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Abstract

The notion of term graph encodes a refinement of inductively generated syntax in which regard is paid to the the sharing
and discard of subterms. Inductively generated syntax has an abstract expression in terms of initial algebras for certain
endofunctors on the category of sets, which permits one to go beyond the set-based case, and speak of inductively generated
syntax in other settings. In this article, we give a similar abstract expression to the notion of term graph. Aspects of the concrete
theory are redeveloped in this setting, and applications beyond the realm of sets discussed.

1 Introduction

A fundamental construction in both mathematics and computer science is the one which to a signature
of finitary operations ¥ and a set A assigns the collection T (A) of terms over the signature with
free variables in the set. It provides both the raw syntax out of which semantic structures of all
kinds are constructed, and also the induction principle by which reasoning about such structures may
proceed. In most situations, the passage from the syntax to the semantics is one of collapse, in which
semantically interchangeable elements of the sets T's;(A) are identified under a suitable equivalence
relation. However, for some applications we wish to move in the opposite direction, viewing the
sets T’y (A) themselves as the extensional collapse of a more intensional structure in which different
traces of execution of the same term can be differentiated from each other. The concern of this
article is with the particular form of this differentiation in which regard is paid to the sharing and
discard of computational values. By this we mean the following: that for a syntactic expression such
as (o +B)*(a+p), we wish to distinguish the evaluation path which computes (¢ + ) just once
and multiplies the result by itself, from that which computes it twice, and multiplies the two results
together, from all of those which first go away and performs some irrelevant computation before
beginning the task at hand. Let us for the moment refer to any means of encoding such distinctions as
a syntax with sharing. Such syntaxes have obvious applications to program optimization; but beyond
this, are important in settings where the execution of functions can incur side effects—changes in the
state of an external environment—which might render the result of a computation dependent on its
execution path.

Here, we shall be concerned with a well-established syntax with sharing based around the notion
of acyclic term graph [E,'ﬂ, E, E]. Term graphs generalize the familiar representation of elements
of Tx(A) as well-founded trees, by dropping the requirement that the children of a particular node
be distinct. This is perhaps most easily appreciated through an example. The term (o + 8)* (a4 8)
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1428 An abstract view on syntax with sharing

considered above is represented by the following well-founded tree:

NSNS

On the other hand, it is represented by any one of a number of different term graphs, each expressing a
computation path with a differing degree of sharing. One of these term graphs is the same well-founded
tree that was just displayed; and this corresponds to the execution path which computes (o + 8) twice.
On the other hand, the path which computes (« + ) only once is represented by a term graph

o B
N/
()

while the path which does this after first carrying out an irrelevant computation of (¢+a«) is

represented by
o B.
(N
+ +
()
*

Now, the construction with which we began this section—that which to a signature X and a set
A assigns the set of terms T’y (A)—has a well-known abstract characterization, achieved by shifting
the focus of our attention away from the signature X, and towards the corresponding signature
endofunctor

Fy : Set — Set W
X ZO‘EE X o] ’
wherein we write |—|: ¥ — N for the function assigning arities to each element of the signature. At

this level of generality, the set Tx;,(A) may be characterized as an initial algebra for the endofunctor
X — A+ Fx(X) (in a sense recalled in Definition_Jlbelow). This abstract characterization of T's; (X)
also captures its essential structural features—such as the inductive reasoning it supports—which
justifies our interpreting, for an arbitrary endofunctor F of an arbitrary category &, an initial algebra
for X— A4 FX as being an ‘object of terms over F with free variables in A’.

The objective of this article is to describe a similar abstraction of the notion of term graph.
We will describe a construction on an endofunctor F: & — &, which when applied to a signature
endofunctor Fy, on the category of sets, yields precisely the notion of term graph over X£. Moving
beyond this situation allows us to recapture other kinds of term graph; thus taking & =Set® for
some set S, we obtain many-sorted term graphs; taking & =Set" (where F is the category of finite
sets and bijections) allows us to describe term graphs over second-order syntax; while dualizing our
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construction (in a sense to be made precise later) yields cyclic term graphs, allowing one to capture
recursive computations. Of course, we may also leave the sphere of sets entirely, taking & to be a
category of domains, or of complete metric spaces, or a topos, or the category of categories... The
point is that we have a uniform construction providing us, in each context, with a workable notion
of term graph.

We introduce our abstract notion of term graph in Section[2l From any suitable endofunctor F of
a suitable category &, we will construct a comonad Lr on the arrow category &2, whose coalgebras
we define to be abstract term graphs over the endofunctor F'. We informally justify our definition by
giving a worked example in the category of sets; and in Section Bl make this informal justification
precise by proving that our abstract notion of term graph agrees with the established one for any
signature endofunctor of the form (@). SectionMlthen considers what the notion of abstract term graph
gives us when we move beyond the motivating set-based case, while Section Bl shows how cyclic
term graphs may be captured by dualizing our construction in a particular manner. Finally, Sections[@
and [J describe how further useful aspects of the set-based theory of term graphs may be recaptured
in our abstract setting. In Section [l we show how an abstract term graph may be interpreted in a
suitable semantic domain, while in Section[Zlwe see how abstract term graphs may be composed into
each other.

It is perhaps worth saying a few words about how our abstract treatment of term graphs is related
to others in the literature. One particularly elegant approach is that described by Hasegawa in his
PhD thesis [E]; with an essentially equivalent one being given by Corradini and Gadducci in [H,E].
The key idea there is to associate with each signature ¥ a classifying category .#[X], whose objects
are the natural numbers, and whose morphisms n— m are term graphs over X with n free variables
and m marked output nodes. The structure borne by this category encodes the various operations on
term graphs: with more elaborate kinds of term graph giving rise to more elaborate kinds of structure
on the classifying category. This approach generalizes the notion of term graph in a different direction
from ours; whilst still being tied to the category of sets, it allows one to impose equations on top of
the raw theory of terms. In contrast, our approach allows one to move beyond the category of sets,
but is, as yet, restricted to freely generated sharing syntaxes. We will see how the two approaches
may be reconciled in Section [}

A different abstract characterization of term graphs is described by Hamana in [El]. In broad
strokes, the idea is to exploit the linear representation of term graphs using let syntax, which would,
for example, represent the three term graphs displayed above as

(a+B)x(x+p) ,
let z:=(ax+B)in z*z
and letw:=(a+a)inletz:=(x+p)inzxz.

One may exploit this to give a representation of term graphs based on the categorical higher order
syntax introduced by Fiore, Plotkin and Turi in [|a]. This is not precisely what Hamana does, since
he wishes to give an syntax in which inductively defined elements denote term graphs uniquely—
something that is not the case for the let notation; but the general idea should be clear enough. Once
again, this approach differs from ours in being still tied to the category of sets; on the other hand, it
gives a representation of term graphs which is more suitable for direct implementation.

