
An Analysis of Stream Processing Languages

Miran Dylan
Department of Computing

Macquarie University, Sydney, Australia
miran.dylan@students.mq.edu.au

Abstract

Stream processing languages and stream
processing engines have become more popu-
lar as they emerged from several modern data
stream intensive applications such as sensor
monitoring, stock markets and network moni-
toring. This study discusses the characteris-
tics and features of the stream processing
technology to provide an in-depth high-level
guidance and comparison for stream
processing systems and its underlying lan-
guages and technology with respect to the
characteristics and features used by certain
applications. The overall aim of this paper is
to analyze and to identify the desired features
of stream processing languages and to eva-
luate a few representative stream processing
systems and languages on the basis of those
desired features. The analysis could help in
the identification of a suitable stream
processing technology for particular applica-
tions as well as aiding the design and devel-
opment of such languages for new, emerging
applications.

1 Introduction

Over the past few years several new platforms
and languages have emerged from new require-
ments of data-intensive applications. A great ef-
fort and progress has been made in the area of
data stream management systems (DSMS).
Those systems were designed using different
technologies and platforms to specifically sup-
port specific application domains. As the field of
stream processing has become more prevalent,
there is a pressing need to address the common
desired characteristics for these technologies.

Many papers have been published detailing
the issues and requirements for stream
processing technology. Several prototype and
commercial implementations have been pro-
duced by different groups (Golab & Özsu, 2003)
that have addressed issues in data stream
management systems; Stonebraker, et al., (2005)

identified the common rules for stream
processing engines, and Zdonik, et. al., (2008)
compared time-base execution model and tuple
base execution model.

This paper describes the common characteris-
tics and desired features of DSMS and the under-
lying language and technology issues as well as
highlighting the recent progress on some of the
commercial and prototype systems. The rest of
this paper organized as follows. Section 2
presents the background of stream processing
technology. Section 3 presents an overview of
the common characteristics and critical issues.
Section 4 discusses some of the commercial and
prototype languages and systems. Section 5 pro-
vides a succinct conclusion of the presented
work.

2 Background

Traditional database approach has started to have
a dramatic impact on the quality of services for
certain emerging applications, as it could not
handle issues such as scalability, optimization
and processing continuous real-time data. Stream
processing approaches have been implemented in
several stream oriented applications, including
telecom call-records, network security, financial
applications, sensor networks, real-time compu-
ting, and manufacturing processes.

A typical simulation prototype for DSMS
known as the Linear Road Benchmark (Arasu, et
al., 2004) developed by Aurora team and
STREAM team, was designed as a variable tol-
ling system that charges vehicles different toll
rates based on different factors such as time of
the day, congestion level on the road and acci-
dent proximity. Each vehicle uses the toll road
equipped with sensors that provide the exact
coordinate of the vehicle broadcast in real-time
every 30 seconds; the collected vehicle data is
analyzed by the system in real-time in order to
provide traffic conditions on every section of the
toll road. Traffic condition is calculated based on
the collected data such as speed, current acci-

dent, number of vehicle on given section of the
road. The toll charges are determined for a given
section of the road based on the calculated data.
The Linear road implementation requires fea-
tures such as real-time processing of data re-
ceived from sensor networks, providing predict-
able results (approximation), high availability of
sensor data, and fast processing for large vo-
lumes of continuous data; (Jain, et al., 2006) dis-
cussed the benchmark requirements. These fea-
tures stretch the capabilities of the traditional
technology enormously. Many researchers and
vendors have observed that these requirements of
such applications as the Linear Road Benchmark
could be met by DSMS more effectively as the
stream processing technology is designed to
process continuous real-time data as well as deal-
ing with historical data.

3 Issues / Features of Stream Languages

Different applications require different require-
ments. For example some applications may re-
quire fast response-time while others require
processing high-volume load. Many researchers
have identified different features and require-
ments for DSMS. This section illustrates the
common characteristics and critical issues of
DSMS based on reviewing the past literature and
the current research.

