
Journal of Algebra 355 (2012) 111–127
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Grothendieck quasitoposes

Richard Garner a, Stephen Lack b,∗
a Department of Computing, Macquarie University, NSW 2109, Australia
b Department of Mathematics, Macquarie University, NSW 2109, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 June 2011
Available online 31 January 2012
Communicated by Michel Van den Bergh

Keywords:
Topos
Quasitopos
Concrete sheaf
Separated object
Localization
Semi-left-exact reflection

A full reflective subcategory E of a presheaf category [C op,Set]
is the category of sheaves for a topology j on C if and only if
the reflection from [C op,Set] into E preserves finite limits. Such
an E is then called a Grothendieck topos. More generally, one
can consider two topologies, j ⊆ k, and the category of sheaves
for j which are also separated for k. The categories E of this
form for some C , j, and k are the Grothendieck quasitoposes
of the title, previously studied by Borceux and Pedicchio, and
include many examples of categories of spaces. They also include
the category of concrete sheaves for a concrete site. We show
that a full reflective subcategory E of [C op,Set] arises in this
way for some j and k if and only if the reflection preserves
monomorphisms as well as pullbacks over elements of E . More
generally, for any quasitopos S , we define a subquasitopos of S
to be a full reflective subcategory of S for which the reflection
preserves monomorphisms as well as pullbacks over objects in the
subcategory, and we characterize such subquasitoposes in terms of
universal closure operators.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A Grothendieck topos is a category of the form Sh(C , j) for a small category C and a (Grothen-
dieck) topology j on C . These categories have been of fundamental importance in geometry, logic,
and other areas. Such categories were characterized by Giraud as the cocomplete categories with
a generator, satisfying various exactness conditions expressing compatibility between limits and col-
imits.
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The category Sh(C , j) is a full subcategory of the presheaf category [C op,Set], and the inclusion
has a finite-limit-preserving left adjoint. This in fact leads to another characterization of Grothendieck
toposes. A full subcategory is said to be reflective if the inclusion has a left adjoint, and is said to be
a localization if moreover this left adjoint preserves finite limits. A category is a Grothendieck topos if
and only if it is a localization of some presheaf category [C op,Set] on a small category C . (We shall
henceforth only consider presheaves on small categories.)

Elementary toposes, introduced by Lawvere and Tierney, generalize Grothendieck toposes; the non-
elementary conditions of cocompleteness and a generator in the Giraud characterization are replaced
by the requirement that certain functors, which the Giraud conditions guarantee are continuous, must
in fact be representable. Yet another characterization of the Grothendieck toposes is as the elementary
toposes which are locally presentable, in the sense of [10]. We cite the encyclopaedic [12,13] as a
general reference for topos-theoretic matters.

A quasitopos [14] is a generalization of the notion of elementary topos. The main difference is that
a quasitopos need not be balanced: this means that in a quasitopos a morphism may be both an epi-
morphism and a monomorphism without being invertible. Rather than a classifier for all subobjects,
there is only a classifier for strong subobjects (see Section 2 below). The definition, then, of a quasito-
pos is a category E with finite limits and colimits, for which E and each slice category E /E of E is
cartesian closed, and which has a classifier for strong subobjects. A simple example of a quasitopos
which is not a topos is a Heyting algebra, seen as a category by taking the objects to be the elements
of the Heyting algebra, with a unique arrow from x to y just when x � y. Other examples include the
category of convergence spaces in the sense of Choquet, or various categories of differentiable spaces,
studied by Chen. See [12] once again for generalities about quasitoposes, and [1] for the examples
involving differentiable spaces.

The notion of Grothendieck quasitopos was introduced in [2]. Once again, there are various possible
characterizations:

(i) the locally presentable quasitoposes;
(ii) the locally presentable categories which are locally cartesian closed and in which every strong

equivalence relation is the kernel pair of its coequalizer;
(iii) the categories of the form Sep(k) ∩ Sh( j) for topologies j and k on a small category C , with

j ⊆ k.

In (ii), an equivalence relation in a category E is a pair d, c : R ⇒ A inducing an equivalence relation
E (X, R) on each hom-set E (X, A); it is said to be strong if the induced map R → A × A is a strong
monomorphism. In (iii), we write Sh( j) for the sheaves for j, and Sep(k) for the category of separated
objects for k; these are defined like sheaves, except that in the sheaf condition we ask only for the
uniqueness, not the existence, of the gluing. A category C equipped with topologies j and k with
j ⊆ k is called a bisite in [13], and a presheaf on C which is a j-sheaf and k-separated is then said to
be ( j,k)-biseparated.

A special case is where C has a terminal object and the representable functor C (1,−) is faithful,
and k is the topology generated by the covering families consisting, for each C ∈ C , of the totality
of maps 1 → C . If j is any subcanonical topology contained in k, then (C , j) is a concrete site in
the sense of [1] (see also [8,9]) for which the concrete sheaves are exactly the ( j,k)-biseparated
presheaves.

In the case of Grothendieck toposes, a full reflective subcategory of a presheaf category [C op,Set]
has the form Sh( j) for some (necessarily unique) topology j if and only if the reflection preserves
finite limits. The lack of a corresponding result for Grothendieck quasitoposes is a noticeable gap in
the existing theory, and it is precisely this gap which we aim to fill.