A third abstract treatment of term graphs, and the one closest in spirit to the present work, is given
in [E]. The idea is to associate to any endofunctor F' a monad Sr for which Sx(A) is the set of all
term graphs with free variables from A equipped with a marked node (specifying the output of the
computation). However, while in principle this approach allows one to move beyond endofunctors
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of the category of sets, as the authors of [E] note in their Section 4.2, there are aspects of their
development that rely on the use of elements, and so cannot be uniformly generalized beyond the
set-based situation.

2 Abstract term graphs

This section describes the construction which underlies our abstract characterization of term graphs.
Given a suitable endofunctor F on a suitable category &, it yields a comonad L on the arrow category
&2 whose coalgebras we shall define to be abstract term graphs over the signature F. We justify this
definition in the next section, where we show that this is literally what they are in the case where F
is the endofunctor on the category of sets associated to a signature . First we recall the key abstract
notion required for our construction.

DEFINITION 2.1

For any category & and endofunctor F: & — &, the category F-Alg of F-algebras has as objects,
pairs (X € &,x: FX — X), and as maps (X,x)— (Y,y), those morphisms f: X — Y of & for which
v.Ff =f .x. An initial algebra for F is an initial object of F-Alg. We denote the underlying object in
& of such an initial algebra by uX.FX.

Before giving the construction, we motivate it with an example.

EXAMPLE 2.2

Let X be the signature {«, 8,4, *} in which + and * are binary operations and « and § are constants,
and let Fx(X)=X2+X2+141 be the corresponding endofunctor on the category of sets. This
endofunctor has an initial algebra uX.Fy X given by the set of closed terms over X. As in Section 1,
we may represent the elements of this set by well-founded trees, each of whose nodes is labelled with
anelement o € ¥, and where each such node has |o | children. We begin by showing how to generalize
this description of closed ferms to one of closed term graphs, given in terms of the coalgebras for a
certain comonad Q on Set.

The action on objects of this comonad will be given by OB=uX.Bx Fx X. Thus, OB is the set
whose elements are well-founded trees over ¥ in which every node has also been labelled with an
element of B. The action of Q on a function f : B— B’ is evident: given a tree t € OB, we replace the
label b € B at each node by f(b) € B’ to obtain an element (Qf )(t) € OB’. The counit map eg: OB— B
is equally straightforward: for each tree 1 € OB, we take €p(f) to be the B-label of the root. The
comultiplication map Ap: OB— QOB is more subtle. Given a tree over X labelled in B, it must
return a tree over X labelled in OB, and it does so by an operation which we might describe as
‘recursive copying of subtrees’. It is best illustrated through an example. Let B={a,b,c,d} and
consider t € OB given by

(a,a) (B,b) (a,0) (B,D) .
NS NS
(+,0) (+,b)

T (+.0)

The tree Ap(t) € QOB will have the same underlying shape, but the B-label at each node will have
been replaced by the OB-label given by the subtree of ¢ lying above that node. In other words,
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Ap(?) is the following tree:

(a,(,@))  (B.(B,D)  (a,(x,0))  (B,(B,D)),

NS NS

(+,11) (+.1)

(s, 1)

in which #; and 7, are the respective elements

(a,a) (B.b) (a,0) (B.b)

(+,0) (+,b)

of OB. Now a Q-coalgebra is given by a set B together with a map s: B— OB satisfying the two
coalgebra axioms. The first of these says that eg(s(b))=>b for all b € B: which is the requirement that
the root of the tree s(b) should be labelled by b. The second coalgebra axiom asks that Ag(s(b))=
(Qs)(s(b)) for all b e B: which says that if a node of s5(b) is labelled by c € B, then the subtree of s(b)
lying above that node must coincide with s(c). Our claim is that such coalgebras correspond with
closed term graphs over X. To illustrate this, consider first a typical closed term graph:

>
NS

To obtain the corresponding Q-coalgebra, we choose a set of labels for the nodes of this term graph —
say B={1,2,3,4,5} from top to bottom and left to right—and define a map s: B— OB by taking
s(H=(a, 1), 5(2)=(B.2),

(e, 1) (8,2) (a, 1) (8,2)
B = N, Lo =N,
(+,3) (*,4)
and
(e, 1) (8,2) (a,1) (8,2)
NS NS
s(5) = (+,3) (*,4)
+,5)

This map evidently satisfies the coalgebra axioms. In general, given a closed term graph over X,
we construct a Q-coalgebra structure on its set of nodes as follows. For each node b labelled with
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a or B we set s(b) =(«,b) or (8, b) as appropriate. Then for each node b labelled with + or *, and with
children b and b, we set s(b) to be the tree in which the root is (+, b) or (x,b) as appropriate, and
the two subtrees of the root are s(b) and s(by). Conversely, given any Q-coalgebra s: B— OB we
define a closed term graph as follows. Its nodes are the elements of B, with each such node b being
labelled by that element of ¥ which labels the root of s(b), and having as children those elements of
B which label the children of the root of s(b).

In order to capture possibly open term graphs over X, we now describe a more general comonad
L; it resides not on Set but rather on the arrow category Set?, the idea being that an L-coalgebra
structure on an object (f: A— B) of Set? should correspond to a term graph with nodes labelled in
B and free variables from the set A. In fact, for each set A, the comonad L will restrict and corestrict
to the coslice category A/Set, yielding a comonad whose coalgebras correspond to term graphs with
free variables from A; in particular, taking A =0 we will recover the earlier comonad Q.

The underlying functor of the comonad L has its action on objects given by

L(f:A—>B)=(yy: A—> uX.A+BxFxX),

in which yy is defined as follows. Observe that the initial algebra uX.A + B x Fyx X may be represented
as the set of those well-founded trees built from either nodes labelled in X x B as before, or else leaves
labelled only by an element of A: under which representation, the map yy: A— uX.A+Bx FxX
sends a €A to the tree consisting of the bare leaf a. The counit L=>1 of the comonad has as its
f-component the morphism y¢ — f in Set? given by

1
A—2 A

)

uXA+BxFsX — B

wherein pr sends a bare leaf a to f(a) and sends any other tree to the B-label of its root. The
comultiplication of L is analogous to that of Q, and we shall not spell it out here. Now to give an
L-coalgebra is to give an object of Set>—which is a function f : A— B—together with a map

A—"5A

T

B—— uX.A+BxFxX

in Set? satisfying the two coalgebra axioms. It is easy to see that the counit axiom forces r=14,
whereupon commutativity of the preceding diagram says that for each a €A, the tree s(f(a)) should
be the bare leaf a. Note that this in turn forces f to be a monomorphism. Now the counit axiom
says that pr(s(b))=>b for all b€ B. This is trivial for those b in the image of f, while for those
those that are not, it says that s(b) cannot be a bare leaf a€A (or else b= pr(s(b))=pr(a)=f(a)
contradicting b¢im f), and so must as before be a tree whose root is labelled by (o, b) for some
o € X. Finally, the comultiplication axiom says exactly what it did for Q: that if a node of s(b) is
labelled by c € B, then the subtree of s(b) lying above that node must coincide with s(c). What we
now claim is that an L-coalgebra such as we have just described corresponds to a term graph over
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3 with free variables from A. We illustrate this only with a very simple example. Let A={x, y} and
consider the term graph

x\/\*/y
vd
+

with free variables from A. One important point to observe is that in our framework all free
variables are maximally shared: which is to say there must be exactly one node in the term graph
corresponding to each free variable. To obtain the L-coalgebra corresponding to this term graph, we
let B={x,y,1,2} be a labelling of its nodes (including those corresponding to free variables) and
let f: A< B be the evident inclusion. To define an L-coalgebra structure on f we must give a map
s: B— uX.A+B x Fy X satisfying the appropriate axioms, which we do by setting s(x) =x, s(y) =y,

X y
X y \ /
s = N\ and  s2) = X (+,1)

(+.1) N
(+.2)

This completes our worked example, and we now provide the details of our construction in its
general form.

