Zettabyte File System Autopsy:
Digital Crime Scene Investigation for Zettabyte File System

Andrew Li
Department of Computing
Macquarie University
Sydney, Australia

andrew.li@students.mg.edu.au

Abstract

Files stored on a computer are managed by the
file system of the operating system. When a
computer is used to store illegal data such as
child pornography, it is important that the ex-
istence of the illegal data can be proven even
after the data is deleted. In this study, a new
functionality is added to the Zettabyte File
System (ZFS) debugger, which digs into the
physical disk of the computer without using
the file system layer of the operating system.
This new functionality enables digital crime
scene investigators to retrieve any data from
the disk, including deleted files. This paper
briefly presents an explanation of ZFS inter-
nals and describes the approach taken to arrive
at the new ZFS debugger functionality. By us-
ing this new functionality, we find that the
content and all the metadata (file size, owner,
creation time, etc) of a deleted file can be re-
trieved directly from the disk without going
through the file system layer of the operating
system.

1 Introduction

Files in a computer are stored on digital storage
such as a hard disk. A file system is a layer of the
operating system that sits on top of the hard disk.
It is like a filing cabinet for an operating system.
It organises files in a way that enables the operat-
ing system to efficiently access files with minim-
al effort and translate the raw data on the disk to
a format that can be understood by humans, like
file name and directory name.

The job of a digital crime scene investigator is
to carry out computer forensic examination per-
taining to legal evidence found in computers and
digital storage. The digital storage cannot be
modified during the forensic examination, any
modification performed on the digital storage

evidence is considered as contaminated evidence
which cannot be used in court. This creates a
need for a tool which can access the digital sto-
rage directly, without going through the file sys-
tem layer in the operating system.

The Zettabyte File System (ZFS) is a new file
system type developed by Sun Microsystems®.
The ZFS file system debugger (ZDB) is part of
the ZFS software suite that is used to diagnose
and gather ZFS file system statistics. In this
study, we present a new feature of the ZFS de-
bugger which allows a digital crime scene inves-
tigator to access files directly from the hard disk
without intervention of the operating system.
Readers may think of the new feature of the ZDB
as a tool that can grab a chunk of raw data from
the hard disk, and translating it into file and di-
rectories which are human readable.

The remainder of the paper is organized as fol-
lows. We first present related work in Section 2.
Section 3 outlines the ZFS internal which de-
scribes the innards of the different layers of the
file system. Section 4 describes the design and
implementation of the new feature of ZDB. Sec-
tion 5 presents future work. Finally Section 6
concludes the paper.

2 Related Work

ZFS is still fairly new and there is no publicised
forensic tool for the ZFS file system as yet. An
initial proposal® for a new ZFS forensic tool has
been posted to the Open Solaris Security Discuss
Mailing List® in November 2007. The number of
responses from the Open Solaris community has

! http://www.sun.com/software/solaris/zfs.jsp

2 http://blogs.sun.com/efi/entry/proposal_open_solaris_forensic_toolkit

8 http://opensolaris.org/os/community/security/



http://www.sun.com/software/solaris/zfs.jsp
http://blogs.sun.com/efi/entry/proposal_open_solaris_forensic_toolkit
http://opensolaris.org/os/community/security/

indicated that there is a need for a ZFS forensic
tool.

File system examination on common Unix and
Linux file systems can be done by using open
source tools such as The Sleuth Kit* and The
Coroner’s Toolkit®. These tools read the hard
disk directly and translate the raw data into file
system structure that the tool understands. These
tools can work on the Linux file systems Ext2
and Ext3, the Microsoft FAT file system, the
Berkerly Fast File System (also known as the
Unix File System or UFS), the Hierarchical File
System by Apple Computer and the Windows
NT File System by Microsoft. We have tried
applying these tools on ZFS, but it does not work
because the ZFS structure is different to all the
traditional file systems mentioned above.