It is well known that the reflection from [C op,Set] to Sep(k) ∩ Sh( j) preserves finite products
and monomorphisms. In Example 3.9 below, we show that this does not suffice to characterize such
reflections, using the reflection of directed graphs into preorders as a counterexample. We provide a
remedy for this in Theorem 6.1, where we show that a reflection L : [C op,Set] → E has this form
for topologies j and k if and only if L preserves finite products and monomorphisms and is also
semi-left-exact, in the sense of [6]. Alternatively, such L can be characterized as those which preserve
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monomorphisms and have stable units, again in the sense of [6]. The stable unit condition can most
easily be stated by saying that L preserves all pullbacks in [C op,Set] over objects in the subcate-
gory E . For each object X ∈ E , the slice category E /X is a full subcategory of [C op,Set]/X , with a
reflection L X : [C op,Set]/X → E /X given on objects by the action of L on a morphism into X ; the
condition that L preserve all pullbacks over objects of E is equivalently the condition that each L X

preserve finite products.
Since a subtopos of a topos S is by definition a full reflective subcategory of S for which the

reflection preserves finite limits, the Grothendieck toposes are precisely the subtoposes of presheaf
toposes. Subtoposes of an arbitrary topos can be characterized in terms of Lawvere–Tierney topolo-
gies; more importantly for our purposes, they can be characterized in terms of universal closure
operators.

By analogy with this case, we define a subquasitopos of a quasitopos S to be a full reflective
subcategory of S for which the reflection preserves monomorphisms and has stable units. Thus a
Grothendieck quasitopos is precisely a subquasitopos of a presheaf topos. We also give a characteriza-
tion of subquasitoposes of an arbitrary quasitopos S , using universal closure operators.

We begin, in the following section, by recalling a few basic notions that will be used in the rest of
the paper; then in Section 3 we study various weakenings of finite-limit-preservation for a reflection,
and the relationships between these. In Section 4 we study conditions under which reflective subcat-
egories of quasitoposes are quasitoposes. In Section 5 we characterize subquasitoposes of a general
quasitopos, before turning, in Section 6, to subquasitoposes of presheaf toposes and their relationship
with Grothendieck quasitoposes.

2. Preliminaries

We recall a few basic notions that will be used in the rest of the paper.
A monomorphism m : X → Y is said to be strong if for all commutative diagrams

X ′ e
Y ′

X
m

Y

with e an epimorphism, there is a unique map Y ′ → X making the two triangles commute. Strong
epimorphisms are defined dually. A strong epimorphism which is also a monomorphism is invertible,
and dually a strong monomorphism which is also an epimorphism is invertible.

A weak subobject classifier is a morphism t : 1 → � with the property that for any strong monomor-
phism m : X → Y there is a unique map f : Y → � for which the diagram

X
m

Y

f

1
t

�

is a pullback.
A category with finite limits is said to be regular if every morphism factorizes as a strong epi-

morphism followed by a monomorphism, and if moreover any pullback of a strong epimorphism is
again a strong epimorphism. It then follows that the strong epimorphisms are precisely the regular
epimorphisms; that is, the morphisms which are the coequalizer of some pair of maps. Our regular
categories will always be assumed to have finite limits.
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A full subcategory is reflective when the inclusion has a left adjoint; this left adjoint is called the
reflection.

Throughout the paper, S will be a category with finite limits; later on we shall make fur-
ther assumptions on S , such as being regular; when we finally to come to our characterization
of Grothendieck quasitoposes, S will be a presheaf topos.

Likewise, throughout the paper, E will be a full reflective subcategory of S . We shall write L for
the reflection S → E and also sometimes for the induced endofunctor of S , and we write � : 1 → L
for the unit of the reflection. It is convenient to assume that the inclusion E → S is replete, in the
sense that any object isomorphic to one in the image is itself in the image. It is also convenient to
assume that �A : A → L A is the identity whenever A ∈ E . Neither assumption affects the results of
the paper.

We shall say that the reflection has monomorphic units if each component �X : X → L X of the unit
is a monomorphism, with an analogous meaning for strongly epimorphic units. When L preserves finite
limits it is said to be a localization.

An object A of a category C is said to be orthogonal to a morphism f : X → Y if each a : X → A
factorizes uniquely through f . If instead each a : X → A factorizes in at most one way through f , the
object A is said to be separated with respect to f , or f -separated. If F is a class of morphisms, we say
that A is F -orthogonal or F -separated if it is f -orthogonal or f -separated for each f ∈ F .

3. Limit-preserving conditions for reflections

In this section we study various conditions on a reflection L : S → E weaker than being a lo-
calization. First observe that any reflective subcategory is closed under limits, so the terminal object
of S lies in E , and so L always preserves the terminal object. Thus preservation of finite limits is
equivalent to preservation of pullbacks; our conditions all say that certain pullbacks are preserved.

Preservation of finite products. Since L preserves the terminal object, preservation of finite products
amounts to preservation of binary products, or to preservation of pullbacks over the terminal object.

By a well-known result due to Brian Day [7], if S is cartesian closed, then L preserves finite
products if and only if E is an exponential ideal in S ; it then follows in particular that E is cartesian
closed.

Stable units. For each object B ∈ E , the reflection L : S → E induces a reflection LB : S /B → E /B
onto the full subcategory E /B of S /B . The original reflection L is said to have stable units when each
LB preserves finite products, or equivalently when L preserves all pullbacks over objects of E . Since
the terminal object lies in E , this implies in particular that L preserves finite products.

If S is locally cartesian closed then, by the Day reflection theorem [7] again, L has stable units
just when each E /B is an exponential ideal in S /B; it then follows that E is locally cartesian closed.