DEFINITION 2.3

Let there be given a category & with finite products and coproducts, and an endofunctor F: & — &
such that for all A, B € & the endofunctor A+ B x F(-) has an initial algebra. We define the term graph
comonad L associated to F as follows. Given an object f: A— B of &2, we write Pf for the initial
algebra of the endofunctor A+ B x F(-), write

tr=lyr,0¢]: A+Bx FPf— Pf

for its algebra structure, and set Lp(f: A— B):=(yy: A— Pf). To give the action of Lr on a
morphism (h,k): f — g of &2, we set

A#C A#C
Lr .fl Jg = VfJ( Jyg
B D o v 8

where P(h,k) is defined by universality of Pf as the unique map making

A+4+BxFP(h,k)
A+BxFPf — """ A+BxFPg

‘fl ltg.(h-i-kxFPg)

Ff P(h,k) Ps
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commute. The counit and comultiplication natural transformations Lr = 1 and Lr = LrLF have as

their respective components at f € &2 the maps yr — f and yy — y,, of &2 given by:

lA 1A
A——A A——A
Vfl Jf and Vfl ly}/f ;
Pf——B Pf —— Pyy

here pf is defined by universality of Pf as the unique map making

A+BxFpr
A4+BxFPf ——— > A+BxFB
‘fl J[fﬂ’l]
pf o B

commute, while oy is defined by the same universal property as the unique map making

A+BxFoy
A+BxFPf ————— A+BxFPy;

‘.fl l[wf«f}

Pf Pyy

of
commute, where Kf is defined as the composite

Bx(prf,l) 6 x1 ny
Bx FPyf —————> BX FPf X FPyy —— Pf x FPyy —> Pyy .

PROPOSITION 2.4
The above data determine a comonad Lr on &2,
PRrROOF. Entirely routine using the unicity of maps out of an initial algebra.

DEFINITION 2.5

For a category & with finite products and coproducts, and an endofunctor F: & — & such that each
A+ B x F(-) has an initial algebra, we define the category ATG(F) of abstract term graphs over
F to be the category of Lp-coalgebras. Explicitly, an abstract term graph over F is a pair of maps
(f: A—> B,s: B— Pf)in & satisfying pf.s= 1p,s.f= Yfs and P(14, §).5=0F.5; while a morphism of

abstract term graphs (f,s) — (g,s’) is a commutative square

A"

e
B——D

k

such that P(h,k).s=s" k.
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Asin Example[2.2] the comonad L of our general construction restricts and corestricts to acomonad
on each coslice category A/&’, whose coalgebras are the abstract term graphs over F whose underlying
object in &2 has domain A. In particular, on taking A=0 we obtain a comonad Q: & — & with
OB =uX.B x FX, which, as in our example, we regard as the comonad for closed term graphs over F.
The existence of the comonad Q was indicated in [E], though its meaning was not discussed; our
comonad L may be be seen as a natural generalization of it.

3 Concrete term graphs

In this Section, we show that, by specializing the abstract notion of term graph given in Definition 23]
to the case of a signature endofunctor Fy, on the category of sets, we recover the usual notion of
acyclic term graph over X. First we give a formal definition of the latter.

DEFINITION 3.1
A concrete term graph T over a signature X is given by:

* aset of input nodes A;

e a set of internal nodes V'

* alabelling function £: V — X; and

e foreachveVandiel,...,|€(v)| an element p;(v) €A+ V.

For such a term graph, we define a binary relation on V by w<v iff w=¢(v) for some k. We say
that T is acyclic if the transitive closure of < is irreflexive, and cyclic otherwise.

Until further notice we will always interpret the unadorned phrase ‘term graph’ as ‘acyclic term
graph’.

DEFINITION 3.2

If T and T’ are concrete term graphs over X, then a morphism of term graphs T — T’ comprises
functions f: A— A’ and g: V — V' such that for all v€ V and for all i, we have ¢/(g(v))=£(v) and
f+ g)((pi(v)):(plf (g(v)). We write CTG(X) for the category of concrete term graphs over X.

The term graphs of Definition B]do not, rightly said, represent terms so much as computations,
since we do not indicate which nodes should be considered as return values. We may rectify this by
adding a set of output nodes B and a labelling function B— A+ V to the definition; and in Section[7]
below, we shall. This will then allow us to compose term graphs by plugging the output nodes of one
into the input nodes of another. However, it is the more basic notion that is pertinent here, as it is the
one needed to prove the following result.

PRrOPOSITION 3.3
For any signature X, the categories of concrete term graphs over X and of abstract term graphs over
Fy, are equivalent.

Proor. Recall that an abstract term graph over F'y; is a coalgebra for the comonad L :=Lp, of Set?
obtained by the construction of Definition 2.3. We begin by making explicit the structure of this
comonad. On objects, L sends f: A— Bto yy: A— Pf, where Pf is the set defined by the following
inductive clauses:

* [alePf forallaeA;
* ap(z1,....2q)€Pf forallbeB,ac X and 71, ...,2jq| €Pf,
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and where yy(a) =[a]. We introduce the notational convenience of abbreviating 7, ...,z|¢| as Z,and—
for any suitable function '—abbreviating I'(z1),...,I'(z|) as I"'(Z). With this notation, the action of

L on morphisms
A C
= Yr J{ lyg

s P
Ff P(h,k) &

h h
A—— —_—

;

may be recursively defined by

a

R
o

v

—_
k

P(h,k)([aD=[h(@)]  and  P(hk)ep(2))=orp)(P(h,k)3)) .

Now the map pr: Pf — B giving the counit of L at f is defined by pr([a])=f(a) and pf(ab(Z)) =b,
while the map oy : Pf — Pyy giving the comultiplication at f is defined recursively by

of(lah)=[a]  and  op(ap()) =g,z (0rQ) .

