
Zettabyte File System Autopsy:

Digital Crime Scene Investigation for Zettabyte File System

Andrew Li

Department of Computing

Macquarie University

Sydney, Australia

andrew.li@students.mq.edu.au

Abstract

Files stored on a computer are managed by the

file system of the operating system. When a

computer is used to store illegal data such as

child pornography, it is important that the ex-

istence of the illegal data can be proven even

after the data is deleted. In this study, a new

functionality is added to the Zettabyte File

System (ZFS) debugger, which digs into the

physical disk of the computer without using

the file system layer of the operating system.

This new functionality enables digital crime

scene investigators to retrieve any data from

the disk, including deleted files. This paper

briefly presents an explanation of ZFS inter-

nals and describes the approach taken to arrive

at the new ZFS debugger functionality. By us-

ing this new functionality, we find that the

content and all the metadata (file size, owner,

creation time, etc) of a deleted file can be re-

trieved directly from the disk without going

through the file system layer of the operating

system.

1 Introduction

Files in a computer are stored on digital storage

such as a hard disk. A file system is a layer of the

operating system that sits on top of the hard disk.

It is like a filing cabinet for an operating system.

It organises files in a way that enables the operat-

ing system to efficiently access files with minim-

al effort and translate the raw data on the disk to

a format that can be understood by humans, like

file name and directory name.

The job of a digital crime scene investigator is

to carry out computer forensic examination per-

taining to legal evidence found in computers and

digital storage. The digital storage cannot be

modified during the forensic examination, any

modification performed on the digital storage

evidence is considered as contaminated evidence

which cannot be used in court. This creates a

need for a tool which can access the digital sto-

rage directly, without going through the file sys-

tem layer in the operating system.

The Zettabyte File System (ZFS) is a new file

system type developed by Sun Microsystems
1
.

The ZFS file system debugger (ZDB) is part of

the ZFS software suite that is used to diagnose

and gather ZFS file system statistics. In this

study, we present a new feature of the ZFS de-

bugger which allows a digital crime scene inves-

tigator to access files directly from the hard disk

without intervention of the operating system.

Readers may think of the new feature of the ZDB

as a tool that can grab a chunk of raw data from

the hard disk, and translating it into file and di-

rectories which are human readable.

The remainder of the paper is organized as fol-

lows. We first present related work in Section 2.

Section 3 outlines the ZFS internal which de-

scribes the innards of the different layers of the

file system. Section 4 describes the design and

implementation of the new feature of ZDB. Sec-

tion 5 presents future work. Finally Section 6

concludes the paper.

2 Related Work

ZFS is still fairly new and there is no publicised

forensic tool for the ZFS file system as yet. An

initial proposal
2
 for a new ZFS forensic tool has

been posted to the Open Solaris Security Discuss

Mailing List
3
 in November 2007. The number of

responses from the Open Solaris community has

1
 http://www.sun.com/software/solaris/zfs.jsp

2
 http://blogs.sun.com/efi/entry/proposal_open_solaris_forensic_toolkit

3
 http://opensolaris.org/os/community/security/

http://www.sun.com/software/solaris/zfs.jsp
http://blogs.sun.com/efi/entry/proposal_open_solaris_forensic_toolkit
http://opensolaris.org/os/community/security/

indicated that there is a need for a ZFS forensic

tool.

File system examination on common Unix and

Linux file systems can be done by using open

source tools such as The Sleuth Kit
4
 and The

Coroner’s Toolkit
5
. These tools read the hard

disk directly and translate the raw data into file

system structure that the tool understands. These

tools can work on the Linux file systems Ext2

and Ext3, the Microsoft FAT file system, the

Berkerly Fast File System (also known as the

Unix File System or UFS), the Hierarchical File

System by Apple Computer and the Windows

NT File System by Microsoft. We have tried

applying these tools on ZFS, but it does not work

because the ZFS structure is different to all the

traditional file systems mentioned above.

