

ITEC 810 Minor Project

Inferring Document Structure

Final Report

Author: Weiyen Lin

SID: 41348133

Supervised by: Jette Viethen

4th June 2009

 i

Abstract

PDF documents form a rich resource repository of knowledge on the Internet both for

academia and for business. With their high portability and capability of rendering, they are

easy for human readers to read, print, and exchange. However, the lack of logical structure

information in PDF documents greatly limits the possibilities of Natural Language

Processing tasks such as automatic information retrieval, high-accuracy search or in-depth

corpus analysis. In order to enhance their usability, the logical entities of a PDF document,

such as title, headings, paragraphs, or reference items for academic articles, need to be

detected and annotated. This project builds on previous work extracting the physical layout

information of conference papers from PDF files and aims to detect the logical structure

from the physical layouts. We applied a two-phase strategy of detection and designed one

algorithm for each phase, respectively. In Phase I, blocks with homogeneous physical

features in the XML source files are aggregated. In Phase II, each block generated in the

previous phase is further annotated with a logical label by heuristic rules based on the

general format of the articles in the Association for Computational Linguistics (ACL)

Anthology, which is the corpus of interest in our research. The algorithms are implemented

using objected-oriented technology which has advantages such as knowledge

transparency and high flexibility of extension. The results from a preliminary evaluation

have shown this detection strategy on logical entities such as title, abstract heading and

abstract, section headings, and authors and affiliation, obtains a satisfactory accuracy.

Acknowledgments

I’d like to express many thanks and appreciation here to my supervisor Jette Viethen,

providing much information and advice on the design of algorithms and evaluation

strategies. During the development with a tight time limit, her words are both valuable and

encouraging. I also appreciate Brett Powley’s efforts, who extracted a rich set of physical

information from the ACL Anthology corpus. Moreover, comments on workshop paper from

Professor Robert Dale and other two anonymous reviewers contribute to the final

presentation of this research as well.

 ii

TABLE OF CONTENTS

ABSTRACT... I

ACKNOWLEDGMENTS.. I

1 INTRODUCTION... 1

1.1 BACKGROUND ... 1

1.2 TERMINOLOGY .. 2

1.3 DOCUMENT ORGANIZATION .. 3

2 LITERATURE REVIEW... 4

2.1 DOCUMENT ANALYSIS AND UNDERSTANDING ... 4

2.2 METHODS FOR PHYSICAL LAYOUT ANALYSIS ... 5

2.3 METHODS FOR LOGICAL STRUCTURE ANALYSIS... 7

2.3.1 Rule-based Approaches .. 10

2.3.2 Syntactic Approaches .. 15

2.4 SUMMARY ... 17

3 MATERIAL.. 18

4 METHODOLOGY.. 20

4.1 AGGREGATION OF HOMOGENEOUS PHYSICAL BLOCKS .. 21

4.2 DETECTION OF LOGICAL STRUCTURE ... 25

4.2.1 Detection of Title.. 25

4.2.2 Detection of Abstract Heading and Abstract... 26

4.2.3 Detection of Authors and Affiliations... 26

4.2.4 Detection of Page Numbers... 28

4.2.5 Detection of Section Headings... 28

4.3 OUTPUT FILES .. 29

4.3.1 XML Source by Line .. 29

4.3.2 XML Physical Blocks ... 30

 iii

4.3.3 XML Logical Blocks ... 30

4.3.4 HTML Physical Structure ... 32

4.3.5 HTML Logical Structure ... 32

5 IMPLEMENTATION .. 34

5.1 SYSTEM ARCHITECTURE .. 34

5.2 USER INTERFACE .. 36

6 CONCLUSION.. 38

6.1 RESULTS .. 38

6.2 ERROR ANALYSIS .. 38

6.3 FUTURE WORK.. 39

REFERENCES ... 39

APPENDIX ... 41

A.1: XML SOURCE BY TEXT... 41

A.2: XML SOURCE BY LINE.. 42

A.3: XML PHYSICAL BLOCKS AND LOGICAL BLOCKS .. 43

A.4: HTML PHYSICAL STYLESHEET.. 44

A.5: HTML LOGICAL STYLESHEET ... 45

A.6: SUMMARY OF DETECTION... 48

 ii

TABLES

TABLE 1: TERMINOLOGY OF DOCUMENT LAYOUT AND STRUCTURE... 2

TABLE 2: TERMINOLOGY OF DOCUMENT CONTENTS ... 2

TABLE 3: TERMINOLOGY OF DOCUMENT IMAGE ANALYSIS ... 3

TABLE 4: LOGICAL STRUCTURE ANALYSIS METHODS SUMMARIZED BY LEE [LEE ET AL, 2003]................. 8

TABLE 5: LOGICAL STRUCTURE ANALYSIS METHODS SUMMARIZED BY MAO [MAO ET AL, 2003] 9

TABLE 6: SUMMARY OF CLASSIFICATIONS OF LOGICAL STRUCTURE ANALYSIS METHODS 9

TABLE 7: SYNTAX OF A TYPICAL NEWSPAPER [NIYOGI & SRIHARI, 1995] .. 11

TABLE 8: EXAMPLE OF RULES IN DELOS [NIYOGI & SRIHARI, 1995]... 11

TABLE 9: TRANSFORMATION RULES [TSUJIMOTO & ASADA, 1992] .. 13

TABLE 10: ALGORITHM OF AGGREGATION (ONLY FOR THE FIRST 3 LINES)... 23

TABLE 11: ALGORITHM OF AGGREGATION (FOR THE REST OF LINES).. 24

TABLE 12: ALGORITHM OF DETECTING THE TITLE ... 25

TABLE 13: ALGORITHM OF DETECTING THE ABSTRACT HEADING .. 26

TABLE 14: ALGORITHM OF DETECTING AFFILIATIONS .. 27

TABLE 15: ALGORITHM OF DETECTING AUTHORS.. 28

TABLE 16: ALGORITHM OF DETECTING PAGE NUMBERS .. 28

TABLE 17: ALGORITHM OF DETECTING SECTION HEADINGS ... 29

TABLE 18: ALGORITHM OF DETECTING SECTION HEADINGS ... 35

TABLE 19: SUMMARY OF DETECTION RESULTS OUT OF 40 RANDOMLY SELECTED DOCUMENTS 38

 iii

FIGURES

FIGURE 1: PHYSICAL LAYOUT AND LOGICAL STRUCTURE OF A DOCUMENT IMAGE 5

FIGURE 2: HORIZONTAL AND VERTICAL PROJECTION PROFILES [NAMBOODIRI, 2003] 6

FIGURE 3: THE DELOS SYSTEM [NIYOGI & SRIHARI, 1995]... 10

FIGURE 4: GEOMETRIC STRUCTURE TREE [TSUJIMOTO & ASADA, 1992].. 12

FIGURE 5: LOGICAL STRUCTURE TREE [TSUJIMOTO & ASADA, 1992] ... 12

FIGURE 6: TRANSFORMING FROM A GEOMETRIC INTO LOGICAL STRUCTURE 14

FIGURE 7: TRANSFORMATION FROM A GEOMETRIC STRUCTURE IN FIGURE 6.................................... 14

FIGURE 8: PROCESSING STAGES [CONWAY, 1993] ... 16

FIGURE 9: EDGE FROM PARSING AN ENGLISH SENTENCE [CONWAY, 1993] 16

FIGURE 10: PHYSICAL FEATURES OF A PDF DOCUMENT ... 18

FIGURE 11: AN EXAMPLE OF XML SOURCE BY TEXT .. 19

FIGURE 12: EXTRACTION SEQUENCE OF XML SOURCE BY TEXT... 19

FIGURE 13: PROCESS OF LOGICAL STRUCTURE DETECTION.. 20

FIGURE 14: ALGORITHM FOR AGGREGATING BLOCKS ... 22

FIGURE 15: TYPES OF BLOCK OF AUTHORS AND AFFILIATIONS ... 27

FIGURE 16: AN EXAMPLE OF XML SOURCE BY LINE ... 30

FIGURE 17: AN EXAMPLE OF XML PHYSICAL BLOCKS .. 31

FIGURE 18: AN EXAMPLE OF XML LOGICAL BLOCKS .. 31

FIGURE 19: AN EXAMPLE OF HTML PHYSICAL STRUCTURE.. 32

FIGURE 20: AN EXAMPLE OF HTML LOGICAL STRUCTURE.. 33

FIGURE 21: CLASS DIAGRAM OF THE INFERRING DOCUMENT STRUCTURE SYSTEM (IDSS) 34

FIGURE 22: MAIN FRAME OF IDSS.. 37

FIGURE 23: CONFIGURATION FRAME OF IDSS... 37

 1

1 Introduction

1.1 Background

With the use of the Internet spreading fast in the last decade, the demand of transforming

document images into machine-readable documents with logical structure is rapidly

increasing. The document images available on the internet mostly come from early-age

archives in libraries, such as out-of-date newspapers, magazines, etc., as well as a large

volume of PDF documents from the later year of the digital age since the 1990s, such as

academic articles, technical instructions, and business advertisements. Most document

image are generated for the aims of reducing storage space or facilitating printing and

representation. However, since they do not provide information about their logical structure,

such as titles, authors, section headings, figures and tables, the possibilities for automatic

information processing, such as retrieval, modification, and transformation, are limited in

many ways. For example, we cannot perform specific queries on academic documents in

PDF with specific search criteria, such as “Author = ‘John Smith’” or “Title LIKE ‘%Mobile

Commerce%’”, since this logical information is not specified in those documents. This may

result in low search accuracy and longer search times for Internet search engines that have

to match the search keywords to the full text, instead of concentrating on title, abstract, or

headings only. On the other hand, if logical structure information is provided, re-formatting

can be easily done in an automated manner. Readers can choose preset stylesheets or

even design their own to reformat the document according to their preference of reading

without need to change the original document. In many academic areas, researchers can

do more in-depth analysis. For example, linguists can analyse the writing style of an author.