The name stable units was originally introduced in [6] for an apparently weaker condition, namely
that L preserve each pullback of the form

P
q

p

A

u

X
�X

L X

but it was observed in [4, Section 3.7] that these two conditions are in fact equivalent. Notice also
that since L�X is invertible, to say that L preserves the pullback is equivalently to say that L inverts q.

Frobenius. We say that L satisfies the Frobenius condition when it preserves products of the form
X × A, with A ∈ E .
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The condition is often given in the more general context of an adjunction, not necessarily a reflec-
tion, between categories with finite products. In this case, the condition is that the canonical map

ϕ : L(X × A) → L X × A,

defined using the comparison L(X × I A) → L X × L I A and the counit L I A → A, should be invertible.
As is well known, if E and S are both cartesian closed, then this condition is equivalent to the

right adjoint I : E → S preserving internal homs. As is perhaps less well known, in our setting of a
reflection it is enough to assume that S is cartesian closed, and then the condition ensures that the
internal homs restrict to E : see Proposition 4.2 below. Thus if S is cartesian closed, then L satisfies
the Frobenius condition if and only if E is closed in S under internal homs.

In fact, for any monadic adjunction satisfying the Frobenius condition, internal homs may be lifted
along the right adjoint. More generally still, there is a version of the Frobenius condition defined for
monoidal categories in which the tensor product is not required to be the product, and once again
the internal homs can be lifted along the right adjoint: see [3, Proposition 3.5 and Theorem 3.6].

Semi-left-exact. We say, following [6], that L is semi-left-exact if it preserves each pullback

P
q

p

A

u

X
�X

L X

with A ∈ E . This is clearly implied by the stable units condition. By [6, Theorem 4.3] it in fact implies,
and so is equivalent to, the apparently stronger condition that L preserve each pullback of the form

P
q

p

A

u

X
v

B

with A and B in E . But this is in turn equivalent to the condition that each LB : S /B → E /B
be Frobenius. Thus we see that semi-left-exactness is in fact a “localized” version of the Frobenius
condition. In particular, we may take B = 1, and see that semi-left-exactness implies the Frobenius
condition.

Once again, if S is locally cartesian closed, so that each S /B is cartesian closed, then L is semi-
left-exact just when each E /B is closed in S /B under internal homs. This implies that each E /B is
cartesian closed, and so that E is locally cartesian closed; see Lemma 4.3 below.

Preservation of monomorphisms. Preservation of monomorphisms will also be an important condition
in what follows. Once again it can be seen as preservation of certain pullbacks. Notice also that
L : S → E satisfies this condition if and only if each LB : S /B → E /B does so.

Relationships between the conditions. We summarize in the diagram

stable units semi-left-exact mono-preserving

finite-product-preserving Frobenius mono-preserving
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the relationships found so far between these conditions. Each condition in the top row amounts to
requiring the condition below it to hold for all LB : S /B → E /B with B ∈ E .

In Theorem 3.5 below, we shall see that if S is regular and L preserves monomorphisms, then the
stable units condition is equivalent to the conjunction of the semi-left-exactness and finite-product-
preserving conditions. In order to prove this, we start by considering separately the case where the
components of the unit � : 1 → L are monomorphisms and that where they are strong epimorphisms.

Theorem 3.1. If S is finitely complete and the reflection L : S → E has monomorphic units, then the fol-
lowing are equivalent:

(i) L preserves finite limits;
(ii) L has stable units;

(iii) L is semi-left-exact and preserves finite products.

Proof. The implication (i) ⇒ (ii) is trivial, while (ii) ⇒ (iii) was observed above. Thus it remains to
verify the implication (iii) ⇒ (i).

Suppose then that L is semi-left-exact and preserves finite products. We must show that it pre-
serves equalizers. Given f , g : Y ⇒ Z in S , form the equalizer e : X → Y of f and g , and the equalizer
d : A → LY of L f and Lg; of course A ∈ E since E is closed in S under limits. There is a unique
map k : X → A making the diagram

X
e

k

Y

f

g
�Y

Z

�Z

A
d

LY

Lf

Lg

L Z

commute. It follows easily from the fact that �Z is a monomorphism that the square on the left is a
pullback. Since A ∈ E , it follows by semi-left-exactness that L inverts k, which is equivalently to say
that L preserves the equalizer of f and g . �
Theorem 3.2. If S is regular, and the reflection L : S → E has strongly epimorphic units, then the following
are equivalent:

(i) L preserves finite products and monomorphisms;
(ii) L has stable units and preserves monomorphisms.

Proof. Since having stable units always implies the preservation of finite products, it suffices to show
that (i) implies (ii). Suppose then that L preserves finite products and monomorphisms. Let

P
q

p

Y

u

X
�X

L X

be a pullback. Since �X is a strong epimorphism, so is its pullback q; but the left adjoint L preserves
strong epimorphisms and so Lq is also a strong epimorphism in E .

Since L preserves finite products and monomorphisms, it preserves jointly monomorphic pairs;
thus Lp and Lq are jointly monomorphic. It follows that the canonical comparison from L P to the
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pullback of Lu and L�X is a monomorphism, but this comparison is just Lq. Thus Lq is a strong
epimorphism and a monomorphism, and so invertible. This proves that L has stable units. �

Having understood separately the case of a reflection with monomorphic units and that of one
with strongly epimorphic units, we now combine these to deal with the general situation. The first
step in this direction is well known; see [6] for example.