Different file systems behave differently in the

way they store files, delete files, and the way the

file metadata (file owner, group, size, modified

time, access control list, etc) is stored. File

system forensic examination on different file

systems has been explored in File System Foren-

sic Analysis [Carrier and Brian, 2005] and Fo-

rensic Discovery [Farmer and Venema, 2005].

These studies presented detail file system

analysis on common file systems like Ext2, Ext3,

and UFS, which have provided file system

forensic concept toward our new ZDB feature in

the present paper.

The article ZFS On-Disk Data Walk [Brun-

ning, 2008] uses the ZFS file system debugger

(ZDB) and the Solaris Modular debugger (mdb)

to walk through the ZFS file system layers. His

study uses ZDB and mdb to trace a pointer from

the disk to the actual physical file content of a

file. The approach is similar to ours in that we

perform all activities in ZDB by taking the active

uberblock through the various layers of the file

system, until the file content and metadata is

pointed to by the uberblock is reached. This will

become clearer as we explain our new ZDB ex-

tension in Section 4.

3 Overview of ZFS Internals

This section presents an overview of the ZFS

internals. It will provide sufficient ZFS informa-

tion for readers to understand the extension that

will be made to the ZFS file system debugger

(ZDB) in Section 4.

4
 http://www.porcupine.org/forensics/tct.html

5
 http://www.sleuthkit.org/sleuthkit/

The ZFS file system is a new technology that

provides dynamic storage which can grow and

shrink without the need to re-partition the under-

lying storage. It does that by eliminating the con-

cepts of partitions and volumes in traditional file

systems. A ZFS file system consists of a com-

mon storage pool made up of writable storage

media. The concept of files and directories are

replaced by objects. A complete listing of all

ZFS objects can be found in the ZFS On-Disk

Specification [Sun Microsystems, 2006].

ZFS is comprised of seven components: the

SPA (Storage Pool Allocator), the DSL (Dataset

and Snapshot Layer), the DMU (Data Manage-

ment Layer), the ZAP (ZFS Attribute Processor),

the ZPL (ZFS POSIX layer), the ZIL (ZFS Intent

Log), and ZVOL (ZFS Volume). We will con-

centrate on SPA, DMU, DSL and ZAP as they

are more relevant to our study. For a complete

description on all components, please see the

ZFS On-Disk Specification [Sun Microsystems,

2006].

The Storage Pool Allocator (SPA) component

of ZFS contains virtual devices (vdevs) which

make up the ZFS storage pools. The virtual de-

vices are described by virtual device label (vdev

label). The vdev label contains an array of uber-

blocks which provide the file system with infor-

mation necessary to access the content of the sto-

rage pool. The uberblock is equivalent to the su-

perblock in traditional Unix file systems, as it

contains block pointers that describe blocks of

data on disk.

The Data Management Layer (DMU) con-

sumes blocks and groups them into objects. With

the exception of low level infrastructure in SPA,

everything in ZFS is an object. Objects are de-

fined by structures called dnode. A dnode de-

scribes and organizes a collection of blocks mak-

ing up an object. A file system is described by a

group of objects called object sets.

The Dataset and Snapshot Layer (DSL) de-

scribe and manage the relationship between ob-

ject sets. In DSL, object sets are grouped hierar-

chically into Dataset Directories. Each dataset

object points to a DMU object set which contains

the actual object data.

The ZFS Attribute Processor (ZAP) is a mod-

ule that operates the object used to store proper-

ties for a dataset, file system object and pool

properties. A ZAP object is a DMU object used

to store attributes.

The relationship of SPA, DMU, DSL and ZAP

components is illustrated below in Figure 1. Be-

low, is a brief description of the remaining

http://www.porcupine.org/forensics/tct.html
http://www.sleuthkit.org/sleuthkit/

components of ZFS which are not directly re-

lated to our study, but are included to show the

complete architecture oz ZFS.

The ZFS POSIX Layer (ZPL) makes the file

system POSIX compliant. It provides a set of

POSIX services for the file system.

The ZFS Intent Log (ZIL) records all transac-

tions of the file system. Its purpose is to replay

the log records in the event of a machine panic or

power failure. This prevents inconsistency in the

file system.

