1b1

TM1bTM2

T 2
X1,X2

óT 2
M1,M2

T 2
Y1,Y2

T pM1bM2q

(63)

In an analogous way, we can also define the costrength as a vertical transformation T p–qbp?q ñ T ˝p–b?q.
It turns out that requiring these two vertical transformations to be special, as in Definition 3.6, is sufficient
to make the oplax monoidal structure on KlpT q normal:

Proposition 9.7. Let C be a monoidal double category and T be a pseudomonoidal vertical double monad.
If it is true that:

(i) the multiplication and unit of T are special;
(ii) all vertical 1-cells T 2

X1,X2
: TX1 b TX2 Ñ T pX1 bX2q and T 0 : I Ñ TI have companions; and

(iii) the strength and costrength of T are special vertical transformations,

then the oplax monoidal double structure on KlpT q found as in Corollary 9.5 is normal.

Proof. We need to verify that each oplax double functor X1 b p–q : KlpT q Ñ KlpT q and p–qbX2 : KlpT q Ñ
KlpT q is in fact a (pseudo) double functor. By Remark 9.6, we already know that the square η in (61)
is invertible, which expresses the invertibity of the identity constraints for these double functors. As
for the binary functoriality constraints, it suffices by symmetry to consider the case of X1 b p–q. To
say that its binary constraints are invertible is to say that the 2-morphism in (60) is invertible when
X “ X1 “ Y1 “ Z1 and M1 “ N1 “ peX1

. The 2-morphism in question is given by:

X1 bX2 TX1 b TZ2 T pX1 b Z2q

X1 bX2 TX1 b TY2 TTX1 b TTZ2 TX1 b TZ2 T pX1 b Z2q

X1 bX2 TX1 b TY2 TTX1 b TTZ2 T pTX1 b TZ2q TT pX1 b Z2q T pX1 b Z2q

X1 bX2 TX1 b TY2 T pX1 b Y2q T pTX1 b TZ2q TT pX1 b Z2q T pX1 b Z2q

X1 bX2 TX1 b TY2 T pX1 b Y2q TT pX1 b Z2q T pX1 b Z2q.

ó–

pxm˝T pe˝peqbpxm˝TN2˝M2q xT 2

pebM2 T pebTN2

óxm2

xmbxm xT 2

pebM2

T pebTN2

óxT 2
pe,N2

xT 2 T xT 2 xm

pebM2

xT 2

ó–

T ppebN2q T xT 2 xm

pebM2 xT 2 T pxT 2˝ppebN2qq
xm

(64)

Clearly the first and final rows of this diagram are invertible. On the second row, the 2-morphism xm2

corresponds under transpose to the VpCq-invertible cell m2 of the pseudomonoidal vertical transformation m
in (54), and as such is invertible by Proposition 2.8(vi). Thus, we will be done if we can also prove the
invertibility of the third row of the diagram.

Now, since the strength (63) is by assumption a special vertical transformation, it is in particular true
that the companion transpose of the component κ

pe,N2
is invertible. This transpose is equally well the
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composite:

X1 b TY2 TX1 b TTZ2 TTX1 b TTZ2 T pTX1 b TZ2q

X1 b TY2 TX1 b TY2 TTX1 b TTZ2 T pTX1 b TZ2q

X b TY2 TX b TY2 T pX1 b Y2q T pTX2 b TZ2q

pebTN2

óp˚q

T peb1 xT 2

peb1 T pebTN2

óxT 2

xT 2

peb1 xT 2 T ppebN2q

where the 2-morphism p˚q on the top row is the transpose of the 2-cell e
peX1

b 1N2
. But by Lemma 3.12,

this p˚q is itself the transpose of a vertical identity, and as such, is invertible by Proposition 2.8(vi). It
follows that the composite 2-morphism comprising the bottom row of this diagram is invertible, which
now implies the invertibility of the third row of (64) as desired. �

Although this will not be the case in our applications, we note in particular the following sufficient
conditions for the induced oplax monoidal structure on KlpT q to be not just normal oplax, but in fact a
genuine (pseudo) monoidal structure.

Corollary 9.8. Let C be a monoidal double category and T be a pseudomonoidal vertical double monad.
If it is true that:

(i) the multiplication and unit of T are special;
(ii) all vertical 1-cells T 2

X1,X2
: TX1 b TX2 Ñ T pX1 bX2q and T 0 : I Ñ TI have companions; and

(iii) the monoidality constraint T 2 of T is a special vertical transformation,

then the oplax monoidal double structure on KlpT q found as in Corollary 9.5 is genuinely monoidal.

Proof. η, δ and ι are already known to be invertible, and, arguing as before, the assumption that T 2 is
special ensures that every component (60) of the oplax monoidal interchange τ is invertible. �

In the situation of Proposition 9.7, the fact that KlpT q is a normal oplax monoidal double category
implies that its horizontal bicategory inherits the monoidal structure, in the sense specified in Definition 4.8.
We thus obtain the following result as the culmination of the abstract development of the paper thus far.
This will be the result we use to obtain the monoidal structure on the bicategory of coloured symmetric
sequences in Section 10.

Corollary 9.9. Let C be a monoidal double category and T be a pseudomonoidal vertical double monad.
Under the assumptions of Proposition 9.7, the horizontal bicategory of KlpT q admits a normal oplax
monoidal structure.

Proof. This follows from Theorem 4.10 and Propositions 9.3 and 9.7. �

10. The arithmetic product of coloured symmetric sequences

In this section, we apply the theory developed in the previous sections to our intended application,
namely coloured symmetric sequences. Throughout this section, we fix a cocomplete cartesian closed
category V, considered as a symmetric monoidal closed category with respect to its cartesian closed
structure. The restriction to a cartesian monoidal structure was already made in [DH14, GL16] and indeed
it is essential for some of our results, as we explain further below.

In order to help readers follow our development, let us display the main double categories to be
considered in this section in a commutative diagram of inclusions:

MatV //

��

SymV

��

ProfV // CatSymV .

