
Solving Sudoku Puzzles with Particle Swarm Optimisation

Sean McGerty

ITEC808 student
Macquarie University

Sydney, Australia
sean.mcgerty@sudents.mq.edu.au

Abstract

This workshop paper addresses Heuristic ap-
proaches to solving Sudoku puzzles, with par-
ticular focus on Particle Swarm Optimisa-
tion(PSO). Sudoku problems and their con-
straints will be discussed. Heuristics used to
solve Sudoku will be identified. We will then
propose a component framework for support-
ing PSO and other Heuristics. Doing so allows
us to separately detail aspects of PSO such as
initialisation, optimisation, randomisation and
the fitness function separately. Conclusions
are drawn, implications drawn for the other
Heuristics, and suggestions for further work
are made.

1 Introduction

Sudoku is a popular combinatorial challenge for
enthusiasts worldwide. The simple 9x9 grid and
4 constraints are easily understood, and the
6,700x1018 or so possible combinations ensures
enough complexity to last hours.

Sudoku is also significant as a target for heuris-
tics research. Sudoku puzzles have been shown
to be NP Complete, which means you may need
to check all possible combinations to know you
have the best solution. Finding reliable ways to
quickly solve Sudoku problems may offer im-
proved ways to solve NP Complete problems.

Generally speaking, Heuristics solve problems
by working as a population. Each member of the
population randomly changes, is measured by a
fitness function, and then information is shared
about the more successful members.

There are two forms of Heuristics, Evolutionary
Algorithms(EAs) and Swarming Algo-

rythms(SA). EAs include Genetic Algorythms
where particles simulate population lifecycles
and the sharing of successful attributes from par-
ents to children, or Simulated Annealing where
elements are combined. SAs include Particle
Swarm Optimisation where the particles move
towards the most successful particle, in the way
birds my flock in flight.

The weakness of Heuristics is a tendency to drive
into local maxima. This happens because Heuris-
tics chase the best solution, without knowing if it
is really the best possible solution. A Heuristic
might solve most of a puzzle, and only be able to
tell it can’t improve. Our aim is to improve our
heuristic to avoid these local maxima fill all 81
cells more of the time.

The Heuristics have a lifecycle, and breaking
their operation into components shows that there
are multiple aspects to configuration and man-
agement. We suggest a component framework
which will allow our PSO implementations to be
optimised within each of these components.

2 Sudoku

In this section we review how Sudoku puzzles
are defined.

1

• Numbers are in the range 1 to 9.

Sudoku roughly translates from the Japanese as
“Solitary Number”[4]. The numbers 1-9 are dis-
tributed on a 9x9 grid using 4 contraints:

• No number is duplicated in any row
• No number is duplicated in any column
• No Number is duplicated in a region, de-

fined as 9 exclusive 3x3 blocks.

1 http://en.wikipedia.org/wiki/Sudoku

Sudoku boards are seeded with numbers known
as Givens. The lowest observed number of gi-
vens that leads to a unique solution is 17 with
47,000 of these known, but the theoretical mini-
mum is as yet unidentified[10]. Players cannot
change Givens, but vary the values in other cells
in an attempt to find a solution which fills the
boards and satisfies the constraints as shown in
Figure 1.

Sudoku puzzles have existed in popular form
since 1892[10] and are believed to be based on
2Latin Squares[8] first presented by Leonhard
Euler in 1783[4]. Euler used Latin characters
rather than numbers and didn't enforce the Sudo-
ku region constraint. Latin Squares problems
have been known to be NP Complete
[11](Berlekamp, McEliece, Tilborg 1978) for
some time, while Sudoku Puzzles have also been
shown to be NP Complete more recently
([1]Yato Seeta 2005).

3

3 Heuristics

Given these constraints, and the size of the
board, the total number of possible Sudoku com-
binations has been identified in rec.puzzles in
2003 as 6,670,903,752,021,072,936,960 [10].
Sudoku puzzles are often ranked for difficulty,
and there appears to be no direct correlation be-
tween the difficulty of a problem and the number
of givens.

In this section we review Heuristics which have
been used to try and solve Sudoku puzzles.

4

Heuristics start with a collection of solutions
which they attempt to improve. The result is the
best so far, rather than the best possible solution.
Our goal is to optimise heuristics so as to have
confidence that the heuristic good solution is ef-
fectively the global optimum. If this were repeat-

A heuristic technique is one that attempts to find
good fit solutions, often by trial and error or
learning techniques, and avoids the requirement
to evaluate every possible combination as a brute
force method would.[17]

2 http://en.wikipedia.org/wiki/Latin_square
3 http://en.wikipedia.org/wiki/Algorithmics_of_sudoku
4 http://en.wikipedia.org/wiki/Heuristic

able, solutions to other NPComplete problems
may also be possible.

