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1. Abstract 
 

This workshop paper addresses Heuristic approaches to solving Sudoku puzzles, with a particular 

focus on Particle Swarm Optimisation(PSO). Sudoku problems and their constraints will be dis-

cussed. Heuristics used to solve Sudoku will be identified. We will then propose a component 

framework for supporting PSO and other Heuristics. Doing so allows us to detail aspects of PSO 

such as initialisation, optimisation, randomisation and the fitness function separately. Conclusions 

are drawn, implications drawn for the other Heuristics, and suggestions for further work are made. 

 

2. Introduction 
 

Sudoku is a popular combinatorial challenge for enthusiasts worldwide. The simple 9x9 grid and 4 

constraints are easily understood, and the 6,700x10
18

 or so possible combinations ensures enough 

complexity to last hours. 

 

Sudoku is also significant as a target for heuristics research. Sudoku puzzles have been shown to be 

NP Complete(Yato, Seta - 2005), which means you may need to check all possible combinations to 

know you have the best solution. Finding reliable ways to quickly solve Sudoku problems may offer 

improved ways to solve NP Complete problems. 

 

Generally speaking, Heuristics solve problems by working as a population. Each member of the popu-

lation randomly changes, it is measured by a fitness function, and then information is shared about the 

more successful members. 

 

There are two forms of Heuristics, Evolutionary Algorithms(EAs) and Swarming Algorythms(SA). 

EAs include Genetic Algorithms where particles simulate population lifecycles and the sharing of suc-

cessful attributes from parents to children, or Simulated Annealing where elements are combined. SAs 

include Particle Swarm Optimisation where the particles move towards the most successful particle, in 

the way birds may flock in flight. 

 

The weakness of Heuristics is a tendency to drive into local maxima. This happens because Heuristics 

chase the best solution, without knowing if it is really the best possible solution. A Heuristic might 

solve most of a puzzle, and only be able to tell it can’t improve. Our aim is to improve our heuristic to 

avoid these local maxima to fill all 81 cells more of the time. 

 

The Heuristics have a lifecycle, and breaking their operation into components shows that there are 

multiple aspects to configuration and management. We suggest a component framework which 

will allow our PSO implementations to be optimised within each of these components. 
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Figure 1 - Sudoku puzzle 
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3. Heuristics 
 

In this section we review Heuristics which have been used to try and solve Sudoku puzzles. 

 
1
A heuristic technique is one that attempts to find good fit solutions, often by trial and error or learning 

techniques, and avoids the requirement to evaluate every possible combination as a brute force method 

would. 

 

Heuristics start with a collection of solutions which they attempt to improve. The result is the best so 

far, rather than the best possible solution. Our goal is to optimise heuristics so as to have confidence 

that the heuristic good solution is effectively the global optimum. If this were repeatable, solutions to 

other NPComplete problems may also be possible. 

 

An initialised heuristic looks like a large collections of solutions which were used as the basis for im-

provement. The function of the heuristic compares and contrast the solutions with each other and ran-

dom factors, attempting to discard weaker solutions and coalescing around stronger solutions. The 

simplest simulated annealing replica replicates a cooling metal just as the temperature would be drop-

ping the effect of a random factor decreases and there's only improvements in solutions are accepted 

the population improves. Genetic Algorithms implement a survival of the fittest strategy with the best 

performed members of the population pass on their attributes to children who can replace the weaker 

members of the population. The process continues until the population stabilises. Particle swarm opti-

misation creates a large population of members each sure making individual choices about trusting a 

random factor, the global best solution, their own solution and the best solution amongst their neigh-

bors. These implementations leverage the ability of the population to improve by comparisons be-

tween its own members; as a result by extension the larger the population the greater the points of 

comparison and the wider the initial randomisation of the problem space. 

 

A key optimisation for heuristics is being able to avoid local maxima. We are lucky in that fitness 

functions for Sudoku can identify a correct solution, and in many cases there is only one unique solu-

tion. 

 

Heuristics are good candidates for problem solving because they scale extremely well. At the most 

extreme implementations up to 5000 particles were seen in a Particle Swarm Optimisation implemen-

tation. This isn't to say however that you could scale beyond this range, and it would certainly make 

sense to do so. In particle swarm optimisation the most expensive operations might be related to social 

interactions with immediate neighbors, but there is ample evidence that this is understood. You can 

choose to implement social interactions, and while it is true that the social interactions need to be sepa-

rately managed by a lookup table, it's not expected that such a management system would be expen-

sive to implement. Most of the optimisations are inexpensive: the cooling effect in random simulated 

annealing interactions is simply the variation of a coefficient in a randomisation in the parent calcula-

tion. There aren't many heuristic operations which can't be performed in linear time order, thereby 

making this process more efficient than brute force methods, especially in larger domains. 

 

That they scale so well is a great help when you consider that the widest possible distribution of the 

population is seen as a key benefit. Simply ensuring that the distribution of the population is purely 

random with the active throwing as many particles as possible into the domain  and saturating puzzle 

could only help improve your chances of identifying as many local maxima as possible. This seems a 

contradiction, given the local maxima are a known problem of heuristics. But as demonstrated, and 

inability to bridge the entropy gap into a new partition has as much to do with an attraction to a local 

maxima as it does to a lack of population elsewhere in the puzzle domain. 

                                                 
1
 http://en.wikipedia.org/wiki/Heuristic 
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3.1 Brute Force Approaches 

 

We will discuss successful brute force approaches and which optimisations work well with them. 

 

So one of the first questions that might be asked when discussing computer based solutions for Sudoku 

might be along the lines “Can’t they already solve Sudoku puzzles quickly?”. The answer is yes, it’s 

usually possible for a fairly simple script on a normal home computer to solve Sudoku puzzles in sub 

second time.  

 

Sudoku puzzles are NPComplete, which in the worst case lead to a non linear solution times. For prob-

lems more complex than Sudoku this rapidly becomes unworkable, but our puzzles are of a size that 

people do them for fun, often in a few hours, and if they really needed to go through the 6,700x10
18

 

combinations this wouldn’t be the case. Most puzzles have enough givens to lead to a single result, 

and this approach usually takes up 20 or so cells. Humans then progress through the solution in a sys-

tematic way so as to reduce duplication and unnecessary work. Brute force algorithms can emulate 

these approaches, and the most popular two of these are Searches and Backtracking. 

 

Searches attempt to reduce the number of bad moves by looking ahead and trying to balance both the 

Fitness Function and the accomplishing a traversal. Brute force ensures that all possible combinations 

might be checked, while also ensuring that invalid combinations in the namespace are avoided. This 

combination promises the best possible solution in the shortest possible time. This is the process hu-

mans go through when they choose how to proceed along the perceived optimal route without dupli-

cating moves they’ve made previously. 

 

Extending from the Searches approach, humans avoid re-entering dead ends by reversing moves 

they’ve recently made to a point where a different choice can be followed. In Brute Force approaches 

the iterative approach ensures that values for the present are tested before the current cell is cleared, 

attention moves back to the previous cell and the process continues. In this way the complete range of 

possible moves are checked while never producing the same combination twice, and the algorithm 

shows great reliability in climbing towards a local maxima and backing away from the dead end. 

 

Neither of these approaches are understood to be consistent with Heuristics. The performance benefit 

of Heuristics comes from not needing to iterate through the entire namespace for the best solution, in-

stead randomly varying their solutions in an attempt to spread out. Heuristics do not remember the 

path that got them to where they are. Instead SAs remember their own best result and the current best 

result among the rest of the population, while GAs value the current most successful in the population, 

allowing them to reproduce and replace the least successful members. Simulated Annealing grafts as-

pects of the more successful in the population into the weakest members. 