Different file systems behave differently in the
way they store files, delete files, and the way the
file metadata (file owner, group, size, modified
time, access control list, etc) is stored. File
system forensic examination on different file
systems has been explored in File System Foren-
sic Analysis [Carrier and Brian, 2005] and Fo-
rensic Discovery [Farmer and Venema, 2005].
These studies presented detail file system
analysis on common file systems like Ext2, Ext3,
and UFS, which have provided file system
forensic concept toward our new ZDB feature in
the present paper.

The article ZFS On-Disk Data Walk [Brun-
ning, 2008] uses the ZFS file system debugger
(ZDB) and the Solaris Modular debugger (mdb)
to walk through the ZFS file system layers. His
study uses ZDB and mdb to trace a pointer from
the disk to the actual physical file content of a
file. The approach is similar to ours in that we
perform all activities in ZDB by taking the active
uberblock through the various layers of the file
system, until the file content and metadata is
pointed to by the uberblock is reached. This will
become clearer as we explain our new ZDB ex-
tension in Section 4.

3 Overview of ZFS Internals

This section presents an overview of the ZFS
internals. It will provide sufficient ZFS informa-
tion for readers to understand the extension that
will be made to the ZFS file system debugger
(ZDB) in Section 4.

4 http://www.porcupine.org/forensics/tct.html

5 http://www.sleuthkit.org/sleuthkit/

The ZFS file system is a new technology that
provides dynamic storage which can grow and
shrink without the need to re-partition the under-
lying storage. It does that by eliminating the con-
cepts of partitions and volumes in traditional file
systems. A ZFS file system consists of a com-
mon storage pool made up of writable storage
media. The concept of files and directories are
replaced by objects. A complete listing of all
ZFS objects can be found in the ZFS On-Disk
Specification [Sun Microsystems, 2006].

ZFS is comprised of seven components: the
SPA (Storage Pool Allocator), the DSL (Dataset
and Snapshot Layer), the DMU (Data Manage-
ment Layer), the ZAP (ZFS Attribute Processor),
the ZPL (ZFS POSIX layer), the ZIL (ZFS Intent
Log), and ZVOL (ZFS Volume). We will con-
centrate on SPA, DMU, DSL and ZAP as they
are more relevant to our study. For a complete
description on all components, please see the
ZFS On-Disk Specification [Sun Microsystems,
2006].

The Storage Pool Allocator (SPA) component
of ZFS contains virtual devices (vdevs) which
make up the ZFS storage pools. The virtual de-
vices are described by virtual device label (vdev
label). The vdev label contains an array of uber-
blocks which provide the file system with infor-
mation necessary to access the content of the sto-
rage pool. The uberblock is equivalent to the su-
perblock in traditional Unix file systems, as it
contains block pointers that describe blocks of
data on disk.

The Data Management Layer (DMU) con-
sumes blocks and groups them into objects. With
the exception of low level infrastructure in SPA,
everything in ZFS is an object. Objects are de-
fined by structures called dnode. A dnode de-
scribes and organizes a collection of blocks mak-
ing up an object. A file system is described by a
group of objects called object sets.

The Dataset and Snapshot Layer (DSL) de-
scribe and manage the relationship between ob-
ject sets. In DSL, object sets are grouped hierar-
chically into Dataset Directories. Each dataset
object points to a DMU object set which contains
the actual object data.

The ZFS Attribute Processor (ZAP) is a mod-
ule that operates the object used to store proper-
ties for a dataset, file system object and pool
properties. A ZAP object is a DMU object used
to store attributes.

The relationship of SPA, DMU, DSL and ZAP
components is illustrated below in Figure 1. Be-
low, is a brief description of the remaining


http://www.porcupine.org/forensics/tct.html
http://www.sleuthkit.org/sleuthkit/

disk

. ™. Uberblock Array

v

A DMU block pointer object will eventually
points to the file content on the disk

DSL Directory and Dataset

A

< blkptr 4 blkptr

ZAP ZAP
Object Object

DMU Object Set

A 4

Block Pointer
(blkptr)

blkptr » Dblkptr >

ZAP ZAP
Object Object

Figure 1 Relationship of ZFS components

components of ZFS which are not directly re-
lated to our study, but are included to show the
complete architecture oz ZFS.