Figure 1 - Sudoku puzzle

A key optimisation for heuristics is being able to
avoid local maxima. We are lucky in that fitness
functions for Sudoku can identify a correct solu-
tion, and in many cases there is only one unique
solution.

Heuristic solutions to Sudoku fall into 2 main
categories, Evolutionary and Swarming.

3.1 Evolutionary Heuristics
5

• A generation of solutions are created

Evolutionary Algorythms(EAs) have genera-
tions of solutions that attempt to optimise them-
selves by combining the best elements of each
other.

The general approach is outlined as follows:

• They are assessed by a fitness function.
• The more successful members of the

population share attributes or propagate.
• The least successful solutions are elimi-

nated or attempt to gain the attributes of
the more successful.

5 http://en.wikipedia.org/wiki/Evolutionary_computation

• A random mutation factor is applied.
• This process continues until the popula-

tion stabilises around a collection of lo-
cal maximums.

Genetic Algorythms are EAs based around Dar-
winian evolution and survival of the fittest.
[4](Perez, Marwala 2008), [5] (Mantere, Koljo-
nen 2007), [6] Darwin 1859.

Simulated Annealing is a type of EA which
combines attributes from good solutions into
weaker solutions, and is based on how mineral
crystals grow. [4](Perez, Marwala 2008)

An important consideration for EAs is that,
should they be stateless, they can be combined
with other Heuristics as interleaved optimisa-
tions.

3.2 Swarming Heuristics

Swarming heuristics involves particles which
attempt to improve their position by moving to-
wards better performing neighbors.

A population of points are randomly thrown into
the solution space. Each point knows its "loca-
tion" and its "velocity". Points know their current
solution fitness and their best solution so far.
Points also know the fitness and best solution so
far for their neighbors. [12](Li, Tian, Hua,
Zhong 2006)

Neighbors can be defined by distance or relation-
ships. Distance calculations for points can be
computationally expensive. Relationships can be
maintained via lookup tables. As particles con-
verge either neighbor algorythm may yield simi-
lar results.

Each movement iteration combines the current
particle ‘velocity’ and a randomisation factor
with a range of trust factors including: current
location, this particles’ best solution so far, the
positions of its neighbors, and the success of its
neighbors.

Repulsive Particle Swarm Optimisation adds a
factor for ensuring particles don’t get too close
together in the hope of avoiding local maxima.
[4](Perez, Marwala 2008)

Geometric Crossovers are an important variant of
PSO where the velocity component is replaced
by the ability to crossover cells with other solu-

tions. ([2]Moraglio 2007), [7](Moraglio, Di
Chio, Togelius, Poli 2008).

3.3 The Fitness Function

Evaluating the success of any solution is per-
formed by a fitness function. The fitness function
gives higher scores for more developed solu-
tions. A successful solution therefore is the max-
imum allowable fitness function value.

In the case of Sudoku, if we were to count the
number of placed numbers a maximum fitness
function value may be 9x9x9=729 (9 degrees of
freedom on each of 3 constraints). The fitness
function can be reused by each heuristic tested.

3.4 Heuristic Optimisations

Optimisations for these heuristics usually try to
balance speed to a solution against collecting in a
local maximum.

Geometric crossovers involve swapping a subset
of values between 2 solutions as permitted by the
constraints.

Repulsive affects act against the tendency of so-
lutions to gravitate to the same point.

Simulated Annealing [3](Lewis 2007) is some-
times used as an optimisation technique on other
heuristics, and works in a similar fashion to
geometric crossovers, except that values are
combined rather than swapped.

Optimisations can be prioritised with factors ef-
fecting when they contribute in the solution life-
cycle. For example repulsive and randomisation
factors may be more significant during early
stages of the solution process and less apparent
the closer candidate solutions become.

4 Assessing Heuristic Components

In this section we extend from our review of
sources and suggest a breakdown of the Heuris-
tics into pieces that can be separately optimized.
These components can then be reassembled in a
framework improving a range of Heuristic and
optimisation combinations.

Heuristic approaches appear to lend themselves
to a componentisation and reuse. If the compo-

nents are inputs to the heuristics, then improving
the quality of the components increases the prob-
ability of success for the heuristics.

Each heuristic: is seeded with a board defining
the problem givens, is seeded with random solu-
tions including the givens, can be defined to
work with the same representation of the Sudoku
board.

The fitness function has more to do with assess-
ing the constraints than any particular heuristic.