 

Finally, the aim of our work is to improve PSO for Sudoku and by extension PSO in general. Adding 

Search and Backtracking abilities to PSO leads PSO towards brute force style costs which would be 

highly problematic in more difficult contexts. 
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3.2 General approaches with Heuristics 
 

Here we discuss the similarities in various Heuristics which will later form the basis of my later rec-

ommended component framework. 

 

In general the same approach persists with each Heuristic implementation: 

 

Initialisation - Namespaces 

 

Here we discuss how we organize the data for the heuristic. The Heuristic is initialized by mapping the 

problem into a namespace which assists later processing.  

 

In some cases the detail is organised very close to a physical representation of the problem; for Sudo-

ku a casual observer would recognise the data for each member of the population as a direct represen-

tation of the board. As a result the namespace scales as a board per member. 

 

In object orientated design it has been said that a strong relationship between physical objects and 

matching logical representations is more intuitive in a first pass. In the same way I argue that directly 

mapping the Sudoku board into a 9x9 integer grid is the most intuitive representation. More context is 

needed, such as flags for givens and randoms so that the original problem isn’t rewritten, but the board 

representation remains. 

 

The simpler the representation used by a Heuristic the more suited it is for optimisation. Heuristics 

such as Simulated Annealing and Optimistions like Geometric Crossovers do not have namespace re-

quirements beyond the board representation. As a result they are better suited to being interleaved be-

tween iterations of other approaches. Mixing Geometric Crossovers(GCs)(stateless) within Particle 

Swarm Optimisation(state full) has been particularly successful. This interleaving is made possible by 

the GCs using little more than the board representations. 

 

Some implementations favor mapping the problem space into a graph representation, which helps de-

cision processing based on weighted decision states and the weighted transitions between them. Using 

graphs guides the effort of traversing the problem, and in some cases reduces the cost of processing. 

However some of the graph representations are suspiciously like directed searches, which devalues the 

Heuristic because it’s biased towards a planned knowledge of the namespace rather than the strength 

of the Heuristic. Therefore we avoid this approach. 

 

A subset of the graph namespaces are ‘Belief Propagation’ systems, which encode their trust values in 

decision chains onto the nodes of the graph. In this case the decision tree is primarily acting in support 

of the heuristic and a behavior we value. However for the reasons given above there doesn’t seem to 

be enough opportunity with this approach to try most of the optimisations as they would also need to 

be adapted to the new graph namespace. Given the singular nature of the namespace, and its unsuita-

bility to Particle Swarm Optimisation we will not draw too much from this approach. 

 

For similar reasons we will not pursue other representations that do not use namespaces which primar-

ily operate from boards. 
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Initialisation – Givens 

 

Givens are the numbers that define the original problem and remain unchanged as cells are filled. 

 

Givens on published problems are selected by a Puzzle Master. The complexity of a problem is based 

on how difficult it is to solve with human approaches, so the Puzzle Master is a human adjusting the 

givens to adjust the complexity. The givens are usually selected in such a way that only one solution is 

possible. This is of great advantage to us evaluating Heuristics, because if we work a puzzle known to 

have only one solution, and our Heuristic manages to fill all 81 cells, then we know that we have in 

fact found the best possible solution and not just the best local maxima. 

 

The fewest number of givens which has lead to a singular result appears to 48072 distinct configura-

tions of 17 givens
2
. (Gordon Royle 2009). It seems remarkable that only 17 cells would dictate the 

contents of the final 64 cells. 

 

 
Figure 2 - Very Difficult Sudokus - the 'Unsolvables' 

 

There also doesn’t appear to be a correlation between the number of givens and the apparent com-

plexity of the puzzle, of more importance seems to be the ability to defeat human Searching strategies. 

This reduces the problem to trial and error, which then makes the problem unsolvable in a reasonable 

amount of time. Figure 3 shows some of the ‘unsolveable’
3
 Soduku puzzles which need to be solved 

by Humans in brute force ‘trial and error’ fashion. 

 

                                                 
2
 http://people.csse.uwa.edu.au/gordon/sudokumin.php 

3
 http://en.wikipedia.org/wiki/Algorithmics_of_sudoku#Exceptionally_difficult_Sudokus_.28Hardest_Sudokus.29 
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Avoiding Local Maxima 

 

The greatest danger to Heuristics is also one of their best strengths: they aim to find good solutions 

without checking every possible combination – as a result they do not know for sure if their good solu-

tion is indeed the best solution.  

 

 
Figure 3 - 4 different stabilised Heuristic solutions to the same problem 

 

Here Figure 3 is showing 4 stabilised solutions to the Travelling Salesman problem using 2 vehicles 

and 2 depots with the JOpt Genetic Algorithm Heuristic
4
. Most of them do not demonstrate waste, 

there are lots of short paths and reasonable procession from town to town. Notice however the least 

expensive solution is on the top left, the other 3 have collected around good but not best solutions. In 

truth, without checking all the solutions we can’t even know for sure if the top left solution is in fact 

the absolute best possible. 

                                                 
4
 http://www.dna-evolutions.com/dnaappletsample.html 
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The Fitness Function 

 

How we go about defining our Fitness Function might be one of the most important choices that we 

make. Being able to compare members of the population and potential changes with the hope of gain-

ing an improvement above simple random change will be facilitated by the Fitness Function. 

 

The simplest fitness function would be to simply count the number of filled cells. Given that a Sudoku 

puzzle’s givens are usually formed to produce one solution, and all the cells have been filled, then a 

Fitness Function which counts the cells as 9x9 = 81 demonstrates the best possible solution.  

 

Extensions to the Fitness Function would be extremely powerful. We’ve said earlier that we do not 

have the opportunity to perform the Search type functions that people take for granted. Fitness Func-

tions do not have an ability to do look ahead searches, but they do interact with the constraints. Within 

Sudoku puzzles each cell interacts with 3 constraints representing the row, column and region the cell 

occurs in. 

 

A strategy humans follow involves preferentially filling in constraints with the most cells. Heuristics 

can’t search ahead like a human would, but they can interact with the constraints. Consider if we 

counted the population of each of the constraints for this cell. If we looked at a cell in a completed so-

lution the score would be 3x9 = 27, giving a completed board value of 2187. Using this modified Fit-

ness Function favors cells which help fill constraints. How much we trust filling in cells with busier 

constraints as against simply filling in cells may well be a trust factor that needs management over the 

lifecycle of the Heuristic. 

 

It's worth noting that the fitness function is identified as a reusable component in our later discussions 

independent of any given heuristic. This is because while a heuristic lacks the ability to perform a 

search intelligence around the choice made it pursuing a better solution solely comes from the fitness 

function. And while the fitness function is responsible for interacting with the constraints, it is reason-

able to assume that the fitness function is aware of the size of the constraints; if this assumption can be 

made in the fitness function requires the ability to preferentially fell constraints which have reduced 

degrees of freedom. In a small way this matches strategies employed by humans attempting to filling 

the easier parts of the puzzle first.  

 

It is a very valuable choice to be able to make when you can avoid working in areas of the puzzle na-

mespace which allow high degrees of variation, when potentially that work would be avoided when 

you return to congested constraints that you can no longer feel. If searches were allowed this could be 

described as selecting a path of least resistance by look ahead. In our case though, you're assessing the 

current state constraints and using it as a factor in the global value of the fitness function. When mak-

ing a choice about where to place the next cell, we're simply selecting solutions which have already 

preferentially filled constraints . 
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Trust Factor Management 

 

There are a range of factors that need management for a heuristic, and many of these may change 

while the Heuristic is running. As discussed with Simulated Annealing, the temperature coefficient 

falls, and the rate of change changes as a result, the longer the SA runs. In the same way initialization 

is nothing but random change before the Heuristic starts. 