The ZFS POSIX Layer (ZPL) makes the file
system POSIX compliant. It provides a set of
POSIX services for the file system.

The ZFS Intent Log (ZIL) records all transac-
tions of the file system. Its purpose is to replay
the log records in the event of a machine panic or
power failure. This prevents inconsistency in the
file system.

ZFS Volumes (ZVOL) provides a mechanism
for creating logical volumes in ZFS.

4  New ZDB Feature

In this section, we present the extension we made
to the ZFS file system debugger (ZDB) which
enables a user to traverse through the file system
to get to the actual data stored on the disk.
Section 4.1 specifies the requirement for
building the new ZDB extension; Section 4.2
provides a high level overview of the new ZDB
extension; Section 4.3 explains the extension in

more detail by referring to the OpenSolaris ZFS
and ZDB source code. Readers may refer back to
Figure 1 to help understand the procedure and
the ZFS layout.

4.1

The source code of ZFS and ZDB are open
sourced under the Common Development and
Distribution License (CDDL®) Version 1.0. The
header files of the ZFS structures mentioned in
this section can be found at
uts/common/fs/zfs/sys/*.n in the OpenSolaris
source code’ and the code for ZDB is found at
uts/cmd/zdb/zdb.c. To compile and build any
part of the OpenSolaris source tree, a copy of the
Sun Studio 12 is required. It can be downloaded
from:
http://www.opensolaris.org/os/community/tools/s
un_studio_tools/sun_studio_12_tools/.

Requirement For ZDB Extension

6 http://opensolaris.org/os/licensing/opensolaris_license/
! http://opensolaris.org/os/downloads/on/



http://www.opensolaris.org/os/community/tools/sun_studio_tools/sun_studio_12_tools/
http://www.opensolaris.org/os/community/tools/sun_studio_tools/sun_studio_12_tools/
http://opensolaris.org/os/licensing/opensolaris_license/
http://opensolaris.org/os/downloads/on/

4.2 Overview of New ZDB Extension

At a high level, the following steps are carried
out by our new ZDB to retrieve the file content
of a newly created file without using the file sys-
tem layer of the operating system.

1. Create a file with known content in the top
directory of a mounted ZFsS file system

2. Display the file content with the Unix cat

command

Remove the file that was just created

4. Retrieve the active ZFS uberblock and its
block pointer with ZDB

5. Retrieve the dnode for the metadata object

w

set

6. Retrieve the Object Directory dnode and
its ZAP object

7. Retrieve the DSL Directory object

8. Retrieve the DSL Dataset object

9. Using the DSL Dataset dnode, retrieve the
ZFS file system object set

10. Using the ZFS file system object, get the
Master dnode and its ZAP object

11. From the ZAP object of the Master dnode,
get the root directory dnode of the ZFS file
system

12. From the block pointer of the root directo-
ry, find the object id of our target file

13. Using the address stored in the object id
dnode, retrieve the block of data directly
from the disk and output the raw data. This
should match the content of the file we
created in Step 1

In summary, the above procedure retrieves a
chunk of data from the disk which contains the
file content that we are searching for.

In a digital crime scene investigation, this new
feature of ZDB will be useful because the inves-
tigator can use this tool to examine the disk me-
dia without the file system layer in the middle
which can intervene with the examination. In a
normal day to day operation, when a file is ac-
cessed via the operating system through the file
system layer, the metadata of the file will be
modified. The last access time, modification
time, file owner, file size, and permission may
change due to the nature of the file system. With
the new ZDB feature, the file system is not in-
voked when the file is being accessed. Therefore,
there is no record of the file being accessed, thus
nothing on the file system will be updated and
the file content and metadata remains untouched.

4.3  Detail Analysis of New ZDB Extension

This section provides a detailed explanation of
our new version of ZDB. The new ZDB traverse
through the various layers of ZFS using data
structures from the ZFS source code. As it is a
complex layout, readers may wish to refer back
to Figure 1 and the high level overview in Sec-
tion 4.2 when reading this section.