We will prove the result by defining a functor F': CTG(X)— ATG(Fyx) and showing it to be
an equivalence. On objects, the functor F assigns to each concrete term graph T=(A,V, ¢, ¢) the
following L-coalgebra. Its underlying object in Set isinl: A—>A+V. According to Definition 23]
its coalgebra structure is given by a map s: A4V — P(inl), which will be obtained as follows. For
a€A, we take s(a)=[a]. To define s on V, we first observe that since the term graph 7 is acyclic, the
transitive closure < of < is irreflexive, and hence a (strict) partial order on V. Moreover, for each
veV, the set {w|w<iv} is finite, and hence {w | w < v} is too; we denote its cardinality by c(v). Now
given v e V, suppose we have recursively defined s(w) for all w e V with c(w) < c(v). By irreflexivity
of <, this means in particular that we have defined s(w) for all w <tv; and so may validly define

S =Ly (s@1(), - 5(@n(v)))  (Where n=[€(V))). 2

By recursion, this defines s at every ve V. It remains to verify the coalgebra axioms. It is easy
to show that s.inl=yjn and that pjn|.s=14+v; so it remains to show that P(14,s).s=0y.s. This is
trivial on elements of A C A+ V; while to show it on elements of V C A+ V we proceed by induction.
Suppose that v € V and that we have verified the equality for all w with c¢(w) < c¢(v). Writing s(q;) as
an abbreviation for s(p1(v)),...,s(¢n(v)), we have

or(s(v) =07 (E(V)y(s(¢)))
=L()s() (a7 (s(9)))
=L(V)5()(P(L,5)(5(¢)))
=P(L)(EW)y(s()))
=P(1,5)(s(v))

by the recursive definitions of of, P(1,s) and s and the inductive hypothesis. Hence by induction,
we have P(14,s).s =0y.s as required. This completes the definition of the functor F: CTG(Z)—
ATG(Fyx) on objects. To define it on morphisms, let 77 =(A’,V’,¢',¢’) be another concrete term
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graph, and (f,g): T — T’ a morphism between them. We shall take F(f,g): FT — FT’ to be given by

A%A/

inll Jinl 3)

A+V — A+ V.
f+g +

For this to be well defined, we must show that (@) is a map of L-coalgebras FT — FT’; i.e., that
P(f.f+g).s=s".(f +g) holds. This is straightforward on elements of A CA+ V; while for elements
of VC A4V, we proceed once more by induction. Suppose that ve V and that we have verified the
equality for all we V with c¢(w) < c¢(v). Then we have that

P(f.f+)(s()=P(f.f +)UW)(s(p1(V), ..., 5(gn(V))))
=L(Wg(P(f.f +8)(s(@1(M)), ... P(f.f +&)(s(@1("))) “)
=M (s' F+@1), ... 8'(F +)@n(M))

while

S'F 4+ =5"(gn) = (g)gv(s' (@] (gV)), ... 5 (@, (7)) - )
But since (f,g) is a map of term graphs, @) and @) are equal; and so by induction we conclude that
P(f.f +g).s=s".(f +g) as required. This completes the definition of the functor F'; we next show that
it is fully faithful. For this, let T and T’ be concrete term graphs as before, and suppose that

A—L u

'

A4V ———— A4V

is a map of L-coalgebras FT — FT’. We claim first that h=f + g for some g: V — V’; for which it is
clearly enough to show that 2(V) C V'. But were this not so, we would have i(v)=a’ for some veV
and a’ €A’, whence [a']=s"(h(v))=P(f,h)(s(v)), which is impossible by the definitions of P(f,h)
and s. Consequently, every map of L-coalgebras FT — FT' is of the form (@); and so we will be done
if we can show that for every such map, the pair (f,g) is a map of concrete term graphs T — T".
But since for every ve V we have P(f,f +g)(s(v)) =s'(f +g)(v), equating @) and (B) shows that that
£(v)=1'(g(v)) and that 5'((f +g)(¢i())) =s"(¢/(g(v))) for each 1 <i<n; which since s’ is injective,
implies that (f 4+ g)(p;(v)) =(plf (g(v)) for each i, so that (f, g) is a map of term graphs as desired.

Thus, F is a fully faithful functor; to complete the proof, we must show that it is also essentially
surjective on objects. So for each L-coalgebra £ we must find a concrete term graph 7 and an
isomorphism FT = ¢. From Definition 3 to give £ is to give maps f: A— B and s: B— Pf in &
satisfying three axioms. The first is that s.f = y¢, which says that s(f (a)) = [a] for each a € A. Note that
this forces f to be injective, so that taking V =B\im f, we have a bijection B=A+ V under which
S is identified with the coproduct injection A< A+ V. The next coalgebra axiom is that por.s=1p,
which by case analysis says that

s(h)y=[a] = b=f(a) and s(hy=ay () = b=b";

whence b=f(a) if and only if s(b)=[a], so that for b€ B\im f =V, we must have s(b)=a;(z) for
some o € ¥ and z1,...,2|q| € Pf. We claim that these z; in fact satisfy z; =s(pr(z;)). Indeed, either
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zi =[a] for some a € A, in which case s(pf(z;)) =s(f(a)) =[a] =z, or z;= B(W) for some f, c and w:
in which case by the third coalgebra axiom P(1,s).s =0y .5 we have

as(p)(P(1,5)(2) =P(1,5)(s(b)) =07 (s(b)) = () (07 (2))
whence P(1,5)(z;) =o0y(z;), which implies that

Bs(e)(P(1,$)(W) = P(1,5)(zi) = 07 (zi) = B, (a7 (W))

so that in particular z; = s(c) =s(pf(z;)) as claimed. Consequently, we uniquely determine a function
£: V— X and an assignation to each ve V of elements ¥{(v), ..., ¥|¢) (v) € B by the requirement
that forall veV,

sW)=LW)y(s(P1 (1), ....,s(¥n(v))) (where n=£(v)]), (6)

since if s(v)=a,(zZ), we necessarily have £(v)=a and ;(v)= pr(z;) (the second being forced by
injectivity of s).

We now have a term graph 7' =(A, V, £, ), where ¢ is obtained by composing the 1/ above with
the canonical isomorphism B=A+V. It is clear by comparing @) and (@ that FT is isomorphic
to the L-coalgebra we started with; and so we will be done as soon as we have checked that T
is acyclic. To do this, we consider the function d: Pf — N defined by d([a])=0 and d(ap(2))=
max(d(zy),...,d(zy))+ 1. Recall that for v,w eV, the relation v<tw holds just when v=g(w) for
some k; but from above, this happens just when s(w) =04 (Z) and v= pr(zx) for some k, which is
equally well when s(v) =z; for some k. But this implies that d(v) <d(w) in N, so that the transitive
closure of <1 must be acyclic as required. ]

4 Generalisations

Having established the correspondence between concrete term graphs over a signature and abstract
term graphs over the corresponding endofunctor, let us now see how our abstract notion extends
beyond that case. Note that for the moment, all our generalizations will remain in the acyclic world;
we shall consider cyclicity in some detail in the following section.