ZFS Volumes (ZVOL) provides a mechanism

for creating logical volumes in ZFS.

4 New ZDB Feature

In this section, we present the extension we made

to the ZFS file system debugger (ZDB) which

enables a user to traverse through the file system

to get to the actual data stored on the disk.

Section 4.1 specifies the requirement for

building the new ZDB extension; Section 4.2

provides a high level overview of the new ZDB

extension; Section 4.3 explains the extension in

more detail by referring to the OpenSolaris ZFS

and ZDB source code. Readers may refer back to

Figure 1 to help understand the procedure and

the ZFS layout.

4.1 Requirement For ZDB Extension

The source code of ZFS and ZDB are open

sourced under the Common Development and

Distribution License (CDDL
6
) Version 1.0. The

header files of the ZFS structures mentioned in

this section can be found at

uts/common/fs/zfs/sys/*.h in the OpenSolaris

source code
7
 and the code for ZDB is found at

uts/cmd/zdb/zdb.c. To compile and build any

part of the OpenSolaris source tree, a copy of the

Sun Studio 12 is required. It can be downloaded

from:

http://www.opensolaris.org/os/community/tools/s

un_studio_tools/sun_studio_12_tools/.

6
 http://opensolaris.org/os/licensing/opensolaris_license/

7
 http://opensolaris.org/os/downloads/on/

Figure 1 Relationship of ZFS components

vdev labels

disk

Uberblock Array

.

Block Pointer

(blkptr)

DMU Object Set

DSL Directory and Dataset

blkptr

ZAP

Object

blkptr

ZAP

Object
. . .

blkptr

ZAP

Object

blkptr

ZAP

Object
. . .

A DMU block pointer object will eventually

points to the file content on the disk

http://www.opensolaris.org/os/community/tools/sun_studio_tools/sun_studio_12_tools/
http://www.opensolaris.org/os/community/tools/sun_studio_tools/sun_studio_12_tools/
http://opensolaris.org/os/licensing/opensolaris_license/
http://opensolaris.org/os/downloads/on/

4.2 Overview of New ZDB Extension

At a high level, the following steps are carried

out by our new ZDB to retrieve the file content

of a newly created file without using the file sys-

tem layer of the operating system.

1. Create a file with known content in the top

directory of a mounted ZFS file system

2. Display the file content with the Unix cat

command

3. Remove the file that was just created

4. Retrieve the active ZFS uberblock and its

block pointer with ZDB

5. Retrieve the dnode for the metadata object

set

6. Retrieve the Object Directory dnode and

its ZAP object

7. Retrieve the DSL Directory object

8. Retrieve the DSL Dataset object

9. Using the DSL Dataset dnode, retrieve the

ZFS file system object set

10. Using the ZFS file system object, get the

Master dnode and its ZAP object

11. From the ZAP object of the Master dnode,

get the root directory dnode of the ZFS file

system

12. From the block pointer of the root directo-

ry, find the object id of our target file

13. Using the address stored in the object id

dnode, retrieve the block of data directly

from the disk and output the raw data. This

should match the content of the file we

created in Step 1

In summary, the above procedure retrieves a

chunk of data from the disk which contains the

file content that we are searching for.

In a digital crime scene investigation, this new

feature of ZDB will be useful because the inves-

tigator can use this tool to examine the disk me-

dia without the file system layer in the middle

which can intervene with the examination. In a

normal day to day operation, when a file is ac-

cessed via the operating system through the file

system layer, the metadata of the file will be

modified. The last access time, modification

time, file owner, file size, and permission may

change due to the nature of the file system. With

the new ZDB feature, the file system is not in-

voked when the file is being accessed. Therefore,

there is no record of the file being accessed, thus

nothing on the file system will be updated and

the file content and metadata remains untouched.

4.3 Detail Analysis of New ZDB Extension

This section provides a detailed explanation of

our new version of ZDB. The new ZDB traverse

through the various layers of ZFS using data

structures from the ZFS source code. As it is a

complex layout, readers may wish to refer back

to Figure 1 and the high level overview in Sec-

tion 4.2 when reading this section.