On the left-hand side of the diagram, MatV is the double category of matrices of Example 2.3 and ProfV
is the double category of profunctors of Example 2.4. On the right-hand side of the diagram, CatSymV
is the double category of categorical symmetric sequences which arises from ProfV as a Kleisli double
category, and SymV is its full double subcategory spanned by discrete V-categories—much like the double
category MatV is a full double subcategory of ProfV . We will define the double categories CatSymV
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and SymV explicitly in Theorem 10.4, but in order to do so, we must first introduce the relevant double
monad for the Kleisli construction.

Let X be a small V-category. For n P N, let us define the V-category SnpXq as follows. The objects
of SnpXq are n-tuples ~x “ px1, . . . , xnq of objects of X. Given two such n-tuples ~x “ px1, . . . , xnq and
~x1 “ px11, . . . , x

1
nq, the hom-object of maps between them is defined by

SnpXqr~x, ~x
1s :“

ğ

σPSn

ę

1ďiďn

Xrxσpiq, x
1
is

where Sn is the n-th symmetric group, and where
Ů

and
Ű

denote coproduct and product respectively.
We then let SX be the following coproduct in CatV :

SX “
ğ

nPN
SnpXq.

The V-category SX admits a symmetric strict monoidal structure in which the tensor product, written
as ~x, ~y ÞÑ ~xb ~y, is given by concatenation of sequences; the tensor unit is given by the empty sequence,
written p q; and the symmetry is given by the evident permutations. The operation mapping X to SX
extends to a 2-functor S : CatV Ñ CatV , which is part of a 2-monad whose strict algebras are symmetric
strict monoidal V-categories. The multiplication of this 2-monad has components mX : SSX Ñ SX,
for X P CatV , defined by taking a list of lists to its flattening:

mXp~x
1, . . . , ~xkq :“ ~x1 b . . .b ~xk.

The unit of the 2-monad has components eX : X Ñ SX, for X P CatV , defined by taking an object x P X
to the singleton list pxq P SX.

We now show that, firstly, S extends to a vertical double monad on ProfV , and secondly, that this
vertical double monad can be turned into a horizontal double monad. To say that S extends to a vertical
double monad is equivalently to say that the underlying 2-functor of S extends along the inclusion of
bicategories CatV Ñ ProfV ; while to say that this vertical monad can be turned into a horizontal one
amounts to saying that the whole 2-monad S extends from CatV to ProfV . This is a known result, and
there are two approaches in the literature to proving it. The first uses the theory of pseudo-distributive
laws; see, for example [FGHW18]. The second, which we follow here, is essentially a categorification of
the approach of [Bar70].

Proposition 10.1. The free symmetric strict monoidal category 2-monad S on CatV extends in an essen-
tially unique way to a vertical double monad on ProfV . The multiplication and unit vertical transformations
of this double monad are special.

Here, we say that a vertical double monad T on a double category C extends a 2-monad R on the
vertical 2-category VpCq, if R is isomorphic (as a 2-monad) to the 2-monad on VpCq induced by T .

Proof. Because any double functor preserves companions (Lemma 3.3), any extension of S to ProfV
must satisfy Sp pF q – ySF for a V-functor F . Because pF % qF in HpProfVq, and any double functor

preserves adjunctions in the horizontal bicategory, we must also have Sp qF q – }SF . Since by [Str80,

§6], every V-profunctor M : X ÝÞÑ Y admits a globular isomorphism to one of the form qG ˝ pF for a
suitable cospan of V-functors F : X Ñ Z Ð Y : G, the preceding conditions determine the action of S
on horizontal 1-cells of ProfV to within unique isomorphism. Using this idea, one obtains the following
explicit definition: given M : X ÝÞÑ Y , SM : SX ÝÞÑ SY is defined as the N-indexed coproduct in pProfVq1
of SnpMq : SnpXq ÝÞÑ SnpY q, where

SnpMqp~y, ~xq :“
ğ

σPSn

ę

1ďiďn

Mpyσpiq, xiq. (65)

The action of S on 2-morphisms of ProfV is now forced by Proposition 2.8(iii) and the fact that any double
functor preserves globularity; the reader will easily guess an explicit formula, and this guess is the correct
one. This completes the definition of S qua double functor on ProfV ; that these data are indeed double
functorial is verified, for example, in [Gar06b, Proposition 55], to which we refer for further details.

We now extend the unit e and multiplication m of the 2-monad S; the missing data are the 2-morphism

components eM and mM (50, 51) associated to a horizontal 1-cell M : X ÝÞÑ Y . Writing M – qG ˝ pF as
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before, we see that eM and mM are determined by e
pF , e

qG, m
pF and m

qG:

eM “

X Z

X Z Y

SX SZ SY

SX SY

M

–
pF

eX óe
xF

qG

eZ óe
|G eY

S pF

–
S qG

SM

and mM “

SSX SSZ

SSX SSZ SSY

SX SZ SY

SX SY .

SSM

–

SS pF

mX óm
xF

SS qG

mZ óm
|G

mY

S pF

–
S qG

SM

(66)

To the left, Lemma 3.12 implies that e
pF is the companion transpose of the identity of vertical 1-cells

eZ ˝ F “ SF ˝ eX ; while a suitable dual of Lemma 3.12 implies that e
qF is the conjoint transpose

of the identity eZ ˝ G “ SG ˝ eY . In a similar way, the 2-morphisms m
pF and m

qG are forced. An
explicit verification that these data satisfy the vertical double monad axioms is, again, given in [Gar06b,
Proposition 55].