Due to the many advantages of documents being annotated with logical meaning, there

have been a large number of related studies on the detection of logical structure in

document images during the last decades. This research builds on previous work by

Powley et al. (2008) that has extracted the physical layout information from conference

papers from PDF into an XML (Extensible Markup Language) format. Our aim is to detect

the logical structure of the articles from these XML files. We developed two algorithms, one

for homogeneous block aggregation and one for logical structure detection, and

implemented them in an extensible object-oriented framework. We have perfomrmed a

preliminary evaluation on a small number of unseen articles from the Association for

Computational Linguistics Anthology, the corpus we are working on.

 2

1.2 Terminology

Table 1: Terminology of document layout and structure

Terminology Description Alternate Terms

Physical layout

[Namboodiri ,

2007]

Physical location and boundaries

of various regions in the

document. [Namboodiri, 2007]

Physical structure

Page layout [Conway, 1993]

Geometric structure [Niyogi,

1995]

Logical

Structure

[Namboodiri ,

2007; Conway,

1993]

Logical or functional structure in

the document, such as title,

paragraph, captions, etc, with

meaningful purposes of reading

or understanding. [Namboodiri,

2007]

Logical layout

Table 2: Terminology of document contents

Terminology Description Alternate Terms

Physical block

[Niyogi, 1995]

Physically homogenous regions

in the document, such as figures,

background, text block, text lines,

words, characters, etc.

[Namboodiri, 2007]

Physical region [Namboodiri ,

2007]

Physical segmentation [Niyogi,

1995]

Logical entity

[Niyogi, 1995]

Meaningful regions in the

document for reading or

understanding, such as title,

paragraph, figure, table, caption,

etc. [Namboodiri, 2007]

Logical component [Lee, 2003;

Stehno & Retti, 2003]

Logical label [Namboodiri,

2007]

 3

Table 3: Terminology of document image analysis

Terminology Description Alternate Terms

Physical Layout

Analysis

[Mao, 2003]

Decompose a document

image into hierarchy of

homogenous regions, such as

figures, background, text

block, text lines, words,

characters, etc. [Namboodiri,

2007]

Document layout analysis

[Namboodiri, 2007; Niyogi, 1995]

Geometric structure analysis

[Lee, 2003]

Layout analysis [Stehno, 2003]

Document analysis [Nagy, 1992;

Tsujmoto & Asada, 1992]

Logical Structure

Analysis

[Mao, 2003; Lee,

2003]

The process of extracting the

logical structure from the

document [Niyogi, 1995] or

mapping from the physical

regions (i.e. physical blocks) in

the document to their logical

labels (i.e. logical entities)

[Namboodiri, 2007]

Logical structure derivation

[Niyogi, 1995]

Document structure

understanding [Namboodiri, 2007]

Document understanding [Stehno,

2003; Tsujmoto & Asada, 1992]

1.3 Document Organization

This research first examines related literature both on physical layout analysis and logical

structure analysis. Some of the methodologies in the literature are similar to the ones

adopted by this research. Section 3 outlines the structure of our source material. In Section

4, we introduce a two-phase processing strategy for logical structure detection and

describe our algorithms for aggregating homogeneous blocks and detecting logical

structure. The implementation of these algorithms is sketched in Section 5, followed by

some final remarks in Section 6.

 4

2 Literature Review

The study dealing with document image processing is recently referred as “document

analysis and understanding”, which involves two major processes: physical layout

analysis and logical structure analysis [Lee, 2003; Namboodiri, 2003; Niyogi & Srihari

1995]. There have been a large number of studies done in this research area for the last

two decades. This section first examines two major issues along with their terminologies in

the field of document analysis and understanding (in Section 2.1), followed by a deep

review on those previous studies on physical layout analysis (in Section 2.2) and logical

structure analysis (in Section 2.3). The end of this section summarizes related literature and

gives a suggestion to the methodology that will be adopted by this project.

2.1 Document Analysis and Understanding

Namboodiri [2003] defined document images as those digital documents with both texts

and graphics, which are digitally generated from scanner or digital cameras. A digital library

usually stores out-of-date newspapers or magazines in films or PDF, which are the major

source of document images. Generated and stored digitally, document images were

basically aimed to reduce the storage space of a great amount of paper-based literature in

traditional libraries.

When reading a document, a human reader can use various clues from its formatting layout,

such as the title, headings, tables, and figures, easily to gain the main ideas of the

document or quickly to retrieve certain contents he or she is interested. In fact, those

formatting features reveal the logical structure of a document with more meaningful

instructions for human’s processing (see Figure 1). However, even though document

images are digitally stored and can be viewed by human readers from computer screens,

they are not accessible by machines to retrieve document content in the same manner, let

alone to understand the document. They only contain physical layout of a document, such

as the position of each text, and its font size, style, and alignment, mainly used for

rendering. Without logical or structural information embedded, document images are still as

less efficient as paper-based documents from the perspectives of document processing,

such as retrieval, modification, and transform [Lee et al., 2003; Stehno & Retti, 2003].

Document analysis and understanding is a field of document image processing with an aim

of transforming a document image into logical or structural version. Many researchers [Lee,

2003; Namboodiri, 2003; Niyogi & Srihari 1995; Stehno & Retti, 2003] agreed that it

consists of two major processes: physical layout analysis and logical structure analysis.

Namboodiri [2003] defined document layout analysis as a process of “decomposing a

document image into a hierarchy of maximally homogeneous regions, where each region is

repeatedly segmented into maximal sub-regions of specific type.” Those homogeneous

 5

regions or physical blocks include of figures, background, text block, text lines, words,

and characters, etc. There are two major strategies for extracting those physical blocks

from a document image: top-down and bottom-up methods, which will be introduced in

Section 2.2.

Physical layoutPhysical layout Logical structureLogical structurePhysical layoutPhysical layout Logical structureLogical structure

Figure 1: Physical layout and logical structure of a document image

Those physical blocks are then identified as meaningful logical entities according to their

functionalities of document processing, such as retrieval, modification, or transformation.

Namboodiri [2003] defined the process of “assigning the logical layout labels to physical

regions identified during physical layout analysis” as logical structure analysis. Simply

speaking, the logical structure is a mapping from the physical blocks in the document to

their logical entities. Document images with logical structure information are now useful for

machines to process documents.

2.2 Methods for Physical Layout Analysis

According to Namboodiri [2003], the algorithms of document layout analysis can be divided

into top-down approaches and bottom-up approaches based on their order of

processing. Top-down approaches start with the whole document image and repeatedly

break it down into smaller homogeneous regions until each region is recognized as a

primitive unit, such as a pixel, word, or graphics. Bottom-up approaches, on the other hand,

 6

start with those primitive units and repeatedly group them into larger regions such us words,

lines, or text-blocks.

Namboodiri [2003] stated the X-Y Cut algorithm is a typical top-down approach proceeding

by splitting a document image into smaller regions using horizontal and vertical projection

profiles. It starts dividing a document image based on valleys in their projection profiles.

The algorithm repeats to project the regions of the current segment both on the horizontal

and vertical axes until a stop criterion that determines the minimal unit of a region is

reached. Other top-down approaches include shaped-directed cover algorithm and the

white stream based segmentation.

Figure 2: Horizontal and vertical projection profiles [Namboodiri, 2003]

Bottom-up approaches, such as the run length smoothing algorithm (RLSA), first define the

basic unit in order to start the grouping process. It consists of four major steps: a horizontal

smoothing, a vertical smoothing, a logical AND operation and an additional horizontal

smoothing [Fisher et al., 1990]. In those steps, the distance between two adjacent units is

calculated and compared with a threshold, either a horizontal threshold or vertical one. If

the distance is less than the threshold, then two units are joined together. The vertical

smoothed image is then logically ANDed with the horizontal smoothed one, and is

horizontally smoothed one more time. The resulting image is the so-called RLSA image.