Proposition 3.3. Suppose that S is regular. If R is the closure of E in S under subobjects, then the reflection
of S into E factorizes as

E

L

⊥ R

L′

⊥ S

where L′ has strongly epimorphic units and L has monomorphic units.

Proof. A straightforward argument shows that an object X ∈ S lies in R if and only if the unit
�X : X → L X is a monomorphism. Then the restriction L : R → E of L is clearly a reflection of R
into E .

Since S is regular we may factorize � : 1 → L as a strong epimorphism �′ : 1 → L′ followed by a
monomorphism κ : L′ → L. Since L′ X is a subobject of L X , it lies in R. We claim that �′ X : X → L′ X
is a reflection of X into R. Given an object Y ∈ R, the unit �Y : Y → LY is a monomorphism, and
now if f : X → Y is any morphism, then in the diagram

X
�′ X

f

L′ X

κ X

L X

Lf

Y
�Y

LY

�′ X is a strong epimorphism and �Y a monomorphism, so there is a unique induced g : L′ X → Y
with g.�′ X = f and �Y .g = L f .κ X . This gives the existence of a factorization of f through �′ X ; the
uniqueness is automatic since �′ X is a (strong) epimorphism. �
Corollary 3.4. Suppose that S is regular. If L : S → E is semi-left-exact and preserves finite products and
monomorphisms, then its restriction L : R → E to R preserves finite limits, while L′ : S → R has stable
units and preserves monomorphisms.

Proof. Since L is semi-left-exact and preserves finite products and monomorphisms, the same is true
of its restriction L. Thus L preserves finite limits by Theorem 3.1 and the fact that L has monomorphic
units.

As for L′ , since it has strongly epimorphic units it will suffice, by Theorem 3.2, to show that it
preserves finite products and monomorphisms.
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First observe that if m : X → Y is a monomorphism in S , then we have a commutative diagram

X
�′ X

m

L′ X
κ X

L′m

L X

Lm

Y
�′Y

L′Y
κY

LY

in which Lm and κ X are monomorphisms, and thus also L′m. This proves that L′ preserves monomor-
phisms.

On the other hand, for any objects X, Y ∈ S , we have a commutative diagram

X × Y
�′(X×Y )

�′ X×�′Y

L′(X × Y )

π ′

κ(X×Y )
L(X × Y )

π

L′ X × L′Y
κ X×κY

L X × LY

in which π and π ′ are the canonical comparison maps. Now �′ X ×�′Y is a strong epimorphism, since
in a regular category these are closed under products, and κ X × κY is a monomorphism, since in
any category these are closed under products. Since L preserves products, π is invertible, and it now
follows that π ′ is also invertible. Thus L′ preserves finite products. �
Theorem 3.5. Let S be regular, and L : S → E an arbitrary reflection onto a full subcategory, with unit
� : 1 → L. Then the following are equivalent:

(i) L is semi-left-exact, and preserves finite products and monomorphisms;
(ii) L has stable units and preserves monomorphisms.

Proof. The non-trivial part is that (i) implies (ii). Suppose then that L satisfies (i), and factorize L as
LL′ as in Proposition 3.3. By Corollary 3.4, we know that L preserves finite limits, while L′ preserves
pullbacks over objects of R and monomorphisms, thus the composite LL′ preserves pullbacks over
objects of R and monomorphisms, and so in particular has stable units and preserves monomor-
phisms. �
Remark 3.6. In fact we have shown that a reflection L satisfying the equivalent conditions in the
theorem preserves all pullbacks over an object of R; that is, over a subobject of an object in the
subcategory E .

Having described the positive relationships between our various conditions, we now show the
extent to which they are independent. We shall give three examples; in each case S is a presheaf
category.

Example 3.7. Let 2 be the full subcategory of Set × Set consisting of the objects (0,0) and (1,1).
This is reflective, with the reflection sending a pair (X, Y ) to (0,0) if X and Y are both empty, and
(1,1) otherwise. It’s easy to see that this is semi-left-exact and preserves monomorphisms, but fails
to preserve the product (0,1) × (1,0) = (0,0) since L(0,1) = L(0,1) = 1 but L(0,0) = 0.

Example 3.8. Consider Set as the full reflective subcategory of RGph consisting of the discrete re-
flexive graphs. This time the reflector sends a graph G to its set of connected components π0G . This
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is well known to preserve finite products. Furthermore, it preserves pullbacks over a discrete reflex-
ive graph X , since Set/X 
 SetX and RGph/X 
 RGphX and the induced π0/X : RGph/X → Set/X
is just π X

0 : RGphX → SetX , which preserves finite products since π0 does so. Thus π0 has stable
units, and so is semi-left-exact (and, as we have already seen, preserves finite products). But π0 does
not preserve monomorphisms: any set X gives rise both to a discrete reflexive graph and the “com-
plete” reflexive graph K X with exactly one directed edge between each pair of vertices. The inclusion
X → K X is a monomorphism, but π0 X is just X , while π0 K X = 1. Thus π0 does not preserve this
monomorphism if X has more than one vertex.

Example 3.9. Let RGph be the category of reflexive graphs, and Preord the full reflective subcategory
of preorders. Since the reflection sends a graph G to a preorder on the set of vertices of G , it clearly
preserves monomorphisms. An easy calculation shows that for any reflexive graph G and preorder X ,
the internal hom [G, X] in RGph again lies in Preord, corresponding to the set of graph homomor-
phisms equipped with the pointwise preordering. Thus Preord is an exponential ideal in RGph, and
so the reflection preserves finite products by [7]. On the other hand, by Lemma 4.3 below, the reflec-
tion cannot be semi-left-exact since Preord is not locally cartesian closed. To see this, consider the
preorder X = {x, y, y′, z} with x � y and y′ � z, and the two maps 1 → X picking out y and y′ . Their
coequalizer is {x � y � z}, but this is not preserved by pulling back along the inclusion of {x � z}
into X , so Preord cannot be locally cartesian closed.