3.1 Low Latency/High Volume Processing

Stream processing applications should accom-
modate event and data driven processing capabil-
ities; an application must be able to process the
data instantly and avoid costly storage opera-
tions. The operators in the language used for
stream processing should provide a specific ex-
ecution strategy in order to achieve quick re-
sponse time, high volume and low latency to
meet the requirements of stream processing ap-
plications. The traditional approach of storing
data in a backend database, increases latency and
response time as it will require writing and read-
ing data and constantly accessing the physical
storage; instead data should be processed instant-
ly on the fly as it arrives on a real-time basis. In
addition, using database operations before
processing the data reduces processing power as
it will suffer from polling which will result in
additional overhead on the system. This will sig-
nificantly increase the delay on processing the
data due to potentially inadequate and/or limited
resources of the system.

3.2 Enabling Data Independency

A stream processing language should support
data independency by separating the data from
its underlying application by hiding the details of
how the data are represented inside the applica-
tion. It also allows the application to be easily
modified without affecting the data. The use of
high level declarative languages such as SQL
enhances the process of computing real-time da-
ta. Furthermore, the use of a high level language
provides data independency on physical and log-
ical level unlike low level languages where data
is represented and stored in the language va-
riables making it difficult to share among various
applications. SQL supports complex data mani-
pulation as it is based on a set of powerful data
processing operations such as filtering, correla-
tion, merging and aggregation. Many SQL like
languages (next generation SQL) have been de-
veloped to address the unique requirements of
stream processing applications; those languages
are variants of the SQL specifically designed to
process continuous streams of data (Hwang, et
al., 2003).

3.3 Dealing with Incomplete Data Streams

Since processing streams of data involves deal-
ing with real-time data on continuous basis, there
will be always cases where streams of data are
incomplete (missing, delayed and out of order).
Stream data will not be stored before processing
unlike dealing with traditional databases where
the sets of data are stored locally and presented
before processing. Firstly, having delayed data
will affect the performance of the system (data
input for an operation may or may not arrive in a
timely fashion. As a result, there will be an over-
head on the processing resources of the system).
A stream processing language should address
this problem by dedicating flexible windowing
by specifying a timely interval for each operation
such as time-base and count-based windows in
order to allow given operations to terminate or
time out so that the system release allocated re-
sources for other pending operations. Secondly,
in dealing with out of order data (data that arrive
out of sequence or arrive late), the language op-
erators should provide a mechanism to prevent
the system from blocking the late arrival data by
allowing disordered data to be processed by ex-
tending time duration for an opened window for
a given operation. A typical example of this im-
plementation is addressed in Aurora, by using
slack parameters (DJ Abadi, et al., 2005).

3.4 Providing Predictable Output

A stream processing system should provide a
built-in mechanism and operators, to process a
minimal set of the received data (incomplete data
stream for given operation), which may require
stream processing languages to support pattern
matching and change detection mechanisms,
which facilitate the prediction of missing data
based on historical data and/or special calcula-
tion. There have been studies on predicting the
missing data in sensor networks, by using esti-
mation techniques through the application of
“data stream association rule mining” to discover
relationships between sensors and using them to
compensate for missing data (Jiang &
Gruenwald, 2008). Another example is MAIDS
(Cai, et al., 2004) which uses techniques to find
alarming incidents from data streams; it relies on
algorithms to discover changes, trends and
progress characteristics in data streams and ex-
plores frequent patterns and similarities amongst
data streams. The ability of providing predictable
results is important for fault tolerance and recov-
ery, as it deals with incomplete data.

3.5 Integrating Stored and Stream Data

Most of the stream processing applications
should have the capability of seamless integra-
tion between both real-time data and stored his-
torical data by enabling access and modification
to both sources of data in the same manner. For
example, dealing with online bank applications
such as credit card checking or fraud transaction
detection requires a special process of identifying
unusual activity by accessing the usual past ac-
tivity patterns and then comparing them with the
present real-time activity. The system should use
a standard data management approach to manage
present data, “stream data”, and past data, “his-
torical data”, as well as the ability to easily con-
vert between the two types using a unified lan-
guage. Harmonica (Kitagawa & Watanabe,
2007) is a DSMS solution that implements an
architecture which combines processing both
stream data and traditional relational DBMSs
data.