 7

2.3 Methods for Logical Structure Analysis

Compared to studies on physical layout analysis with an aligned set of terms for their

methodology, researchers dealing with logical structure analysis diverse in their selection of

names for the methods they adopt. Even though some researchers have tried to classify

the method adopted by previous research, they use different names for methods. For

example, Lee et al. [2003] divided related work for logical structure analysis into the

syntactic methods and the model-matching methods (see Table 4). Mao et al. [2003]

stated that document logical structures are represented by models derived either from a set

of rules or from formal grammars (see Table 5). Stehno and Retti [2003] categorised

models representing the logical structure into three: rule-based models, grammar-based

models, and models using statistical or probabilistic methods.

Table 6 compares the classification schemes by the three different papers to each other.

Although they did not give definitions for each method, by inspecting the approaches in

each classification, it can be inferred that syntactic or grammatical methods regard the

document as a sequence of repeated objects. For example, Lee et al. view a document as

a sequence of headers and bodies [Lee et al., 2003], while Conway regards a document as

a string or sentence to be parsed [Conway, 1993]. They create a grammar to describe the

logical structure in terms of sequences of neighbouring blocks. By applying a certain

parsing algorithm repeatedly, the logical structure is identified either in a top-down manner

[Lee et al., 2003] or in a bottom-up manner [Conway, 1993].

On the other hand, model-matching methods or rule-based methods do not create a syntax

or grammar to represent the logical structure. Instead, they encode the knowledge about

mapping each physical block to the most likely logical entity in the form of rules and by

applying the preset rules toward each physical block, each block can be specified with a

logical entity label. For example, such a rule could say: “If a block is of type ‘large text’ and

located at the beginning of the document, then it is a title”. By applying these rules to

predict each physical block to be a logical entity these approaches build up the logical

structure of the whole document. They also apply rules to regulate the process of logical

structure detection.

Both the grammar and the knowledge established in the two respective methods are

subject to a certain document type, such as newspaper pages, books, journal articles, or

business letters. Therefore, it might not be possible to generate a universal domain model

fitting all types of documents. Statistical or probabilistic methods uses a large volume of

annotated data and adopts statistical pattern recognition algorithms to enable a logical

structure detector to apply a corresponding grammar, based on documents it is fed.

Since there are no annotated data sets available in this project, the statistical methods are

beyond consideration. Instead, we will adopt rule-based and syntactic approaches for

 8

the logical structure analysis. The next two sub-sections inspect some specific models from

these two categories.

Table 4: Logical structure analysis methods summarized by Lee [Lee et al, 2003]

 9

Table 5: Logical structure analysis methods summarized by Mao [Mao et al, 2003]

Model Authors Key Idea Logical Labels Domain

Conway

[1993]

page grammar title, heading, paragraph,

figure

not

mentioned

Krishnamoort

hy [1993]

page parsing, block

grammar

title, author, abstract journal

pages

Tateisi [1994] stochastic grammars,

physical zones available

headings, paragraph, list

item

not

mentioned

Formal

gramma

rs

Ishitani

[1999]

emergent computation, rule

based

headline, header, footer

note, caption, program,

formula, title, list

various

documents

Tsujimoto

[1990]

mapping a physical tree to

a logical one

title, abstract, sub-title,

paragraph, header, footer

page number, caption

various

documents

Fisher1

[1991]

rule-based section heading, figure,

figure caption, page

heading, page footings

not

mentioned

Niyogi [1995] rule-based,

knowledge-based

title, story, sub-story,

photo, caption, graph

newspaper

pages

A set of

rules

Summers

[1995]

logical prototype, matching,

physical zones available

paragraph, heading, list

item

technical

reports

Table 6: Summary of classifications of logical structure analysis methods

Classifier Lee et al [2003] Mao et al [2003] Stehno et al [2003]

Method

Research

Model-

matching
Syntactic

A set of

rules

Formal

grammars

Rule

Model

Grammar

Model

Statistics

Model

Tsujimoto [1992] ● ●

Niyogi [1996] ● ● ●

Fisher [1990] ● ●

Nage [1992] ● ● ●

Conway [1993] ● ● ●

Tateisi [1994] ● ●

Lee [2000] ●

Altamura [1999] ●

Cesarini [1999] ●

Brugger [1997] ●

Ittner [1993] ●

Palmero [1999] ●

 10

2.3.1 Rule-based Approaches

● Niyogi & Srihari [1995], Knowledge-Based Derivation of Document Logical

Structure

Niyogi and Srihari [1995] established a knowledge-based system for the derivation of

logical structure of newspaper pages. A computational model is developed consisting of a

Knowledge base, Inference Engine and a Global Data Structure representing the syntax of

a typical newspaper. Figure 3 illustrates the architecture of proposed system (DeLos).

Figure 3: The DeLos system [Niyogi & Srihari, 1995]

The Global Data Structure stores the syntax of newspapers as shown in Table 7. It is used

to specifying a logical entity label to a physical block by applying the rules in the knowledge

base. The Knowledge Base contains all the rules in form of first-order predicates. These

rules define the general characteristics of each logical entity in a newspaper as well as the

relationships between such entities. All common characteristics of different logical entities

and their geometrical constraints are encoded in the knowledge base. This knowledge is

then used for block segmentation, block grouping, or text block ordering. An example of

these knowledge rules is shown in Table 8 (a).

The Inference Engine contains two more levels of rules: control rules and strategy rules.

Control rules regulate the invocation of a knowledge rule while strategy rules determine

which control strategy is to be applied. The application starts with segmenting a document

image using a bottom-up algorithm, then those segmented blocks are grouped, and finally

the grouped blocks are imported intothe DeLos system and a logical tree structure is

derived [Niyogi & Srihari, 1995; Mao et al., 2003]. The output of the system is a tree

 11

representing the logical structure of the imported document. The system was tested on 44

US newspaper pages and the performance, in terms of block classification accuracy, block

grouping accuracy, and read-ordering accuracy, is fairly high [Mao et al., 2003].

Table 7: Syntax of a typical newspaper [Niyogi & Srihari, 1995]

<document> : : = { <page> }
<page> : : = { <block> }
<block> : : = <large-text> | <medium-text> |

<small-text> | <line-drawing> |
<half-tone> | <boundary>

<boundary> : : = <horizontal-line> | <vertical-line> |
<line-rectangle>

(a) Physical structure

<document info> : : = { <unit>)
<unit> : : = <title> | <graphical area> |

<story> | <photoblock>
<photoblock> : : = [<title> | <photo> <caption>
<graphical area> : : = <page banner> | <horizontal band, |

<other graphics>
<story> : : = [<sub-story>] |

<title> <sub-title> |
{ <text-para> } [<photoblock>]

[[<title>] <chart> <caption>]
[[<title>] <table> <caption>]

<sub-story> : : = <story>

(b) Logical structure

Table 8: Example of rules in DeLos [Niyogi & Srihari, 1995]

IF a block Z is of type "large-text",
OR IF it satisfies the following three conditions:

(it is of type "medium-text",
AND it is below another block W,
AND block W is not of type "large-text''

or "medium-text" 1,
THEN block 2 is a major headline.

(a) Knowledge Rule

IF the grouping mode is on,
AND a block has been selected,

THEN find all the immediate neighbors
of the selected block.

 (b) Control Rule

IF any partially grouped units remain,
THEN apply all unit-related control rules

for each of these units
until there are no more partial units.

(c) Strategy Rule

 12

● Tsujimoto & Asada [1992], Major Components of Complete Text Reading System

Tsujimoto and Asada [1992] present a method to document analysis, document

understanding, and character segmentation/recognition for a text reader system. The

document analysis component extracts text lines from a document image and obtains the

geometric structure tree (see Figure 4 b) as a hierarchy of physical blocks. The document

understanding component then maps a pre-defined logical structure tree (see Figure 5)

with the geometric structure tree using four transformation rules that deal with the tree

nodes movement during the transformation. The character segmentation/recognition

component extracts characters from a text line and recognises them based on the

heuristics of character composition and recognition results.

Figure 4: Geometric structure tree [Tsujimoto & Asada, 1992]

Figure 5: Logical structure tree [Tsujimoto & Asada, 1992]

 13

The algorithm for the geometric to logical structure transformation is composed of four

transformation rules that define the conditions under which an element in a node list is

moved. These rules are shown in Table 9 and illustrated in Figure 6, where H indicates a

head block, B indicates a body block, and S indicates that a block can be either body or

head. Each node in the tree is sequentially numbered in the depth-first order [Tsujimoto &

Asada, 1992]. Rule (a) is based on the observation that each line can only belong to a

single paragraph, and Rule (b) is similar to Rule (a). Rule (c) extracts chapters of sections

for a subtitle, and Rule (d) attaches a unique class (head/body) to each node [Tsujimoto &

Asada, 1992]. Figure 7 shows an example of the transformation from the geometric

structure of the document shown in Figure 6.