The first step (Step 4 of Section 4.2) of the
new ZDB extension is to retrieve an active uber-
block from the uberblock array within the vdev
label of the ZDB pool. Each uberblock is stored
in an uberblock _t structure defined in the header
file uberblock_impl.h®. The active uberbock con-
tains a block pointer structure blkptr_t that is
used to locate, describe and verify blocks on
disk. Block pointers are defined in the header file
spa.h’. The block pointer contains copies of data
virtual address which describes the metadata in a
ZFS file system.

The next task (Step 5 of Section 4.2) of the
new ZDB is to make use of the data virtual ad-
dress from the uberblock block pointer. This ad-
dress points to a location on the disk that stores
the metadata which describes the metadata object
set. This metadata is described by the
dnode_phys_t structure defined in dnode.h™.
This shows the relationship between the SPA
layer and the DMU layer. As mentioned pre-
viously in Section 3, almost everything in ZFS is
an object and all objects are described by a
dnode. The dnode_phys_t contains another block
pointer. Similar to the block pointer from the
uberblock, this block pointer also contains data
virtual addresses. This time the address points to
a location on the disk containing an array of
dnodes which makes up the metadata object set.
The metadata object set is described by an ob-
jset_phys_t structure defined in dmu_objset.h™.

The new ZDB will now retrieve the Object Di-
rectory dnode within the metadata object set
(Step 6 of Section 4.2). An object directory is a
ZAP object, it stores attributes for a ZFS object.
The ZAP object used here is described by the
structure mzap_phys t and it is defined in
zap_impl.h™2. The ZAP object contains details of
the root DSL directory for the storage pool. It
describes all the top level dataset within the pool.

& uts/common/fs/zfs/sys/uberblock_impl.h
% uts/common/fs/zfs/sys/spa.h

10 uts/common/fs/zfs/sys/dnode.h

1 uts/common/fs/zfs/sys/dmu_objset.h

12 uts/common/fs/zfs/sys/zap_impl.h



The DSL Directory object is stored some-
where in the metadata object set that was re-
trieved initially from the uberblock. The ZAP
object contains the location of the DSL Directory
object inside the metadata object set. Recall that
the metadata object set is an array of dnode, ZDB
will now retrieve the dnode to obtain the DSL
Directory object (Step 7 of Section 4.2). This
object is described by the dsl_dir_phys_t struc-
ture defined in dsl_dir.n'*. This DSL Directory
object gives us the next piece of information for
retrieving the DSL Dataset object.

The new ZDB now retrieves the DSL Dataset
object using information from the DSL Directory
object (Step 8 of Section 4.2). The DSL Dataset
object is  stored in  the  structure
dsl_dataset_phys_t which is also defined in
dsl_dir.h. The dsl_dataset_phys t contains a
blkptr_t. This blkptr_t contains data virtual ad-
dress of the root dataset of the file system. ZDB
will now grab this chunk of data from the disk
(Step 9 of Section 4.2) and use it for the next
step.

Like everything else, the root dataset of the
file system is another object dnode. This dnode
contains a block pointer which will lead to the
Master node. It maybe necessary to go through a
few level of indirection to get to the Master node.
The blkptr_t from the root dataset contains a va-
riable dn_nlevels that specifies the level of indi-
rection. If the dn_nlevels is one, it means that the
blkptr_t points to another blkptr_t which points
to the Master node. Our ZDB will trace through
the blkptr_t chain to arrive to the Master node
and retrieve the ZAP object of the Master node
(Step 10 of Section 4.2).

Once our ZDB gets to the Master node, the
Master node contains a data virtual address
which points to another array of dnode. Note that
this is the second array of dnode, the first array is
the array of dnode that makes up the metadata
object set obtained from the uberblock. The ZAP
object of the Master node contains an object id
which tells us where the root directory of the
ZFS file system is located. Using the object id,
we can locate the root directory from the Master
node dnode array (Step 11 of Section 4.2).