3.6 Guaranteeing High Availability

Like in any mission-critical system, high availa-
bility is a critical factor in avoiding interruption
in processing real-time data by insuring the inte-
grity of data is maintained at all times and having
very high uptime. A data stream management
system should use fault tolerance and a high

availability solution by allowing the language to
use special optimization approaches.

A DSMS can experience failures of its differ-
ent components (hardware and network infra-
structure) especially in a dynamic, distributed
environment, when operations are divided across
multiple nodes on the network. A failure of
processing nodes can cause processing of conti-
nuous queries to stop; these failures can affect
critical client applications that rely on timely
query results. There are a number of techniques
addressing these issues (Balazinska, et al.). Ad-
dressing these issues will enable the DSMS to
handle failures and fault tolerance to enable high
availability.

3.7 Scalability and Resource Utilization

Stream processing systems should support multi-
threaded and distributed operations over multiple
processors and machines, to avoid event block-
ing. The system should be scalable over a num-
ber of machines, by providing automated load
balance among those machines so that the appli-
cation does not get suspended by an overloaded
machine. Some of the current SPE like (Borealis)
have implemented optimization methods to util-
ize system resources by balancing the resources
over server heavy and sensor heavy optimization
problems; see (DJ Abadi, et al., 2005) for a de-
tailed Borealis optimization design.

Stream processing languages should enable
DSMS to be easily scaled-up and utilize its re-
sources across its cluster nodes with no trouble
and the needs of rewriting low level codes.

3.8 Supporting Complex Event Processing

Complex event processing CEP is a technique
that allows applications to monitor multiple
streams of events, analyze the data to find mea-
ningful events within the event cloud so as to act
upon it accordingly in real time (Wu, et al.,
2006). Event processing refers to techniques
such as filtering, correlating, aggregating, detect-
ing complex patterns of many events and rela-
tions between events to be computed in real-
time. With CEP, events are processed as they
occur without the need for retaining the
processing state. The data should be processed
and responded instantly to avoid overheads by
allowing high optimization techniques. Stream
processing languages should support CEP and be
event-driven in order to enable the capacity of
processing tens to hundreds of thousands of mes-
sages per second without undue delay.

4 System and Languages

Different projects have taken different directions
in finding languages that accommodate different
system requirements. One approach is to extend
an existing language such as SQL to deal with
data streams while another direction is to create a
new language from scratch to deal with real-time
data streams. This section provides an overview
of some of those systems along with the lan-
guages used.

4.1 Aurora and Borealis

Aurora (D Abadi, et al., 2003) is a general pur-
pose DSMS designed by (Brandies and Brown
universities and MIT). It is based on the data-
flow approach that uses procedural boxes and
arrows paradigm. It supports a variety of real-
time application monitoring features and deals
with large volumes of asynchronous push-based
streams; data is processed as it arrives from dif-
ferent sources and then it is delivered to the cor-
responding nodes.

Aurora uses continuous queries based on sets
of well defined operators that comply with stan-
dard filtering, mapping, window aggregation and
join operation. Aurora’s windowed operation has
slack and time-out parameters, which enable
dealing with slow and out of order data. The Au-
rora application employs Quality of Services
graphs, and functions which enable maximum
QoS at run-time which include latency graph for
a delayed result. Value based graph deals with
important output values, and loss tolerance
graph, handles incomplete and approximation
answers. The run-time component includes
scheduler: responsible for deciding which op-
eration to be executed and in which order, and
storage manager: responsible to store order
of queues of tuples instead of sets of relational
tuples. It also combines the storage of push-
based queues with pull-based access to historical
data. Another component is load shedder:
which involves detecting and handling overload
occurrences, by using a built in drop operator to
filter messages based on the value of the tuple, or
in randomized base, to rectify the overload situa-
tions. Aurora incorporates an extended SQL lan-
guage, known as Stream Query Algebra SQuAl,
which contains built-in support for seven primi-
tive operations, and supports three types of QoS
process flow models. Every input tuple to Aurora
is tagged a with a time stamp; the operators
structured as agnostic (filter, Map, Union),
process tuples in the arrival order, or as sensi-

tive (BSort, Aggregate, Join, resample),
process non-ordered tuples on expense of some
latency in computation.