They tested the algorithm on 106 pages from different sources and obtained a logical

structure recognition accuracy of 94/106 [Mao et al., 2003].

Table 9: Transformation Rules [Tsujimoto & Asada, 1992]

Rule (a):

If

a node (say A) is a terminal node, and

the first element of node A is a body,

and

the preceding node (say B) in the

depth-first indexing is a terminal node,

then

remove the first element from node A,

and

append it to the last element of node B.

Rule (b):

If

a node (say A) is a terminal node that is

not connected to the root node, and

the preceding node (say B) in the

depth-first indexing is a terminal node,

and

the first element of node A is not NULL,

and

last element of node B is a head,

then

remove the first element from node A,

and

append it to the last element of node B.

Rule (c):

If

a node (say A) contains a head block,

and

it is not the first element of the node,

then

generate a younger sister node (say D),

and

remove the head-body sequence that

begins with that head block and ends

with the last element of node A, with

daughters of node A, if any, and

attach them to the younger sister node

D.

Rule (d):

If

there is a head block sequence in a

node, and

it is the first part of the node,

then

generate a daughter node, and

move the body sequence that follows the

head sequence to the daughter node.

 14

Figure 6: Transforming from a geometric into logical structure [Tsujimoto &

Asada, 1992]

Figure 7: Transformation from a geometric structure in Figure 6 [Tsujimoto &

Asada, 1992]

 15

2.3.2 Syntactic Approaches

● Conway, 1993, Page grammar and page parsing: A syntactic approach to document

layout recognition

Conway [1993] adopted page grammars and page parsing techniques to recognize logical

structure from physical document layout. He described the physical layout of a certain type

of documents as a page layout grammar similar to a context free string grammar. In other

words, he viewed the page as a “sentence” to be parsed. In his system, the first step is to

segment the page image using run length smoothing segmentation and produce segments

corresponding to text lines and graphic objects. Then the page parser groups segments

according to physical layout and produces a list of text and graphic items tagged as

headings, paragraphs, figures, etc. in a reading order. Figure 8 illustrates the process of

parsing.

The grammar is a set of rules similar to the rules in rule-based approaches mentioned

earlier that specify how the logical entities are embedded in the whole document, but in a

more syntactic manner. For example, in Conway’s system he presented the layout of a

typical title page like the following:

TitlePage � (over Title Author Organisation Body)

Body � (leftside Column Column)

Column � (over ParaBody ? (Paragraph I Figure)*

Paragraph � (over textline dirst-indented> ParaBody)

ParaBody � (over textline<aligned>’)

Title � (over textline[large, bold]ccentred>+)

etc.

Each logical entity, such as TitlePage or Body, has a grammatical rule with the pattern like:

X ���� (ruletype X1…Xn)

Where ruletype is one of the relations: above, leftof, over, leftside, and closeto. It means

an entity X can be made up of a sequence of entities X1…Xn, which are linked by the

relationship ruletype. Then the page parsing algorithm applied Kay’s active chart parsing,

which is mainly used for natural language processing, to parse the entire page. The active

chart parsing is based on a data structure called an edge, which consists of four

components:

<label start end remainder>

 16

The label is a grammar symbol, start and end are positions in the sentence and

remainder is a list of grammar symbols like the label.

Figure 8: Processing stages [Conway, 1993]

An edge with an empty remainder is called complete while an edge with non-empty

remainder is called an active edge. For example, <VP 1 5 ()> in Figure 9 represents the

verb phrase “had a little lamb”, which is complete, and <VP 1 2 (NP)> represents a partial

verb phrase “had” which requires a noun phrase at position 2 to be complete, and therefore

is an active edge.

Figure 9: Edge from parsing an English sentence [Conway, 1993]

The basic operation on edges is to continue an active edge with a complete edge. If given

an active edge a = <A a1 a2 (X1…Xn)> and a complete edge b = <B b1 b2 ()>, then b can

continue a if X1 = B and a2 = b1. The resulting edge is <A a1 b2 (X2…Xn)>. For example, in

Figure 9, the edge <VP 1 2 (NP)> can be continued by <NP 2 5> resulting in a complete

edge <VP 1 5 ()>.

 17

The page parsing algorithm is similar to the string parsing algorithm described above, with a

difference that the page edge data structure represents page blocks and the rule for

continuing these page edges [Conway, 1993]. A page edge is defined as:

<label ruletype consumed remainder>

The label and remainder have the same meaning as in string edges. The ruletype

specifies the relation that is required to hold between consecutive sub-edges and to be one

of five relations mentioned earlier. The start and end components are replaced by

consumed component which holds the sequence of sub-edges making up the completed

portion of the edge [Conway, 1993]. Thus, the rule for continuing page edges is like:

a = <A rulea (a1..ai) (X1…Xn)> (active)

b = <B ruleb (b1..bj)> (active)

Then b can continue a if X1 = B and rulea (ai , b) holds. The resulting edge is then a = <A

rulea (a1..ai b) (X2…Xn)>.

Using page grammar rules and the edges definition, his system applied the chart parsing

algorithm to parse pages and generates the logical structure of the document page.

2.4 Summary

In this section we have reviewed literature in the field of document analysis and

understanding. Several methods are introduced both for physical layout analysis and

logical structure analysis. Some previous works of logical structure analysis applying

syntactic approaches as well as rule-based approaches are inspected. This project focuses

on physical blocks grouping and logical structure analysis since it continues previous work

which delivers an XML version with geometric information for each word in a PDF

document. Thus, the extraction of physical blocks from a document image is not part of this

project. However, grouping of the words into physical blocks is the first task to be

accomplished, followed by mapping from physical layout to logical structure.

Due to the nature of the input file of this project, which provides rich geometric information

but doesn’t extract table contents and graphic object, a bottom-up algorithm such as run

length smoothing algorithm (RLSA) will be adopted in the early stage of physical block

grouping. A rule-based approach, matching each physical block to a preset logical entity

model for journal articles in both top-down and bottom-up manner, will be applied in the

later stage of detecting logical structure from the physical blocks format.

 18

3 Material

XML (Extensible Markup Language) is a structural mark-up language that allows users to

define their own mark-up elements, or tags. It aims to provide a human- and

machine-readable data format for encoding and sharing information via the internet. This

research is based on an XML version of the post-2000 portion of the ACL Anthology corpus

which was derived by running Powley et al.’s (2008) software over the online PDF

documents in the ACL Anthology corpus from the year 2000 and later. The left-hand side of

Figure 10 is an example of the PDF documents from the ACL Anthology corpus and Figure

11 is the XML source with all physical features extracted from that PDF document. Although

these PDF documents are different from document images generated by scanning

mentioned in Section 2 since they contain specific physical information about the contained

text, their logical structure still remain unknown to machines and thus need to be detected.

The derived XML source provides a rich set of physical features for each word roughly in

the order of reading on a page, one page after another. Those physical features include the

height and width of a document page as well as the font, font size, and the position of each

word on that page. The physical meaning of attributes in the XML source of Figure 11 is

illustrated in the right-hand side of Figure 10. The extraction sequence of the XML source is

roughly in the order of reading, from top to bottom, left to right, and left column to right

column, as shown in Figure 12. Simply speaking, the XML source is merely a raw file

extracting each word sequentially from a PDF document and representing the text in a

hierarchical structure using an XML format, which makes later processing easier. The XML

source will be referred to as XML Source by Text in the remainder of this report for

differentiation from other XML formats we use. One example is included in Appendix A.1.

Figure 10: Physical features of a PDF document

 19

Figure 11: An example of XML Source by Text

Figure 12: Extraction sequence of XML Source by Text

 20

4 Methodology

This section describes the methodology we adopt for logical structure detection of

academic articles. We introduce our two-phase detection strategy, followed by the

description of the algorithms implementing the two phases, one for aggregating

homogeneous blocks from XML Source by Text (Section 4.1) and one for annotating each

block with a logical label (Section 4.2). In the end, four output files are introduced to provide

a quick overview of the outcomes of this research.

Figure 13 illustrates the process of logical structure detection consisting of two phases. In

Phase I, the XML Source by Text is read-in and words with same y-position are grouped

into a line (1a. in Figure 13). This process produces a newly created XML file, referred to as

XML Source by Line. The lines in the XML Source by Line are further aggregated into

homogeneous blocks according to their physical features and the process produces

another new XML file, XML Physical Blocks (1b. in Figure 13). This process applies an

algorithm that will be detailed in Section 4.1. From XML Physical Blocks an HTML file with a

line break between each block of texts is created by applying an XML Stylesheet (XSLT) on

XML Physical Blocks. The HTML file is referred to as HTML Physical Structure and can be

displayed in human-readable form in a web browser.

Figure 13: Process of logical structure detection

 21

In Phase II, another algorithm is applied to the XML Physical Blocks file to predict the

logical meaning of each block according to rules which are based on the knowledge of the

format of academic articles in the ACL Anthology corpus. This process (2 in Figure 13)

annotates each block with a logical label such as title, author, section-heading, or

paragraph, and produces an XML Logical Blocks file, which is the final product of our

research. It can be further used to produce an HTML Logical Structure file which facilitates

the manual evaluation process at a later stage. Section 4.2 describes the algorithm and

specific rules applied for detecting logical entities.