 

We have said earlier that heuristics scale particularly well because the calculations are simple and effi-

cient. Trust factors represented in these calculations are simple linear co-efficients. 

 

A management agent capable of setting an initial value for a trust factor in varying that value either 

over time, or as we approach a goal, or as we passed solution thresholds, is a reusable component that 

could hopefully sit across a range of such trust factors. As stated earlier it is the name of their imple-

mentation to be as reusable as possible and non-specific to any individual heuristic and as such a man-

agement component of trust factors is an ideal design goal. 

 

Trust factor Management to be highlighted in each of the heuristic types were previously discussed. 

Simulated annealing has a trust factor the randomisation which we refer to as temperature which cools 

the time. The genetic algorithm has a number of controlling factors controlling such aspects as the rate 

at which members of the population are replaced, the number of children produced from each parental 

pair, and the number of parents which will be propagating; in simulated annealing terms it may make 

sense for faster rate of change earlier in stabilisation later. Particles full optimisation may have the 

widest range of trust factors controlling aspects such as randomisation belief in our best solution so far 

the best solution amongst our neighbors and the global best solutions found. 

 

In addition to the core heuristics we have trust factors related to the optimisations we may interleave in 

between iterations of the main heuristic. For example, the simplest heuristic that we consider the simu-

lated annealing is effectively stateless between iterations and so can be used as an optimisation of ge-

netic algorithms or particles full optimisation. Trust factor related to temperature would be significant 

in this case as well as the amount of trust or variation that you allow to an optimisation is a contribu-

tion to the heuristic. For example do you introduce an optimisation with high levels of variation earlier 

in the process and trust that optimisations less the longer the process runs? 

 

As mentioned earlier some of the controlling considerations to trust factors may be related to the date 

of the solution. It should be obvious that if we are more random at the start of the process and less ran-

dom near the end, then it's easy to know your starting and harder to realise that you're closing in on a 

solution. So do you vary your trust factor with time – i.e. - the number of iterations? Do you vary a 

trust factor with the population of the board? Do you vary a trust factor with the fitness function value 

of the global best solution? Noting that some of the heuristics have congregating behaviors do you at-

tempt an objective measure of the number of clusters and their size? Most of these options would seem 

to be possible, and they can be implemented independent of the workings of any of the individual heu-

ristics. 

 

Finally it also recommended that if trust factor Management is capable of assessing the progress of the 

population towards a solution that this would be useful to the purposes of reporting particularly in long 

runs or very large populations. References have been found to genetic algorithms being used to design 

jet engines and being left to run for many days
5
.  

                                                 
5
 http://www.fortunecity.com/emachines/e11/86/algo.html 
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Heuristic Optimisations 

 

You'll now discuss some of the considerations who was using optimisations with heuristics. 

 

Research has shown that the inclusion of optimisations with mystics greatly improves the probability of success. 

Heuristics have a natural tendency to congregate towards local maxima, and other trust factors such as randomi-

sation do not appear to have enough of a mitigating effect. In general we see two approaches. In the case of si-

mulated annealing the trust factor to temperature which controls randomisation is reduced over time, and there 

doesn't appear to be much of a reliance on other optimisations. PSO however is usually discussed with reference 

to an optimisation; and we see examples such as Simulated Annealing, the inclusion of repulsive factors, or 

Geometric Crossovers. 

 

Optimisations are also expected to have low expectations that a full heuristic and as such some of the more popu-

lar optimisations work from simple board representations and are effectively stateless. Simulated and yearling 

works as an optimisation because it has simple needs and stateless operation. Genetic algorithms however churn 

through the population replacing large numbers of members with new children; as such thing to a the operation 

of the parent heuristic and so are not well suited for use as an optimisation. 

 

Propulsive affects considered on an optimisation that actually represent is a modification to the trust 

factors in the calculation of new solutions. At the point where the calculation attempts to move to-

wards another strong solution whether it be global social or local is also a factor which attempts to 

push the particle and opposite direction hoping to sustain a gap between this particle and the attractive 

force that may be taking the particle towards a local maxima. To be honest I find the description of 

this implementation could be confusing. My attempt to use a hubristic to improve the quality of his 

solution and then intentionally reverse the actions in the other direction? No that the repulsion isn't 

against other particles in a similar area of the problems is because the distance calculation involved 

would be extremely expensive. We are simply talking about moving the particle way from what we 

perceive to be an improved solution state. 

 

You will notice that if separately identified as consideration and are attempting to use an alternate 

strategy in the mechanism for initialisation of the members before the heuristic starts. The attempt to 

increase the separation of the members by allocating as many Randoms is possible there by increasing 

the separation before the heuristic would have an opportunity to help the members congregate. We 

would actually recommend this process along with a reduced trust factor congregation earlier the 

process is something that matches the temperature coefficient behaviours of simulated annealing. 

 

Geometric crossovers are potentially very complex but we have attempted to target a simple imple-

mentation. As one of the final steps in the heuristic iteration, we will progress through the members 

and attempt to swap the value of random cells with another member, while still ensuring that the solu-

tion remains viable. The trust factor for this operation will determine the rate of change. 

 

Simulated Annealing (Lewis 2007) is sometimes used as an optimisation technique on other heuristics. 

The basic idea is that the rate of random change is highest where we start in decreases over time, and 

this process is simple enough that it can be interleaved between heuristic iterations. 

 

Finally it is worth noting that we intend to apply to trust factor to his optimisations which may vary 

with time. 
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4. Evolutionary Heuristics 
6
Evolutionary Algorithms(EAs) have generations of solutions that attempt to optimise themselves by 

combining the best elements of each other. 

 

The general approach is outlined as follows: 

• A generation of solutions are created 

• They are assessed by a fitness function. 

• The more successful members of the population share attributes or propagate. 

• The least successful solutions are eliminated or attempt to gain the attributes of the more suc-

cessful. 

• A random mutation factor is applied. 

• This process continues until the population stabilises around a collection of local maximums. 

 

Genetic Algorithms(GAs) are EAs based around Darwinian evolution and survival of the fittest. (Pe-

rez, Marwala 2008), (Mantere, Koljonen 2007), Darwin 1859. GAs are similar to the other heuristics 

in that the population is randomly distributed and iterations are performed where the population un-

dergoes random change, and the quality of any member is measured by the Fitness Function. 

 

Simulated Annealing is a type of EA which combines attributes from good solutions into weaker solu-

tions, and is based on how mineral crystals grow. (Perez, Marwala 2008) 

 

Simulated Annealing holds extra value for Heuristics because it can be used as both a Heuristic and 

also as an optimisation for other Heuristics. For iterations as a Heuristic Simulated Annealing modifies 

each member of the population randomly, then evaluates each member against the fitness function, 

and copies attributes from the most successful members to the weaker members. Note that each time 

an iteration occurs the population is re-evaluated. For this reason simulated annealing can be inter-

leaved between iterations of another Heuristic as an optimisation, and will not be adversely affected by 

changes made by the parent Heuristic. Genetic Algorithms are not as useful in this context as they 

completely remove weaker elements of the population. 

 

Geometric Crossovers have a similar behavior to Simulated Annealing in their use as an Optimistion. 

However Geometric Crossovers do not leverage a Fitness Function, and so the changes they make are 

purely random. For this reason Geometric Crossovers are more of an optimisation that relies on a Heu-

ristic to attempt to improve the population. 