Our characterization of Grothendieck quasitoposes, in Theorem 6.1 below, involves three condi-
tions on a reflection: that it be semi-left-exact, that it preserve finite products, and that it preserve
monomorphisms. By the three examples above, we see that none of these three conditions can be
omitted.

4. Quasitoposes

In this section we take a slight detour to study conditions under which a reflective subcategory is
a quasitopos. First of all, a reflective subcategory E of S has any limits or colimits which S does,
so of course we have:

Proposition 4.1. If L : S → E is any reflection, then E has finite limits and finite colimits if S does so.

To deal with the remaining parts of the quasitopos structure we require some assumptions on the
reflection.

Proposition 4.2. If L : S → E is Frobenius then E is cartesian closed if S is so.

Proof. Suppose that L satisfies the Frobenius condition. We shall show that if A, B ∈ E , then [A, B]
is also in E .

The composite

L[A, B] × A
ϕ−1

L
([A, B] × A

) L ev
LB

ε
B

induces a morphism c : L[A, B] → [A, B]. If we can show that c� : [A, B] → [A, B] is the identity, then
c will make [A, B] into an L-algebra and so [A, B] will lie in E .
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Now commutativity of

[A, B] × A
�×1

�ev

L[A, B] × A
ϕ−1

B
�

1

L([A, B] × A)

L ev

LB

ε

B

shows that ev(c� × 1) = ev and so that c� = 1. �
Lemma 4.3. If L : S → E is semi-left-exact, then E is locally cartesian closed if S is so.

Proof. For any object A ∈ E , the reflection L induces a reflection of S /A into E /A, which is Frobe-
nius. It follows by Proposition 4.2 that E /A is cartesian closed. �
Remark 4.4. As observed in the previous section, there are converses to the previous two results.
If S is cartesian closed, and E is a full reflective subcategory closed under exponentials, then the
reflection is Frobenius. And if S is locally cartesian closed, and E is a full reflective subcategory
closed under exponentials in the slice categories, then the reflection is semi-left-exact.

We now turn to the existence of weak subobject classifiers. For this, we consider one further
condition on our reflection L, weaker than preservation of finite limits. We say, following [5], that L
is quasi-lex if, for each finite diagram X : D → S , the canonical comparison map L(lim X) → lim(L X)

in E is both a monomorphism and an epimorphism. We may then say that L “quasi-preserves” the
limit.

The proof of the next result closely follows that of [5, Theorem 1.3.4], although the assumptions
made here are rather weaker. When we speak of unions of regular subobjects, we mean unions of
subobjects which happen to be regular: there is no suggestion that the union itself must be regular.
We say that such a union is effective when it is constructed as the pushout over the intersection.

Proposition 4.5. Let S be finitely complete and have effective unions of regular subobjects and suppose fur-
ther that pushouts of pairs of monomorphisms in S exist and that pushouts of regular monomorphisms along
monomorphisms are monomorphisms; for example, S could be a quasitopos. If the reflection L : S → E
preserves finite products and monomorphisms then it is quasi-lex.

Proof. We know that L preserves finite products, thus it will suffice to show that it quasi-preserves
equalizers.

Consider an equalizer diagram

X
e

Y

f

g
Z
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in S . Since L preserves finite products, quasi-preservation of this equalizer is equivalent to quasi-
preservation of the equalizer

X
e

Y

( f
Y)

(g
Y)

Z × Y

in which now the parallel pair has a common retraction, given by the projection Z × Y → Y . This
implies that the exterior of the diagram

X
e

e

Y

f ′

( f
Y)Y

g′

(g
Y)

Z ′ m

Z × Y

is a pullback. By effectiveness of unions, we can form the union of
( f

Y

)
and

(g
Y

)
by constructing the

pushout square as in the interior of the diagram. Then the induced map m : Z ′ → Z × Y will be the
union, and in particular is a monomorphism. Now apply the reflection L to this last diagram, to get a
diagram

L X
Le

Le

LY

Lf ′

(L f
LY)LY

Lg′

(Lg
LY)

L Z ′ Lm

L Z × LY

in E . The interior square is still a pushout, and Lm and Le are still monomorphisms. Let d : A → LY
be the equalizer of L f ′ and Lg′ , and k : L X → A the factorization of Le through d. By the fact that
L preserves monomorphisms, the stability assumption on the regular monomorphisms in S implies
the corresponding stability condition in E ; it now follows that k is an epimorphism (see [6, p. 292]).
Now d is the equalizer of L f ′ and Lg′ and k is the canonical comparison. We saw above that k is an
epimorphism, and it is a monomorphism since Le is one. Thus L quasi-preserves the equalizer of f ′
and g′ , and so also the equalizer of

( f
Y

)
and

(g
Y

)
, and so finally that of f and g . �

Remark 4.6. In fact there is also a partial converse to the preceding result: if L is quasi-lex and has
strongly epimorphic units, then it preserves finite products and monomorphisms; indeed any quasi-
lex L preserves monomorphisms: see [5].

