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Abstract 

Stream processing languages and stream 
processing engines have become more popu-
lar as they emerged from several modern data 
stream intensive applications such as sensor 
monitoring, stock markets and network moni-
toring. This study discusses the characteris-
tics and features of the stream processing 
technology to provide an in-depth high-level 
guidance and comparison for stream 
processing systems and its underlying lan-
guages and technology with respect to the 
characteristics and features used by certain 
applications. The overall aim of this paper is 
to analyze and to identify the desired features 
of stream processing languages and to eva-
luate a few representative stream processing 
systems and languages on the basis of those 
desired features. The analysis could help in 
the identification of a suitable stream 
processing technology for particular applica-
tions as well as aiding the design and devel-
opment of such languages for new, emerging 
applications. 

1 Introduction 

Over the past few years several new platforms 
and languages have emerged from new require-
ments of data-intensive applications. A great ef-
fort and progress has been made in the area of 
data stream management systems (DSMS). 
Those systems were designed using different 
technologies and platforms to specifically sup-
port specific application domains. As the field of 
stream processing has become more prevalent, 
there is a pressing need to address the common 
desired characteristics for these technologies.  

Many papers have been published detailing 
the issues and requirements for stream 
processing technology. Several prototype and 
commercial implementations  have been pro-
duced by different groups (Golab & Özsu, 2003) 
that have addressed issues in data stream 
management systems; Stonebraker, et al., (2005) 

identified the common rules for stream 
processing engines, and Zdonik, et. al., (2008) 
compared time-base execution model and tuple 
base execution model.  

This paper describes the common characteris-
tics and desired features of DSMS and the under-
lying language and technology issues as well as 
highlighting the recent progress on some of the 
commercial and prototype systems. The rest of 
this paper organized as follows. Section 2 
presents the background of stream processing 
technology. Section 3 presents an overview of 
the common characteristics and critical issues. 
Section 4 discusses some of the commercial and 
prototype languages and systems. Section 5 pro-
vides a succinct conclusion of the presented 
work. 

2 Background  

Traditional database approach has started to have 
a dramatic impact on the quality of services for 
certain emerging applications, as it could not 
handle issues such as scalability, optimization 
and processing continuous real-time data. Stream 
processing approaches have been implemented in 
several stream oriented applications, including 
telecom call-records, network security, financial 
applications, sensor networks, real-time compu-
ting, and manufacturing processes.   

A typical simulation prototype for DSMS 
known as the Linear Road Benchmark (Arasu, et 
al., 2004) developed by Aurora team and 
STREAM team, was designed as a variable tol-
ling system that charges vehicles different toll 
rates based on different factors such as time of 
the day, congestion level on the road and acci-
dent proximity. Each vehicle uses the toll road 
equipped with sensors that provide the exact 
coordinate of the vehicle broadcast in real-time 
every 30 seconds; the collected vehicle data is 
analyzed by the system in real-time in order to 
provide traffic conditions on every section of the 
toll road. Traffic condition is calculated based on 
the collected data such as speed, current acci-



dent, number of vehicle on given section of the 
road. The toll charges are determined for a given 
section of the road based on the calculated data. 
The Linear road implementation requires fea-
tures such as real-time processing of data re-
ceived from sensor networks, providing predict-
able results (approximation), high availability of 
sensor data, and fast processing for large vo-
lumes of continuous data; (Jain, et al., 2006) dis-
cussed the benchmark requirements. These fea-
tures stretch the capabilities of the traditional 
technology enormously. Many researchers and 
vendors have observed that these requirements of 
such applications as the Linear Road Benchmark 
could be met by DSMS more effectively as the 
stream processing technology is designed to 
process continuous real-time data as well as deal-
ing with historical data. 

3 Issues / Features of Stream Languages 

Different applications require different require-
ments. For example some applications may re-
quire fast response-time while others require 
processing high-volume load. Many researchers 
have identified different features and require-
ments for DSMS. This section illustrates the 
common characteristics and critical issues of 
DSMS based on reviewing the past literature and 
the current research. 