Before continuing, we note a fact which will be used repeatedly in what follows. Suppose given
profunctors N : X Y and M : SY Z. Then for any z P Z and ~x “ px1, . . . , xnq P SX, the value at
pz, ~xq of the composite M ˝ SN : SX SY Z, as to the left below, is equally given as to the right:

ż ~yPSY

Mpz, ~yq ˆ SNp~y, ~xq –

ż ~yPY n

Mpz, ~yq ˆ
ę

1ďiďn

Npyi, xiq . (67)

Indeed, we can immediately reduce the left-hand coend to one over ~y P SnY ; and for such a ~y, we have
Mpz, ~yq ˆ SNp~y, ~xq –

Ů

σPSn
Mpz, ~yq ˆ

Ű

1ďiďnNpyσpiq, xiq. On the σ-summand of this coproduct, we

define the component of the desired isomorphism (67) to be

Mpz, ~yqˆ
ę

1ďiďn

Npyσpiq, xiq
Mp1,σ-1

qˆ1
ÝÝÝÝÝÝÝÑMpz, σ˚~yqˆ

ę

1ďiďn

Np pσ˚~yqi, xiq ãÑ

ż ~yPY n

Mpz, ~yqˆ
ę

1ďiďn

Npyi, xiq

where pσ˚~yqi “ yσpiq and where σ-1 : ~y Ñ σ˚~y is the evident symmetry isomorphism in SY .
It remains only to check that the extended vertical transformations e and m are special, i.e. that the

following companion transpose 2-morphisms are invertible:

Z Y SY

Z SZ SY

M peY

ópeM

peZ SM

and

SSZ SSY SY

SSZ SZ SY .

SSM xmY

óxmM

xmZ SM

Starting to the left, let z P Z and ~y “ py1, . . . , ynq P SY . To within isomorphism, using the formulas for
composition and companions for profunctors (8, 11) as well as (65), the profunctor at the bottom of the
square sends p~y, zq to

SMp~y, pzqq “

#

Mpy1, zq if n “ 1;

0 otherwise.
(68)

On the other hand, the profunctor around the top sends p~y, zq to:

ż y1PY

SY r~y, py1qs ˆMpy1, zq “

#

şy1PY
Y ry1, y

1s ˆMpy1, zq if n “ 1;

0 otherwise.
(69)

In the only non-trivial case where n “ 1, the comparison 2-cell peM from (69) to (68) is given by composition:
and this is invertible by the Yoneda lemma.

We proceed similarly for pmM . Let ~z “ p~z1, . . . , ~znq P SSZ with ~zi “ pzmi-1`1, . . . , zmiq for some
0 “ m0 ď m1 ď ¨ ¨ ¨ ď mn, and let ~y “ py1, . . . , ymq P SY . The only non-trivial case is when mn “ m so
we immediately restrict to that. This time, the profunctor in the bottom row sends p~y, ~zq to

SMp~y,
â

1ďiďn

~z iq “
ğ

σPSm

ę

1ďiďm

Mpyσpmq, zmq. (70)
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On the other hand, the profunctor around the top sends p~y, ~zq to
ż ~wPSSY

SY r~y,
â

1ďiďm

~wis ˆ SSMp~w, ~zq –

ż ~w1,..., ~wnPSY

SY r~y,
â

1ďiďm

~wis ˆ
ę

1ďjďn

SMp~wj , ~zjq

–

ż w1,...,wmPY

SY r~y, ~ws ˆ
ę

1ďjďn
mi-1`1ďiďmi

Mpwi, ziq

–
ğ

σPSm

ż w1,...,wmPY
ę

1ďiďm

Y ryσpiq, wis ˆMpwi, ziq,

(71)

using (67) once at the first step, and n times at the second step. The comparison 2-morphism pmM

from (71) to (70) is again given by composition, and this is again invertible by the Yoneda lemma. �

Corollary 10.2. The 2-monad S : CatV Ñ CatV induces a horizontal double monad S : ProfV Ñ ProfV .

Proof. Apply Theorem 7.4 to the vertical double monad of Proposition 10.1 to obtain the horizontal
double monad pS, pm, peq. �

We are now ready to recall the definition of categorical and coloured symmetric sequences.

Definition 10.3 (Categorical and coloured symmetric sequences).

‚ Let X and Y be small V-categories. A categorical symmetric sequence M : X ù Y is a profunctor
M : X ÝÞÑ SY , i.e. a V-functor M : SY op ˆX Ñ V.

‚ Let X and Y be sets. A coloured symmetric sequence M : X ù Y is a categorical symmetric
sequence from X to Y , considered as discrete V-categories.

Categorical symmetric sequences and coloured symmetric sequences are the horizontal 1-cells of double
categories that we denote CatSymV and SymV , which we may now obtain by forming the horizontal Kleisli
double category (Theorem 9.1) of the horizontal double monad S : ProfV Ñ ProfV .

Theorem 10.4.

(i) There exists a double category CatSymV having small V-categories as objects, V-functors as vertical
1-cells and categorical symmetric sequences as horizontal 1-cells.

(ii) There exists a double subcategory SymV having sets as objects, functions as vertical 1-cells and
coloured symmetric sequences as horizontal 1-cells.

Proof. For Theorem 10.4(i), it suffices that we apply Theorem 9.1 to the horizontal double monad
pS, pm, peq : ProfV Ñ ProfV of Corollary 10.2, where m and e are as in (66). Indeed, a categorical symmetric
sequence M : X ù Y is precisely a horizontal Kleisli 1-cell, and so by (57), the composition of categorical
symmetric sequences M : X ÝÞÑ SY and N : Y ÝÞÑ SZ is the profunctor N ˝KlM : X ÝÞÑ SZ found as the
composite

X SY SSZ SZ.M SN xmZ

Using (8), (11) and (65), this composite has value at ~z “ pz1, . . . , zmq P SZ and x P X given by

pN ˝Kl Mqp~z, xq “

ż ~wPSSZ,~yPSY

SZr~z,
â

i

~wis ˆ SNp~w, ~yq ˆMp~y, xq

which by applying (67) simplifies to the following well-known formula (c.f. [FGHW08, eq. (10)]):

pN ˝Kl Mqp~z, xq “

ż ~w1,..., ~wmPSZ,~yPSY

SZr~z,
â

i

~wis ˆ
ę

1ďiďm

Np~wi, yiq ˆMp~y, xq

which is a generalisation of the substitution monoidal structure for symmetric sequences [Kel05]. Theo-
rem 10.4(ii) follows immediately and the formula for composition does not actually simplify significantly,
since SY and SZ are genuine categories even when Y and Z are sets. �

