1

An Analysis of Stream Processing L anguages

Miran Dylan
Department of Computing
Macquarie University, Sydney, Australia

m ran. dyl an@t udent s. ng. edu. au

Abstract

Stream processing languages and stream
processing engines have become more popu-
lar as they emerged from several modern data
stream intensive applications such as sensor
monitoring, stock markets and network moni-
toring. This study discusses the characteris-
tics and features of the stream processing
technology to provide an in-depth high-level
guidance and comparison for stream
processing systems and its underlying lan-
guages and technology with respect to the
characteristics and features used by certain
applications. The overall aim of this paper is
to analyze and to identify the desired features
of stream processing languages and to eva-
luate a few representative stream processing
systems and languages on the basis of those
desired features. The analysis could help in
the identification of a suitable stream
processing technology for particular applica-
tions as well as aiding the design and devel-
opment of such languages for new, emerging
applications.

I ntroduction

identified the common rules for stream
processing engines, and Zdonik, et. al., (2008)
compared time-base execution model and tuple
base execution model.

This paper describes the common characteris-
tics and desired features of DSMS and the under-
lying language and technology issues as well as
highlighting the recent progress on some of the
commercial and prototype systems. The rest of
this paper organized as follows. Section 2
presents the background of stream processing
technology. Section 3 presents an overview of
the common characteristics and critical issues.
Section 4 discusses some of the commercial and
prototype languages and systems. Section 5 pro-
vides a succinct conclusion of the presented
work.

2 Background

Traditional database approach has started to have
a dramatic impact on the quality of services for
certain emerging applications, as it could not
handle issues such as scalability, optimization
and processing continuous real-time data. Stream
processing approaches have been implemented in
several stream oriented applications, including

Over the past few years several new platformgelecom call-records, network security, financial

and languages have emerged from new requir@pplications, sensor networks, real-time compu-
ments of data-intensive applications. A great efting, and manufacturing processes.
fort and progress has been made in the area of A typical simulation prototype for DSMS
data stream management systems (DSMSknown as the Linear Road Benchmark (Arasu, et
Those systems were designed using differertl., 2004) developed by Aurora team and
technologies and platforms to specifically supSTREAM team, was designed as a variable tol-
port specific application domains. As the field ofling system that charges vehicles different toll
stream processing has become more prevalemgtes based on different factors such as time of
there is a pressing need to address the commiime day, congestion level on the road and acci-
desired characteristics for these technologies. dent proximity. Each vehicle uses the toll road
Many papers have been published detailing@quipped with sensors that provide the exact
the issues and requirements for streangoordinate of the vehicle broadcast in real-time
processing technology. Several prototype anédvery 30 seconds; the collected vehicle data is
commercial implementations have been proanalyzed by the system in real-time in order to
duced by different groups (Golab & Ozsu, 2003)provide traffic conditions on every section of the
that have addressed issues in data streatoll road. Traffic condition is calculated based on
management systems; Stonebraker, et al., (2008)e collected data such as speed, current acci-



dent, number of vehicle on given section of the.2 Enabling Data | ndependency

road. The toll charges are determined for a giveR stream processing language should support

section of the road based on the calculated dat . .
The Linear road implementation requires fea—8ata independency by separating the data from

tures such as real-time processing of data its underlying application by hiding the details of

re- e )
ceived from sensor networks, providing predic %OW the data are represented inside the applica-

L . o tion. It also allows the application to be easily
able results (approximation), h'g.h availability Ofmodified without affecting the data. The use of
sensor data, and fast processing for large v

lumes of continuous data; (Jain, et al., 2006) dig“gh level declarative languages such as SQL

cussed the benchmark requirements. These feer_mances the process of computing real-time da-
. Furthermore, the use of a high level language

tures stretch the capabilities of the traditiona , . ;
technoloav enormously. Manv researchers arlgcrowdes data independency on physical and log-
9y Y y | Fl| level unlike low level languages where data

vendors have observed that these requirements. .

N . iS represented and stored in the language va-

such applications as the Linear Road Benchmar L .
lables making it difficult to share among various

could be met by DSMS more effectively as theapplications. SQL supports complex data mani-

stream processing technology is designed %ulation as it is based on a set of powerful data

process continuous real-time data as well as dea]- : . e
! e rocessing operations such as filtering, correla-
ing with historical data.

tion, merging and aggregation. Many SQL like
languages (next generation SQL) have been de-
veloped to address the unique requirements of
Different applications require different require-stream processing applications; those languages
ments. For example some applications may reare variants of the SQL specifically designed to
quire fast response-time while others requirg@rocess continuous streams of data (Hwang, et
processing high-volume load. Many researchersl., 2003).