 

                                                 
6
 http://en.wikipedia.org/wiki/Evolutionary_computation 
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4.1 Genetic Algorithms 

 

In Darwin’s “On the Origin of the Species by Means of Natural Selection”, he outlines a process whe-

reby competitive advantage is gained after random change, leading to a survival of the fittest when 

they out compete the rest of the population. After successive iterations of this process the population 

improves and their ability to compete for resources has improved. 

 

The following is an example when implemented as pseudo-code
7
: 

1) Select a population 

2) Apply the fitness function to the population 

3) Repeat until [time limit or fitness achieved] 

a. Select the best ranking individuals to reproduce. 

b. Breed a new generation via crossover or mutation, giving birth to offspring. 

c. Evaluate the fitness of the offspring. 

d. Replace the worst ranked in the population with the offspring. 

 

The mutation component is a randomisation to the solution. In our case randomisation would include 

changing non given cells in such a way that the constraints were not violated. Blank cells might be 

assigned values, existing values might be changed or erased. Randomisation independent of the rest of 

the algorithm has a very low probability of success in any reasonable time order. 

 

 
Figure 4 - An example of a Genetic Algorythm Solving the Travelling Salesman problem 

 

Figure 2 is a visual representation of the famous travelling salesman problem being approached by a 

genetic algorithm. The problem is to reduce the distance travelled by 4 vehicles visiting every town at 

least once and returning to 2 depots. Initially the GA is seeded by a completely random solution shown 

on the left; the Heuristic hasn’t begun iterations using the fitness function as yet, and so there’s little 

evidence of optimisation – the “Total Cost: shows as 0 as a result. The right image shows the best re-

sult so far from 1000 or so iterations, and it’s evident that many of the cities have been joined by quite 

short paths, there’s less evidence of paths crossing each other randomly. Four loops have appeared, 

one per vehicle, and where long paths exist it’s usually connecting the depot to the first or last town in 

the loop. 

                                                 
7 http://en.wikipedia.org/wiki/Genetic_algorithm#Simple_generational_genetic_algorithm_pseudocode 
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Note that no direction is given to the Heuristic beyond the fitness function and constraints, and this 

represents as an effort to reduce cost and for solutions to remain valid. We do not see a 5
th
 car appear-

ing, and we see all the towns being visited at least once and being connected to a depot, which shows 

the constraints were followed. By the same token we didn’t tell the GA to use all the cars, and we 

didn’t say that both depots needed to be involved; the GA has decided that cost is minimised by in-

volving all 4 cars and both depots. Finally we have no guarantee that the solution that has been found 

is in fact the best possible of all solutions, we just know that the GA has stabilised around this solution 

and that it’s the best solution it’s found so far. 

 

Crossovers mitigate stabilizing around local maxima by swapping cells between solutions in such a 

way that the constraints are not violated. Crossovers are seen as a dispersal factor that helps offset the 

tendency of the population to move towards the most successful members and potentially be caught in 

local maxima. How to tell if the population is approaching a potential solution, or merely running into 

a local maximum is a genuine problem. In general it is argued that GAs should assign more trust to 

crossovers earlier in the process where there are considerable degrees of freedom, and less near the 

end of the iteration cycle when a larger percentage of the potential solution has been found. The de-

gree to which we trust crossovers might be the probability that cells are exchanged, or the number of 

cells exchanged. 

 

The Fitness function is a measure of how well the solution fits the requirement. In the case of Sudoku 

we are very lucky in that most Sudoku puzzles’ Givens are designed such that there will be only one 

solution which fills the board. So should a fitness function simply not find any blank cells, then the 

better solutions have lower values and the final solution has a value of 0. Conversely the fitness func-

tion might count non blank cells in which case the better solutions have higher values and the final 

solution has a score of 9x9 = 81. Trust in the fitness function is implicit. 

 

The size of the population has a range of effects. We want to introduce enough variability so that the 

initial spread of the population captures enough of the potential solution space. However each member 

of the population tracks their own solution state, and so resource consumption might become prohibi-

tive fairly quickly. Note too that each member of the population is traversed for each generation and 

potentially used and replaced, therefore we’re sliding towards the same non linear performance factor 

that we are trying to avoid by not pursuing a brute force implementation. In any case, scaling the 

population to be as large as possible is the easiest way of helping the probability of success. 

 

To what scale the members of the population are selected to reproduce, and how many children are 

generated from them is a specific requirement of GAs. For example, if we wanted to involve the entire 

population in each iteration, and we assumed that two parents each produced a child, we might then 

select the top two thirds of the population as parents and replace the weakest third with their children. 

Then again, if there was a degree of randomisation in the way the parents combined in the child we 

might produce two children from each pair; in this case the bottom half is replaced by the children of 

the top half. Or we may find that this is too high a rate of change and we put more trust in mutation 

rather than propagation, in which case we might select the top quarter as parents for children replacing 

the bottom quarter, and leave the middle half unaffected by the propagation factor and instead varied 

by mutation alone. In short, the trust factor related to propagation appears to vary how many of the 

population reproduce and how many are replaced by children. 

 

Finally an optimisation might be introduced between iterations to improve variability or further share 

the attributes of the most successful members. However it should be noted these optimisations are 

rarely attuned to much more than the fitness function, and they do not perform comparisons to other 

members in the population to the same degree as the main Heuristic. Optimisations might help redi-

stribute solutions where they collect near a local maxima(crossovers). Or they might share attributes in 

a simple way via weak Simulated Annealing. In any case, the optimisations rarely retain state between 

each interleaved opportunity to affect the population, and so every member is often checked each time 

they are run. Once again we begin to approach the non linear costs of brute force processing, so there 



Solving Sudoku Puzzles with Particle Swarm Optimisation - Sean McGerty - ITEC808 - Macquarie University 
 

McGerty_Sean_FinalReport.doc – June 5th, 2009 10:00 AM Page 16 
 

are real benefits to making the optimisations as efficient as possible. A key ability in this regard is be-

ing able to work from the namespace of the surrounding heuristic – i.e. – share the same boards. 

 

Once again we note that these trust factors may not be constant throughout the solution lifecycle. Ran-

domisation and spreading factors might be most significant early on to help stop hitting local maxima 

too early, while propagation factors may become more important as you approach a full board. 

 

Some of the largest implementations of heuristics observed appear to be related to genetic algorithms 

attempting to solve massively complex problems. Jet turbine engines are the subject of development 

projects which are known to run to 5 years and into multiple billions of dollars
8
. Upwards of 100 va-

riables are controllable in a design with more than 50 constraints and the resulting namespace has 

more than 10
387

 data points. In such a scenario an experienced engineer might take two months to pro-

duce a design. The genetic algorithm proposed a design with twice as many improvements in under a 

day. Obviously this doesn't occur in all cases but the scale of the problems which can be approached 

by a heuristics is notable. 

 

                                                 
8
 http://www.fortunecity.com/emachines/e11/86/algo.html 
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4.2 Simulated Annealing 

 

Simulated annealing is based on the idea that matter will tend to a lower state of energy. A population 

will be allocated, most likely in the same fashion as with other EAs such as GAs. With each iteration 

each of the members selects a neighboring state. If the neighboring state represents a lower energy 

state there is a probability that a transition occurs for this member to this state and the process repeats. 

This probability of a transition is referred to as a temperature, and the temperature is often managed in 

such a way that the population cools – i.e. – the rate of change reduces with time. 