There are many advantages of separating the detection into two phases. First, separating

the implementation of both algorithms can prevent the confusion of errors caused by the

physical layout analysis or the logical structure detection. Second, both algorithms can be

further refined and extended according to the results of an evaluation. The more precise the

block aggregation is, the more accurate the detection of the logical structure will be. With

the experience of testing throughout the development, we found this can greatly enhance

the accuracy of final detection. Third, the modularisation using object-oriented technology

makes it possible for the software to behave as a shell in the future detecting different types

of documents by accommodating different layout knowledge for different document types.

4.1 Aggregation of Homogeneous Physical Blocks

The aggregation of homogeneous physical blocks before directly detecting the logical

structure of a document is mimicking the process of a person visually taking in the structure

of a document. When humans read a document, the attention is first drawn to the physical

features of that document, instead of logical features. In other words, human readers first

identify the homogeneous blocks of lines or texts according to their physical attributes, such

as position, dominant font size or font style, and spacing between those blocks. Then they

start to have a closer look at the blocks according to the message that each block transmits

to them; for example, read the most upper block with the biggest font size on the first page

of the document, which is assumed to be the title at the stage of block aggregation and

confirmed as such after reading.

Our approach applies the same strategy and aggregates lines with homogeneous physical

features into a block. The method we use is similar to the Run Length Smoothing Algorithm

(RLSA) used for physical layout analysis. Our algorithm, as shown in Figure 14, assumes

words in the same line in an XML Source by Line document belong to one homogeneous

block and then reads in three lines at a time to determine which lines, with their words,

could further belong to the same block. The algorithm only considers the dominant font size

of each line, which is the most frequent font size among the words in a line, and the spacing

between lines to define physical homogeneity.

As Figure 14 shows, first the dominant font sizes of the first three lines are considered. If

 22

the dominant font sizes of three lines are not identical, cases AAB, ABB, A1BA2, and ABC,

lines with the same dominant font size are aggregated into one block, and the rest into

another or all lines are assigned to three different blocks. If the dominant font sizes of three

lines are identical, then the y-spacing between lines is further examined. Lines with smaller

spacing are aggregated into one block, and lines with a larger spacing split off into another

block. If the spacing is the same, the three lines are aggregated into one block. In the next

iteration of the algorithm, the last line of the previous iteration is read in again as the first

line of the next three for a continuous aggregation.

Table 10 and 11 are the pseudo-codes of the aggregation algorithm. It processes each

page element in XML Source by Line, where lines of words are either grouped into a new

block (as createBlock in Table 10 and 11) or appended to the currently processing block

(as appendToBlock in Table 11). The criteria applied to determine either to create or to

append includes the font size combination of three lines for each round of reading (as

shown in Figure 14), and the spacing conditions including three categories: 1)

SAME_SPACING, where the spacings between three lines are identical, 2)

LARGER_THEN_SAMLLER, where the spacing between the first two lines is larger than

that between the last two lines, while SMALLER_THEN_LARGER, vice versa, 3)

NEGATIVE_SPACING_1, where the spacing between the first two lines is negative, which

means the change of column occurs between those lines, while NEGATIVE_SPACING_2

means the change occurs between the last two lines.

Figure 14: Algorithm for aggregating blocks

 23

Table 10: Algorithm of aggregation (only for the first 3 lines)

FOR EACH page IN all pages

 read-in 3 lines (line1, line2, lin3)

 check {font_size_combination, spacings_condition} (line1, line2, lin3)

 previousSpacing = 0.0

 CASE font_size_combination = AAA:

 IF(spacings_condition == SAME_SPACINGS)

 createBlock (line1, line2, lin3)

 previousSpacing = spacing (line2, line3)

 ELSE IF(spacings_condition == NEGATIVE_SPACING_1 OR LARGER_THEN_SMALLER)

 createBlock (line1)

 createBlock (line2, lin3)

 previousSpacing = 0.0

 ELSE IF(spacings_condition == NEGATIVE_SPACING_2 OR SMALLER_THEN_LARGER)

 createBlock (line1, line2)

 createBlock (lin3)

 previousSpacing = 0.0

 CASE font_size_combination = AAB:

 createBlock (line1, line2)

 createBlock (lin3)

 previousSpacing = 0.0

 CASE font_size_combination = ABB:

 createBlock (line1)

 createBlock (line2, lin3)

 previousSpacing = 0.0

 CASE font_size_combination = ABA:

 createBlock (lin1)

 createBlock (lin2)

 createBlock (lin3)

 previousSpacing = 0.0

 go to the Algorithm in Table 11

go to next page (page id = page id + 1)

 24

Table 11: Algorithm of aggregation (for the rest of lines)

 read-in 3 lines (line1, line2, lin3)

 check {font_size_combination, spacings_condition} (line1, line2, lin3)

 CASE font_size_combination = AAA:

 IF (spacings_condition == SAME_SPACINGS)

 appendToBlock (line2, line3)

 previousSpacing = spacing (line2, line3)

 ELSE IF (spacings_condition == NEGATIVE_SPACING_1 OR LARGER_THEN_SMALLER)

 CASE NEGATIVE_SPACING_1:

 createBlock (line2, line3)

 previousSpacing = 0.0

 CASE LARGER_THEN_SMALLER:

 createBlock (line2)

 previousSpacing = 0.0

 go to next round (cursor = cursor +1)

 ELSE IF (spacings_condition == NEGATIVE_SPACING_2 OR SMALLER_THEN_LARGER)

 appendToBlock (line2)

 createBlock (line3)

 CASE font_size_combination = AAB:

 IF (previousSpacing == 0.0 OR previousSpacing == spacing (line1, line2))

 appendToBlock (line2)

 ELSE

 createBlock (line2)

 createBlock (lines)

 previousSpacing = 0.0

 CASE font_size_combination = ABB:

 IF (spacing (line2, line3) > the most frequent spacing)

 createBlock (line2)

 createBlock (line3)

 ELSE

 createBlock (line2, line3)

 previousSpacing = 0.0

 CASE font_size_combination = ABA AND ABC:

 createBlock (line2)

 createBlock (line3)

 previousSpacing = 0.0

 go to next round (cursor = cursor +2)

 25

4.2 Detection of Logical Structure

Our research aims to detect the most important items of the logical structure, including the

title, authors and affiliation, abstract heading, abstract, section headings, and body text by

applying heuristic rules. These rules are based on the unique characteristics of each logical

entity and compared with the statistics of the characteristic of the whole document. When

choosing rules to be applied, we try to be as general as possible to accommodate the

majority of document we observe from the corpus. Therefore, it is hardly possible to find a

single set of rules that apply to all the variations in the format of the conference papers. This

section first describes the detection sequence of the above-mentioned logical entities,

followed by seven sub-sections discussing the details of the detection of them.

The detection of logical structure is based on the outcome from Phase I, which is XML

Physical Block. This file contains blocks of words with homogeneous physical features on

each page. The aim of the detection algorithm is to specify a logical label to each of blocks.

The detection is then divided into two categories: unique entities and multiple-occurrence

entities. Unique entities include title, abstract heading, and abstract, while

multiple-occurrence entities include authors, affiliations, section-headings, page numbers,

and paragraphs. Since unique entities only appear once and thus can be good benchmarks

for the detection of other entities, they are detected first, followed by the detection of

multiple-occurrence entities. The detection sequence of logical entities is as follows: 1) title,

2) abstract heading, 3) abstract, 4) affiliations, 5) authors, 6) page numbers, and 7) section

headings.

4.2.1 Detection of Title

The detection of title in our research only considers the dominant font size and the position

of a block. First of all, the title is always located on the first page. Then we observed the

majority of development set from the corpus and found that font size of titles is almost the

largest one through the entire document. To increase the detection accuracy, we also add

one rule that the title should always be on the upper half of the first page. Table 12

illustrates this simple algorithm.

Table 12: Algorithm of detecting the title

FOR EACH block IN first page

 IF (the block’s dominant font size == the largest font size AND block is on upper page)

 annotateLogicalType (block, “title”)

 stop

go to next block (block id = block id + 1)

 26

4.2.2 Detection of Abstract Heading and Abstract

The detection of abstract heading is as straight-forward as that of the title. The algorithm

shown in Table 13 first considers a block from the first page if its dominant font size is larger

than the most frequent font size, which is the font size of context, and the content equals to

“abstract” as well as its location is on the upper page, then the block is annotated as the

abstract heading. Since there are still quite a few documents whose font size of abstract

heading is as large as that of context, the algorithm continues to search again without

requiring the font size condition.