The first step (Step 4 of Section 4.2) of the

new ZDB extension is to retrieve an active uber-

block from the uberblock array within the vdev

label of the ZDB pool. Each uberblock is stored

in an uberblock_t structure defined in the header

file uberblock_impl.h
8
. The active uberbock con-

tains a block pointer structure blkptr_t that is

used to locate, describe and verify blocks on

disk. Block pointers are defined in the header file

spa.h
9
. The block pointer contains copies of data

virtual address which describes the metadata in a

ZFS file system.

The next task (Step 5 of Section 4.2) of the

new ZDB is to make use of the data virtual ad-

dress from the uberblock block pointer. This ad-

dress points to a location on the disk that stores

the metadata which describes the metadata object

set. This metadata is described by the

dnode_phys_t structure defined in dnode.h
10

.

This shows the relationship between the SPA

layer and the DMU layer. As mentioned pre-

viously in Section 3, almost everything in ZFS is

an object and all objects are described by a

dnode. The dnode_phys_t contains another block

pointer. Similar to the block pointer from the

uberblock, this block pointer also contains data

virtual addresses. This time the address points to

a location on the disk containing an array of

dnodes which makes up the metadata object set.

The metadata object set is described by an ob-

jset_phys_t structure defined in dmu_objset.h
11

.

The new ZDB will now retrieve the Object Di-

rectory dnode within the metadata object set

(Step 6 of Section 4.2). An object directory is a

ZAP object, it stores attributes for a ZFS object.

The ZAP object used here is described by the

structure mzap_phys_t and it is defined in

zap_impl.h
12

. The ZAP object contains details of

the root DSL directory for the storage pool. It

describes all the top level dataset within the pool.

8
 uts/common/fs/zfs/sys/uberblock_impl.h

9
 uts/common/fs/zfs/sys/spa.h

10
 uts/common/fs/zfs/sys/dnode.h

11
 uts/common/fs/zfs/sys/dmu_objset.h

12
 uts/common/fs/zfs/sys/zap_impl.h

The DSL Directory object is stored some-

where in the metadata object set that was re-

trieved initially from the uberblock. The ZAP

object contains the location of the DSL Directory

object inside the metadata object set. Recall that

the metadata object set is an array of dnode, ZDB

will now retrieve the dnode to obtain the DSL

Directory object (Step 7 of Section 4.2). This

object is described by the dsl_dir_phys_t struc-

ture defined in dsl_dir.h
13

. This DSL Directory

object gives us the next piece of information for

retrieving the DSL Dataset object.

The new ZDB now retrieves the DSL Dataset

object using information from the DSL Directory

object (Step 8 of Section 4.2). The DSL Dataset

object is stored in the structure

dsl_dataset_phys_t which is also defined in

dsl_dir.h. The dsl_dataset_phys_t contains a

blkptr_t. This blkptr_t contains data virtual ad-

dress of the root dataset of the file system. ZDB

will now grab this chunk of data from the disk

(Step 9 of Section 4.2) and use it for the next

step.

Like everything else, the root dataset of the

file system is another object dnode. This dnode

contains a block pointer which will lead to the

Master node. It maybe necessary to go through a

few level of indirection to get to the Master node.

The blkptr_t from the root dataset contains a va-

riable dn_nlevels that specifies the level of indi-

rection. If the dn_nlevels is one, it means that the

blkptr_t points to another blkptr_t which points

to the Master node. Our ZDB will trace through

the blkptr_t chain to arrive to the Master node

and retrieve the ZAP object of the Master node

(Step 10 of Section 4.2).

Once our ZDB gets to the Master node, the

Master node contains a data virtual address

which points to another array of dnode. Note that

this is the second array of dnode, the first array is

the array of dnode that makes up the metadata

object set obtained from the uberblock. The ZAP

object of the Master node contains an object id

which tells us where the root directory of the

ZFS file system is located. Using the object id,

we can locate the root directory from the Master

node dnode array (Step 11 of Section 4.2).

