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Abstract 

 

This workshop paper addresses Heuristic ap-
proaches to solving Sudoku puzzles, with par-
ticular focus on Particle Swarm Optimisa-
tion(PSO). Sudoku problems and their con-
straints will be discussed. Heuristics used to 
solve Sudoku will be identified. We will then 
propose a component framework for support-
ing PSO and other Heuristics. Doing so allows 
us to separately detail aspects of PSO such as 
initialisation, optimisation, randomisation and 
the fitness function separately. Conclusions 
are drawn, implications drawn for the other 
Heuristics, and suggestions for further work 
are made. 

1 Introduction 

Sudoku is a popular combinatorial challenge for 
enthusiasts worldwide. The simple 9x9 grid and 
4 constraints are easily understood, and the 
6,700x1018 or so possible combinations ensures 
enough complexity to last hours. 
 
Sudoku is also significant as a target for heuris-
tics research. Sudoku puzzles have been shown 
to be NP Complete, which means you may need 
to check all possible combinations to know you 
have the best solution. Finding reliable ways to 
quickly solve Sudoku problems may offer im-
proved ways to solve NP Complete problems. 
 
Generally speaking, Heuristics solve problems 
by working as a population. Each member of the 
population randomly changes, is measured by a 
fitness function, and then information is shared 
about the more successful members. 
 
There are two forms of Heuristics, Evolutionary 
Algorithms(EAs) and Swarming Algo-

rythms(SA). EAs include Genetic Algorythms 
where particles simulate population lifecycles 
and the sharing of successful attributes from par-
ents to children, or Simulated Annealing where 
elements are combined. SAs include Particle 
Swarm Optimisation where the particles move 
towards the most successful particle, in the way 
birds my flock in flight. 
 
The weakness of Heuristics is a tendency to drive 
into local maxima. This happens because Heuris-
tics chase the best solution, without knowing if it 
is really the best possible solution. A Heuristic 
might solve most of a puzzle, and only be able to 
tell it can’t improve. Our aim is to improve our 
heuristic to avoid these local maxima fill all 81 
cells more of the time. 
 
The Heuristics have a lifecycle, and breaking 
their operation into components shows that there 
are multiple aspects to configuration and man-
agement. We suggest a component framework 
which will allow our PSO implementations to be 
optimised within each of these components. 
 

2 Sudoku 

 
In this section we review how Sudoku puzzles 
are defined. 
 
1

• Numbers are in the range 1 to 9. 

Sudoku roughly translates from the Japanese as 
“Solitary Number”[4]. The numbers 1-9 are dis-
tributed on a 9x9 grid using 4 contraints: 

• No number is duplicated in any row 
• No number is duplicated in any column 
• No Number is duplicated in a region, de-

fined as 9 exclusive 3x3 blocks. 

                                                 
1 http://en.wikipedia.org/wiki/Sudoku 



 
Sudoku boards are seeded with numbers known 
as Givens. The lowest observed number of gi-
vens that leads to a unique solution is 17 with 
47,000 of these known, but the theoretical mini-
mum is as yet unidentified[10]. Players cannot 
change Givens, but vary the values in other cells 
in an attempt to find a solution which fills the 
boards and satisfies the constraints as shown in 
Figure 1. 
 
Sudoku puzzles have existed in popular form 
since 1892[10] and are believed to be based on 
2Latin Squares[8] first presented by Leonhard 
Euler in 1783[4]. Euler used Latin characters 
rather than numbers and didn't enforce the Sudo-
ku region constraint. Latin Squares problems 
have been known to be NP Complete 
[11](Berlekamp, McEliece, Tilborg 1978) for 
some time, while Sudoku Puzzles have also been 
shown to be NP Complete more recently 
([1]Yato Seeta 2005). 
 
3

3 Heuristics 

Given these constraints, and the size of the 
board, the total number of possible Sudoku com-
binations has been identified in rec.puzzles in 
2003 as 6,670,903,752,021,072,936,960 [10]. 
Sudoku puzzles are often ranked for difficulty, 
and there appears to be no direct correlation be-
tween the difficulty of a problem and the number 
of givens. 
 

 
In this section we review Heuristics which have 
been used to try and solve Sudoku puzzles. 
 