 

 
Figure 5 - Temperature Effect Example for Simulated Annealing 

 

The variation of the temperature co-efficient with time is interesting in that it supports earlier state-

ments we made with respect to managing the effects of change throughout the solution lifecycle. SAs 

have higher randomization effects earlier in the process, indicated by higher temperature probabilities, 

but this effect is reduced later in the process as they hopefully near a solution. The rate at which this 

reduction in randomisation takes place will be a consideration for testing, In Figure 5 - Temperature 

Effect Example for Simulated Annealing the SA is attempting to ensure that the nearest neighboring 

colours are different, while also matching the colours at slightly longer distances. The SA on the left 

was allowed to cool much faster than the SA on the right, creating a noticeable randomisation on the 

left and the apparent grid nature of the pixels on the right. This visually demonstrates the dangers of 

too much randomisation late in the process, as well as perhaps not running low temperatures for long 

enough later on. 

 

Another consideration for randomisation for this and any heuristic is the number of purely random 

number added to the givens during initialization. Adding Randoms is an inexpensive way of distribut-

ing the population as far as possible before the Heuristic starts, but just as mentioned just adding Ran-

doms will in most cases fail. So before we start the Heuristic iterations changes are purely random. As 

the Heuristic starts changes for improvement are highly random in probability. Then as the Heuristic 

proceeds the actions of change decrease. 
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A consideration for Simulated Annealing is Barrier Avoidance
9
 where a local minima is so strong that 

it overpowers the transitions of members around it. An example of Barrier Avoidance, and cooling 

pressure, are Optimisations which help the algorithm avoid proceeding into a local minima too early. 

Geometric Crossovers for example help migrate aspects of the solution around the solution away from 

a point of congregation. 

                                                 
9
 http://en.wikipedia.org/wiki/Simulated_annealing 
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5. Swarming Heuristics 
 

Swarming heuristics involves particles which attempt to improve their position by moving towards 

better performing neighbors. 

 

A population of points are randomly thrown into the solution space. Each point knows its "location" 

and its "velocity". Points know their current solution fitness and their best solution so far. Points also 

know the fitness and best solution so far for their neighbors. (Li, Tian, Hua, Zhong 2006) 

 

Neighbors can be defined by distance or relationships. Distance calculations for points can be compu-

tationally expensive. Relationships can be maintained via lookup tables. As particles converge either 

neighbor algorithm may yield similar results. 

 

Each movement iteration combines the current particle ‘velocity’ and a randomisation factor with a 

range of trust factors including: current location, this particles’ best solution so far, the positions of its 

neighbors, and the success of its neighbors. 

 

Repulsive Particle Swarm Optimisation adds a factor for ensuring particles do not get too close to-

gether in the hope of avoiding local maxima. (Perez, Marwala 2008) 

 

Geometric Crossovers are an important variant of PSO where the velocity component is replaced by 

the ability to crossover cells with other solutions. (Moraglio 2007), (Moraglio, Di Chio, Togelius, Poli 

2008). 

 

It is notable that most of the optimisations for PSO appear to be trying to redistribute the particles 

away from local maxima. Three separate optimisations were seen: a simulated annealing example, a 

propulsive factor which simply reversed the attraction to the best solutions, and geometric crossovers. 

Of the ease the most successful appeared to be geometric crossovers which coincidentally may have 

the strongest ability to redistribute the particles throughout the problem space. 

 

Geometric crossovers deserve special consideration as they are not simply random; they are attempt-

ing to cross pollinate solution aspects between the members. The randomisation trust factor inherent in 

PSO remains so a balance can be managed between true randomisation and the crossovers; but each 

crossover operation is only using values which are different between each member and yet potentially 

part of the solution. One would expect therefore that the effect of crossovers is strongest earlier in the 

process as the particles were more widely distributed which matches the management practices around 

randomisation exhibited in heuristics and in particular in simulated annealing. I wonder if geometric 

crossovers would be implemented along with the notion of distance and attempting to ensure that the 

crossovers occurred between the most widely distributed solutions. The question of how to implement 

such an ability is of course problematic and I also expect that the time order of such implementation 

would be a expensive. 

 

Noting that our research leveraged three different optimisations with three different PSO implementa-

tions, our PSO discussions will often lean towards to compensate the perceived weakness with the ap-

propriate optimisation. 
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5.1 Particle Swarm Optimisation 

A generic PSO algorithm might look like this
10

 with a slight variation: 

 

1) Initialise global fitness to worst possible 

2) For each particle 

a. Initialise fitness to worst possible 

b. Initialise neighbor relationships 

c. For each dimension 

i. Initialise position 

ii. Initialise velocity 

3) While iterating or stable: 

a. For each particle: 

i. Update the current fitness 

ii. Update the local best if current better 

iii. Update the global best if current better 

iv. Update the neighborhood best if current better 

v. Update the particle velocity and position.  

1. Add random factors towards the total, local and neighbor best solu-

tion. 

b. Optionally include Optimisation. 

 

The algorithm is pleasingly simple at first glance. Particles have 6 aspects: position, velocity, random 

movement, a random movement towards the best solution so far, and a random movement towards the 

global best position, and a random movement towards the best solution of the particle neighbors. 

 

Particle Neighbors come in two types: particles that are in similar solution states, or those that have 

been defined at initialisation as social neighbors. Either implementation requires additional processing. 

The distance calculations required to identify the particles closest to each other are expensive. On the 

other hand maintaining a lookup table relating social neighbors is also a computational overhead. Of 

the two I am more in favor of the social neighbors variant in that it would seem to help distribute the 

particles more effectively. 

 

The trust factors we’ve deal with on other Heuristics are also applicable to PSO. All but the position 

aspect can each be weighted by trust factors that can be managed over the lifecycle of solving the puz-

zle. 

 

The namespace requirement is mostly dictated by the number of particles. Each has a board that 

represents their present position, their best solution so far and a Velocity. 

 

Note that PSO appears to have a much stronger idea of comparisons against the stronger elements, 

with three trust factors dedicated to the local global and neighborhood best solution so far. Each of 

these comparisons has particular considerations. The local best is the best solution that has been found 

in this particular particle, while simulated annealing only ever improves itself, the ability of PSO to 

retreat from lower local maxima would be an advantage not possible with simulated annealing. Global 

best solution hopefully be completed puzzle should be fairly obvious.  

 

The implementation of the social neighborhood is an interesting one. If we use distance-based group-

ings and we would expect the particles to have higher cohesion factors and collect in groups, but this 

distance calculation is expensive and approaching n
2
 time order. Maintaining a separate lookup table 

of social groupings is far more efficient, but has a downside that particles may be dragged considera-

                                                 
10 http://en.wikipedia.org/wiki/Particle_swarm_optimization#Pseudo_code 
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ble distance across a solution space simply because of the notion that social grouping rather than as a 

function of how much of a potential solution they share. I'm in favour of the social grouping context if 

another reason that I would have discovered population as much as possible and I would hope that 

with enough groupings within the population that it has a better opportunity of condensing within the 

same local maxima. This once again reinforces the idea that randomisation distribution of members of 

the population is a good thing, at least earlier on in the process 

 

PSO Velocity 

 

The per particle Velocity component looks to be highly variable and implementation dependent. At 

times it’s described as a matrix operation, in other implementations it’s described as a consistent 

change pattern, and in Geometric Crossover PSO implementations the Velocity component is even 

removed completely in favor of swapping some cells between solutions that would not violate the con-

straints. To generalise, Velocity varies all the way from being a consistent change pattern to non exis-

tence in favor of spreading the particles around. 

 

An interesting consideration I haven’t seen implemented is the possibility that the board cells could be 

numbered sequentially from 1 to (9x9 cells) x 10 (9 allowed values and a blank) = 810, and that the 

velocity could be a relatively prime value to 810 which would be added to the current position cell 

number each iteration. The operation is complicated by the requirement that no solution ever be 

invalid, so we would adapt by either: skipping the velocity induced change if it produces an invalid 

solution, or continuing to add the velocity component until a valid changed solution is found. A by-

product of using velocity in this fashion would be an extremely wide distribution of movement, while 

still ensuring the entire namespace was being traversed. 