Optimisations appear to be interleaved between
heuristic iterations, and can therefore be inde-
pendent.

Trust factors such as randomisation may be con-
sistent between heuristics. As well the mechan-
ism controlling trust factor prioritisation over the
lifecycle of a heuristic would be reusable if it
remained configurable per heuristic. This is de-
scribed in Figure 2.

Figure 2 - Component workflow

4.1 The board and givens

The board and givens should be defined as simp-
ly as possible on a 9x9 grid. The solution encod-
ing method appears to be a fundamental scaling
factor for the number of PSO particles that can
be supported and the populations under man-
agement in Evolutionary heuristics. Graph im-
plementation of the problem space have been
used, but these seem to favor individual imple-
mentations. [8](Simonis 2005). Indeed how to
use alternative encodings is an important element
in itself. [9](Lynce, Ouaknine 2006), [10](Moon,
Gunther 2006)

Combinatorial and search based optimisations
are good enough to allow brute force solutions to
be achieved in sub second time. Adding these
abilities to Heuristics devalues our goal, so no
namespaces supporting these processes should be
added.

4.2 Empty Cells and Degrees of Freedom

An optimisation that is particularly successful
during brute force solutions is working with cells
with the lowest degrees of freedom. Working in
open areas of the board is not necessarily helpful
if it can be invalidated by cells which have fewer
valid options.

Identifying cells with restricted degrees of free-
dom can be done by search mechanisms, howev-
er this devalues the heuristic approach and we
will not pursue this avenue. The Fitness Function
could contain a factor that favors solutions which
are using cells with more populated constraints.
Filling these cells earlier on in the process in-
creases the flexibility available to the heuristic
later on in the process. This also delays the ap-
pearance of local maxima.

4.3 Random Candidate Solutions

The size of the initial random solutions is ex-
pected to be significant.

Consider the process of adding valid random
numbers to a board. It is expected that the num-
ber of valid combinations remaining drops as
numbers are added to the board. However the
rate at which combinations are eliminated is rela-
tive to the the complexity of the problem pre-
sented by the numbers placed, as stated earlier.

Therefore it is expected that a board might transi-
tion from many possible solutions, to one valid
solution, to no valid solutions, as random num-
bers are successively added. The point at which
no more random numbers can be added matches
the situation for a heuristic where a local maxima
has been found. This is indicated in Figure 3.

A higher degree of randomisation in the initial
population distributes the population and par-
ticles as far as possible across the namespace. It
is expected that this also improves the benefits
seen from optimisations such as Geometric Cros-

sovers as there are more cells to work from when
comparing particles.

Figure 3 – Considerations for Randoms

Just adding random numbers has a very low
probability of success. Continuing to add random
numbers before commencing the heuristic brings
the solution closer to local maxima.

It is expected the optimum size of random solu-
tions can be validated by attempting to solve
puzzles with a brute force algorithm as Randoms
are added. As the transition of through the states
of "many solutions" to "one solution" to "unsolv-
able" is expected, we can generalize a good
number of target Randoms for truly random solu-
tions.

4.4 Optimisations Interleaving Heuristics.

When we look at the namespace requirements for
Evolutionary and Swarming algorithms it be-
comes apparent that there are similarities.

The suitability of an optimisation met for inter-
leaving with a heuristic appears to be determined
by its namespace and its behaviors:

Optimisations that do little more than work with
boards are favored. It would be possible to see
Simulated Annealing, or Geometric Crossovers
used as Optimisations as they simply compare
boards and swap values. Others like PSO which
manage additional information such as velocities,
prior solutions or neighborhood relations are un-
suitable.

Optimisations that would need to discard solu-
tions, such as Genetic Algorithms, may be incon-
sistent with the management requirements of
heuristics that try and improve a solution over
time like PSO. To continue to operate PSO

would need to reset the particle from the deleted
solution to the new one, which looses the value
of the particle knowing its best solution so far.

As a result Geometric Crossovers, Simulated
Annealing and Repulsive factors are candidates
as optimisations because they are immediate
while Genetic Annealing and PSO are not.

Evolutionary algorithms use populations of
boards which vary by iteration.

Swarming Algorithms need to track: the current
solution, the best solution so far, the current ‘ve-
locity’, and any neighbor relationships (distance
or social).

As a result it would be possible to perform an
iteration of an Evolutionary Algorithm in be-
tween iterations of PSO if the EA used the cur-
rent solution as its board. The reverse would not
necessarily be true as the PSO’s extra details
wouldn’t be available.

This explains why relatively stateless optimisa-
tions such as Simulated Annealing and geometric
crossovers have been used as an optimisation for
PSO.