Operations with unordered inputs: to a finitary signature |-|: ¥ — N, we can associate an
endofunctor F' QZ of Set, different from that of (@), by the formula:
FeX)=Y0esX7V/Si0) (7

here the set X!°! is being quotiented by that action of the symmetric group on |o| letters which per-
mutes the order of the factors. The abstract term graphs generated by such endofunctors are like con-
crete term graphs in which the ordering of the input variables to an operation is considered irrelevant.

Infinitary operations: staying in the category of sets, we can clearly lift the restriction that the
operations in our signature be finitary: indeed, a signature with infinitary operations still gives rise
to a signature endofunctor by the formula () (or @) for that matter).

Typed operations: a many-sorted signature is given by a set S of sorts, a set X of operations,
and typing functions for input i: ¥ — N5 and output 0: ¥ — S. Any such signature generates an
endofunctor Fy, of Set® by the formula

tes ) .

Fy(Xs|se8)= ( Z H(Xs)i(o',s)

ceX seS
o(o)=t
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The corresponding notion of abstract term graph corresponds exactly to the notion of many-sorted
concrete term graph (as defined in [E], for example).

Higher order syntax with sharing: in [|a], Fiore, Plotkin and Turi describe a categorical framework
for the study of second-order syntax. The key idea is to replace the category of sets with the presheaf
category Set®, where F denotes the category of finite cardinals. In this category, initial algebras
for endofunctors can be seen as the collection of terms inductively generated by a second-order
signature, with the value of such an initial algebra at some n € IF being the set of all terms with n free
variables over the signature. This framework was later extended by Tanaka and Power M] to
deal with more general second-order syntaxes, in which, for example, the second-order entities may
be constrained to bind their first-order arguments in a linear fashion. In this more general setting, one
still works with a presheaf category, and still describes terms over a second-order signature in terms
of initial algebras for suitable endofunctors.

In both situations our construction applies, and so we obtain corresponding notions of second-order
syntax with sharing. A thorough investigation of this will be a paper in itself but we hope to convey
at least some of what is involved through a simple example. Consider the following sequent calculus
for polynomials over N:

X1yeeer Xnbp X1,..0,Xnq

—(I<i<n) EEE—
X1y Xp X X1y, Xy 0 X1, Xn P+
X1yeeesXnbp X1,y..sXnbq X1seeos X X1 P
(aeN)
XlyeeosXn=(p-q) X1s--sXp b pla/xp41]

We can organize the terms of this sequent calculus into an object P € Set™ in which Pn is the set of all
derivable judgements x1, ..., x, - p and the reindexing function Pf : Pn— Pm is defined by induction
in the obvious way. We may characterize the object P as the initial algebra for the endofunctor F' of
Set® given by:

(FX)(n)=n+14+XnxXn)+XnxXn)+(Nx X(n+1))

with each term in this sum corresponding to one of the deduction rules listed above. So we think
of elements of P as being closed terms over the signature F' (where here closed is meant in the
sense of having no second-order variables). Applying the constructions of Section [2l now yields
a corresponding notion of term graph. Without wishing to enter into any detailed calculations,
let us at least give an example of what such a term graph will look like. Consider the object
y34+y2+v2+y3+y1 of Setf, where y: FOP — Set® is the Yoneda embedding. There is a closed
term graph structure on this which can be represented in let notation as:

xklet p(x,y,2)=yin
let g(x,y)=yin
let r(x,y) =p(x,y,x)+q(y,x) in
let s(x,y,z)=r(x,y) xr(y,z) in
s(x,x,48) .

It should be clear from this that what such term graphs share are second-order terms: namely the
polynomials p,q,r and s. Likewise, when we move from closed term graphs to arbitrary ones, what
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we are adding are second-order variables. By way of illustration, we could in the previous example
turn p and ¢ into variables, obtaining a term which in let notation would be written as

P(==7),q(=-).xk let r(x, y) =p(x,y,x)+q(y,x) in

let s(x,y,2)=r(x,y) xr(y,z) in

s(x,x,48) .
This corresponds to an abstract term graph whose underlying object in (Set™)?
inclusion y3+y2 — y3+y2+y2+y3+y1.
Proof theory: our final generalization is very much in the same spirit as the previous one, and so
we do not dwell on the details, but merely indicate a potential application. The categorical proof
theory of classical logic is famously thorny and the hope is that the notion of abstract term graph
may provide an elegant way of encoding some of the computational structure of classical proofs. The
thought is as follows. Starting from some set V of primitive propositions, we may form [F(V), the free
category with strictly associative finite products on V. Its objects are finite lists A:=(Ay,...,A,) of
elements of V and its morphisms (A, ...,A,) —> (By, ..., By) are functions n — m such that B;) =A;
for 1 <i<m.Now we can express the collection of classical proof-trees over the basic propositions in
V as an initial algebra for an endofunctor on the category Set™V*V (for a one-sided sequent calculus)
or on the category Set™V*EV)™ (for a two-sided one). Passing to the corresponding notion of term
graph we obtain structures which should allow a smooth representation of the duplication and discard
of subproofs which is central to classical cut-elimination.

is given by the

5 Duality and cyclicity

In this section, we describe how cyclic term graphs over an endofunctor F': & — & may be captured
in our framework. They will also arise as the coalgebras for a comonad on 52; but this comonad
will no longer be obtained by our original construction, but rather by its dual in the following sense.
The endofunctor F is equally well an endofunctor FP: &°P — &°P; and if when we regard it in this
way, the hypotheses of Definition 23] are still satisfied (which amounts to the existence of certain
final coalgebras in &) then we may apply our construction in &°P and regard the result as structure
back in &. Prima facie there is a serious problem with this, since on the first dualization we obtain a
comonad Lgor on (£°P)2, which on the second dualization becomes a monad and not a comonad on
&2. We could overcome this if we were to know that the construction of Definition 23] produced not
just a comonad, but also at the same time a monad on é”z; for then the same would be the true when
we passed to the dual. Remarkably, this is the case; and we now describe this monad explicitly.

DEFINITION 5.1

Let there be given a category & with finite products and coproducts, and an endofunctor F: & — &
such that for all A, B € & the endofunctor A+ B x F(-) has an initial algebra. We define the term graph
monad RF associated to F as follows. The underlying functor is given on objects by Rp(f: A— B)=
(of: Pf — B), and on morphisms by:

h P(h,k)
A——C Pf—— Pg
R fl Jg = pr{ Jog
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Here, p and P are given as in Definition 23] The transformations 1=> Rr and RpRp => Rr making
R into a monad have their components f — pr and p,. — pr at some f € &2 given by

Yr f
A——Pf Pof ——Ff
fl JPJ and Poy J Jof
B——B B—B
1p 1p

respectively. Now y is also as in Definition 23] and the only new datum is the morphism
7 Ppr— pr, which we define by the universality of Pf as the unique map rendering commutative
the diagram:

Pf+BxFry
Pf+BxFPpy —— " Pf{Bx FPf

[Pfl J[l,&f]

Ppy Pf.

f

PROPOSITION 5.2
The above data determine a monad Ry on &2,

PROOF. Again, an entirely routine calculation with the universal property of an initial algebra. W

Unwinding the definitions show that to give an Rr-algebra structure on a map f': A— B is to give
a morphism p: Pf — A satisfying the three equations p.yr =14, f.p=pr and p.P(p,1p)=p.77. In
fact, since in giving p we are mapping out of an initial algebra, this description simplifies further.