3.1 Low Latency/High  Volume Processing   

Stream processing applications should accom-
modate event and data driven processing capabil-
ities; an application must be able to process the 
data instantly and avoid costly storage opera-
tions. The operators in the language used for 
stream processing should provide a specific ex-
ecution strategy in order to achieve quick re-
sponse time, high volume and low latency to 
meet the requirements of stream processing ap-
plications. The traditional approach of storing 
data in a backend database, increases latency and 
response time as it will require writing and read-
ing data and constantly accessing the physical 
storage; instead data should be processed instant-
ly on the fly as it arrives on a real-time basis. In 
addition, using database operations before 
processing the data reduces processing power as 
it will suffer from polling which will result in 
additional overhead on the system. This will sig-
nificantly increase the delay on processing the 
data due to potentially inadequate and/or limited 
resources of the system.  

3.2 Enabling Data Independency 

A stream processing language should support 
data independency by separating the data from 
its underlying application by hiding the details of 
how the data are represented inside the applica-
tion. It also allows the application to be easily 
modified without affecting the data. The use of 
high level declarative languages such as SQL 
enhances the process of computing real-time da-
ta. Furthermore, the use of a high level language 
provides data independency on physical and log-
ical level unlike low level languages where data 
is represented and stored in the language va-
riables making it difficult to share among various 
applications. SQL supports complex data mani-
pulation as it is based on a set of powerful data 
processing operations such as filtering, correla-
tion, merging and aggregation. Many SQL like 
languages (next generation SQL) have been de-
veloped to address the unique requirements of 
stream processing applications; those languages 
are variants of the SQL specifically designed to 
process continuous streams of data (Hwang, et 
al., 2003).  

3.3 Dealing with Incomplete Data Streams  

Since processing streams of data involves deal-
ing with real-time data on continuous basis, there 
will be always cases where streams of data are 
incomplete (missing, delayed and out of order). 
Stream data will not be stored before processing 
unlike dealing with traditional databases where 
the sets of data are stored locally and presented 
before processing. Firstly, having delayed data 
will affect the performance of the system (data 
input for an operation may or may not arrive in a 
timely fashion. As a result, there will be an over-
head on the processing resources of the system). 
A stream processing language should address 
this problem by dedicating flexible windowing 
by specifying a timely interval for each operation 
such as time-base and count-based windows in 
order to allow given operations to terminate or 
time out so that the system release allocated re-
sources for other pending operations. Secondly, 
in dealing with out of order data (data that arrive 
out of sequence or arrive late), the language op-
erators should provide a mechanism to prevent 
the system from blocking the late arrival data by 
allowing disordered data to be processed by ex-
tending time duration for an opened window for 
a given operation. A typical example of this im-
plementation is addressed in Aurora, by using 
slack parameters (DJ Abadi, et al., 2005). 



3.4 Providing Predictable Output  

A stream processing system should provide a 
built-in mechanism and operators, to process a 
minimal set of the received data (incomplete data 
stream for given operation), which may require 
stream processing languages to support pattern 
matching and change detection mechanisms, 
which facilitate the prediction of missing data 
based on historical data and/or special calcula-
tion. There have been studies on predicting the 
missing data in sensor networks, by using esti-
mation techniques through the application of 
“data stream association rule mining” to discover 
relationships between sensors and using them to 
compensate for missing data (Jiang & 
Gruenwald, 2008). Another example is MAIDS 
(Cai, et al., 2004) which uses techniques to find 
alarming incidents from data streams; it relies on 
algorithms to discover changes, trends and 
progress characteristics in data streams and ex-
plores frequent patterns and similarities amongst 
data streams. The ability of providing predictable 
results is important for fault tolerance and recov-
ery, as it deals with incomplete data. 

3.5 Integrating Stored and Stream Data  

Most of the stream processing applications 
should have the capability of seamless integra-
tion between both real-time data and stored his-
torical data by enabling access and modification 
to both sources of data in the same manner. For 
example, dealing with online bank applications 
such as credit card checking or fraud transaction 
detection requires a special process of identifying 
unusual activity by accessing the usual past ac-
tivity patterns and then comparing them with the 
present real-time activity. The system should use 
a standard data management approach to manage 
present data, “stream data”, and past data, “his-
torical data”, as well as the ability to easily con-
vert between the two types using a unified lan-
guage. Harmonica (Kitagawa & Watanabe, 
2007) is a DSMS solution that implements an 
architecture which combines processing both 
stream data and traditional relational DBMSs 
data.  