4

Heuristics start with a collection of solutions 
which they attempt to improve. The result is the 
best so far, rather than the best possible solution. 
Our goal is to optimise heuristics so as to have 
confidence that the heuristic good solution is ef-
fectively the global optimum. If this were repeat-

A heuristic technique is one that attempts to find 
good fit solutions, often by trial and error or 
learning techniques, and avoids the requirement 
to evaluate every possible combination as a brute 
force method would.[17] 

 

                                                 
2 http://en.wikipedia.org/wiki/Latin_square 
3 http://en.wikipedia.org/wiki/Algorithmics_of_sudoku 
4 http://en.wikipedia.org/wiki/Heuristic 

able, solutions to other NPComplete problems 
may also be possible. 
 

 
 

Figure 1 - Sudoku puzzle 
 
A key optimisation for heuristics is being able to 
avoid local maxima. We are lucky in that fitness 
functions for Sudoku can identify a correct solu-
tion, and in many cases there is only one unique 
solution. 
 
Heuristic solutions to Sudoku fall into 2 main 
categories, Evolutionary and Swarming. 
 

3.1 Evolutionary Heuristics 
5

• A generation of solutions are created 

Evolutionary Algorythms(EAs) have genera-
tions of solutions that attempt to optimise them-
selves by combining the best elements of each 
other. 
 
The general approach is outlined as follows: 

• They are assessed by a fitness function. 
• The more successful members of the 

population share attributes or propagate. 
• The least successful solutions are elimi-

nated or attempt to gain the attributes of 
the more successful. 

                                                 
5 http://en.wikipedia.org/wiki/Evolutionary_computation 



• A random mutation factor is applied. 
• This process continues until the popula-

tion stabilises around a collection of lo-
cal maximums. 

 
Genetic Algorythms are EAs based around Dar-
winian evolution and survival of the fittest. 
[4](Perez, Marwala 2008), [5] (Mantere, Koljo-
nen 2007), [6] Darwin 1859. 
 
Simulated Annealing is a type of EA which 
combines attributes from good solutions into 
weaker solutions, and is based on how mineral 
crystals grow. [4](Perez, Marwala 2008) 
 
An important consideration for EAs is that, 
should they be stateless, they can be combined 
with other Heuristics as interleaved optimisa-
tions. 

3.2 Swarming Heuristics 

Swarming heuristics involves particles which 
attempt to improve their position by moving to-
wards better performing neighbors. 
 
A population of points are randomly thrown into 
the solution space. Each point knows its "loca-
tion" and its "velocity". Points know their current 
solution fitness and their best solution so far. 
Points also know the fitness and best solution so 
far for their neighbors. [12](Li, Tian, Hua, 
Zhong 2006) 
 
Neighbors can be defined by distance or relation-
ships. Distance calculations for points can be 
computationally expensive. Relationships can be 
maintained via lookup tables. As particles con-
verge either neighbor algorythm may yield simi-
lar results. 
 
Each movement iteration combines the current 
particle ‘velocity’ and a randomisation factor 
with a range of trust factors including: current 
location, this particles’ best solution so far, the 
positions of its neighbors, and the success of its 
neighbors. 
 
Repulsive Particle Swarm Optimisation adds a 
factor for ensuring particles don’t get too close 
together in the hope of avoiding local maxima. 
[4](Perez, Marwala 2008) 
 
Geometric Crossovers are an important variant of 
PSO where the velocity component is replaced 
by the ability to crossover cells with other solu-

tions. ([2]Moraglio 2007), [7](Moraglio, Di 
Chio, Togelius, Poli 2008). 
 

3.3 The Fitness Function 

Evaluating the success of any solution is per-
formed by a fitness function. The fitness function 
gives higher scores for more developed solu-
tions. A successful solution therefore is the max-
imum allowable fitness function value. 
 
In the case of Sudoku, if we were to count the 
number of placed numbers a maximum fitness 
function value may be 9x9x9=729 (9 degrees of 
freedom on each of 3 constraints). The fitness 
function can be reused by each heuristic tested. 
 

3.4 Heuristic Optimisations 

Optimisations for these heuristics usually try to 
balance speed to a solution against collecting in a 
local maximum. 
 
Geometric crossovers involve swapping a subset 
of values between 2 solutions as permitted by the 
constraints. 
 