PROPOSITION 5.3

To give an Rp-algebra structure on some (f: A—B)e & 2is equally well to giveamap¢: BxFA— A
satisfying f.¢=o; and in these terms, a morphism (h,k): f — g of &2 is a map of Rp-algebras
(f,¢)— (g,¢") just when the equation h.¢p=¢’.(k x Fh) is validated.

PRrROOF. For an Rp-algebra p: Pf — A, the corresponding map ¢ : B x FA— A over B is given by the
composite

BxFyy O P
BxFA—— BXxFPf—Pf—A.

Conversely, for a map ¢: B x FA— A over B, the corresponding Rr-algebra structure p: Pf — A is
obtained as the unique map making the square

A+BxFp
A+BxFPf ———  A+BxFA

‘fJ JUAAN

Pf 5 A

commute. The remaining verifications are straightforward. |

Just as the comonad Lr induces a comonad on each coslice category A/&, so R induces a monad
on each slice category &/B. In particular, when B= 1, we obtain the monad on & whose underlying
assignation on objects is given by A+ uX.A+FX. We recognize this as the free monad on the
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endofunctor F, which is characterized by the property that its category of algebras is canonically
isomorphic to the category of F-algebras in the sense of Definition 2-J]l The monad Rr may be seen
as a generalization of this, with the preceding Proposition being the corresponding generalization of
the universal property of the free monad.

We now give the promised dualization of the constructions of Definitions 23] and 5.11

DEFINITION 5.4

Let & be a category with finite products and coproducts, and F: & — & an endofunctor such that for
all A,Be &, the endofunctor B x (A+ F-) admits a final coalgebra. Then we define the cyclic term
graph comonad to be Lg :=(Rpop)°P, and the cyclic term graph monad to be to be R := (Lgop)°P.

Before going on, let us extract an explicit description of the comonad Lr.Givenan objectf: A— B
of &2, we write Pf for the final coalgebra of X +— B x (A+ FX), write

ir =(pf.0p): Pf — Bx(A+FPf)

for its coalgebra structure, and write yr: A— Pf for the unique map making the square

V4 —
A ! Br

(f,inl)J Jff

—> D
B x (A+FA) Sy BXA+FED

commute. We now define L on objects by Lr(f: A— B) '=(yr: A— Pf). We define its action on
morphisms (h,k): f — g of &2 by

Lrl 1 g = V/‘J lyg
—_— P ﬁp
B k D f P(h,k) J

where P(h,k) is defined by universality of Pg as the unique map making
Br P(h.k) Be
(k X(h+FPf)).ZfJ th

D x (C+FPf)

—————————— Dx(C+FPyg)
Dx(C+FP(h,k))

commute. The natural transformations Lg => 1 and Lr = Ly Ly providing the comonad structure have
respective f-components given by maps

1 1
A—2saA A—2 A
_fl f and 77fl J/?ff
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in &2, where pr is defined as above, and oy is defined by universality of I_’ff as the unique map
rendering commutative the square:

Pf Py

(1’9})J szf

Pf x (A+FPf) —>PfX(A+F6f) Pf x(A+FPyy) .

DEFINITION 5.5

For a category & with finite products and coproducts, and an endofunctor F': & — & such that each
B x (A4 F(-)) has a final coalgebra, we define the category ATG oo (F) of cyclic abstract term graphs
over F to be the category of Lg-coalgebras.

By the dual of Proposition33] the category ATG »(F) is isomorphic to the category whose objects
are pairs (f: A— B, s: B— A+ FB) for which s.f =inl, and whose morphisms (f,s) — (g, s") are maps
(h,k): f—>gin& 2 for which 5.k = (h+ Fk).s; which is almost precisely the definition of cyclic term
graph given in [ﬁ]. Note that if we also took this as our definition of cyclic abstract term graphs, then
it would make sense under much weaker hypotheses than those of Definition it is enough that
& should have binary coproducts. Although this extra generality is certainly useful, for the present
article we shall retain the narrower definition, and this for two reasons: first, to highlight the duality
between the cyclic and the acyclic cases; and secondly, so that later on, when we consider further
aspects of the theory, we can treat these two cases in a uniform manner.

Let us now show that abstract cyclic term graphs are a faithful generalization of the concrete ones.

PROPOSITION 5.6
For any signature X, the categories of cyclic concrete term graphs over ¥ and of cyclic abstract term
graphs over F'y are equivalent.

ProOOF. The method of proof is the same as Proposition B3t we define a functor F: CTGoo(X)—
ATGx(Fy) and show it to be an equivalence. On objects, given a cyclic concrete term graph
T=(A,V,L,¢p), we observe that £ and ¢ together determine a morphism k: V — Fx (A4 V); so that
we may take F(T) to be the Lr-coalgebra whose underlying object in SetZisinl: A— A+ V,and whose
coalgebra structure corresponds under the isomorphism of PropositionR3.3]to the map A+k: A+V —
A+ Fyx(A+V). The remaining details are entirely analogous to Proposition B3] (though simpler) and
hence omitted.

(Observe that when we apply Proposition B3] here, we are really doing something quite familiar.
Turning the map A+ into an Lp,-coalgebra structure on inl: A— A+V corresponds to taking the
concrete cyclic term graph 7 and unfolding it into a possibly infinite labelled tree.) |

It is quite straightforward to see that for each of the more general examples discussed in SectionH]
applying the dual construction yields an appropriate notion of cyclic term graph.

6 Interpretation

Now that we have good abstract notions of both acyclic and cyclic term graphs, we wish to develop
further aspects of their theory. In this section, we discuss how to interpret term graphs in a suitable
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semantic domain; while in the next, we shall discuss how abstract term graphs may be composed. In
order to give a uniform treatment of both kinds of term graph, we shall describe a general structure
of which both are particular instances; so that by framing subsequent results in terms of this general
structure, we may deal with both cases simultaneously. The structure in question is not an ad hoc
one, but one of importance in abstract homotopy theory and category theory.

DEFINITION 6.1
A natural weak factorization system [ﬁ, |E] on a category & is given by the assignation of a
factorization

A f B > Ai)PfLB (8)

to every morphism of &’; a factorization

Y o
A ! s B A—"s Pf B
hl lk = hJ JP(M Jk )
C——D C——Pg——D
g Ye Pg

to every commutative square of &, functorial in (h,k); and for each f: A— B in &, choices of maps
of: Pf — Pyy and iy : Ppr — Pf such that:

* There is a comonad (L,e,A) on &% with Lf =y, with ¢, =(1,p7): yr—f and with Af=
(1,0p): vy = vy

e There is a monad (R,n,u) on &% with Rf =pf, with ny=(yr,1): f— pr and with pr=
(77, 1) 2 ppy — pr-

* There is a distributive law §: LR=> RL whose component at f is given by yr =(of,77): yp, —
Py

The notion of natural weak factorization system is a strengthening of Quillen’s notion of weak
Jactorization system [IE], which has found use in computer science in the open map approach to
bisimulation of [ﬁ E].