Table 13: Algorithm of detecting the abstract heading

FOR EACH block IN first page

 IF (the block’s dominant font size > the most frequent font size AND the content equals to “abstract”

 AND block is on upper page)

 annotateLogicalType (block, “abstract-heading”)

 stop

go to next block (block id = block id + 1)

IF NOT found

 FOR EACH block IN first page

 IF (the content equals to “abstract” AND block is on upper page AND number of line ==1)

 annotateLogicalType (block, “abstract-heading”)

 stop

 go to next block (block id = block id + 1)

The detection of abstract comes after the abstract heading, which assumes the abstract is

the block next to the abstract heading. This can only be true when the aggregation of

homogeneous block on abstract is correct. In some cases, we found the abstract is divided

into two or more block due to the variation of font size and spacing occurred in those

abstract. More considerations need to be taken into account to fix this problem in the future.

For example, it can be applied a rule saying that those blocks between abstract heading

and the first section heading can be abstract. However, we recommend revising the

aggregation algorithm to minimize the possibility of this error.

4.2.3 Detection of Authors and Affiliations

There are three major types of the block of authors and affiliations in the corpus as shown

in Figure 15. To adapt this variation, the detection of authors and affiliations comes in a

fixed order. First, the algorithm of detecting affiliations assumes those blocks between title

and abstract heading are mixture candidates of authors and affiliation, and annotated those

blocks with affiliation. Another algorithm continues to detect the authors using an exclusion

 27

set of string, including keywords of organization, such as “department”, “center”, “university”,

“laboratory”, “of”, etc., country names as shown in the address, and certain characters

appeared in the e-mail address, such as “@”, “{“, or ”}”. The contents of those blocks

annotated with affiliation are examined to check against the exclusion set of string. Those

blocks without matching any item in the exclusion set are then annotated with author. Table

14 and 15 show the pseudo-codes of these two algorithms.

Figure 15: Types of block of authors and affiliations

Table 14: Algorithm of detecting affiliations

find block id of the title (title_id) and block id of the abstract heading (abstract_heading_id)

FOR EACH block IN first page

 IF (the block id falls between title_id AND abstract_heading_id)

 annotateLogicalType (block, “affiliation”)

 IF (the block id == abstract_heading_id)

 stop

go to next block (block id = block id + 1)

 28

Table 15: Algorithm of detecting authors

find block id of the title (title_id) and block id of the abstract heading (abstract_heading_id)

FOR EACH block IN first page

 IF (the block id falls between title_id AND abstract_heading_id)

 IF (block’s contents do not contain any element in the exclusion set)

 annotateLogicalType (block, “author”)

 IF (the block id == abstract_heading_id)

 stop

go to next block (block id = block id + 1)

exclusion set: { "university", "center", "department", "research", "laboratory", "computer", "science",

"computing", "computational" ,"division" ,"information", , "group", "communication", "of", "@", "{", "}" }

4.2.4 Detection of Page Numbers

The detection of page numbers considers several physical features. First, the dominant font

size is larger than the smallest font size, which excludes footnotes and footers whose font

sizes are usually the smallest ones. Second, the block always falls on the lower page. Third,

the count of words equals to one and the block’s content should be numeric. For most

cases in the ACL Anthology corpus, the page number is centered, and thus the algorithm

assumes the block of page number should fall between the page’s center with 20 pixels in

both sides. Table 16 shows the algorithm of detecting page numbers.

Table 16: Algorithm of detecting page numbers

FOR EACH page IN all pages

 FOR EACH block IN page

 IF (the dominant font size > the smallest font size AND the block is on the lower page

 AND the x-coordinate of the block’s center falls in the range of page’s center ± 20.0
 AND the count of words in block == 1 AND block’s content is numeric)

 annotateLogicalType (block, “page-number”)

 go to next block (block id = block id + 1)

go to next page (page id = page id + 1)

4.2.5 Detection of Section Headings

The detection of section headings relies on the dominant font size and their common

characteristic of starting with a number. The algorithm also considers those section

headings that do not start with a number. Table 17 shows the pseudo-codes of the

algorithm. It assumes the dominant font size is larger than the most frequent font size,

which is the font size of the context. This assumption obviously does not match a minority

of document whose font size of section heading is as large as that of context. Therefore,

 29

there should be other rules to address this flaw in the future. The algorithm then examines

the first word of the block. If the first word is numeric or the block contents contain any of

keywords such as introduction, conclusion, reference, and acknowledge, then the block

could be a section heading.

Table 17: Algorithm of detecting section headings

FOR EACH page IN all pages

 FOR EACH block IN page

 find the first word of the block (first_word)

 IF (the dominant font size of block > the most frequent font size AND

 (the first_word is numeric OR the block contents contain any of element in heading set))

 annotateLogicalType (block, “section-heading”)

 go to next block (block id = block id + 1)

go to next page (page id = page id + 1)

exclusion set: { "introduction", "conclusion”, “reference”, “acknowledge” }

4.3 Output Files

There are four different output files generated by our algorithms, two of which are in XML

format and the other two, HTML. This section describes the structure for each output file

format as well as its purpose to provide an overview of outcomes by this research. In this

section, <text>, <line>, and <page> refer to mark-up elements or tags in those XML files

mentioned above.

4.3.1 XML Source by Line

XML Source by Line is derived from XML Source by Text by grouping the <text> elements

with the same attribute values for the y-coordinate together. <text> elements in the same

group are appended under a newly created tag <line>, which is inserted under the existing

<page> tag, with extra attributes, such as dominantFont, dominantFontsize, left, right,

words, and y-position. The values of the above attributes are summary information of each

line expressing collectively physical features or statistics of words in the same line. For

example, the attribute dominantFont specifies the most frequent font among the <text>

elements in that line, while the attribute words specifies the number of <text> elements and

attributes left and right specify the horizontal margins for that line. Figure 16 is an example

of XML Source by Line derived from the example XML Source by Text shown in Figure 11.

One example is included in Appendix A.2.

 30

Figure 16: An example of XML Source by Line

4.3.2 XML Physical Blocks

XML Physical Blocks is derived from the XML Source by Line by applying the algorithm of

aggregation introduced in Section 4.1. Figure 17 is an example of XML Physical Blocks

derived from the example XML Source by Line shown in Figure 16. In this version, a newly

created tag <block> is inserted under the existing tag <page> containing some <line>

elements according to the algorithm, with several attributes, such as marginLeft,

marginRight, marginTop, marginBottom, and lines. Similar to the attributes of <line> for its

<text> elements, these attributes specify the summary information about these <line>

elements aggregated as a block. One example is included in Appendix A.3.

4.3.3 XML Logical Blocks

XML Logical Blocks is the same file format as XML Physical Blocks, but annotated with

logical labels according to the algorithm discussed in Section 4.2, by adding a new attribute

logicalType to the tag <block>. Figure 18 is an example of XML Logical Blocks files

annotated with a logical label title from the example of XML Physical Blocks shown in

Figure 17. Except for this attribute appeared in most of <block> element, the rest of

structure is the same as XML Physical Blocks. One example is included in Appendix A.3.

The two XML files introduced in this section and in Section 4.3.2 are the major outcomes of

our research. With the annotated information for each block of texts, these files can be

processed by machines for more creative uses, such as search or in-depth analysis.

 31

Figure 17: An example of XML Physical Blocks

Figure 18: An example of XML Logical Blocks

 32

4.3.4 HTML Physical Structure

This research also produces two other HTML file for human evaluation of the two major

XML formats. The first file is HTML Physical Structure, transformed by applying an XML

Stylesheet (XSLT) on XML Physical Blocks. It shows the result of block aggregation in the

web browser with a line break between each block of texts. Figure 19 is an example of

HTML Physical Structure derived from the example XML Physical Blocks shown in Figure

17. From this view of aggregation results, it is straightforward to check how successful the

physical block aggregation algorithm is doing during development.The XML Stylesheet to

transform XML Physical Blocks into HTML Physical Structure is included in Appendix A.4.

4.3.5 HTML Logical Structure

By applying another XSLT stylesheet on the XML Logical Blocks file from Figure 18, HTML

Logical Structure, as shown in Figure 20, is created. It gives the developer with a clear view

of the logical structure detection output. The stylesheet gives each logical entity a distinct

format shown in the web browser, such as the centered bold title, centered authors,

affiliations and abstract heading, and table of contents of section headings as hyperlinks.

The XML Stylesheet to transform XML Logical Blocks into HTML Logical Structure is

included in Appendix A.5.This file is produced mainly to assist the manual evaluation

process discussed in Section 6.

Figure 19: An example of HTML Physical Structure

 33

Figure 20: An example of HTML Logical Structure

 34

5 Implementation

5.1 System Architecture

Inferring Document Structure System (IDSS) implemented the above-mentioned algorithms

using Java (JDK1.6) on Windows 2003 Server. To obtain the flexibility of change and

software extensibility, the design of system architecture is based on the concept of

decoupling and modularization. Figure 21 is the class diagram of the system, including two

Java interfaces and 15 major classes. Table 18 lists the functionalities for all interfaces and

classes.