The root directory dnode from the Master
node dnode array contains a bonus buffer. This
bonus buffer is a znode_phys_t structure that
contains attributes like time stamps, ownership,
and size of the file or directory (Step 12 of Sec-
tion 4.2). This znode_phys_t structure is defined

13 uts/common/fs/zfs/sys/dsl_dir.h

in znode.h™, its purpose is similar to an inode for
a UFS file system.

We have now arrived to the final step to re-
trieve the data block on the disk. The root direc-
tory dnode from the Master node dnode array
contains a block pointer that points to the target
file. Our ZDB will use the data virtual address to
retrieve a block of data from the disk (Step 13 of
Section 4.2). This data will be the content of the
file that we are searching for. That completes our
extension to ZDB.

In summary, the new ZDB make frequent use
of the data virtual address from blkptr_t inside a
dnode. This virtual address points to different
layers of the ZFS file systems and eventually
leads us to the target file we are searching for.
Since almost everything in ZFS is an object, just
about every step involves dealing with dnode,
which is what ZFS uses to store any object.

5 Future Work

In this study, we have introduced extension in
ZDB which takes only the active uberblock and
traces it back to the data on disk. When investi-
gating a disk taken from a real crime scene in-
vestigation, all files which have been stored in-
side the file system will need to be recovered.
The code in our study was developed with this in
mind to ease future enhancement. Majority of the
code which performs the file system traversal
have already been completed in this study. The
future release of our new ZDB will incorporate
this code into a loop which loops through the
array of uberblock so that each uberblock can
lead back to the actual data stored on disk, giving
the investigator the file metadata and content of
every file stored on the disk.

Examination of ZFS snapshots will need to be
included in future releases of our ZDB. The
technique used on a ZFS snapshot will be similar
to what has been done in this study.

Finally, the code from this study could be
turned into a set of library function calls. This
will enable other system utilities to perform di-
rect file system access and will make the code in
ZDB cleaner and easier to maintain, because the
complexity has been transferred to the library
functions. But the security implications of this
will need to be further researched.

To have our new ZDB feature included in fu-
ture releases of OpenSolaris, it will need to go

1 uts/common/fs/zfs/sys/znode.h



through a process like all other open source
projects. All code will need to be posted to the
OpenSolaris community for code review. Once
the code is reviewed by the OpenSolaris com-
munity, the code will need to be submitted via an
online application form™. After submitting the
code, the code will go through another code re-
view process by developers from Sun Microsys-
tems. See the Improving OpenSolaris'® webpage
for a complete description of the code submis-
sion process.

6 Conclusion

The work described in this paper presents a proof
of concept that a digital forensic tool for ZFS is
achievable, unlike Ext3 and UFS2 where the re-
lationship between the file and the data on disk is
removed when a file is deleted, making it harder
to trace the data back to the disk. File retrieval is
done by using our new feature in ZDB, which
travels through the various layers of the ZFS file
system until it reaches the target file stored on
disk. This means that the data on disk is being
accessed directly without intervention from the
file system layer operating system.

This new feature of ZDB is designed to help a
digital crime scene investigator to retrieve evi-
dence from an operating system with a Zettabyte
File System. It enables investigators to retrieve
data that has been deleted or hidden, which can-
not be seen under normal operating system oper-
ations. Our new ZDB achieves this by tracing
through virtual addresses stored in ZFS block
pointers to dig into the ZFS file system layers
until the target data is reached. By doing so, the
file system layer of the operating is not invoked
and the data stored on the disk can be accessed
directly. This enables investigators to gather reli-
able crime scene evidence.

References

Bruning, Max. June 2008. ZFS On-Disk Data Walk.
In OpenSolaris Developer Conference. June 25-27,
2008 Prague.

Carrier, Brian. March 2005. File System Forensic
Analysis. Addison Wesley Professional.

Farmer, Dan. & Venema, Wietse. 2005. Forensic
Discovery. Addison-Wesley Professional.

1 http://bugs.opensolaris.org/
16 http://opensolaris.org/os/communities/participation/

Sun Microsystems, Inc. 2006. ZFS On-Disk Specifi-
cation. Sun Microsystems, Inc