Borealis (DJ Abadi, et al., 2005) is the second
generation of Aurora, designed to implement
stream processing over distributed environments
by distributing the processing over multiple
nodes to address scalability, and high availabili-
ty. It inherits its core stream functionality from
Aurora and the distributed techniques from the
Medusa project (Balazinska, et al., 2004) .

4.2 STREAM

STREAM (Arasu A, et al., 2003) is a general
purpose centralized single system DSMS pro-
duced by Stanford University. It supports large
declarative continuous queries over continuous
streams and traditional data sets. The DSMS tar-
gets environments where streams are rapid and
query load may vary over time with imperfect
limitation of system resources. Queries over data
streams are issued declaratively and translated
into flexible query plans. A query plan is com-
posed of (queues, operators and synopses). The
DSMS enables high performance by sharing state
and computation across query plans. In addition,
constraints on stream data such as ordering and
clustering can be used to reduce resource usage.

 The CQL is a declarative query language de-
rived from the SQL language with respect to the
stream processing requirements. (See addressed
issues and challenges (Babcock, et al., 2002)). A
registered CQL in STREAM produces a com-
piled query plan composed of operators which
perform the actual processing. CQL features two
layers; an abstract semantics and an implementa-
tion of the abstract semantics. The abstract se-
mantics is composed of two data types, stream
and relations, which are defined using discrete
ordered time-stamps which denote the logical
arrival time of a tuple on a stream while the rela-
tion is based on a time varying bag of tuples. The
abstract semantics implementation uses three
types of operators over stream and relations (re-
lation to relation, stream to relation, and relation
to stream), while the stream to stream manipula-
tion is composed from the three types of opera-
tors known as black-box component of the ab-
stract semantics. In addition, STREAM has sev-
eral built-in operators for organizing input and
output and connecting query plans together.

The STREAM system includes a monitoring
and adaptive query processing infrastructure
called StreaMon which monitors the perfor-
mance over a time as query loads and system

conditions changes, in addition approximation
techniques such as load-shedding, sam-

pling and dropping are used when data ar-
rival rate is high and execution exceeds available
memory to reduce overload accordance.

4.3 StreamBase

StreamBase (2009) is a commercial DSMS de-
signed to analyze and act on high-volume real-
time streaming data with the goal of providing
features such as single integration platform, user
friendly graphical flow language, extreme per-
formance with low latency and broad connectivi-
ty to historical data. It highly supports the finan-
cial market in applications such as market data
feed processing, automated trading, real-time
profit-loss and transaction cost analysis. The
StreamBase model is tuple-driven: each rela-
tion has a value acquired by evaluating the win-
dow on the history of input streams of that tuple.
StreamSQL is a graphical event flow program-
ming language which extends SQL and offers
several operators to allow processing of real-time
data streams and historical data. StreamSQL
manages continuous event streams and time-
based records; it retains the capabilities of SQL
while adding new capabilities such as a rich win-
dowing system and the ability to mix stored data
with streams; StreamSQL extends SQL in Data
Windows: which defines the scope of an operator
over time, integrated Access to Stream and
Stored data which handles the manipulation of
both stream and historical data in a uniform ap-
proach; and Stream specific operators and con-
structs which allow temporal pattern matching
over streams and the manipulation of stream da-
ta. The operators provide the capability of filter-
ing, merging and combining of streams as well
as running time window based aggregations and
computations on streams. Furthermore it handles
disordered, late and missing data. StreamBase is
capable of connecting to an external data source
to enable applications to integrate selected data
into the application flow or to update the external
database with processed information. In addition,
it is easily extendable with other external sources
by providing a range of adapters and interfaces
which enables the conversion of streaming data
to required procedures.
High availability is addressed by providing stan-
dard process pairs approach of two dedicated
servers, one as primary and the other as a backup
with a specific mechanism which enables asyn-
chronous synchronization to take place and pre-
vent overhead.