 

The reason for hope that this might help lies in the optimisations that are usually applied to Particle 

Swarm Optimisation. PSO shows a tendency to accumulate at maxima, global or local. Attempts for 

unmodified PSO to solve Sudoku showed limited success, and results were improved with Repulsive 

PSO varients and Geometric Crossover Optimisations. These two changes, which I will describe in 

detail later, acted to help distribute the particles away from collecting locally. An implementation of 

Velocity in this manner may help achieve some of the same goals, and it would seem to be worth test-

ing. 

 

This of course leads to the question, is a proposal of this type devaluing the Heuristic by operating like  

a Traversal? Is this implementation too much like iterating in a Sudoku specific manner? Perhaps this 

is true. It’s an interesting idea though. 

 

In any case, variation on the operation of the Velocity component is a key point of variation among the 

PSO variants. 
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5.2 Repulsive Particle Swarm Optimisation 

 

Repulsive Particle Swarm Optimisation involved adding a repulsive factor to the standard PSO im-

plementation. This factor acted to repel particles from each other in the exact opposite fashion as the 

attractive force pulling particles towards the best performing solution. 

 

Modifying our PSO algorithm from earlier for the repulsive behavior: 

 

1) Initialise global fitness to worst possible 

2) For each particle 

a. Initialise fitness to worst possible 

b. Initialise neighbor relationships 

c. For each dimension 

i. Initialise position 

ii. Initialise velocity 

3) While iterating or stable: 

a. For each particle: 

i. Update the current fitness 

ii. Update the local best if current better 

iii. Update the global best if current better 

iv. Update the particle velocity and position.  

1. Add random factors towards and away from the total, local and 

neighbor best solution. 

b. Optionally include Optimisation. 

 

Note there isn’t much of a change away from normal PSO, excepting we’re using both towards and 

away factors. Both these factors would seem to be good candidates for lifecycle management of the 

type we’ve mentioned before: increasing the randomisation factors (read repulsion) earlier and de-

creasing them as you’re hoping to close on the best solution. The balance of the attractive and repul-

sive factors is critical – should the repulsive factors remain overpowering for any period of time it’s 

expected that you would be driving away from a solution. 

 

References to implementations offer policies PSO do not seem to indicate the high success factors. It 

is difficult to compare PSO implementations with each other when they occur between different stu-

dies and in some cases PSO implementations are compared to evolutionary algorithms. It is notable 

that in the case of propulsive PSO the results were seen as less favourable than the genetic algorithms 

while the reverse was true in the other references which also had what more than one heuristic. I do 

not see the the implementation of this repulsing factor is doing enough that isn't actually taking the 

particles away from favourable solutions or doing enough that more than normal randomisation. If on 

the other hand the repulsive factor was attempting to ensure that there was enough variation between 

the particles based on particle caparison or ensuring enough variation between sells solutions that this 

might make sense. However such a comparison would be expensive and we do not see examples of 

this being attempted.  

 

To summarise, the results for Repulsive PSO appear to be an improvement on normal PSO, however 

it’s unclear if there was any additional improvement over simply applying a generic Optimisation (Si-

mulated Annealing as an example). 
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5.3 Geometric Particle Swarm Optimisation 

 

Geometric Particle Swarm Optimisation appeared to gain the best results of any of the Heuristics de-

tailed in our research. The Velocity component is removed in favor of an optimisation called Geome-

tric Crossovers which conditionally swaps values between solutions where the constraints aren’t vi-

olated.  

 

Once again modifying our PSO algorithm from earlier for the Geometric Crossover: 

 

4) Initialise global fitness to worst possible 

5) For each particle 

a. Initialise fitness to worst possible 

b. Initialise neighbor relationships 

c. For each dimension 

i. Initialise position 

ii. Initialise velocity 

6) While iterating or stable: 

a. For each particle: 

i. Update the current fitness 

ii. Update the local best if current better 

iii. Update the global best if current better 

iv. Update the particle velocity and position.  

1. Add random factors towards the total, local and neighbor best solu-

tion. 

v. Randomly pick another particle. 

1. Attempt to exchange Randoms between the solutions that do not vi-

olate the constraints. 

 

The net effect of the Geometric Crossover is to redistribute variants of solutions around the board, 

once again offsetting the tendency of PSO to want to congregate near maxima (local or otherwise).  

 

Interactions with Givens aren’t expected to be an issue because both particles are based on the same 

givens, and so these values will be the same for both particles and it will be obvious that there’s no 

point swapping these cells as they’ll be equal. 

 

The focus of their implementation is based on the reported results that geometric crossovers when ap-

plied to PSO has the potential to solve Sudoku puzzles. When references made statements that puzzles 

were solvable, discussion sometime moved away from solving puzzles and towards other areas. As 

demonstrated in our applet example heuristics do produce what humans would recognise as good re-

sults. The only implementation which combined heuristics and optimisations with the promise of reli-

able results appears to be the combination of PSO and geometric crossover. 

 

Of course having said that this paper hedges its bets. Our primary implementation in a tent is the PSO 

with geometric crossovers however the component-based framework we intend to use the implementa-

tion has high levels of reuse for other combinations of heuristics and optimisations some of which we 

haven't seen in other papers. Of particular interest we intend to consistently leverage areas of initialisa-

tion and life cycle management. By reusing these components a stronger comparison can be drawn 

between the relative contributions of heuristics and optimisations with each other. 
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6. Assessing Heuristic Components 
 

In this section we extend from our review of sources and suggest a breakdown of the Heuristics into 

pieces that can be separately optimized. These components can then be reassembled in a framework 

improving a range of Heuristic and optimisation combinations. 

 

Heuristic approaches appear to lend themselves to a componentisation and reuse. If the components 

are inputs to the heuristics, then improving the quality of the components increases the probability of 

success for the heuristics. 

 

Each heuristic: is seeded with a board defining the problem givens, is seeded with random solutions 

including the givens, and it can be defined to work with the same representation of the Sudoku board. 

 

The fitness function has more to do with assessing the constraints than any particular heuristic. 

 

Optimisations appear to be interleaved between heuristic iterations, and can therefore be independent. 

 

Trust factors such as randomisation may be consistent between heuristics. As well the mechanism con-

trolling trust factor prioritisation over the lifecycle of a heuristic would be reusable if it remained con-

figurable per heuristic. This is described in Figure 6. 

 

 
Figure 6 - Component workflow 
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6.1 Why component design? 

In object oriented design there is often a comparison drawn between hierarchical implementations and 

component-based implementations. 

 

Hierarchical architectures are obvious because support for inheritance and polymorphism are usually 

fundamental to the syntax of the object languages. So if you're beginning to program in Python or Java 

you can immediately experiment with creating base types of extending them; such as the common ex-

ample of a furniture object that is then used to create a table and chair. 

 

A different style is a component-based implementation which resist the urge to create trees and objects 

inheriting from each other. Instead the implementation focuses on working to interfaces, and this is the 

basis of the popular Spring framework, and as such the supporting argument is usually that compo-

nent-based implementations are flatter and they have less run-time overhead are easier to understand 

or readily extended. 

 

In our case we gain benefits from a component-based approach in a number of ways: 

1) firstly because each of our components is intended to work through an interface and interope-

rate with other components in the standard way we benefit from a clear demarcation of re-

sponsibilities. In our model heuristics are not responsible for initialisation of the population 

instead reusable component will allocate the members of the population in a consistent way 

with consistent optimisations. 