Remark 10.5. Even if the primary focus of our interest is the double category of coloured symmetric
sequences SymV , it is useful to consider the larger double category of categorical symmetric sequences
CatSymV . The reason is that the latter arises naturally from the double category of profunctors as a
Kleisli double category and enjoys better closure properties than the former, since the free symmetric
strict monoidal category on a discrete V-category is not discrete.
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We now wish to apply the theory developed in the previous sections in order to obtain the desired
oplax monoidal structures on CatSymV and SymV . First note that, by Example 4.6, the double category
ProfV has a monoidal structure induced from that on V . Thus, by Proposition 9.7, it suffices to show that
the vertical double monad S : ProfV Ñ ProfV has well-behaved pseudomonoidal structure.

The key fact which allows us to do this is that, as a 2-monad on CatV , S is pseudomonoidal [HP02, Kel74].
Indeed, [HP02, Section 3.3] shows that S can be equipped with the structure of a pseudo-commutative
2-monad, while [HP02, Theorem 7] states that every pseudo-commutative 2-monad is pseudomonoidal,
cf. also [Koc72, Theorem 2.3]. For our purposes, it will be convenient to describe the relevant structure
explicitly. First of all, S admits a strength [Koc72] given by:

κ : X ˆ SY Ñ SpX ˆ Y q

px, ~yq ÞÑ
`

px, y1q, . . . , px, ynq
˘

,
(72)

as well as a costrength κ1 : SX ˆ Y Ñ SpX ˆ Y q given dually. Note that, because the formula for κpx, ~yq
repeats the variable x, we can only make the assignment of (72) V-functorial when V is cartesian monoidal—
and this explains the reason for us making this restriction in the first place. In this situation, the 2-functor
S acquires two canonical lax monoidal structures built from the strength, the costrength and the monad
multiplication as in [Koc72, eqs. (2.1) and (2.2)]. In our case, one of these lax monoidal structures has
S0 : 1 Ñ S1 given by the monad unit, and S2

X,Y : SX ˆSY Ñ SpX ˆY q defined by lexicographic product:
`

px1, . . . , xmq , py1, . . . , ynq
˘

ÞÑ
`

px1, y1q, px1, y2q, . . . , px1, ynq, px2, y1q, . . . , pxm, ynq
˘

, (73)

which we sometimes also denote by ~xb ~y as in (5). The other lax monoidal structure has the same S0

and binary constraints SX ˆ SY Ñ SpX ˆ Y q given by colexicographic product. Evidently, these two
lax monoidal structures are isomorphic, and this is the key aspect of S being pseudo-commutative in the
sense of [HP02].

In this situation, by [HP02, Theorem 7], which is a higher-dimensional adaptation of [Koc72, Theo-
rem 2.3], S becomes a pseudomonoidal 2-monad with respect to the lax monoidal structure S2. It is not
hard to see that the monad unit e : 1 ñ S is in fact a genuine monoidal transformation; however, the
multiplication m : SS ñ S is not monoidal, but only a pseudomonoidal transformation; which is to say
that the two sides of the diagram

SSX ˆ SSY SpSX ˆ SY q SSpX ˆ Y q

SX ˆ SY SpX ˆ Y q.

mXˆmY

S2

óm2
X,Y

SpS2
q

mXˆY

S2

(74)

are not equal, but only coherently isomorphic via a 2-cell as displayed. We now describe this 2-cell m2
X,Y

explicitly. To this end, let us take a typical element of SSX ˆ SSY , say
`

p~x1, . . . , ~xkq, p~y1, . . . ~y`q
˘

where

~xi “ pxi1, . . . , x
i
miq for 1 ď i ď k and ~yj “ pyj1, . . . , y

j
nj q for 1 ď j ď `. On the one hand, around the lower

side of (74), this element is sent first to
`

px11, . . . , x
k
mk
q, py11 , . . . , y

`
n`
q
˘

and then to
`

px11, y
1
1q, px

1
1, y

1
2q, . . . , px

1
1, y

`
n`
q, px12, y

1
1q, . . . , px

1
2, y

`
n`
q, . . . , pxkmk , y

`
n`
q
˘

.

This is the lexicographic order on four indices. On the other hand, around the upper side of (74) we
obtain first

`

p~x1, ~y1q, p~x1, ~y2q, . . . , p~xk, ~y`q
˘

and then, applying (73) to each pair, we get
´

`

px11, y
1
1q, px

1
1, y

1
2q, . . . , px

1
m1
, y1n1

q
˘

,
`

px11, y
2
1q, px

1
1, y

2
2q, . . . , px

1
m1
, y2n2

q
˘

, . . . ,
`

pxk1 , y
`
1q, px

k
1 , y

`
2q, . . . , px

k
mk
, y`n`q

˘

¯

and so finally
`

px11, y
1
1q, px

1
1, y

1
2q, . . . , px

1
m1
, y1n1

q, px11, y
2
1q, . . . , px

1
m1
, y2n2

q, . . . , pxkmk , y
`
n`
q
˘

.