3.6 Guaranteeing High Availability 

Like in any mission-critical system, high availa-
bility is a critical factor in avoiding interruption 
in processing real-time data by insuring the inte-
grity of data is maintained at all times and having 
very high uptime. A data stream management 
system should use fault tolerance and a high 

availability solution by allowing the language to 
use special optimization approaches. 

A DSMS can experience failures of its differ-
ent components (hardware and network infra-
structure) especially in a dynamic, distributed 
environment, when operations are divided across 
multiple nodes on the network. A failure of 
processing nodes can cause processing of conti-
nuous queries to stop; these failures can affect 
critical client applications that rely on timely 
query results. There are a number of techniques 
addressing these issues (Balazinska, et al.). Ad-
dressing these issues will enable the DSMS to 
handle failures and fault tolerance to enable high 
availability.   

3.7 Scalability and Resource Utilization  

Stream processing systems should support multi-
threaded and distributed operations over multiple 
processors and machines, to avoid event block-
ing. The system should be scalable over a num-
ber of machines, by providing automated load 
balance among those machines so that the appli-
cation does not get suspended by an overloaded 
machine. Some of the current SPE like (Borealis) 
have implemented optimization methods to util-
ize system resources by balancing the resources 
over server heavy and sensor heavy optimization 
problems; see (DJ Abadi, et al., 2005) for a de-
tailed Borealis optimization design. 

Stream processing languages should enable 
DSMS to be easily scaled-up and utilize its re-
sources across its cluster nodes with no trouble 
and the needs of rewriting low level codes. 

3.8 Supporting Complex Event Processing  

Complex event processing CEP is a technique 
that allows applications to monitor multiple 
streams of events, analyze the data to find mea-
ningful events within the event cloud so as to act 
upon it accordingly in real time (Wu, et al., 
2006). Event processing refers to techniques 
such as filtering, correlating, aggregating, detect-
ing complex patterns of many events and rela-
tions between events to be computed in real-
time. With CEP, events are processed as they 
occur without the need for retaining the 
processing state. The data should be processed 
and responded instantly to avoid overheads by 
allowing high optimization techniques. Stream 
processing languages should support CEP and be 
event-driven in order to enable the capacity of 
processing tens to hundreds of thousands of mes-
sages per second without undue delay.  



4 System and Languages  

Different projects have taken different directions 
in finding languages that accommodate different 
system requirements. One approach is to extend 
an existing language such as SQL to deal with 
data streams while another direction is to create a 
new language from scratch to deal with real-time 
data streams. This section provides an overview 
of some of those systems along with the lan-
guages used. 

4.1 Aurora and Borealis 

Aurora (D Abadi, et al., 2003) is a general pur-
pose DSMS designed by (Brandies and Brown 
universities and MIT). It is based on the data-
flow approach that uses procedural boxes and 
arrows paradigm. It supports a variety of real-
time application monitoring features and deals 
with large volumes of asynchronous push-based 
streams; data is processed as it arrives from dif-
ferent sources and then it is delivered to the cor-
responding nodes. 

Aurora uses continuous queries based on sets 
of well defined operators that comply with stan-
dard filtering, mapping, window aggregation and 
join operation. Aurora’s windowed operation has 
slack and time-out parameters, which enable 
dealing with slow and out of order data. The Au-
rora application employs Quality of Services 
graphs, and functions which enable maximum 
QoS at run-time which include latency graph for 
a delayed result. Value based graph deals with 
important output values, and loss tolerance 
graph, handles incomplete and approximation 
answers. The run-time component includes 
scheduler: responsible for deciding which op-
eration to be executed and in which order, and 
storage manager: responsible to store order 
of queues of tuples instead of sets of relational 
tuples. It also combines the storage of push-
based queues with pull-based access to historical 
data. Another component is load shedder: 
which involves detecting and handling overload 
occurrences, by using a built in drop operator to 
filter messages based on the value of the tuple, or 
in randomized base, to rectify the overload situa-
tions. Aurora incorporates an extended SQL lan-
guage, known as Stream Query Algebra SQuAl, 
which contains built-in support for seven primi-
tive operations, and supports three types of QoS 
process flow models. Every input tuple to Aurora 
is tagged a with a time stamp; the operators 
structured as agnostic (filter, Map, Union), 
process tuples in the arrival order, or as sensi-