2) Along with consistency in implementation of the components we can also benefit from consis-

tency and management aspects such as reporting and life cycle management. 

3) Finally, because hubristic is will be implemented to an interface they will be interchangeable. 

This ability to mix and match, and test different combinations, will help us to compare heuris-

tics with each other. 
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6.2 Empty Cells and Degrees of Freedom 
 

An optimisation that is particularly successful during brute force solutions is working with cells with 

the lowest degrees of freedom. Working in open areas of the board is not necessarily helpful if it can 

be invalidated by cells which have fewer valid options. 

 

Identifying cells with restricted degrees of freedom can be done by search mechanisms, however this 

devalues the heuristic approach and we will not pursue this avenue. The Fitness Function could con-

tain a factor that favors solutions which are using cells with more populated constraints. Filling these 

cells earlier on in the process increases the flexibility available to the heuristic later on in the process. 

This also delays the appearance of local maxima. 

 

Related to the discussion regarding the fitness function is the concept of degrees of freedom in the 

constraints which we have highlighted as a potential major benefit. One of the key action bits used to 

identify the highly difficult and/or unsolvable problems is their ability to defeat humans searching ab-

ilities reducing the participant to a trial and error approach much like an optimised brute force imple-

mentation. One of the optimisations which give such an advantage to human participants is the search-

ing ability to preferentially select cells which reduce the number of choices which may be needed later 

on. This choice is often based on preferentially filling constraints which have the least number of emp-

ty cells. In other words we prefer working with constraints which have lower degrees of freedom. 

 

The impact of targeting these cells with these constraints is that we reduce the number of selections in 

open areas of the problem which would be defeated by later comparison back to the busy constraints 

this eliminates retry and backtracking. We will not have the opportunity to implement a search algo-

rithm as a human would use, but we do have the opportunity to value solutions which preferentially 

fill busy constraints. 

 

Visually this process looks as though it's leaving regions and roads and columns of the puzzle empty 

the later work. 

 

Note random interactions with the solution should include the ability to clear a non-given cell. If as 

planned the fitness function is modified so that filling constraints is preferred, then changes which 

clear cells in less populated areas will also be preferred. 

 

In the same mechanism processing constraints should not be expensive or it could rapidly increase 

processing time. It also said that we were attempting to avoid namespace requirements beyond physi-

cal representations of the board so as yet we do not have a recommendation to how this would best 

implemented. The heuristic could maintain account of the number of cells which had been allocated in 

each constraint this would remove the requirement to count them each time by the text action bits to 

manage above the requirements of the physical board. 

 



Solving Sudoku Puzzles with Particle Swarm Optimisation - Sean McGerty - ITEC808 - Macquarie University 
 

McGerty_Sean_FinalReport.doc – June 5th, 2009 10:00 AM Page 27 
 

 

6.3 Random Candidate Solutions 
 

The size of the initial random solutions is expected to be significant. 

 

Consider the process of adding valid random numbers to a board. It is expected that the number of va-

lid combinations remaining drops as numbers are added to the board. However the rate at which com-

binations are eliminated is relative to the complexity of the problem presented by the numbers placed, 

as stated earlier.  

 

Therefore it is expected that a board might transition from many possible solutions, to one valid solu-

tion, to no valid solutions, as random numbers are successively added. The point at which no more 

random numbers can be added matches the situation for a heuristic where a local maxima has been 

found. This is indicated in Figure 7. 

 

A higher degree of randomisation in the initial population distributes the population and particles as 

far as possible across the namespace. It is expected that this also improves the benefits seen from op-

timisations such as Geometric Crossovers as there are more cells to work from when comparing par-

ticles. 

 

 
Figure 7 – Considerations for Randoms 

 

Just adding random numbers has a very low probability of success. Continuing to add random num-

bers before commencing the heuristic brings the solution closer to local maxima.  

 

It is expected the optimum size of random solutions can be validated by attempting to solve puzzles 

with a brute force algorithm as Randoms are added. As the transition of through the states of "many 

solutions" to "one solution" to "unsolvable" is expected, we can generalize a good number of target 

Randoms for truly random solutions. 
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6.4 Optimisations Interleaving Heuristics. 

 

When we look at the namespace requirements for Evolutionary and Swarming algorithms it becomes 

apparent that there are similarities. 

 

The suitability of an optimisation for interleaving with a heuristic appears to be determined by its na-

mespace and its behaviors: 

 

Optimisations that do little more than work with boards are favored. It would be possible to see Simu-

lated Annealing, or Geometric Crossovers used as Optimisations as they simply compare boards and 

swap values. Others like PSO which manage additional information such as velocities, prior solutions 

or neighborhood relations are unsuitable. 

 

Optimisations that would need to discard solutions, such as Genetic Algorithms, may be inconsistent 

with the management requirements of heuristics that try and improve a solution over time like PSO. 

To continue to operate PSO would need to reset the particle from the deleted solution to the new one, 

which looses the value of the particle knowing its best solution so far. 

 

As a result Geometric Crossovers, Simulated Annealing and Repulsive factors are candidates as opti-

misations because they are immediate while Genetic Annealing and PSO are not. 

 

Evolutionary algorithms use populations of boards which vary by iteration. 

 

Swarming Algorithms need to track: the current solution, the best solution so far, the current ‘veloci-

ty’, and any neighbor relationships (distance or social). 

 

As a result it would be possible to perform an iteration of an Evolutionary Algorithm in between itera-

tions of PSO if the EA used the current solution as its board. The reverse would not necessarily be true 

as the PSO’s extra details wouldn’t be available. 

 

This explains why relatively stateless optimisations such as Simulated Annealing and geometric cros-

sovers have been used as an optimisation for PSO. 

 

It's worth repeating that we had every intention of testing various optimisation types with our PSO 

implementation and indeed against other heuristics as long as they conform to our component frame-

work.  
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7. Our suggested Geometric PSO implementation 
 

1. initialise global best as worst possible 

2. initialise member social mapping table 

i. initialise each member social best 

3. for each member of the population 

i. initialise member best as worst possible 

ii. allocate member to social group 

iii. initialise bored with givens 

iv. while population of board is less than initialisation limit 

i. if random value in random cell is valid 

1. set new value at cell 

v. calculate fitness function value 

vi. set personal best solution as current if required 

vii. set social group best if required 

viii. set global best if required 

4. until limit reached or population stabilised 

i. reassess trust factors 

ii. for each member of the population: 

i. while new solution is invalid: 

1. calculate new solution given: 

a. trust in a random factor 

b. trust in our current position 

c. trust in our previous best solution 

d. trust in the global best solution 

e. trust in the social group best solution 

2. calculate fitness function value 

a. for each cell on board: 

i. for each constraint for that cell 

3. if the new solution is valid 

a. update our best previous solution 

b. update the global best solution 

c. update the social group best solution 

iii. for each member of the population: 

i. choose another member of the population at random 

ii. identify cells which are different between the two solutions 

iii. for geometric crossover limit: 

1. choose a cell that is different 

2. if this is our value would be valid in the original member: 

a. move the cell value to the original member. 

iv. report if the global best solution has improved 

v. terminate if the board has been filled. 
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7.1 Breaking down the implementation 

 

1. initialise global best as worst possible 

 
Here we track the best solution found so far. Default in the best solution to be terrible ensures that it 

acquires the first member solution and any improvements on the initial value. At best solution type 

will be represented as a board and its corresponding fitness function value. 

 

2. initialise member social mapping table 

i. initialise each member social best 

 
Here we create a list for associating members of social groups. Primarily each of these groups is simp-

ly a list of members, however we need to track the best solution found within these groups so far. 

Once again this best solution will be represented by a board at its corresponding fitness function value. 