This is a twisted lexicographic order on the indices, with the significance order being 1–3–2–4 rather than
1–2–3–4. Clearly, there is a unique bijection θ which exchanges these orderings, giving the components of
the desired natural isomorphism m2

X,Y filling (74). This establishes the binary pseudomonoidality of m;

the corresponding nullary pseudomonoidality constraint m0 is in fact the identity. That these data satisfy
the necessary coherences to form a pseudomonoidal monad is now asserted in [HP02, Theorem 7], but
one could also establish this directly, following a reasoning similar to that used in [HP02, Section 3.3] to
establish pseudocommutativity.
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The next lemma extends the pseudomonoidal structure of the 2-monad S : CatV Ñ CatV to a pseu-
domonoidal structure in the sense of Definition 8.3 on the vertical double monad S : ProfV Ñ ProfV of
Proposition 10.1. Before doing this, let us note that under our assumption that V is cartesian monoidal, the
induced monoidal structure on ProfV is also cartesian, in the sense that the ordinary monoidal structures
on pProfVq0 and pProfVq1 that underlie it are both cartesian monoidal; as such, we will continue to write
ˆ rather than b for this tensor product, in particular, for its action on horizontal 1-cells of ProfV .

Lemma 10.6. The vertical double monad S : ProfV Ñ ProfV is pseudomonoidal.

Proof. We need to check that S is a lax monoidal double functor as in Definition 5.1 and that m and e
are pseudomonoidal vertical transformations as in Definition 5.3. Let us begin by showing that S admits
a lax monoidal structure. For X1, X2 P ProfV , the vertical 1-cells S2

X1,X2
: SX1 ˆ SX2 Ñ SpX1 ˆX2q and

S0 : 1 Ñ S1 are given in (73). For M1 : X1 ÝÞÑ Y1 and M2 : X2 ÝÞÑ Y2, the squares

SX1 ˆ SX2 SY1 ˆ SY2

SpX1 ˆX2q SpY1 ˆ Y2q

SM1ˆSM2

S2
X1,X2

óS2
M1,M2

S2
Y1,Y2

SpM1ˆM2q

(75)

can be constructed following the same reasoning as in the proof of Proposition 10.1, i.e. reducing to the

cases where M “ pF , N “ pG and M “ qF , N “ qG, and using that S is lax monoidal on CatV .
We already observed that the unit e is genuinely monoidal at the 2-monad level, and the same is true

for e qua vertical transformation. As for the vertical transformation m, the axioms for a pseudomonoidal
vertical transformation that concern only the vertical fragment are exactly those expressing that m is a
pseudomonoidal natural transformation in CatV , which we have discussed above. The only axiom not of
this form is (38), and this can be verified using the construction of the squares in (75) via a reduction to
companions and conjoints and the modification axiom for the 2-cells filling (74). �

So S extends to a pseudomonoidal vertical double monad S : ProfV Ñ ProfV ; and the last step required
to establish the normal oplax monoidal structure of coloured symmetric sequences is to verify that this
vertical double monad satisfies the additional conditions of Proposition 9.7.

Lemma 10.7. The pseudomonoidal vertical double monad S : ProfV Ñ ProfV has the properties that:

(i) The multiplication m : SS ñ S and unit e : 1 ñ S are special vertical transformations.
(ii) The vertical 1-cells S2

X,Y : SX ˆ SY Ñ SpX ˆ Y q and S0 : 1 Ñ S1 have companions.

(iii) The strength and costrength of S are special vertical transformations.

Proof. Item (i) was already shown as part of Proposition 10.1. Item (ii) is immediate since every vertical
1-cell in ProfV has a companion, see Example 2.7. For Item (iii), the two cases are dual, so we only
provide details for one. According to Proposition 9.7, the strength in question is defined from the lax
monoidal structure S2 of S via (63); but because we originally obtained S2 using the strength κ of (72)
and the dual costrength, it follows as in [Koc72, Theorem 2.3] that the strength of (63) is this same κ,
and similarly for the costrength. Thus, the condition we must prove e.g. for the costrength is that, for
any M : X ÝÞÑ Y and N : W ÝÞÑ Z, the companion transpose 2-morphism

SX ˆW SY ˆ Z SpY ˆ Zq

SX ˆW SpX ˆW q SpY ˆ Zq

SMˆN pκY,Z

ópκM,N

pκX,Z SpMˆNq

(76)

is invertible. To this end, let ~u “
`

py1, z1q, . . . , pym, zmq
˘

in SpY ˆ Zq and let p~x,wq P SX ˆW where
~x “ px1, . . . , xmq. Note we assume that ~u and ~x have the same length; that we may do so without loss of
generality will be clear from the formulae which follow. Now, the profunctor along the bottom of (76) has
value at p~u, p~x,wqq given by

SpM ˆNq
`

~u, κp~x,wq
˘

“
ğ

σPSm

ę

1ďiďm

pM ˆNq
`

pyσpiq, zσpiqq, pxi, wq
˘

“
ğ

σPSm

ę

1ďiďm

Mpyσpiq, xiq ˆNpzσpiq, wq.
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On the other hand, the profunctor across the top of (76) has value at p~u, p~x,wqq given by

ż ~vPSY,z1PZ

SpY ˆ Zqr~u, κp~v, z1qs ˆ pSM ˆNq
`

p~v, z1q, p~x,wq
˘

“

ż ~vPSY,z1PZ

SpY ˆ Zqr~u, κp~v, z1qs ˆ SMp~v, ~xq ˆNpz1, wq

–

ż v1,...,vmPY,z
1
PZ

SpY ˆ Zqr~u, κp~v, z1qs ˆ
ę

1ďiďm

Mpvi, xiq ˆNpz
1, wq

–
ğ

σPSm

ż v1,...,vmPY,z
1
PZ

ę

1ďiďm

pY ˆ Zqrpyσpiq, zσpiqq, pvi, z
1qs ˆ

ę

1ďiďm

Mpvi, xiq ˆNpz
1, wq

–
ğ

σPSm

ż v1,...,vmPY,z
1
PZ

ę

1ďiďm

Y ryσpiq, vis ˆ Zrzσpiq, z
1s ˆ

ę

1ďiďm

Mpvi, xiq ˆNpz
1, wq

–
ğ

σPSm

ę

1ďiďm

Mpyσpiq, xiq ˆNpzσpiq, wq ,

where at the first isomorphism we use (67) and at the final one we use the Yoneda lemma. By tracing it
through we may see that the isomorphism constructed in this way is exactly pκM,N , which is thus invertible.
As noted above, the specialness of the costrength follows by an identical dual argument. �

Theorem 10.8. The double category CatSymV of categorical symmetric sequences admits a normal oplax
monoidal structure, given by arithmetic product of categorical symmetric sequences. Moreover, this restricts
to a normal oplax monoidal structure on the double category SymV of coloured symmetric sequences.