Repulsive affects act against the tendency of so-
lutions to gravitate to the same point. 
 
Simulated Annealing [3](Lewis 2007) is some-
times used as an optimisation technique on other 
heuristics, and works in a similar fashion to 
geometric crossovers, except that values are 
combined rather than swapped. 
 
Optimisations can be prioritised with factors ef-
fecting when they contribute in the solution life-
cycle. For example repulsive and randomisation 
factors may be more significant during early 
stages of the solution process and less apparent 
the closer candidate solutions become. 

4 Assessing Heuristic Components 

 
In this section we extend from our review of 
sources and suggest a breakdown of the Heuris-
tics into pieces that can be separately optimized. 
These components can then be reassembled in a 
framework improving a range of Heuristic and 
optimisation combinations. 
 
Heuristic approaches appear to lend themselves 
to a componentisation and reuse. If the compo-



nents are inputs to the heuristics, then improving 
the quality of the components increases the prob-
ability of success for the heuristics. 
 
Each heuristic: is seeded with a board defining 
the problem givens, is seeded with random solu-
tions including the givens, can be defined to 
work with the same representation of the Sudoku 
board. 
 
The fitness function has more to do with assess-
ing the constraints than any particular heuristic. 
 
Optimisations appear to be interleaved between 
heuristic iterations, and can therefore be inde-
pendent. 
 
Trust factors such as randomisation may be con-
sistent between heuristics. As well the mechan-
ism controlling trust factor prioritisation over the 
lifecycle of a heuristic would be reusable if it 
remained configurable per heuristic. This is de-
scribed in Figure 2. 
 

 
Figure 2 - Component workflow 

 

4.1 The board and givens  

The board and givens should be defined as simp-
ly as possible on a 9x9 grid. The solution encod-
ing method appears to be a fundamental scaling 
factor for the number of PSO particles that can 
be supported and the populations under man-
agement in Evolutionary heuristics. Graph im-
plementation of the problem space have been 
used, but these seem to favor individual imple-
mentations. [8](Simonis 2005). Indeed how to 
use alternative encodings is an important element 
in itself. [9](Lynce, Ouaknine 2006), [10](Moon, 
Gunther 2006) 

 
Combinatorial and search based optimisations 
are good enough to allow brute force solutions to 
be achieved in sub second time. Adding these 
abilities to Heuristics devalues our goal, so no 
namespaces supporting these processes should be 
added. 
 

4.2 Empty Cells and Degrees of Freedom 

An optimisation that is particularly successful 
during brute force solutions is working with cells 
with the lowest degrees of freedom. Working in 
open areas of the board is not necessarily helpful 
if it can be invalidated by cells which have fewer 
valid options. 
 
Identifying cells with restricted degrees of free-
dom can be done by search mechanisms, howev-
er this devalues the heuristic approach and we 
will not pursue this avenue. The Fitness Function 
could contain a factor that favors solutions which 
are using cells with more populated constraints. 
Filling these cells earlier on in the process in-
creases the flexibility available to the heuristic 
later on in the process. This also delays the ap-
pearance of local maxima. 
 

4.3 Random Candidate Solutions 

The size of the initial random solutions is ex-
pected to be significant. 
 
Consider the process of adding valid random 
numbers to a board. It is expected that the num-
ber of valid combinations remaining drops as 
numbers are added to the board. However the 
rate at which combinations are eliminated is rela-
tive to the the complexity of the problem pre-
sented by the numbers placed, as stated earlier.  
 
Therefore it is expected that a board might transi-
tion from many possible solutions, to one valid 
solution, to no valid solutions, as random num-
bers are successively added. The point at which 
no more random numbers can be added matches 
the situation for a heuristic where a local maxima 
has been found. This is indicated in Figure 3. 
 
A higher degree of randomisation in the initial 
population distributes the population and par-
ticles as far as possible across the namespace. It 
is expected that this also improves the benefits 
seen from optimisations such as Geometric Cros-



sovers as there are more cells to work from when 
comparing particles. 
 

 
Figure 3 – Considerations for Randoms 

 
Just adding random numbers has a very low 
probability of success. Continuing to add random 
numbers before commencing the heuristic brings 
the solution closer to local maxima.  
 