Lemma 4.7. If L is quasi-lex, then E has a weak subobject classifier if S does so.
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Proof. Let t : 1 → � be the weak subobject classifier of S . Now Lt : L1 → L� is a strong (in fact
split) subobject, so there is a unique map χ : L� → � such that

L1
Lt

L�

χ

1
t

�

is a pullback. Form the equalizer

�′ i
�

χ�

1

�

in S .
Observe that χ.�.χ = χ.Lχ.�L� = χ.Lχ.L��, and so χ.�.χ.Li = χ.Lχ.L��.Li = χ.Li; thus χ.Li

factorizes as i.χ ′ for a unique χ ′ : L�′ → �′ .
Furthermore, i.χ ′.��′ = χ.Li.��′ = χ.�.i = i and so χ ′.� = 1. This proves that �′ ∈ E . Furthermore

χ.�.t = χ.Lt.� = t and so t = it′ for a unique t′ : 1 → �′ . We shall show that t′ : 1 → �′ is a weak
subobject classifier for E .

Suppose then that m : A → B is a strong subobject in E . The inclusion, being a right adjoint,
preserves strong subobjects, so there is a unique f : B → � for which the diagram

A
m

B

f

1
t

�

is a pullback. We shall show that f factorizes as f = i f ′; it then follows that f ′ : B → �′ is the unique
map in E classifying m.

To do so, it will suffice to show that χ.�. f = f , or equivalently χ.L f .� = f . Now consider the
diagram

A
m

�

B

�

L A
Lm

L!

LB

Lf

L1
Lt

L�

χ

1
t

�

in which the top square is a pullback since �A and �B are invertible, and the bottom square is a
pullback, by definition of χ . Thus if the middle square is a pullback, then the composite will be, and
so χ.L f .� must be the unique map f classifying m.
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Now we know that the comparison x from L A to the pullback P of L f and Lt is both an epi-
morphism and a monomorphism in E . But Lm, like m, is a strong monomorphism, and factorizes
as sx, where s is the pullback of Lt; thus x is a strong monomorphism and an epimorphism, and so
invertible. This completes the proof. �

Combining the main results of this section, we have:

Theorem 4.8. If the reflection L : S → E is semi-left-exact and quasi-lex, then E is a quasitopos if S is one.

Corollary 4.9. If the reflection L : S → E is semi-left-exact and preserves finite products and monomor-
phisms, and so also if it has stable units and preserves monomorphisms, then E is a quasitopos if S is one.

Proof. Combine the previous theorem with Theorem 3.5 and Proposition 4.5. �
5. Subquasitoposes

As recalled in the introduction, a subtopos of a topos is a full reflective subcategory for which
the reflection preserves finite limits. These can be characterized in various ways, for example using
Lawvere–Tierney topologies, or universal closure operators. By analogy with this, we define a sub-
quasitopos of a quasitopos S to be a full reflective subcategory for which the reflection has stable
units and preserves monomorphisms. By Corollary 4.9 we know that the subcategory will indeed be
a quasitopos. In this section, we give a classification of subquasitoposes of S using proper universal
closure operators.

A closure operator j, on a category C with finite limits, assigns to each subobject A′ � A a sub-
object j(A′) � A in such a way that A′ � j(A′) = j( j(A)) and if A1 � A2 � A then j(A1) � j(A2) � A.
The closure operator is said to be universal if for each f : B → A and each A′ � A we have
f ∗( j(A′)) = j( f ∗(A′)). It is said to be proper, especially in the case where C is a quasitopos, if
j(A′) � A is strong subobject whenever A′ � A is one; of course this is automatic if C is a topos,
so that all subobjects are strong. If j(A′) � A is a strong subobject for all subobjects A′ � A, then j is
said to be a strict universal closure operator.

Given a universal closure operator j on C , a subobject m : A′ → A is said to be j-dense if
j(A′ � A) = A. An object X of C is said to be a j-sheaf if it is orthogonal to each j-dense monomor-
phism, and j-separated if it is separated with respect to each j-dense morphism.

Recall, for example from [12, Theorem A4.4.8], that for a quasitopos S there is a bijection between
localizations of S and proper universal closure operators on S . Explicitly, the bijection associates to
a proper universal closure operator j the subcategory Sh(S , j) of j-sheaves; while for a localization
L : S → E , the corresponding closure operator sends a subobject A′ � A to the pullback of L A′ � L A
along the unit � : A → L A. Furthermore, by [12, Theorem A4.4.5], if j is strict then Sh(S , j) is a
topos. Conversely, if j is a proper universal closure operator for which Sh(S , j) is a topos, then
for any subobject A′ � A in S , the reflection L A′ � L A is a subobject in a topos, hence a strong
subobject; thus j(A′) � A too is a strong subobject, and j is strict.

For any quasitopos Q, there is a strict universal closure operator sending a subobject A′ � A to its
strong closure A′ � A, given by factorizing the inclusion A′ → A as an epimorphism A′ → A′ followed
by a strong monomorphism A′ → A. An object of Q is said to be coarse if it is a sheaf for this
closure operator, and we write Cs(Q) for the full subcategory consisting of the coarse objects; this
is a topos, and is reflective in Q via a finite-limit-preserving reflection Q → Cs(Q) which inverts
precisely those monomorphisms which are also epimorphisms; see [12, A4.4].