have identified different features and require-
ments for DSMS. This section illustrates the™
common characteristics and critical issues ofince processing streams of data involves deal-
DSMS based on reviewing the past literature anghg with real-time data on continuous basis, there
the current research. will be always cases where streams of data are
incomplete (missing, delayed and out of order).
Stream data will not be stored before processing
Stream processing applications should accomunlike dealing with traditional databases where
modate event and data driven processing capabihe sets of data are stored locally and presented
ities; an application must be able to process thieefore processing. Firstly, having delayed data
data instantly and avoid costly storage operawill affect the performance of the system (data
tions. The operators in the language used fdnput for an operation may or may not arrive in a
stream processing should provide a specific extmely fashion. As a result, there will be an over-
ecution strategy in order to achieve quick rehead on the processing resources of the system).
sponse time, high volume and low latency toA stream processing language should address
meet the requirements of stream processing afhis problem by dedicating flexible windowing
plications. The traditional approach of storingby specifying a timely interval for each operation
data in a backend database, increases latency ageth as time-base and count-based windows in
response time as it will require writing and read-order to allow given operations to terminate or
ing data and constantly accessing the physicéiime out so that the system release allocated re-
storage; instead data should be processed instagapurces for other pending operations. Secondly,
ly on the fly as it arrives on a real-time basis. | in dealing with out of order data (data that arrive
addition, using database operations beforeut of sequence or arrive late), the language op-
processing the data reduces processing power @sitors should provide a mechanism to prevent
it will suffer from polling which will result in the system from blocking the late arrival data by
additional overhead on the system. This will sigallowing disordered data to be processed by ex-
nificantly increase the delay on processing théending time duration for an opened window for
data due to potentially inadequate and/or limiteé given operation. A typical example of this im-
resources of the system. plementation is addressed in Aurora, by using
sl ack parameters (DJ Abadi, et al., 2005).

3 Issues/ Featuresof Stream Languages

3 Dealing with Incomplete Data Streams

3.1 Low Latency/High Volume Processing



3.4 Providing Predictable Output availability solution by allowing the language to

: , se special optimization approaches.
A stream processing system should provide 4 : . o
built-in mechanism and operators, to process a A DSMS can experience failures of its differ-

minimal set of the received data (incomplete dat(éi\nt components (harQWare and _netw_ork_ infra-
Structure) especially in a dynamic, distributed

stream for given operation), which may require vironment, when operations are divided across
stream processing languages to support patte i ’ P

metching and change detecion mechansm{ DI "e06e or e rewerc A faiue o
which facilitate the prediction of missing dataP” 9 P 9

based on historical data and/or special calculgrious gueries to stop; these failures can affect

tion. There have been studies on predicting th(éritical client applications that rely on timely
missing data in sensor networks, by using astduery results. There are a number of techniques

| . ) :
mation techniques through the application 0]addressmg these issues (Balazinska, et al.). Ad-
“data stream association rule mining” to discove

I(_i‘ressing these issues will enable the DSMS to
relationships between sensors and using them Oandle failures and fault tolerance to enable high
compensate for missing data (Jiang &

availability.
Gruenwald, 2008). Another example is MAIDS37  Scalability and Resour ce Utilization
(Cai, et al., 2004) which uses techniques to find

alarming incidents from data streams; it relies orpt'eam processing systems should support multi-
algorithms to discover changes, trends anthreaded and distributed operations over multiple
progress characteristics in data streams and eR[oceisors and mra]lchllgebs, to a}vglld event block-
plores frequent patterns and similarities amongj?g' The system should be scalable over a num-

data streams. The ability of providing predictabl belr of machinesr,] by proviﬁing autorr]natehd |°ad|_
results is important for fault tolerance and recoy?@ance among those machines so that the appli-
ery, as it deals with incomplete data. cation does not get suspended by an overloaded

machine. Some of the current SPE like (Borealis)
3.5 Integrating Stored and Stream Data have implemented optimization methods to util-
é'ze system resources by balancing the resources

Most of the stream processing application over server heavy and sensor heavy optimization
should have the capability of seamless mtegra’roblems; see (DJ Abadi, et al., 2005) for a de-

tion between both real-time data and stored hifa'led Borealis ontimization desian
torical data by enabling access and modificatio IStream prlocepslsinlé Ilanguaglgs. should enable
to both sources of data in the same manner. F . .
example. deaing wih orine bank sppicatons. 11> 9,0 S35l Sonecup an e e 1
such as credit card checking or fraud transaction "

detection requires a special process of identifyinSnd the needs of rewriting low level codes.
unusual activity by accessing the usual past agg supporting Complex Event Processing