tive (BSort, Aggregate, Join, resample), 
process non-ordered tuples on expense of some 
latency in computation.  

Borealis (DJ Abadi, et al., 2005) is the second 
generation of Aurora, designed to implement 
stream processing over distributed environments 
by distributing the processing over multiple 
nodes to address  scalability, and high availabili-
ty. It inherits its core stream functionality  from 
Aurora and the distributed techniques from the 
Medusa project (Balazinska, et al., 2004) . 

4.2 STREAM 

STREAM (Arasu A, et al., 2003) is a general 
purpose centralized single system DSMS pro-
duced by Stanford University. It supports large 
declarative continuous queries over continuous 
streams and traditional data sets. The DSMS tar-
gets environments where streams are rapid and 
query load may vary over time with imperfect 
limitation of system resources. Queries over data 
streams are issued declaratively and translated 
into flexible query plans. A query plan is com-
posed of (queues, operators and synopses). The 
DSMS enables high performance by sharing state 
and computation across query plans. In addition, 
constraints on stream data such as ordering and 
clustering can be used to reduce resource usage. 

 The CQL is a declarative query language de-
rived from the SQL language with respect to the 
stream processing requirements. ( See addressed 
issues and challenges (Babcock, et al., 2002)). A 
registered CQL in STREAM produces a com-
piled query plan composed of operators which 
perform the actual processing. CQL features two 
layers; an abstract semantics and an implementa-
tion of the abstract semantics. The abstract se-
mantics is composed of two data types, stream 
and relations, which are defined using discrete 
ordered time-stamps which denote the logical 
arrival time of a tuple on a stream while the rela-
tion is based on a time varying bag of tuples. The 
abstract semantics implementation uses three 
types of operators over stream and relations (re-
lation to relation, stream to relation, and relation 
to stream), while the stream to stream manipula-
tion is composed from the three types of opera-
tors known as black-box component of the ab-
stract semantics. In addition, STREAM has sev-
eral built-in operators for organizing input and 
output and connecting query plans together. 

The STREAM system includes a monitoring 
and adaptive query processing infrastructure 
called StreaMon which monitors the perfor-
mance over a time as query loads and system 



conditions changes, in addition approximation 
techniques such as load-shedding, sam-

pling and dropping are used when data ar-
rival rate is high and execution exceeds available 
memory to reduce overload accordance. 

4.3 StreamBase 

StreamBase (2009) is a commercial DSMS de-
signed to analyze and act on high-volume real-
time streaming data with the goal of providing 
features such as single integration platform, user 
friendly graphical flow language, extreme per-
formance with low latency and broad connectivi-
ty to historical data. It highly supports the finan-
cial market in applications such as market data 
feed processing, automated trading, real-time 
profit-loss and transaction cost analysis. The 
StreamBase model is tuple-driven: each rela-
tion has a value acquired by evaluating the win-
dow on the history of input streams of that tuple. 
StreamSQL is a graphical event flow program-
ming language which extends SQL and offers 
several operators to allow processing of real-time 
data streams and historical data. StreamSQL 
manages continuous event streams and time-
based records; it retains the capabilities of SQL 
while adding new capabilities such as a rich win-
dowing system and the ability to mix stored data 
with streams; StreamSQL extends SQL in Data 
Windows: which defines the scope of an operator 
over time, integrated Access to Stream and 
Stored data which handles the manipulation of 
both stream and historical data in a uniform ap-
proach; and Stream specific operators and con-
structs  which allow temporal pattern matching 
over streams and the manipulation of stream da-
ta.  The operators provide the capability of filter-
ing, merging and combining of streams as well 
as running time window based aggregations and 
computations on streams. Furthermore it handles 
disordered, late and missing data. StreamBase is 
capable of connecting to an external data source 
to enable applications to integrate selected data 
into the application flow or to update the external 
database with processed information. In addition, 
it is easily extendable with other external sources 
by providing a range of adapters and interfaces 
which enables the conversion of streaming data 
to required procedures.  
High availability is addressed by providing stan-
dard process pairs approach of two dedicated 
servers, one as primary and the other as a backup 
with a specific mechanism which enables asyn-
chronous synchronization to take place and pre-
vent overhead.   