4.5 Trust Factors

Each of the heuristics attempts to balance: a ran-
dom factor, trust in itself now, trust in its pre-
vious best solution, trust in another population
member / particle, and trust in interleaved opti-
misation.

These trust factors can change over time. For
example it makes sense to increase randomisa-
tion earlier in the process to help distribute the
particles / population. Later on in the process, as
we begin to approach candidate solutions, it
makes more sense to increase trust in more suc-
cessful elements in the population.

This situation was evident in the Repulsive PSO
analysis, where a repulsive force was added to a
Swarm in an attempt to avoid local maxima. In
this case the particles merely stabilised at the
minimum distance from each other and the de-
sired benefits were not realized. The stronger
strategy of randomisation earlier with a more
focused result later seems to have better results.

The mechanism for managing these trust factors
over the lifecycle of the solution can be a com-
ponent. This would allow comparisons on the
effectiveness of trust factors for Optimisations
and randomisation.

5 Conclusions

Particle Swarm Optimisation appears to have
shown the best success rates when combined
with Geometric Crossovers. Unlike Evolutionary
Algorythms, the Geometric Crossovers aren’t
driving towards improving the solution and ap-
proaching a local maximum. The Crossovers are
redistributing the particles without violating the
constraints. As always, a balance is formed be-
tween the trust factors for approaching solution
and the trust factors for randomisation. However
in this case, randomisation extends to redistribu-
tion of the solution as well as incremental
change.

The suggested component framework offers sig-
nificant advantages often not apparent in refer-
ence implementations. Instantiation, lifecycle
management, trust factors and interleaved opti-
misations can all be controlled and measured
outside of any given heuristic.

5.1 Further work

A reference implementation of the component
framework can be created for PSO with Geome-
tric Crossovers. Care should be taken for devel-
opment considerate of later extension. Instantia-
tion and Trust factors can then be varied to max-
imise success.

Once this is completed new interleave optimisa-
tions can be developed such as Simulated An-
nealing. The framework configuration can again
be optimised.

Finally new heuristics can be implemented with-
in the framework, and optimisations and configu-
rations tested / optimised for each.

6 Acknowledgements

This study is the result of a proposal by Mehmet
Orgun. Content is primarily based on a sequence
of papers by Alberto Moraglio on Particle
Swarm Optimisation. Genetic Algorythms dis-
cussion largely comes from by Sudoku Genetic

Algorythm approaches by Mantere and Koljo-
nen. Simulated Annealing by Lewis. Generalised
Stoachistic approaches by Perez and Marwala.

[1] T. Yato and T. Seta. Complexity and complete-
ness of finding another solution and its appli-
cation to puzzles. Preprint, University of Tokyo,
2005.

[2] Alberto Moraglio, Julian Togelius Geometric
Particle Swarm Optimization for the Sudoku
Puzzle. University of Essex, UK 2007.

[3] R. Lewis. (2007). Metaheuristics can Solve Su-
doku Puzzles. Journal of Heuristics Archive,
13(4), 387-401.

[4] Meir Perez and Tshilidzi Marwala - Stochiastic
Optimization Approaches for Solving Sudoku
2008.

[5] Mantere, T.; Koljonen, J. Solving, rating and
generating Sudoku puzzles with GA Evolutio-
nary Computation, 2007. CEC 2007. IEEE Con-
gress on Volume , Issue , 25-28 Sept. 2007
Page(s):1382 - 1389

[6] Darwin, C.: The Origin of Species: By Means
of Natural Selection or The Preservation of
Favoured Races in the Struggle for Life, Ox-
ford University Press, London, 1859, A reprint of
the 6th edition (1968)

[7] Alberto Moraglio, Cecilia Di Chio, Julian Toge-
lius, and Riccardo Poli - Geometric Particle
Swarm Optimization (2008)

[8] Helmut Simonis - Sudoku as a Constraint
Problem – 2005 Imperial College London

[9] Ines Lynce, Joel Ouaknine - Sudoku as a SAT
Problem – 2006

[10] Todd K. Moon and Jacob H. Gunther - Multiple
Constraint Satisfaction by Belief Propagation:
An Example Using Sudoku - July 2006

[11] Elwyn R. Berlekamp, fellow IEEE, Robert J.
McEliece, Henk C. A. Van Tilborg - On the Inhe-
rent Intractability of Certain Coding Problems
- IEEE TRANSACTIONS ON INFORMATION
THEORY, VOL. IT-24, NO. 3, MAY 1978

[12] Xiangyong Li, Peng Tian, Jing Hua, and Ning
Zhong - A Hybrid Discrete Particle Swarm Op-
timization for the Traveling Salesman Problem
– 2006