Figure 21: Class diagram of the Inferring Document Structure System (IDSS)

 35

Table 18: Algorithm of detecting section headings

Class/Interface Name Functionality

PhysicalStructureDetector* Interface for aggregating homogeneous blocks

LogicalStructureDetector* Interface for detecting logical structure

ACLHomoBlockAggregator An implementation of PhysicalStructureDetector specific to

aggregate homogeneous blocks from ACL Anthology corpus. The

algorithm of aggregation is defined in this class. It provides

methods to summarize the statistics of physical feature from XML

Source by Text, and to create XML Source by Line, XML Physical

Blocks, and HTML Physical Structure.

ACLDetector An implementation of LogicalStructureDetector specific to detect

logical structure from ACL Anthology corpus. It provides methods

to summarize the statistics of physical feature from XML Physical

Blocks, to detect logical structure with assistance from class

Detector, and to create HTML Logical Structure.

BlockAggregator A helper class to assist class ACLHomoBlockAggregator in

checking font sizes and spacing of imported line elements as well

as create new blocks containing associated line elements

according to the algorithm of aggregation.

Summarizer A helper class to assist classes ACLHomoBlockAggregator and

ACLDetector in summarizing the statistics of physical feature from

XML Source by Text and XML Physical Blocks.

PhysicalReport A report class to report summary information of a processing

document derived from classes ACLHomoBlockAggregator and

ACLDetector, such as the most frequent font size, the

largest/smallest font size, the most frequent spacing, and the

number of lines, words for each page as well as for the entire

document. Many detections of logical structure rely on this

summary information.

Statistic A data wrapper class to hold the frequency for each physical

feature, in a pair of {feature, frequency}, such as the font size, font,

and spacing.

XMLHelper A helper class to assist in manipulating XML parsing and

modification.

Detector A helper class to assist class ACLDetector in detection of all logical

entities including the title, abstract heading, abstract, affiliation,

author, page number, and section heading. It fulfills the

modularization and decoupling to maintain the flexibility and

extensibility.

 36

Class/Interface Name Functionality

TitleDetector It defines the algorithm of detecting the title (see Table 12)

AbstractHeadingDetector It defines the algorithm of detecting the abstract heading (see

Table 13)

AbstractDetector It defines the algorithm of detecting the abstract

AffiliationDetector It defines the algorithm of detecting affiliations (see Table 14)

AuthorDetector It defines the algorithm of detecting the author (see Table 15)

PageNumberDetector It defines the algorithm of detecting page numbers (see Table 16)

SectionHeadingDetector It defines the algorithm of detecting section headings (see Table

17)

AutoRun The main access entry of the system with a user interface for

testing functionalities and evaluating performance of aggregation

and detection.

ConfigFrame A user interface for configuring system parameters such as the

source path, output path, and the number of documents randomly

selected for evaluation.

*: Java Interface

5.2 User Interface

Figure 22 is the main user interface for testing functionalities and evaluating performance of

aggregation and detection. It separates each functionality in an independent button, such

as analyze document (it creates XML Source by Text), aggregate blocks (it create XML

Physical Blocks), view physical result (it creates HTML Physical Structure), detect layout (it

annotates logical entities to generate XML Logical Blocks), and view logical structure (it

creates HTML Logical Structure). It also provides a batch functionality to execute all steps

in the button Batch Detection toward a single document specified in the text box of upper

screen.

The user interface also provides a functionality of evaluation. By clicking the button

Detection Evaluation, the system randomly selects a fixed number of documents from the

appointed directory containing all the XML Source by Text files. Figure 23 is the user

interface for specifying system parameters such as the source path, output path, and the

number of documents randomly selected for evaluation. One example of detection

summary with only two selected documents is included in Appendix A.6.

 37

Figure 22: Main frame of IDSS

Figure 23: Configuration frame of IDSS

 38

6 Conclusion

6.1 Results

This research uses the ACL Anthology corpus both for development and testing. Around 10

percent of the corpus was selected as the development set, accounting for 572 academic

papers roughly evenly distributed over 13 conferences and 1 journal since 2000. Another

10 percent of unseen corpus is selected as the test set for a final evaluation of detection

accuracy. Due to constraints on time and resources in this project, we were not able to

perform a full evaluation on the test set. Instead, a preliminary evaluation was be done by

manually comparing the logical structure of the final HTML files to the original PDF

document for 40 randomly selected articles neither used for development nor part of the

test set. Table 19 summarizes the detection results for title, author and affiliation, abstract

heading, abstract, section heading, and page number for these 40 documents. For the time

being, the author and affiliation are detected as one block due to their large variation in

format.

From the summary, we can see the system obtains fairly high accuracy when detecting title

(97.5%), abstract heading (90%), and abstract (90%). The accuracies for authors-affiliation,

page numbers, and section headings are lower. Generally speaking, the accuracy of

detection is satisfactory considering the limited implementation time.

Table 19: Summary of detection results out of 40 randomly selected documents

Error Type
Error

Found

Accuracy of

Detection

Incorrect title or missing title 1 97.5% (39/40)

Incorrect Abstract heading or Missing Abstract heading 4 90.0% (36/40)

Incorrect Abstract or Missing Abstract 4 90.0% (36/40)

Incorrect Affiliation(s) or Missing Affiliation(s) 11 72.5% (29/40)

Missing >50% of Page number(s) or Erroneous Page number(s) found 15 62.5% (25/40)

Missing >50% Section heading(s) or Erroneous Section heading(s) found 11 72.5% (29/40)

6.2 Error Analysis

When observing the details of detection results and looking at the original XML sources and

PDF documents, we found several causes for the detection errors which can be solved in

the near future as well as some defects due to the nature of format variation.

For example, the failure to detect section heading or sub-section headings can be improved

by considering the length of lines and spacing before and after blocks. The detection of

page numbers can be improved by calculating their positions and taking into account the

total number of <page> tags. Furthermore, one abstract heading was groups into the same

 39

block as its abstract text, which resulted from incorrect aggregation in Phase I. This can be

solved by refining the aggregation algorithm to separate them as different homogeneous

blocks.

Some erroneous detections of section-headings or page numbers mainly resulted from

noise in the XML source files, such as incomplete table content and mathematic formula

containing numbers and random characters. Rules dealing with noise can be introduced in

order to obtain a higher accuracy here. However, this could also be resolved by improving

Powley et al.’s [2008] extraction process from the original PDF documents. At this stage,

we regarded the loss in accuracy due to these erroneous detections of noise as inevitable.

6.3 Future Work

Both algorithms for physical block aggregation and for logical structure detection need to be

further refined until they obtain as high detection accuracy as possible for the 572

documents of the development set.

In the near future, the separation of author and affiliation, more accurate detections of

section-headings, sub-section heading, and paragraph texts need to be achieved as

mentioned in Section 4.2. Following this, noise such as table contents and mathematical

formula should also be detected as such and removed or handled separately.

References

Powley, B., Dale, R. and Anisimoff I., 2009. Enriching a Document Collection by

Integrating Information Extraction and PDF Annotation. Proceedings of Document

Recognition and Retrieval.

Powley, B. and Dale, R. 2007. High Accuracy Citation Extraction and Named Entity

Recognition. 2007 IEEE International Conference on Natural Language Processing and

Knowledge Engineering.

Powley, B. and Dale, R. 2007. Evidence-Based Information Extraction for High Accuracy

Citation and Author Name Identification. Proceedings of RIAO 2007: the 8th Conference

on Large-Scale Semantic Access to Content.

Conway, A. 1993. Page grammar and page parsing: A syntactic approach to document

layout recognition, Document Analysis and Recognition, Proceedings of the Second

International Conference, 761-764.

Fisher, L., Hinds, C. and D'Amato, P. 1990. A rule-based system for document image

segmentation, Pattern Recognition, Proceedings of the 10th International Conference, 1:

16-21

 40

Lee, K., Choy Y. and Cho S. 2000. Geometric structure analysis of document images: a

knowledge-based approach, Pattern Analysis and Machine Intelligence, IEEE

Transactions, 22(11): 1224-1240.

Lee, K., Choy Y. and Cho S. 2003. Logical Structure Analysis and Generation for

Structured Documents: A Syntactic Approach, Knowledge and Data Engineering, IEEE

Transactions, 15(5): 1277-1294.

Mao, S., Rosenfeld, A. and Kanungo, T. 2003. Document Structure Analysis Algorithms: A

Literature Survey, IBM Almaden Research Center, San Jose, USA.

Nagy, G., Seth, S. and Viswanathan, M. 1992. A prototype document image analysis

system for technical journals, Computer, 25(7): 10–22.

Namboodiri A. and Jain A. 2007. Document Structure and Layout Analysis, in Digital

Document Processing: Major Directions and Recent Advances, Springer-Verlag, London,

29-48.

Niyogi, D. and Srihari S. 1995. Knowledge-Based Derivation of Document Logical Structure,

Document Analysis and Recognition, Proceedings of the Third International Conference,

1: 472-475.