Proof. CatSymV is the horizontal Kleisli double category of the horizontal double monad induced by the
vertical double monad S : ProfV Ñ ProfV , as seen in the proof of Theorem 10.4. Moreover, by Lemma 10.6,
the vertical double monad S is pseudomonoidal, and by Lemma 10.7, it satisfies the further hypotheses
of Corollary 9.5 and Proposition 9.7. Applying these results, we see that the monoidal structure of
ProfV extends to a normal oplax monoidal structure on CatSymV , which clearly restricts back to the full
sub-double-category SymV .

It remains to show that the tensor product of horizontal 1-cells computes the arithmetic product of
categorical symmetric sequences. For categorical symmetric sequences M1 : X1 ù Y1 and M2 : X2 ù Y2,
the tensor product M1 bM2 : X1 ˆX2 ù Y1 ˆ Y2 is defined as the profunctor:

X1 ˆX2 SY1 ˆ SY2 SpY1 ˆ Y2q.
M1ˆM2

xS2
Y1,Y2

We now unfold this expression explicitly. First, by the definition of a companion in (11) applied to S2
Y1,Y2

,
the second of these profunctors is given by

xS2
Y1,Y2

p~y, p~y1, ~y2qq “ SpY1 ˆ Y2qr~y, ~y1 b ~y2s,

where ~y1 b ~y2 is given by the lexicographic ordering (73). Thus, using the definition of tensor product of
profunctors (26) and of composition of profunctors in (8), we obtain

pM1 bM2qp~y, px1, x2qq “

ż ~y1,~y2

SpY1 ˆ Y2qr~y, ~y1 b ~y2s ˆM1p~y1, x1q ˆM2p~y2, x2q, (77)

which is the formula for the arithmetic product of categorical and coloured symmetric sequences and in
particular gives the formula in (4) for coloured symmetric sequences. �

The final step is to obtain the desired oplax monoidal structures at the level of bicategories rather
than double categories. Indeed, the horizontal bicategories of CatSymV and SymV are the bicategories of
categorical and coloured symmetric sequences introduced in [FGHW18] for V “ Set and in [GJ17] for a
general V. Thus, we can apply Corollary 9.9 to obtain:

Theorem 10.9. The bicategory of categorical symmetric sequences CatSymV admits a normal oplax
monoidal structure, given by the arithmetic product of categorical symmetric sequences. Furthermore, this
normal oplax monoidal structure restricts to the bicategory of coloured symmetric sequences SymV .
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Apart from its intrinsic interest, and the construction of an example of a sophisticated kind of low-
dimensional categorical structure by purely algebraic means, without any appeal to homotopy theory,
Theorem 10.8 and Theorem 10.9 will be essential for subsequent work on the Boardman–Vogt tensor
product of bimodules between symmetric coloured operads, extending that in [DH14] for bimodules
between symmetric operads.

Appendix A.

A.1. Coherence axioms for an oplax monoidal double category. In this appendix, we spell out
in detail the axioms for an oplax monoidal category as in Definition 4.1. In [HS19], the explicit axioms
for a monoidal double category can be found, which are analogous but differ in that we use the opposite
orientation for our (non-invertible) structure maps, and also provide additional non-invertible structure
cells δ and ι as in (24), which in the pseudo case can be chosen to be identities and so omitted.

The 2-cells τ and η as in (23) satisfy the following axioms, for Mi : Xi ÝÞÑ Yi, Ni : Yi ÝÞÑ Zi and
Pi : Zi ÝÞÑ Ui:

X1 bX2 U1 b U2

X1 bX2 Y1 b Y2 U1 b Y2

X1 bX2 Y1 b Y2 Z1 b Z2 U1 b U2

óτ

´

pP1˝N1q˝M1

¯

b

´

pP2˝N2q˝M2

¯

M1bM2

ó1

pP1˝N1qbpP2˝N2q

óτ

M1bM2 N1bN2 P1bP2

=

X1 bX2 U1 b U2

X1 bX2 U1 b U2

X1 bX2 Z1 b Z2 U1 b U2

X1 bX2 Y1 b Y2 Z1 b Z2 U1 b U2

óaba

´

pP1˝N1q˝M1

¯

b

´

pP2˝N2q˝M2

¯

óτ

´

P1˝pN1˝M1q

¯

b

´

P2˝pN2˝M2q

¯

pN1˝M1qbpN2˝M2q

óτ

P1bP2

ó1

M1bM2 N1bN2 P1bP2

X1 bX2 Y1 b Y2

X1 bX2 Y1 b Y2 Y1 b Y2

X1 bX2 Y1 b Y2 Y1 b Y2

X1 bX2 Y1 b Y2

pid˝M1qbpid˝M2q

óτ

M1bM2

ó1

idbid

óη

M1bM2

ó`

id

M1bM2

=

X1 bX2 Y1 b Y2

X1 bX2 Y1 b Y2

pid˝M1qbpid˝M2q

ó`b`

M1bM2

X1 bX2 Y1 b Y2

X1 bX2 X1 bX2 Y1 b Y2

X1 bX2 X1 bX2 Y1 b Y2

X1 bX2 Y1 b Y2

pM1˝idqbpM2˝idq

óτ

idbid

óη

M1bM2

ó1

id

ór

M1bM2

M1bM2

=

X1 bX2 Y1 b Y2

X1 bX2 Y1 b Y2

pM1˝idqbpM2˝idq

órbr

M1bM2

These axioms make b into an oplax double functor. Notice that at the bottom of the left diagram of the
first axiom there is a composition associativity constraint implied.