tivity patterns and then comparing them with the

present real-time activity. The system should us&Omplex event processing CEP is a technique
a standard data management approach to mandggt allows applications to monitor multiple
present data, “stream data”, and past data, “hiSireams of events, analyze the data to find mea-
torical data”, as well as the ability to easily eon nlngful. events Wlthln t.he event_cloud So as to act
vert between the two types using a unified lan¥PON it accordingly in real time (Wu, et al,
guage. Harmonica (Kitagawa & Watanabe,zooe)- E_ven_t processing refers to _technlques
2007) is a DSMS solution that implements ar_§uch as filtering, correlating, aggregating, detect
architecture which combines processing bot#)d complex patterns of many events and rela-
stream data and traditional relational DBMSSIONS between events to be computed in real-

data. time. With CEP, events are processed as they
occur without the need for retaining the
3.6 Guaranteeing High Availability processing state. The data should be processed

and responded instantly to avoid overheads by
allowing high optimization techniques. Stream
processing languages should support CEP and be
vent-driven in order to enable the capacity of
rocessing tens to hundreds of thousands of mes-
fages per second without undue delay.

Like in any mission-critical system, high availa-
bility is a critical factor in avoiding interruptio

in processing real-time data by insuring the inte
grity of data is maintained at all times and havin
very high uptime. A data stream manageme
system should use fault tolerance and a hig



4  System and Languages tive (BSort, Aggregate, Join, resample),

) ) ) ) . process non-ordered tuples on expense of some
Different projects have taken different d'reCt'onslatency in computation.

in finding languages that accommodate different g,realis (DJ Abadi, et al., 2005) is the second

system requirements. One approach is to ex"?’géneration of Aurora, designed to implement
an existing language such as SQL to deal Wityeam processing over distributed environments
data streams while another direction is to create@y distributing the processing over multiple

new language from scratch to deal with real-timg,oges to address scalability, and high availabili-
data streams. This section provides an overviey |t jnnerits jts core stream functionality from
of some of those systems along with the lanayrora and the distributed techniques from the
guages used. Medusa project (Balazinska, et al., 2004) .

41 Auroraand Borealis 4.2 STREAM

Aurora (D Abadi,_ et al., 2003) is a general pUrsTREAM (Arasu A, et al., 2003) is a general
pose DSMS designed by (Brandies and Browp nose centralized single system DSMS pro-
universities and MIT). It is based on the datay,ceq by Stanford University. It supports large
flow approach that uses procedural boxes angeciarative continuous queries over continuous
arrows paradigm. It supports a variety of realgyeams and traditional data sets. The DSMS tar-
time application monitoring features and dealg,ats environments where streams are rapid and
with large volu'mes of asynchrqnous push-baseEu(_}ry load may vary over time with imperfect
streams; data is processed as it arrives from difiyitation of system resources. Queries over data
ferent sources and then it is delivered to the COkyeams are issued declaratively and translated
responding nodes. , into flexible query plans. A query plan is com-
Aurora uses continuous queries basgd on Seﬁ%sed of (queues, operators and synopses). The
of well defined operators that comply with stan-pgyg enables high performance by sharing state
dard filtering, mapping, window aggregation andyng computation across query plans. In addition,
join operation. Aurora’s windowed operation has,onsiraints on stream data such as ordering and
sl ack andti me-out parameters, which enable ¢|ystering can be used to reduce resource usage.
dealing with slow and out of order data. The Au- The CQL is a declarative query language de-
rora application employs Quality of Servicesyjed from the SQL language with respect to the
graphs, and functions which enable maximunyyeam processing requirements. ( See addressed
QoS at run-time which include latency graph fofissyes and challenges (Babcock, et al., 2002)). A
a delayed result. Value based graph deals Witﬂegistered CQL in STREAM produces a com-
important output_ values, and loss tol_eranc%i|ed query plan composed of operators which
graph, handles incomplete and approximatioherform the actual processing. CQL features two
answers. The run-time component includegayers; an abstract semantics and an implementa-
schedul er : responsible for deciding which op- tjon of the abstract semantics. The abstract se-
eration to be executed and in which Order, anﬁ]antics is Composed of two data types’ stream
storage manager: responsible to store order gnd relations, which are defined using discrete
of queues of tuples instead of sets of relationadrdered time-stamps which denote the logical
tuples. It also combines the storage of pushgrrival time of a tuple on a stream while the rela-
based queues with pull-based access to historicgbn is based on a time varying bag of tuples. The
data. Another component isoad shedder: abstract semantics implementation uses three
which involves detecting and handling overloadypes of operators over stream and relations (re-
occurrences, by using a built in drop operator tgation to relation, stream to relation, and relatio
filter messages based on the value of the tuple, @ stream), while the stream to stream manipula-
in randomized base, to rectify the overload situation is composed from the three types of opera-
tions. Aurora incorporates an extended SQL lanors known a$! ack- box component of the ab-
guage, known as Stream Query Algebra SQUAktract semantics. In addition, STREAM has sev-
which contains built-in support for seven primi-eral built-in operators for organizing input and
tive operations, and supports three types of Qogutput and connecting query plans together.
process flow models. Every input tuple to Aurora The STREAM system includes a monitoring
is tagged a with a time stamp; the operatorgnd adaptive query processing infrastructure
structured asagnostic (filter, Map, Union), called StreaMon which monitors the perfor-
process tuples in the arrival order, orsassi - mance over a time as query loads and system