It is expected the optimum size of random solu-
tions can be validated by attempting to solve 
puzzles with a brute force algorithm as Randoms 
are added. As the transition of through the states 
of "many solutions" to "one solution" to "unsolv-
able" is expected, we can generalize a good 
number of target Randoms for truly random solu-
tions. 
 

4.4 Optimisations Interleaving Heuristics. 

 
When we look at the namespace requirements for 
Evolutionary and Swarming algorithms it be-
comes apparent that there are similarities. 
 
The suitability of an optimisation met for inter-
leaving with a heuristic appears to be determined 
by its namespace and its behaviors: 
 
Optimisations that do little more than work with 
boards are favored. It would be possible to see 
Simulated Annealing, or Geometric Crossovers 
used as Optimisations as they simply compare 
boards and swap values. Others like PSO which 
manage additional information such as velocities, 
prior solutions or neighborhood relations are un-
suitable. 
 
Optimisations that would need to discard solu-
tions, such as Genetic Algorithms, may be incon-
sistent with the management requirements of 
heuristics that try and improve a solution over 
time like PSO. To continue to operate PSO 

would need to reset the particle from the deleted 
solution to the new one, which looses the value 
of the particle knowing its best solution so far. 
 
As a result Geometric Crossovers, Simulated 
Annealing and Repulsive factors are candidates 
as optimisations because they are immediate 
while Genetic Annealing and PSO are not. 
 
Evolutionary algorithms use populations of 
boards which vary by iteration. 
 
Swarming Algorithms need to track: the current 
solution, the best solution so far, the current ‘ve-
locity’, and any neighbor relationships (distance 
or social). 
 
As a result it would be possible to perform an 
iteration of an Evolutionary Algorithm in be-
tween iterations of PSO if the EA used the cur-
rent solution as its board. The reverse would not 
necessarily be true as the PSO’s extra details 
wouldn’t be available. 
 
This explains why relatively stateless optimisa-
tions such as Simulated Annealing and geometric 
crossovers have been used as an optimisation for 
PSO. 
 

4.5 Trust Factors 

 
Each of the heuristics attempts to balance: a ran-
dom factor, trust in itself now, trust in its pre-
vious best solution, trust in another population 
member / particle, and trust in interleaved opti-
misation. 
 
These trust factors can change over time. For 
example it makes sense to increase randomisa-
tion earlier in the process to help distribute the 
particles / population. Later on in the process, as 
we begin to approach candidate solutions, it 
makes more sense to increase trust in more suc-
cessful elements in the population. 
 
This situation was evident in the Repulsive PSO 
analysis, where a repulsive force was added to a 
Swarm in an attempt to avoid local maxima. In 
this case the particles merely stabilised at the 
minimum distance from each other and the de-
sired benefits were not realized. The stronger 
strategy of randomisation earlier with a more 
focused result later seems to have better results. 
 



The mechanism for managing these trust factors 
over the lifecycle of the solution can be a com-
ponent. This would allow comparisons on the 
effectiveness of trust factors for Optimisations 
and randomisation.  
 

5 Conclusions 

Particle Swarm Optimisation appears to have 
shown the best success rates when combined 
with Geometric Crossovers. Unlike Evolutionary 
Algorythms, the Geometric Crossovers aren’t 
driving towards improving the solution and ap-
proaching a local maximum. The Crossovers are 
redistributing the particles without violating the 
constraints. As always, a balance is formed be-
tween the trust factors for approaching solution 
and the trust factors for randomisation. However 
in this case, randomisation extends to redistribu-
tion of the solution as well as incremental 
change. 
 
The suggested component framework offers sig-
nificant advantages often not apparent in refer-
ence implementations. Instantiation, lifecycle 
management, trust factors and interleaved opti-
misations can all be controlled and measured 
outside of any given heuristic. 
 

5.1 Further work 

A reference implementation of the component 
framework can be created for PSO with Geome-
tric Crossovers. Care should be taken for devel-
opment considerate of later extension. Instantia-
tion and Trust factors can then be varied to max-
imise success. 
 
Once this is completed new interleave optimisa-
tions can be developed such as Simulated An-
nealing. The framework configuration can again 
be optimised. 
 
Finally new heuristics can be implemented with-
in the framework, and optimisations and configu-
rations tested / optimised for each. 
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