Stehno, B. and Retti, G. 2003. Modeling the logical structure of books and journals using

augmented transition network grammars, Journal of Documentation, 59(2): 69-83.

Tateisi, Y. and Itoh, N. 1994. Using stochastic syntactic analysis for extracting a logical

structure from a document image, Pattern Recognition, Conference B: Computer Vision

and Image Processing., Proceedings of the 12th IAPR International Conference, 2:

391-394.

Tsujimoto, S. and Asada, H. 1992. Major Components of Complete Text Reading System,

Proceedings of the IEEE, 80(7): 1133-1149.

 41

Appendix

A.1: XML Source by Text

Example Filename: W00-1429.txt..xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<document>

<page height="842.000000" index="1" lines="96" width="596.000000" words="845">

<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="0" x1="140.160004" x2="213.271408" y="116.479980">

<![CDATA[Knowledge]]>

</text>

<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

start="9" x1="213.271408" x2="297.851746" y="116.479980">

<![CDATA[Acquisition]]>

</text>

<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="21" x1="297.851746" x2="323.072205" y="116.479980">

<![CDATA[for]]>

</text>

<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="25" x1="323.072205" x2="381.467438" y="116.479980">

<![CDATA[Natural]]>

</text>

<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

 start="33" x1="381.467438" x2="453.484741" y="116.479980">

<![CDATA[Language]]>

</text>

<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

 start="42" x1="453.484741" x2="532.885132" y="116.479980">

<![CDATA[.Generation]]>

</text>

</page>

</document>

 42

A.2: XML Source by Line

Example Filename: W00-1429_line.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<document>

<page height="842.000000" index="1" lines="96" width="596.000000" words="845">

<line dominantFont="TimesNewRoman,Bold" dominantFontsize="15.600000" id="1"

 left="140.160004" right="532.885132" words="6" y-position="116.47998">

<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="0" x1="140.160004" x2="213.271408" y="116.479980">

<![CDATA[Knowledge]]>

</text>

<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

start="9" x1="213.271408" x2="297.851746" y="116.479980">

<![CDATA[Acquisition]]>

</text>

<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="21" x1="297.851746" x2="323.072205" y="116.479980">

<![CDATA[for]]>

</text>

<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="25" x1="323.072205" x2="381.467438" y="116.479980">

<![CDATA[Natural]]>

</text>

<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

 start="33" x1="381.467438" x2="453.484741" y="116.479980">

<![CDATA[Language]]>

</text>

<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

 start="42" x1="453.484741" x2="532.885132" y="116.479980">

<![CDATA[.Generation]]>

</text>

</line>

</page>

</document>

 43

A.3: XML Physical Blocks and Logical Blocks

Example Filename: W00-1429_block.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<document>

<page dominantFont="TimesNewRoman" dominantFontsize="9.600000" height="842.000000"

 index="1" lines="96" marginBottom="801.679993" marginLeft="108.0"

 marginRight="568.398804" marginTop="116.47998" width="596.000000" words="845">

<block blockid="1" dominantFont="TimesNewRoman,Bold" dominantFontsize="15.600000"

 lines="1" logicalType="title" marginBottom="116.47998" marginLeft="140.160004"

 marginRight="532.885132" marginTop="116.47998">

<line blockid="1" dominantFont="TimesNewRoman,Bold" dominantFontsize="15.60000"

 id="1" left="140.160004" right="532.885132" words="6" y-position="116.47998">

<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="0" x1="140.160004" x2="213.271408" y="116.479980">

<![CDATA[Knowledge]]></text>

<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="9" x1="213.271408" x2="297.851746" y="116.479980">

<![CDATA[Acquisition]]></text>

<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

start="21" x1="297.851746" x2="323.072205" y="116.479980">

<![CDATA[for]]></text>

<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"

 start="25" x1="323.072205" x2="381.467438" y="116.479980">

<![CDATA[Natural]]></text>

<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

start="33" x1="381.467438" x2="453.484741" y="116.479980">

<![CDATA[Language]]></text>

<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"

 start="42" x1="453.484741" x2="532.885132" y="116.479980">

<![CDATA[.Generation]]></text>

</line>

</block>

</page>

</document>

 44

A.4: HTML Physical Stylesheet

Filename: physical.xsl

<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <body>

 <xsl:for-each select="/document/page/block">

 <p>

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

 </p>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

 </xsl:stylesheet>

 45

A.5: HTML Logical Stylesheet

Filename: logical.xsl

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><body>

 <h2><center>

 <xsl:for-each select="document/page/block[@logicalType='title']">

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:for-each>

 </center> </h2>

 <center> <p>Author:

 <xsl:apply-templates select="//block/line" mode="author"/>

 </p></center>

 <center>Affiliation
</center>

 <xsl:apply-templates select="//block" mode="affiliation"/>

 <xsl:apply-templates select="//block" mode="abstract-heading"/>

 <xsl:apply-templates select="//block" mode="abstract"/>

 <h3>Table of Contents</h3>

 <xsl:apply-templates select="//block" mode="toc"/>

 <p>

 <xsl:apply-templates select="//block" mode="body"/>

 </p>

</body></html>

</xsl:template>

 46

 <xsl:template match="block/line[@logicalType='author']" mode="author">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>,

 </xsl:template>

 <xsl:template match="block[@logicalType='affiliation']" mode="affiliation">

 <center><table width="90%"><tr><td align="center">

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

 </td></tr></table></center>

 </xsl:template>

 <xsl:template match="block[@logicalType='abstract-heading']" mode="abstract-heading">

 <center><p id="{ generate-id(.) }">

<xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

</p></center>

 </xsl:template>

 <xsl:template match="block[@logicalType='abstract']" mode="abstract">

 <center><table width="80%"><tr><td>

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

 </td></tr></table></center>

 </xsl:template>

 47

 <xsl:template match="block[@logicalType='section-heading']" mode="toc">

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="block[@logicalType='section-heading']" mode="body">

 <p id="{ generate-id(.) }">

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

</p>

 </xsl:template>

 <xsl:template match="block[@logicalType='page-number']" mode="body" />

 <xsl:template match="block[@logicalType='title']" mode="body" />

 <xsl:template match="block[@logicalType='affiliation']" mode="body" />

 <xsl:template match="block[@logicalType='abstract-heading']" mode="body" />

 <xsl:template match="block[@logicalType='abstract']" mode="body" />

 <xsl:template match="block" mode="body">

 <p>

 <xsl:for-each select="./line">

 <xsl:for-each select="./text">

 <xsl:value-of select="."/>

 </xsl:for-each>

 </xsl:for-each>

 </p>

 </xsl:template>

 <xsl:template match="*" mode="author" />

 <xsl:template match="*" mode="toc" />

 <xsl:template match="*" mode="affiliation" />

 <xsl:template match="*" mode="abstract-heading" />

 <xsl:template match="*" mode="abstract" />

 <xsl:template match="*" mode="body" />

</xsl:stylesheet>

 48

A.6: Summary of Detection

Filename: summary090604_124810.txt

=====Detection Result of W05-0502.txt.xml======

Page count: 10

Title found: Simulating Language Change in the Presence of Non -Idealized Syntax ...

Abstract heading found: Abstract

Abstract found

Affiliation found: W . Garrett Mitchener

Affiliation found: Mathematics Department Duke University Box 90320 Durham ...

Affiliation found: wgm @math .duke .edu

Author found: W . Garrett Mitchener

Page number found: 10

Page number found: 11

Page number found: 12

Page number found: 13

Page number found: 14

Page number found: 15

Page number found: 16

Page number found: 17

Page number found: 18

Page number found: 19

Section heading found: 1 Introduction

Section heading found: 2 Linguistic specifics of the simulation

Section heading found: 3 Adaptation for Markov chain analysis

Section heading found: 4 Tweaking

Section heading found: 5 Results

Section heading found: 6 Discussion and conclusion

Section heading found: References

 49

=====Detection Result of D07-1071.txt.xml======

Page count: 10

Title found: Online Learning of Relaxed CCG Grammars for Parsing to Logical ...

Abstract heading found: Abstract

Abstract found

Affiliation found: Luke S . Zettlemoyer and Michael Collins

Affiliation found: MIT CSAIL

Affiliation found: lsz @csail .mit .edu ,mcollins @csail .mit .edu

Author found: Luke S . Zettlemoyer and Michael Collins

Author found: MIT CSAIL

Page number found: 678

Page number found: 679

Page number found: 680

Page number found: 681

Page number found: 682

Page number found: 683

Page number found: 684

Page number found: 685

Page number found: 686

Page number found: 687

Section heading found: 1 Introduction

Section heading found: 2 Background

Section heading found: 3 Parsing Extensions : Combinators

Section heading found: 4 Learning

Section heading found: 5 Related Work

Section heading found: 6 Experiments

Section heading found: 7 Discussion

Section heading found: References