4.4 SPADE 

SPADE (Gedik, et al., 2008) is a declarative 
stream processing engine developed by IBM as a 
large scale, distributed middleware for System S. 
It provides an intermediate language for flexible 
composition of parallel and distributed data-flow 
graphs sitting in between higher level program-
ming tools and languages such as System S and 
StreamSQL. A generic built-in stream processing 
operator supports scalar and vectorized 
processing; it also supports all basic stream-
relation operators with rich windowing and punc-
tuation semantics and seamlessly integrates with 
user-defined operators. It offers a broad range of 
rich stream adapters to consume and publish data 
from external sources such as network sockets 
and relational and XML databases.  

SPADE leverages existing infrastructure of 
stream processing core SPC provided by System 
S. It utilizes code generation framework to create 
highly optimized applications that may run na-
tively on the SPC; it inherits full features and 
services of system S runtime such as placement 
and scheduling, distributed job management, 
failure-recovery and security which contribute in 
automating performance optimization, scalability 
and communication overhead.  The operation 
environment can be run on 500 processors within 
more than 100 physical nodes in a strongly con-
nected cluster environment. The system is ex-
pressed by a dataflow graph consisting of 
processing elements. The main components of 
SPC are Dataflow Graph-Manager: respon-
sible for matching stream descriptions between 
input and output ports, data-fabric: estab-
lishes transport connections and chooses an ap-
propriate transportation to achieve flow balanc-
ing to ensure stable operation within workloads; 
Resource Manager: makes global resource 
allocation decisions by sharing system infrastruc-
ture and execution-container: provides 
runtime content and access to SPC middleware 
also monitors resource usage.  

SPADE2 (Martin Hirzel, 2009) has added 
some extra features to SPADE1 such as compo-
site operators, shared variables, and richer data 
models as well as scaling the design to allow an 
efficient distributed implementation. 

5 Conclusion  

Stream processing languages have emerged from 
the requirements of different applications as dis-
cussed in section 2. There are a number of issues 
and features required for such applications which 



depend on many factors such as language fea-
tures and system implementation. 

This paper overviewed four representative-
stream processing engines along with the lan-
guage and underlying technology features used 
to address the requirements of stream processing 
applications. Table 1 summarizes the results of 
these four systems presented in this paper along 
with those of the Linear Road benchmark (LR, 
Aurora and Borealis Au, STREAM ST, Stream-
Base SB and Spade SP). 

 
   LR Au ST SB SP 
Low-latency/high-volume  Y Y P Y Y 
Data independency  Y Y Y Y Y 
Incomplete data stream Y Y Y Y Y 
Predictable output Y Y Y Y N 
Data integration  Y Y Y Y Y 
High availably  Y P N P Y 
Scalability / utilization  Y P N P Y 
Complex event processing  Y P Y Y Y 

Table1: technology features 
 

The cells in the table contain one value of 
three possible values. Y indicates the technology 
supports this feature; N indicates the technology 
does not support this feature; and P for possibili-
ty of support with modifications and enhance-
ment.  

Not all languages used by stream processing 
engines have the same characteristics as some 
are stronger in certain areas while others are not. 
Considering the Linear road as a comparison 
benchmark for the discussed stream engines and 
languages, we observe that only StreamBase and 
Borealis (the enhanced version of Aurora) may 
satisfy most of the requirements of this stream 
processing domain application, while the others 
may partially satisfy the requirements of a given 
domain.    
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