PROPOSITION 6.2

For any category & with finite products and coproducts, and any endofunctor F': & — & for which
each initial algebra uX.A+ B x FX exists, the monad—comonad pair (L, RF) on &2 is a natural weak
factorization system.

PrOOF. All that remains is to exhibit the required distributive law §. Since we already have the
necessary data, we need only check the corresponding axioms, which we may do through a further
straightforward manipulation using the universal property of an initial algebra. |

By duality, we immediately obtain:

COROLLARY 6.3

For any category & with finite products and coproducts, and any endofunctor F': & — & for which
each final coalgebra VX .B x (A+ FX) exists, the monad—comonad pair (Lg,RF) on &2 is a natural
weak factorization system.
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The two preceding results are more than a convenient framing device for our subsequent
development: they actually guide that development, by allowing us to apply aspects of the theory
of natural weak factorization systems to the study of term graphs. For our first such application, we
derive a notion of interpretation for abstract term graphs, using the following basic result from the
theory of natural weak factorization systems:

PROPOSITION 6.4 (‘Lifting’)
If (L, R) is a natural weak factorization system on a category &, then for any commutative square

A
|
B

in &, any L-coalgebra structure on f and any R-algebra structure on g, there is a canonical choice of
morphism j: B— C such that gi=k and jf =h.

h
—

aQ

<;
o

—
k

S

PROOF. The L-coalgebra structure onf is given by amorphisms: B — Pf satisfying axioms; likewise,
the R-algebra structure on g is given by amap p: Pg— C. We may therefore take j to be the composite

s P(h,k) 14

B—Pf——Pg—C. (10)

Let us see how this pertains to term graphs. We shall specialize Proposition to the particular
case where D=1, and apply it first to the acyclic situation of Proposition[&.2] and then to the cyclic
situation of Corollary [63] In the former case, the basic data we have are a diagram

Al

/ (1)
B

where f is an Lgp-coalgebra—hence an acyclic term graph over F—and the unique map C — 1 is
an Rp-algebra; which by the discussion following Proposition B3] is equally well to say that C
bears an F-algebra structure c: FC— C. Now the object A is the object of free variables of the
acyclic term graph f; and so to give the map £ is to give an interpretation of these variables in the
F-algebra C. The canonical map j: B— C whose existence is assured by Proposition extends
this to an interpretation of all nodes of the given term graph in C, and does so using the F-algebra
structure in the obvious manner. In fact, by unwinding the definitions in ([0, we find that the map
Jj specified there is obtained by composing the coalgebra map s: B— Pf with the map ev: Pf — C
obtained by universality in

A+BxF(ev)
A+BXxXFPf ——— A+BxFC

‘fl J{[hscﬂzl

Pf C;

ev
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which is easily seen to agree with the natural notion of interpretation we would give in the concrete
situation. Let us now consider the cyclic case. This time, our basic data are a diagram of the form (I,
an Lp-coalgebra structure on f—making it into a cyclic term graph—and an Rp-algebra structure
on C — 1. Now, to give the latter is equally well to equip C with an algebra structure for the monad
obtained on & = &’/1 by restricting and corestricting Rr to those objects of & 2 with codomain 1. The
monad in question is the one whose underlying assignation on objects is given by

A—~VvX A+FX ;

it has been studied carefully in [El, @], where it is called the free completely iterative monad on F . Its
algebras are called completely iterative F-algebras, and are characterized as being those F-algebras
with the property that every system of guarded recursive equations over F has a solution. Without
going into the details of this, let us merely say that this is precisely what is captured by our notion
of interpretation. We may regard the cyclic term graph f: A— B as a system of guarded recursive
equations over F' with constants in the set A. The map h: A— C indicates how to interpret the
constants of the recursive equations in the completely iterative F-algebra C; while the extension to
amap j: B— C provides the corresponding solution.

7 Composition

In this final section, we shall show that our abstract term graphs admit an operation of composition,
which chains the results of computation from one term graph to another. In order to perform such
a chaining, an extra datum is required, indicating how the free variables of the second term graph
should be filled by values from the computation of the first. As presaged in the discussion following
Definition we shall determine this extra datum by considering term graphs equipped with a
distinguished collection of ‘output nodes’.

DEFINITION 7.1
Let F: &— & be an endofunctor to which the construction of Section Dl (respectively, its dual)
applies. An acyclic (respectively, cyclic) term graph from A to B over F is a cospan

Axx/g

together with an Lg- (respectively, Lr-) coalgebra structure on f.

In the concrete case, we see by Proposition B3] that acyclic or cyclic term graphs from A to B
over a signature endofunctor F'y, correspond to concrete term graphs 7T=(A,V, £, ¢) equipped with
a function g: B— A+ V. In that case, we may compose such a pair (7, g): A— B with another pair
(T',g"): B— C, to obtain the pair (T'oT,h): A— C given as follows.

e The set of input nodes of 77 o T is A (as it must be).
* The set of internal nodes is V+V".

e The labelling function is [£,¢']: V+V' — .

* The children of an element v e V are given by ¢;(v).
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o The children of an element v' € V' are given by

Vi) = @i(v) if /() eV’

i = . .
g(pl(v)) if@i(v)eB

* The function 2: C—A+V+V’ is given by

g(©) if g'(c)e V'
h(c)= .
{g(g’(c)) if g'(c)eB.

In the acyclic case, the required acyclicity of the composite follows from that of the two parts and a
case analysis. What we shall now do is to provide an abstract analogue of this composition.

PROPOSITION 7.2

Let F: & — & be an endofunctor to which the construction of Section Rl (respectively, its dual)
applies, and let & have pushouts. Under these hypotheses, there is a category . [F] (respectively
Z~[F1]) whose objects are those of & and whose morphisms A — B are equivalence classes of acyclic
(respectively cyclic) term graphs from A to B.

The notion of equivalence we use in this Proposition identifies two term graphs A — B just when
there is an isomorphism A : X — X’ making

commute, and making the left-hand triangle a map of coalgebras for the appropriate comonad.
The reason for quotienting in this way is that we intend to define the composition of two cospans
A— X < B and B— Y < C by taking it to be the outer edge of the diagram

Af\‘Xg/BYYAC,
N

wherein the bottom square is a pushout. As it stands, this composition is only associative up to
isomorphism: and to rectify this, we must quotient out as above. This could be avoided if we were
to make Cospan(F) into a bicategory rather than a category, but for our purposes, passing to the
quotient seems to be the simplest way to proceed.