The 2-cells δ and ι as in (24) satisfy the following axioms

I0 I0

I0 I0 I0

I0 I0 I0 I0

óδ

I1

I1

ó1

I1

óδ

I1 I1 I1

=

I0 I0

I0 I0 I0

I0 I0 I0 I0

óδ

I1

I1

óδ ó1

I1

I1 I1 I1

(78)

I0 I0

I0 I0 I0

I0 I0 I0

I0 I0

I1

óδ

I1

ó1

I1

óι

I1

ó`

idI0

I1

=

I0 I0

I0 I0

I1

ó1

I1

I0 I0

I0 I0 I0

I0 I0 I0

I0 I0

I1

óδ

I1

óι

I1

ó1

I1

ór

idI0

I1

=

I0 I0

I0 I0

I1

ó1

I1

which make I : 1 Ñ C into an oplax double functor.
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Next, for horizontal 1-cells Mi : Xi ÝÞÑ Yi and Ni : Yi ÝÞÑ Zi, the following axioms hold

pX1 bX2q bX3 pZ1 b Z2q b Z3

pX1 bX2q bX3 pZ1 b Z2q b Z3

pX1 bX2q bX3 pY1 b Y2q b Y3 pZ1 b Z2q b Z3

X1 b pX2 bX3q Y1 b pY2 b Y3q Z1 b pZ2 b Z3q

óτb1

´

pN1˝M1qbpN2˝M2q

¯

bpN3˝M3q

´

pN1bN2q˝pM1bM2q

¯

bpN3˝M3q

óτ

α óα

pM1bM2qbM3

α óα

pN1bN2qbN3

α

M1bpM2bM3q N1bpN2bN3q

“

pX1 bX2q bX3 pZ1 b Z2q b Z3

X1 b pX2 bX3q Z1 b pZ2 b Z3q

X1 b pX2 bX3q pZ1 b Z2q b Z3

X1 b pX2 bX3q Y1 b pY2 b Y3q Z1 b pZ2 b Z3q

α óα

´

pN1˝M1qbpN2˝M2q

¯

bpN3˝M3q

α

pN1˝M1qb

´

pN2˝M2qbpN3˝M3q

¯

ó1bτ

óτ

pN1˝M1qb

´

pN2bN3q˝pM2bM3q

¯

M1bpM2bM3q N1bpN2bN3q

pX1 bX2q bX3 pX1 bX2q bX3

pX1 bX2q bX3 pX1 bX2q bX3

pX1 bX2q bX3 pX1 bX2q bX3

X1 b pX2 bX3q X1 b pX2 bX3q

pidX1
bidX2

qbidX3

óηb1

idX1bX2
bidX3

óη

α

idpX1bX2qbX3

óidα α

idX1bpX2bX3q

=

pX1 bX2q bX3 pX1 bX2q bX3

X1 b pX2 bX3q X1 b pX2 bX3q

X1 b pX2 bX3q X1 b pX2 bX3q

X1 b pX2 bX3q X1 b pX2 bX3q

α

pidX1
bidX2

qbidX3

óα α

idX1
bpidX2

bidX3
q

ó1bη

idX1
bidX2bX3

óη

idX1bpX2bX3q

which make associativity into a vertical transformation of oplax double functors (together with the
naturality of components which comes from pD1,b1, I1q being a monoidal category). Moreover, the
following axioms hold

I0 bX I0 b Z

I0 bX I0 b Z

I0 bX I0 b Y I0 b Z

X Y Z

I1bpN˝Mq

óδb1

pI1˝I1qbpN˝Mq

óτ

I1bM

λ óλM λ

I1bN

óλN λ

M N

=

I0 bX I0 b Z

X Y Z

I1bpN˝Mq

λ óλN˝M λ

M N

I0 bX I0 bX

I0 bX I0 bX

I0 bX I0 bX

X X

I1bidX

óιb1

idI0bidX

óη

λ

idI0bX

óidλ λ

idX

=

I0 bX I0 bX

X X

I1bidX

óλidX
λ λ

idX

(79)

X b I0 Z b I0

X b I0 Z b I0

X b I0 Y b I0 Z b I0

X Y Z

pN˝MqbI1

ó1bδ

pN˝MqbpI1˝I1q

óτ

MbI1

ρ óρM óρN

NbI1

ρ ρ

M N

=

X b I0 Z b I0

X Y Z

pN˝MqbI1

ρ óρN˝M
ρ

M N

X b I0 X b I0

X b I0 X b I0

X b I0 X b I0

X X

idXbI1

ó1bι

idXbidI0

óη

idXbI0

ρ óidρ ρ

idX

=

X b I0 X b I0

X X

ρ

idXbI1

óρidX
ρ

idX

which make the left unit constraint λ : b ˝pI ˆ 1q ñ 1 and the right unit constraint ρ : b ˝p1ˆ Iq ñ 1
into vertical transformations of oplax double functors (together with the naturality of components coming
from pD1,b1, I1q being a monoidal category).

A.2. Proof of Theorem 9.4. In this section, we illustrate the main ideas in the proof of Theorem 9.4.
We begin by stating a couple of technical lemmas which, along with Lemma 3.12, are used repeatedly in
the proof.

Lemma A.1. Let F : C Ñ D be a double functor. For any horizontal 1-cell M : X ÝÞÑ Y and vertical
1-cell f : Y Ñ Y 1 in C, a 2-morphism in D of the form on the left corresponds, under transpose operations,
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to a 2-morphism of the form on the right

FX FY 1

FX FY FY 1

‚ ‚ ‚

F p pf˝Mq

óξ

FM

óφ

F pf

ó pψ

FX FY FY

FY 1

‚ ‚ ‚

FM

óφ

idFY

óψ

Ff

for any 2-morphisms φ, ψ of the right shape.