 

3. for each member of the population 

i. initialise member best as worst possible 

ii. allocate member to social group 

iii. initialise bored with givens 

iv. while population of board is less than initialisation limit 

i. if random value in random cell is valid 

1. set new value at cell 

v. calculate fitness function value 

vi. set personal best solution as current if required 

vii. set social group best if required 

viii. set global best if required 

 

Here we initialise each member of the population. First we initialise the best solution to this member. 

We include this member and a social group. Then we create the initial puzzle board.  

 

There we randomly fill in values. As previously charmed this is a very important step as a significant 

factor in the distribution of the population. Should there not be enough randoms the population may be 

clustered and too close to local maxima. Should there be too many randoms we may be left with an 

initial state which will valid can no longer lead to a viable solution. 

 

We continue by calculating the fitness function for our initialise member, and reset the best solution so 

far to be the first port state. The update the social group best if required and once again checked to see 

if this is the best member so far in a global context. 

 

4. until limit reached or population stabilised 

i. reassess trust factors 

 

This is where our component that manages trust factors adjusts at behaviours throughout the life cycle 

of the heuristic. For example the randomisation component may be more trusted earlier in the process 

and were so later on. Obviously to accomplish this goal is trust management ability needs to be able to 

identify the solution processes matured; whether this is based on a population count or a number of 

iterations or subtracted to be identified is presently not known. 
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ii. for each member of the population: 

i. while new solution is invalid: 

 
Here we attempt to change the solution for each member. We said that changes we may attempt to 

make may lead to invalid solutions which we will not want. Should that happen we simply try again. 

 

1. calculate new solution given: 

a. trust in a random factor 

b. trust in our current position 

c. trust in our previous best solution 

d. trust in the global best solution 

e. trust in the social group best solution 
 

This is obviously a fairly complicated calculation which represented fairly simply. We've previously 

mentioned that we are tracking each of these aspects, and that we apply a trust factor to each. Please 

do not forget random change also includes the possibility of clearing the value of a cell to be blank, so 

any cell blank or otherwise may have it’s value changed and/or be made blank. The only cells remain 

unchanged are  givens. 

 

2. calculate fitness function value 

a. for each cell on board: 

i. for each constraint for that cell 
 

There is that this function calculation that we mentioned previously. More than just performing ac-

count of the population as used in some implementations with seen we'll also give extra value to cells 

whose constraints are more populated. They should hopefully fill constraints faster moving relatively 

open sections of board for later work. So rather than 81 cells each value of 1, we may have 81 cells 

each including factors from the three constraints related to that cell. Most likely these constraint fac-

tors will be based on the constraint population of power with the power to be identified. In any case 

larger fitness function values will be perceived to be better. 

 

3. if the new solution is valid 

a. update our best previous solution 

b. update the global best solution 

c. update the social group best solution 

 

We only wish to change our state if we produced a valid result, otherwise we simply try again.. 

 

iii. for each member of the population: 

i. choose another member of the population at random 

ii. identify cells which are different between the two solutions 

 
This is the start of our geometric crossover optimisation. For each member of our population we ran-

domly pick another member and try and identify cells which are different between the two. Note that 

the given should be the same in both solutions so the only difference it should be inconsistencies be-

tween the randoms. 
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iii. for geometric crossover limit: 

1. choose a cell that is different 

2. if this is our value would be valid in the original member: 

a. move the cell value to the original member. 

 

We are only interested in valid solutions, and so it checking the performing crossover should never 

lose in an invalid state. 

 

iv. report if the global best solution has improved 

v. terminate if the board has been filled. 
 

Finally we check to see if we've produced a new best candidate, and if it successfully filled the board 

and solved the puzzle we could stop. 
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8. Conclusions 
 

Particle Swarm Optimisation appears to have shown the best success rates when combined with Geo-

metric Crossovers. Unlike Evolutionary Algorithms, the Geometric Crossovers aren’t driving towards 

improving the solution and approaching a local maximum. The Crossovers are redistributing the par-

ticles without violating the constraints. As always, a balance is formed between the trust factors for 

approaching solution and the trust factors for randomisation. However in this case, randomisation ex-

tends to redistribution of the solution as well as incremental change. 

 

The suggested component framework offers significant advantages often not apparent in reference im-

plementations. Instantiation, lifecycle management, trust factors and interleaved optimisations can all 

be controlled and measured outside of any given heuristic. 

 

We are obviously proponents of PSO which will be the focus of our work. However we are hoping to 

extend beyond any given heuristic into a more generalised approach to solving his puzzles. To a de-

gree this is possible if the component-based implementation works; from a purely design perspective 

this would appear to be a reasonable goal. 

 

By separating the components related to initialisation and the heuristics is hoped that the heuristics can 

become more generalised and reusable in other contexts without too much modification. Whether the 

component framework is generalised enough to enable the same will be a matter of validation but once 

again it is a valid design consideration for our implementation even if we only did PSO and geometric 

crossovers. 

 

I have often wondered how much of the success of some of his implementations is directly attributable 

to their ability to scale the populations. To be honest the puzzle board is a very big place the idea that 

you would throw thousands of particles into such a confined space would seem to increase the proba-

bility of success as much as anything else. What is not obvious is how rapidly the nature of the puzzle 

leads to tens of thousands of variants; each one and capable of stabilizing around their own local max-

ima with slight variation. As discussed distance calculations are expensive to implement, so we will 

attempt to ensure that each of the particles has enough variation of each other that there is enough di-

versity in the members of the population revolutionary algorithm to there is always the risk your col-

lapse into a fairly confined space. Some of the notations used to so do could puzzles look like an 81 

character string which is obviously very friendly way of encoding aboard as far as the computer is 

concerned that doesn't lend itself towards human readability. The advantage of such an encoding is a 

string comparison is hopefully obvious in, and the possibility of leveraging this strength hasn't as yet 

been fully considered. It definitely bears more discussion. 

 

Other most pleasing findings from research was the visual impact of the genetic algorithm applet. I 

would suggest that consideration be given to a human interface all reporting ability which should al-

low assessments of the solutions in a far more natural way. During some implementations we found 

the process of encoding the puzzles took longer than solving them. A simple input method for the puz-

zles would be a great help. Once again though these reusable components to any efficiency in the input 

output abilities are reusable among the heuristics and components. 
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8.1 Further work 
 

A reference implementation of the component framework can be created for PSO with Geometric 

Crossovers. Care should be taken for development considerate of later extension. Instantiation and 

Trust factors can then be varied to maximise success. 

 

Once this is completed new interleave optimisations can be developed such as Simulated Annealing. 

The framework configuration can again be optimised. 

 

We would like to investigate various forms for the velocity component in particle Swarm optimisation. 

Some variants completely remove velocity, closely with other trust factors. We do wonder about the 

possibility that velocity might be something of an iterative function which helps distribute the mem-

bers in the problems space. Such implementation distribute the particles more uniformly and help off-

set the tendency for clustering new local maxima, it would seem too much like Searching which does 

not suit the aim of the heuristic. 

 

New heuristics can be implemented within the framework, and optimisations and configurations tested 

/ optimised for each. 

 

We would like to validate our assumptions regarding boards is the fundamental unit of our namespac-

es. We know PSO has been successfully implemented in graph representations, and some of the belief 

propagation systems and other heuristics use coding methods such as binary strings. Finally some im-

plementations abandon physical considerations and instead focus on decision trees. A lot could be 

learned from successfully implementing these namespaces consistently within the framework. 

 

We would then be curious about the possibilities of reusing our approaches in other problems such as 

the travelling salesman problem, or the knapsack problem, or indeed a range of other problems also 

known to be NP complete. 
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