We now suppose that S is a quasitopos, and L : S → E a reflection onto a subquasitopos. As
before, we write R for the full subcategory of S consisting of those objects X ∈ S for which the
unit � : X → L X is a monomorphism. We saw in Proposition 3.3 that R is reflective in S , and
we saw in Corollary 3.4 that this reflection has stable units and preserves monomorphisms; thus by
Corollary 4.9 the category R, like E , is a quasitopos.
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Proposition 5.1. There is a strict universal closure operator k on S whose sheaves are the coarse objects in
E and whose separated objects are the objects of R. The class K of k-dense monomorphisms consists of all
those monomorphisms m : X → Y for which the monomorphism Lm : L X → LY is also an epimorphism in E .

Proof. Write H : E → Cs(E ) for the reflection; by the remarks above it preserves finite limits. Recall
from Proposition 4.5 that L : S → E is quasi-lex; since H preserves finite limits and inverts the
epimorphic monomorphisms, the composite H L : S → Cs(E ) is a finite-limit-preserving reflection.
It follows that there is a proper universal closure operator k on S whose sheaves are the coarse
objects in E . Since Cs(E ) is a topos, k is strict.

A monomorphism m : X → Y in S is k-dense just when it is inverted by H L; that is, just when
the monomorphism Lm is also an epimorphism. An object A ∈ E is certainly separated with respect
to such an m, since for any a : X → A the induced La : L X → A has at most one factorization through
the epimorphism Lm : L X → LY . Furthermore, the m-separated objects are closed under subobjects,
so that every object of R is k-separated.

Conversely, suppose that X is k-separated; that is, separated with respect to each k-dense m. We
must show that �X : X → L X is a monomorphism. Let d, c : K ⇒ X be the kernel pair of �X , and
δ : X → K the diagonal. If X is δ-separated, then since dδ = 1 = cδ, the two morphisms d and c must
be equal, which is to say that �X is a monomorphism. Thus it will suffice to show that δ is k-dense.
Since L preserves finite products and monomorphisms, it also preserves jointly monomorphic pairs;
thus Ld and Lc are, like d and c, jointly monomorphic. On the other hand L�X is invertible, and
L�X .Ld = L�X .Lc, and so Ld = Lc; thus in fact Ld is monomorphic. But Lδ is a section of Ld, and so
both maps are invertible. In particular, since Lδ is invertible, δ is k-dense, and so X ∈ R. �

We are now ready to prove our characterization of subquasitoposes.

Theorem 5.2. Subquasitoposes of a quasitopos S are in bijection with pairs (h,k), where k is a strict universal
closure operator on S , and h is a proper universal closure operator on Sep(S ,k) with the property that every
h-dense subobject is also k-dense; the subquasitopos corresponding to the pair (h,k) is Sh(Sep(S ,k),h).

Proof. If k is a strict universal closure operator on S , then the category Sh(S ,k) of k-sheaves is
reflective in S via a finite-limit-preserving reflection M . The category Sep(S ,k) of k-separated ob-
jects is also reflective, and we may obtain the reflection M ′ by factorizing the unit m : X → M X of
M as a strong epimorphism m′ : X → M ′ X followed by a monomorphism κ : M ′ X → M X , exactly as
in Proposition 3.3. By Corollary 3.4 we know that M ′ has stable units and preserves monomorphisms.
Now Sh(Sep(S ,k),h) is reflective in Sep(S ,k) via a finite-limit-preserving reflection, and so the
composite reflection S → Sh(Sep(S ,k),h) has stable units and preserves monomorphisms.

Conversely, let L : S → E be a reflection onto a subquasitopos. As above, we define k to be
the strict universal closure operator whose sheaves are the coarse objects in E . By Corollary 3.4,
we know that the restriction L : R → E of L to R preserves finite limits, and so corresponds to a
proper universal closure operator h on R, whose category of sheaves is E . Since every k-sheaf is an
h-sheaf, every h-dense monomorphism is k-dense.

It remains to prove the uniqueness of the h and k giving rise to L : S → E as in the first para-
graph. We constructed M ′ above by factorizing X → M X as a strong epimorphism m′ : X → M ′ X
followed by a monomorphism κ : M ′ X → M X . Since every h-dense monomorphism is k-dense, cer-
tainly every k-sheaf is an h-sheaf. Thus κ : M ′ X → M X factorizes through L X by some ν : M ′ X → L X ,
necessarily monic, and now � : X → L X factorizes as a strong epimorphsm m′ : X → M ′ X followed
by a monomorphism ν : M ′ X → L X . Thus Sep(S ,k) is uniquely determined by L. In general, there
can be several different proper universal closure operators with a given category of separated objects,
but by the discussion after [12, Theorem A4.4.8], there can be at most one strict universal closure
operator with a given category of separated objects. Thus k is uniquely determined. Unlike the case of
separated objects, a proper universal closure operator is uniquely determined by its sheaves, and so h
is also uniquely determined. �
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Observe that in our characterization the two proper universal closure operators live on different
categories. In the next section, we shall see that when S is a presheaf topos, there is an alternative
characterization in terms of two universal closure operators on S . In fact, even for a general qua-
sitopos, we may give a characterization purely in terms of structure existing in S provided that we
prepared to work with stable classes of monomorphisms rather than universal closure operators.

As in Proposition 5.1, we let K denote the class of monomorphisms m : X → Y in S for which
Lm is an epimorphism as well as a monomorphism; as there, these are the dense monomorphisms
for a universal closure operator, and so in particular are stable under pullback. Now we let J be the
class of monomorphisms m : X → Y in S , every pullback of which is inverted by L. This is clearly
the largest stable class of monomorphisms inverted by L. As we saw in Proposition 3.3, the unit
�X : X → L X is a monomorphism for any X ∈ R; furthermore since L has stable units, it preserves
the pullback of �X along any map, and so L inverts not just �X but also all of its pullbacks. Thus
�X lies in J for all X ∈ R; more generally, since L preserves all pullbacks over objects in R by
Remark 3.6, any monomorphism f : X → Y in R which is inverted by L will lie in J .