The other obstacle to defining the composition as in (I2) lies in showing that the given coalgebra
structures on f and % induce one on pf. We shall do this in two stages: first we show that ‘a pushout of
a coalgebra is a coalgebra’—which gives us a coalgebra structure on p from the one on z—and then

12)
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we show that ‘the composite of two coalgebras is a coalgebra’—which gives us the one on pf from
those on p and on f. We may prove these results for the acyclic and the cyclic cases simultaneously,
as they are completely general facts about natural weak factorization systems.

PROPOSITION 7.3 (‘L-coalgebras push out’)
Let (L, R) be a natural weak factorization system on a category &. For any pushout square

W
0

£

and any L-coalgebra structure on f, there is a unique L-coalgebra structure on g making the square
a map of L-coalgebras.

ProoF. To give an L-coalgebra structure on f is to give amap s: B— Pf satisfying po.s=1p, s.f =y
and P(14,s).s=o0y.s. We induce a corresponding map 7: D— Pg for g by applying the universal
property of pushout to the square

A*)

C
f lyg
B P(h,k).s Pg .

Thus, ¢ is the unique map D — Pg satisfying r.g=y, and t.k=P(h,k).s, and so will be the unique
L-coalgebra structure on g making (4, k) into a map of L-coalgebras as soon as we have verified the
other two L-coalgebra axioms: which is easy by the universal property of pushout. |

PROPOSITION 7.4 (‘L-coalgebras compose’)

Let (L,R) be a natural weak factorization system on a category & and let f: A— B, g: B— C in
&. For every choice of L-coalgebra structures on f and g, there is a unique compatible L-coalgebra
structure on gf .

By a compatible L-coalgebra structure on gf, we mean the following. By virtue of the given
coalgebra structures on f and g, we have for any square

A*h>

:

and any R-algebra structure on p, a choice of filler j: C— D obtained by applying Proposition [6.4]
twice: first with f on the left, and then with g. An L-coalgebra structure on gf is compatible if the
preceding choices of fillers agree with those obtained by applying Proposition [6.4] once to gf .

g,

—
k
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ProOF. For uniqueness, we observe that any given L-coalgebra structure on gf may be recovered by
applying Proposition[& 4] to the square

A2 pief)

& l Pef
cC——C
Ic
where pgr is given its free R-algebra structure. Thus, there can be at most one compatible L-coalgebra
structure on gf, and we can calculate what it must be by applying Proposition[&.4] twice to the above
square, first with f along the left and then with g. Let the L-coalgebra structures on f and g be given by
s: B— Pf and t: C — Pg, respectively. Then direct calculation shows that the induced L-coalgebra
structure on gf is given as follows. First form the composite

£=BPf 20 Pep)

Now the induced L-coalgebra structure C — P(gf) is given by the composite

P(&,1 -
ct pg LEIO, Pper 5> P(gf) .

That this is indeed an L-coalgebra structure, and a compatible one, is a straightforward calculation.
|

Applying the preceding two results to the natural weak factorization systems of Proposition
and Corollary [8.3] we obtain:

PrOOF OF PROPOSITION[ZZ] As anticipated, we define composition in .[F] and .0 [F] by pushouts
of the form (2, using the preceding two Propositions to induce the required coalgebra structure on
the composite left leg from the coalgebra structures on the constituents. We give the identity map at

A by the cospan
A A

D

A

where the left leg is equipped with its unique possible coalgebra structure. We must check that this
composition is associative and unital. Because we have passed to equivalence classes, we have this
at the level of underlying cospans; it remains to verify that the induced coalgebra structures on the
composites are likewise well behaved. But this follows easily from the universal properties ascribed
to the constructions of Propositions 73 and [Z.4] ]

Using the results of Proposition B3] we may now show that the composition of abstract term
graphs, when specialized to a signature endofunctor on Set, agrees with the composition described
after Definition[Z.]] Note that this in particular provides an abstract reason why this latter composition
should be associative, a fact which would otherwise have required a direct calculation.

Let us remark that the categories .’[F] and .~ [F] will not typically be locally small, even if &
is so. The reason is essentially that a term graph from A to B may choose to do an arbitrary amount
of irrelevant computation which is invisible from the perspective of the output nodes in B. Thus, in
practice it may be convenient to consider a suitable full small subcategory </ C &, and to cut down
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from .%’[F] to the subcategory whose objects are those lying in <7, and whose morphisms A — X < B
are those cospans where A, X and B all lie in .2/ (where for this definition to work we must assume
that o7 is closed under the appropriate pushouts in &). Thus, when & =Set and F is the endofunctor
associated to a signature ¥, we may take .7 to be the category of finite cardinals and so obtain the
category of finite term graphs; which in the terminology of [l12], is the classifying category of the pure
sharing theory over the signature . Likewise, when & = Set™ and F is an endofunctor of the kind
considered in Section[] a sensible choice for .« would be the full subcategory of Set" composed of
the finite coproducts of representables.

We now show that the categories .¥’[F] and . [F] defined above play well with the notion of
interpretation described in Section[@ Consider the acyclic case first. Given any F-algebrac: FC — C,
we obtain maps

SIFI(A,B)x &(A,C)— &(B,C) (13)

as follows. Given a cospan A i) XE Biny [F]and amap h: A— C, we may apply Proposition[a.4]
to obtain an extension j: X — C; and composing this with g yields the required map jg: B— C. The
point is that this process is well behaved with respect to composition of term graphs.

ProPOSITION 7.5
To any F-algebra c: FC — C, we may associate a functor .¥/[F] — Set given on objects by A+
&(A, C) and on morphisms by ([3).

PrOOF. We need to only show functoriality; for which we apply the universal properties of the two
constructions given in Propositions [Z3] and [Z.4] [ |

Transposing these results into the cyclic case we obtain the following.

COROLLARY 7.6
To any completely iterative F-algebra ¢: FC — C, we may associate a functor .5 [F]— Set given
on objects by A &(A, C) and on morphisms by the cyclic analogue of (I3).

PrROOF. By duality. n

Letus conclude by briefly considering the extra structure carried by the category .[F] and .%o [F1;
this is very much in the spirit of [Iﬂ] and one can envisage further development along those lines.

PrOPOSITION 7.7

The category .[F] admits a symmetric monoidal structure and an identity-on-objects strict
symmetric monoidal embedding &°P — .#[F], where &°P is equipped with its cartesian monoidal
structure.

PROOF. The unit of the monoidal structure on .#’[F] is the object O of &. The tensor product is
given on objects by AQA’ =A+A’ and on morphisms by (A— X < B)®(A’' — X' < B)=(A+A"—
X +X' < B+ B'); the coalgebra structure on the left leg of this tensor product being the coproduct
in the category of Lp-coalgebras. The embedding &°P — .[F] is the identity on objects, and on
morphisms sends f : A— B to the term graph

B A
N
B

from B to A, where 1p is seen as equipped with its unique Lg-coalgebra structure. |
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