4.4 SPADE

SPADE (Gedik, et al., 2008) is a declarative
stream processing engine developed by IBM as a
large scale, distributed middleware for System S.
It provides an intermediate language for flexible
composition of parallel and distributed data-flow
graphs sitting in between higher level program-
ming tools and languages such as System S and
StreamSQL. A generic built-in stream processing
operator supports scalar and vectorized
processing; it also supports all basic stream-
relation operators with rich windowing and punc-
tuation semantics and seamlessly integrates with
user-defined operators. It offers a broad range of
rich stream adapters to consume and publish data
from external sources such as network sockets
and relational and XML databases.

SPADE leverages existing infrastructure of
stream processing core SPC provided by System
S. It utilizes code generation framework to create
highly optimized applications that may run na-
tively on the SPC; it inherits full features and
services of system S runtime such as placement
and scheduling, distributed job management,
failure-recovery and security which contribute in
automating performance optimization, scalability
and communication overhead. The operation
environment can be run on 500 processors within
more than 100 physical nodes in a strongly con-
nected cluster environment. The system is ex-
pressed by a dataflow graph consisting of
processing elements. The main components of
SPC are Dataflow Graph-Manager: respon-
sible for matching stream descriptions between
input and output ports, data-fabric: estab-
lishes transport connections and chooses an ap-
propriate transportation to achieve flow balanc-
ing to ensure stable operation within workloads;
Resource Manager: makes global resource
allocation decisions by sharing system infrastruc-
ture and execution-container: provides
runtime content and access to SPC middleware
also monitors resource usage.

SPADE2 (Martin Hirzel, 2009) has added
some extra features to SPADE1 such as compo-
site operators, shared variables, and richer data
models as well as scaling the design to allow an
efficient distributed implementation.

5 Conclusion

Stream processing languages have emerged from
the requirements of different applications as dis-
cussed in section 2. There are a number of issues
and features required for such applications which

depend on many factors such as language fea-
tures and system implementation.

This paper overviewed four representative-
stream processing engines along with the lan-
guage and underlying technology features used
to address the requirements of stream processing
applications. Table 1 summarizes the results of
these four systems presented in this paper along
with those of the Linear Road benchmark (LR,
Aurora and Borealis Au, STREAM ST, Stream-
Base SB and Spade SP).

 LR Au ST SB SP
Low-latency/high-volume Y Y P Y Y
Data independency Y Y Y Y Y
Incomplete data stream Y Y Y Y Y
Predictable output Y Y Y Y N
Data integration Y Y Y Y Y
High availably Y P N P Y
Scalability / utilization Y P N P Y
Complex event processing Y P Y Y Y

Table1: technology features

The cells in the table contain one value of
three possible values. Y indicates the technology
supports this feature; N indicates the technology
does not support this feature; and P for possibili-
ty of support with modifications and enhance-
ment.

Not all languages used by stream processing
engines have the same characteristics as some
are stronger in certain areas while others are not.
Considering the Linear road as a comparison
benchmark for the discussed stream engines and
languages, we observe that only StreamBase and
Borealis (the enhanced version of Aurora) may
satisfy most of the requirements of this stream
processing domain application, while the others
may partially satisfy the requirements of a given
domain.
Acknowledgments
I would like to thank Mehmet A. Orgun for his
supervision and support for this research; I
would also like to thank Robert Dale for guid-
ance and directing me for the research methodol-
ogy and approaches.