Theorem 5.3. Let S be a quasitopos, and L : S → E a reflection onto a full subcategory. If L has stable units
and preserves monomorphisms, then

(i) an object X of S lies in R just when it is K -separated;
(ii) an object X of S lies in E just when it is K -separated and a J -sheaf.

Proof. We have already proved part (i) in Proposition 5.1. For part (ii), first observe that if A ∈ E then
A is orthogonal to all morphisms inverted by L, not just those in J . It is of course also separated
with respect to K .

Conversely, if A is K -separated then it is in R; but then �A : A → L A is in J , and so if A is a
J -sheaf then �A must be invertible and so A ∈ E . �

At the current level of generality, there seems no reason why J need be the dense monomor-
phisms for a proper universal closure operator on S . In the following section we shall see that this
will be so if S is a presheaf topos.

6. Grothendieck quasitoposes

In this final section we suppose that S is a presheaf topos [C op,Set], as well as the standing
assumption that L : S → E is a reflection which preserves monomorphisms and has stable units.
Recall that J consists of the monomorphisms which are stably inverted by the reflection L, and that
K consists of the monomorphisms m for which Lm is an epimorphism in E as well as a monomor-
phism. By Theorem 5.2, the class K consists of the dense monomorphisms for a (proper) universal
closure operator k on S ; and by our new assumption that S is a presheaf topos, k corresponds to a
Grothendieck topology with the same sheaves and separated objects. Since at this stage we are really
only interested in the sheaves and separated objects, we take the liberty of using the same name k
for the topology as for the universal closure operator.

As for J , since it is a stable system of monomorphisms, it can be seen as a coverage, in the sense
of [12], and so generates a Grothendieck topology j whose sheaves are the objects orthogonal to J .

Theorem 6.1. For a reflection L : [C op,Set] → E onto a full subcategory of a presheaf category, the following
conditions are equivalent:

(i) The subcategory E has the form Sep(k) ∩ Sh( j) for topologies j and k on C with k containing j;
(ii) L is semi-left-exact and preserves finite products and monomorphisms;

(iii) L has stable units and preserves monomorphisms.

An E as in the theorem is called a Grothendieck quasitopos; as we saw in the introduction, a cat-
egory E has this form for some C , j, and k if and only if it is a locally presentable quasitopos [2].
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Proof. The equivalence of (ii) and (iii) was shown in Theorem 3.5. The fact that these imply (i) now
follows from Theorem 5.3. Thus it will suffice to suppose (i) and show that (iii) follows.

We have adjunctions

Sep(k) ∩ Sh( j)

L2

⊥ Sh( j)

L1

⊥ [C op,Set]

and L1 preserves all finite limits. It will clearly suffice to show that L2 preserves monomorphisms as
well as pullbacks over an object of Sep(k) ∩ Sh( j).

Now Sep(k) ∩ Sh( j) is just the category of separated objects in the topos Sh( j) for a (Lawvere–
Tierney) topology k′ in Sh( j). Thus it will suffice to show that for a topos S and a topology k, the
reflection L : S → Sep(k) preserves monomorphisms as well as pullbacks over separated objects. This
is the special case of (one direction of) Theorem 5.2, where h is trivial. �

As we saw in the previous section, the topology k can be recovered from Sep(k) ∩ Sh( j), since
Sh(k) is the topos of coarse objects in Sep(k) ∩ Sh( j), which can be obtained by inverting all those
morphisms in Sep(k) ∩ Sh( j) which are both monomorphisms and epimorphisms. Unlike the case of
the (proper) universal closure operator h of the previous section, j need not be uniquely determined,
as we now explain.

There exist non-trivial topologies k for which every separated object is a sheaf; these were studied
by Johnstone in [11]. In this case, for any topology j contained in k we have

Sep(k) ∩ Sh( j) = Sh(k) ∩ Sh( j) = Sh(k),

where the last step holds since Sh(k) ⊆ Sh( j). In particular we could take j to be either trivial or k
and obtain the same subcategory Sh(k) as Sep(k) ∩ Sh( j).

Example 6.2. For example, as explained in [12, Example A4.4.9], we could take the category SetM of
M-sets, where M is the two-element monoid M = {1, e}, with e2 = e, or equivalently the category of
sets equipped with an idempotent. Then Set can be seen as the full reflective subcategory of M-sets
with trivial action. The reflection L : SetM → Set splits the idempotent; this preserves all limits and so
is certainly a localization. Since the unit of the adjunction is epimorphic, every separated object for
the induced topology k is a sheaf.

Remark 6.3. Theorem 6.1 can be generalized to the case of a Grothendieck topos S in place of
[C op,Set]; then j and k would be Lawvere–Tierney topologies on S . It can further be generalized
to the case where S is a Grothendieck quasitopos, provided that we are willing to work with proper
universal closure operators j and k rather than topologies. In either case, E will still be a quasitopos
by Corollary 4.9, and is in fact a Grothendieck quasitopos. In the case of a quasitopos or topos S
which is not locally presentable, however, there seems no reason why the objects orthogonal to J
should be the sheaves, either for a topology or a universal closure operator.
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