The root directory dnode from the Master

node dnode array contains a bonus buffer. This

bonus buffer is a znode_phys_t structure that

contains attributes like time stamps, ownership,

and size of the file or directory (Step 12 of Sec-

tion 4.2). This znode_phys_t structure is defined

13

 uts/common/fs/zfs/sys/dsl_dir.h

in znode.h
14

, its purpose is similar to an inode for

a UFS file system.

We have now arrived to the final step to re-

trieve the data block on the disk. The root direc-

tory dnode from the Master node dnode array

contains a block pointer that points to the target

file. Our ZDB will use the data virtual address to

retrieve a block of data from the disk (Step 13 of

Section 4.2). This data will be the content of the

file that we are searching for. That completes our

extension to ZDB.

In summary, the new ZDB make frequent use

of the data virtual address from blkptr_t inside a

dnode. This virtual address points to different

layers of the ZFS file systems and eventually

leads us to the target file we are searching for.

Since almost everything in ZFS is an object, just

about every step involves dealing with dnode,

which is what ZFS uses to store any object.

5 Future Work

In this study, we have introduced extension in

ZDB which takes only the active uberblock and

traces it back to the data on disk. When investi-

gating a disk taken from a real crime scene in-

vestigation, all files which have been stored in-

side the file system will need to be recovered.

The code in our study was developed with this in

mind to ease future enhancement. Majority of the

code which performs the file system traversal

have already been completed in this study. The

future release of our new ZDB will incorporate

this code into a loop which loops through the

array of uberblock so that each uberblock can

lead back to the actual data stored on disk, giving

the investigator the file metadata and content of

every file stored on the disk.

Examination of ZFS snapshots will need to be

included in future releases of our ZDB. The

technique used on a ZFS snapshot will be similar

to what has been done in this study.

Finally, the code from this study could be

turned into a set of library function calls. This

will enable other system utilities to perform di-

rect file system access and will make the code in

ZDB cleaner and easier to maintain, because the

complexity has been transferred to the library

functions. But the security implications of this

will need to be further researched.

To have our new ZDB feature included in fu-

ture releases of OpenSolaris, it will need to go

14

 uts/common/fs/zfs/sys/znode.h

through a process like all other open source

projects. All code will need to be posted to the

OpenSolaris community for code review. Once

the code is reviewed by the OpenSolaris com-

munity, the code will need to be submitted via an

online application form
15

. After submitting the

code, the code will go through another code re-

view process by developers from Sun Microsys-

tems. See the Improving OpenSolaris
16

 webpage

for a complete description of the code submis-

sion process.

6 Conclusion

The work described in this paper presents a proof

of concept that a digital forensic tool for ZFS is

achievable, unlike Ext3 and UFS2 where the re-

lationship between the file and the data on disk is

removed when a file is deleted, making it harder

to trace the data back to the disk. File retrieval is

done by using our new feature in ZDB, which

travels through the various layers of the ZFS file

system until it reaches the target file stored on

disk. This means that the data on disk is being

accessed directly without intervention from the

file system layer operating system.

This new feature of ZDB is designed to help a

digital crime scene investigator to retrieve evi-

dence from an operating system with a Zettabyte

File System. It enables investigators to retrieve

data that has been deleted or hidden, which can-

not be seen under normal operating system oper-

ations. Our new ZDB achieves this by tracing

through virtual addresses stored in ZFS block

pointers to dig into the ZFS file system layers

until the target data is reached. By doing so, the

file system layer of the operating is not invoked

and the data stored on the disk can be accessed

directly. This enables investigators to gather reli-

able crime scene evidence.

References

Bruning, Max. June 2008. ZFS On-Disk Data Walk.

In OpenSolaris Developer Conference. June 25-27,

2008 Prague.

Carrier, Brian. March 2005. File System Forensic

Analysis. Addison Wesley Professional.

Farmer, Dan. & Venema, Wietse. 2005. Forensic

Discovery. Addison-Wesley Professional.

15

 http://bugs.opensolaris.org/
16

 http://opensolaris.org/os/communities/participation/

Sun Microsystems, Inc. 2006. ZFS On-Disk Specifi-

cation. Sun Microsystems, Inc