conditions changes, in addition approximatiod.4 SPADE

techniques such asoad-shedding, sam  gpApE (Gedik, et al., 2008) is a declarative
p.l 'ng and glroppl ng are gsed when data_ar- stream processing engine developed by IBM as a
rival rate is high and execution exceeds avallabl%rge scale, distributed middleware for System S.
memory to reduce overload accordance. It provides an intermediate language for flexible
43 StreamBase composition of parallel and distributed data-flow

_ _ graphs sitting in between higher level program-
StreamBase (2009) is a commercial DSMS dejng tools and languages such as System S and
signed to analyze and act on high-volume realsireamsQL. A generic built-in stream processing
time streaming data with the goal of prOV'd'”goperator supports scalar and vectorized
fe_atures such as single integration platform, US&frocessing; it also supports all basic stream-
friendly graphical flow language, extreme per-rg|ation operators with rich windowing and punc-
formance with low latency and broad connectiviyation semantics and seamlessly integrates with
ty to historical data. It highly supports the firan yser-defined operators. It offers a broad range of
cial market in applications such as market datgch stream adapters to consume and publish data
feed processing, automated trading, real-timgom external sources such as network sockets
profit-loss and transaction cost analysis. Thgn( relational and XML databases.
StreamBase model isipl e- driven: each rela-  SpPADE leverages existing infrastructure of
tion has a value acquired by evaluating the winstream processing core SPC provided by System
dow on the history of input streams of that tuples |t utilizes code generation framework to create
StreamSQL is a graphical event flow programighly optimized applications that may run na-
ming language which extends SQL and offersjvely on the SPC; it inherits full features and
several operators to allow processing of real-timgervices of system S runtime such as placement
data streams .and historical data. StreamSQ&nd scheduling, distributed job management,
manages continuous event streams and timegjlure-recovery and security which contribute in
based records; it retains the capabilities of SQlytomating performance optimization, scalability
while adding new capabilities such as a rich wingnd communication overhead. The operation
dowing system and the ability to mix stored datanyironment can be run on 500 processors within
with streams; StreamSQL extends SQL in Datgnore than 100 physical nodes in a strongly con-
Windows: which defines the scope of an operatofiected cluster environment. The system is ex-
over time, integrated Access to Stream an@ressed by a dataflow graph consisting of
Stored data which handles the manipulation Of)rocessing elements. The main components of
both stream and historical data in a uniform apspc arepat af | ow Gr aph- Manager : respon-
proach; and Stream specific operators and CoRjhle for matching stream descriptions between
structs - which allow temporal pattern matching,nyt and output portsdat a- f abric: estab-

over streams and the manipulation of stream dgghes transport connections and chooses an ap-
ta. The operators provide the capability of filter ,rqhriate transportation to achieve flow balanc-

ing, merging and combining of streams as wellhg 1o ensure stable operation within workloads;
as running time window based aggregations ang. ., ce Manager: makes global resource

computations on streams. Furthermore it handleg o cation decisions by sharing system infrastruc-
disordered, late and missing data. StreamBasetJ&re and execut i on-cont ai ner:  provides

capable of connecting to an external data SOUrGEintime content and access to SPC middleware
to enable applications to integrate selected da%ﬂ

into the application flow or to update the externa SPADE2 (Martin Hirzel, 2009) has added

database with processed information. In addition, .. o tra features to SPADE1L such as compo-
it is easily extendable with other external sourceg; operators, shared variables, and richer data

by _providing a range of ad_apters and in.terfacer%odels as well as scaling the design to allow an
which enables the conversion of streaming dat

) 8fficient distributed implementation.
to required procedures.
High availability is addressed by providing stan5  conclusion
dard process pairs approach of two dedicated
servers, one as primary and the other as a backfream processing languages have emerged from
with a specific mechanism which enables asynthe requirements of different applications as dis-
chronous synchronization to take place and presussed in section 2. There are a number of issues
vent overhead. and features required for such applications which

SO monitors resource usage.
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