Proof. By pasting the 2-morphism F pp2 ˝ 1M q on the top of the left diagram, we obtain

FX FY

FX FY 1

FX FY FY 1

‚ ‚ ‚

F pidY ˝Mq

óF pp2˝1M q Ff

F p pf˝Mq
óξ

pf,M

FM

óφ ó pψ

F pf

“

FX FY

FX FY FY

FX FY FY 1

‚ ‚ ‚

F pidY ˝Mq

óξidY ,M

FM

ó1FM

F pidY q

óFp2 Ff

FM

óφ
F pf

ó pψ

“

FX FY FY

FY 1

‚ ‚ ‚

FM

óφ

idFY

óψ

Ff

where the first equality is due to naturality of components of ξ, and the second one (up to pasting with

appropriate coherence isomorphisms) follows from the definition of the transpose pψ and the unitality
axiom for F . �

Lemma A.2. Let β : F G be a horizontal transformation and f : X Ñ X 1 a vertical 1-cell in C. If f

has a companion pf , then the globular coherence 2-isomorphism β
pf is vertically inverse to the transpose of

the 2-morphism component βf , i.e. :

FX FX GX GX 1

FX FX 1 GX 1 GX 1

idFX

óFp2 Ff

βX

óβf

G pf

Gf óGp1

F pf βX1 idGX1

“

FX GX GX 1

FX FX 1 GX 1

βX

óβ-1
pf

G pf

F pf βX1

Proof. We will show that if we vertically compose the transpose of βf with β
pf on both sides, it produces

a vertical identity (up to coherence isomorphisms). Indeed,

FX FX FX 1 GX 1

FX FX GX GX 1

FX FX 1 GX 1 GX 1

idFX F pf

óβ
pf

βX1

idFX

óFp2 Ff

βX

óβf Gf

G pf

óGp1

F pf βX1 idGX1

(15)
“

FX FX FX 1 GX 1

FX FX 1 FX 1 GX 1

FX FX 1 GX 1 GX 1

idFX

óFp2 Ff

F pf

óFp1

βX1

óβ1
X1

F pf idFX1

óβid
X1

óβX1

F pf βX1 idGX1

p14q
p10q
“ 1βX1˝F pf

FX FX GX GX 1

FX FX 1 GX 1 GX 1

FX GX GX 1 GX

idFX

óFp2 Ff óβf

βX

Gf óGp1

G pf

F pf
óβ

pf

βX1 idGX1

βX G pf idGX1

(15)
“

FX FX GX GX 1

FX 1 GX GX GX 1

FX GX GX 1 GX.

idFX

óβidX

βX G pf

βX
óβ1X

idGX
óGp2 Gf

G pf

óGp1

βX G pf idGX1

p14q
p10q
“ 1G pf˝βX

�

We now provide a sample verification of one of the axioms needed in the proof of Theorem 9.4. We
will show that the left unit constraint of the monoidal structure of a Kleisli double category KlpT q for a
monoidal horizontal double monad is compatible with horizontal composition, namely the top left axiom
of (79).
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First of all, the left unit constraint components J bM ñM as in (59) bijectively correspond to cells

I bX I b TY I b TY

TI b TY

T pI b Y q

X TY TY

λ

idbM

óλM óidλλ

id

T 0
b1

T 2

Tλ

M id

using Lemma A.1, since τ is the composition comparison structure map for the double functor b of the
monoidal double category C. Using appropriate transpose operations like (12), we can therefore transform
the axiom at question to one that does not involve companions of 1-cells and 2-morphisms as follows: the
right-hand side of (79) becomes

I bX I b TZ I b TZ

TI b TZ

T pI b Zq

X TY TTZ TZ TZ

λ

idbpm˝TN˝Mq

óλm˝TN˝M λ

id

T 0
b1

T 2

Tλ

M TN mZ id

(80)

whereas the left-hand side, using naturality of τ , becomes

I bX I b TZ

I bX I b TY I b TY I b TTZ I b TTZ I b TTZ I b TZ

TI b TY TI b TTZ TI b TTZ TI b TTZ

T pI b Y q T pI b TZq T pI b TZq TTI b TTZ TI b TZ

T pTI b TZq T pTI b TZq

TT pI b Zq TT pI b Zq T pI b Zq

X TY TY TTZ TTZ TTZ TZ

idbpm˝TN˝Mq

óτ

idbM

λ óλM λ

idbTN

T 0
b1 T 0

b1 T 0
b1

idbm

T 0
b1

óm0
b1 T 0

b1

T 2

idbTN

óT 2
1,N T 2 T 2 TT 0

b1

Tλ óTλN

T pidbNq

Tλ

T pT 0
b1q T 2

mbm

óm2
T 2

TT 2 TT 2

TTλ TTλ ómλ

m

Tλ

M TN m

(81)
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Now using the fact that pT 2, T 0q and pm2,m0q are the structure maps of lax monoidal functors, namely

I b TY I b TTZ

TI b TY TI b TTZ

T pI b Y q T pI b TZq

TY TTZ

óidT0b1

idbTN

T 0
b1 T 0

b1

T 2

idbTN

óT 2
1,N T 2

Tλ óTλN

T pidbNq

Tλ

TN

=

I b TY I b TTZ

TY TTZ

idbTN

λ óλTN λ

TN

I b TTZ I b TZ

TI b TTZ

TTI b TTZ TI b TZ

T pTI b TZq

TT pI b Zq T pI b Zq

TTZ TZ

idbm

T 0
b1

óm0
b1 T 0

b1

TT 0
b1

T 2

mbm

óm2
T 2

TT 2

TTλ ómλ

m

Tλ

m

=

I b TTZ I b TZ

TTZ TZ

idbm

λ óλm λ

m

the diagram (81) reduces to

I bX I b TZ

I bX I b Y I b TTZ I b TZ

X TY TTZ TZ

óτ

idbpm˝TN˝Mq

idbM

λ óλM λ

idbTN

óλTN λ

idbm

óλm λ

M TN m

which is equal to (80), since λ is a vertical transformation of double functors (18).
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