References
 StreamBase (2009) Accessed on 19-5-2009, Retrieved from

http://www.streambase.com/about-home.htm
Abadi, D., Ahmad, Y., Balazinska, M., Çetintemel, U., et al.

(2005). The design of the borealis stream processing en-
gine. In Proceedings of the Second Biennial Conference
on Innovative Data Systems Research (CIDR), Asilomar,
CA, Pages 277-289,VLDB.

Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., et al.
(2003). Aurora: a data stream management system. In
666-666,ACM New York, NY, USA.

Arasu A, Babcock B, Babu B, Datar M, et al. (2003).
STREAM: The Stanford Stream Data Manager. Retrieved
from http://ilpubs.stanford.edu:8090/583/

Arasu, A., Cherniack, M., Galvez, E., Maier, D., et al.
(2004). Linear road: A stream data management bench-
mark. In Proceedings of the 30th international conference
on Very large data bases Conference, Toronto, Canada,,
Pages 480-491,VLDB.

Babcock, B., Babu, S., Datar, M., Motwani, R., et al.
(2002). Models and issues in data stream systems. In Pro-
ceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems,
New York, USA, Pages 1-16,ACM

Balazinska, M., Balakrishnan, H., Salz, J., & Stonebraker,
M. (2004). The Medusa Distributed Stream-Processing
System. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Paris, France,
Pages 929-930,ACM.

Balazinska, M., Hwang, J., & Shah, M. Fault-tolerance and
high availability in data stream management systems. En-
cyclopedia of Database Systems Accessed on 27-4-2009.
Retrieved from
http://www.cs.washington.edu/homes/magda/encyclopedi
a-long.pdf

Cai, Y., Clutter, D., Pape, G., Han, J., et al. (2004). MAIDS:
Mining alarming incidents from data streams. In Proceed-
ings Proceedings ACM SIGMOD international conference
on Management of data, New York, USA, Pages 919-
920,ACM

Gedik, B., Andrade, H., Wu, K., Yu, P., et al. (2008).
SPADE: the system s declarative stream processing en-
gine. In 1123-1134,ACM New York, NY, USA.

Golab, L., & Özsu, M. (2003). Issues in data stream man-
agement. ACM SIGMOD Record, 32(2), Pages 5-14.

Hwang, J., Balazinska, M., Rasin, A., Çetintemel, U., et al.
(2003). A comparison of stream-oriented high-availability
algorithms. Brown CS TR-03-17.

Jain, N., Amini, L., Andrade, H., King, R., et al. (2006).
Design, implementation, and evaluation of the linear road
benchmark on the stream processing core. In Proceedings
of the ACM SIGMOD international conference on Man-
agement of data, New York, USA, Pages 431-442,ACM

Jiang, N., & Gruenwald, L. (2008). Estimating Missing
Data in Data Streams Advances in Databases: Concepts,
Systems and Applications (Vol. 4443/2008, pp. 981). Hei-
delberg: Springer Berlin.

Kitagawa, H., & Watanabe, Y. (2007). Stream Data Man-
agement Based on Integration of a Stream Processing
Engine and Databases. In Proceedings of the Network
and Parallel Computing Workshops, NPC Workshops.
IFIP International Conference 18-22,IEEE.

Martin Hirzel, H. A., Buğra Gedik, Vibhore Kumar, Giulia-
no Losa, Robert Soulé, Kun-Lung Wu (2009). SPADE
Language Specification. Accessed on 26-4-2009. Re-
trieved from http://www.cs.nyu.edu/~soule/rc24760.pdf

Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005). The
8 requirements of real-time stream processing. ACM
SIGMOD Record, 34(4), 42-47.

Wu, E., Diao, Y., & Rizvi, S. (2006). High-performance
complex event processing over streams. In Proceedings of
the 2006 ACM SIGMOD international conference on
Management of data, Chicago, IL, USA, Pages 407-
418,ACM.

Zdonik, S., Jain, N., Mishra, S., Srinivasan, A., et al. (2008).
Towards a Streaming SQL Standard. 1(2), Pages 1379-
1390.

