'

MACQUARIE
UNIVERSITY

SYDNEY ~ AUSTRALIA

ITEC 810 Minor Project

Inferring Document Structure
Final Report

Author: Weiyen Lin
SID: 41348133
Supervised by: Jette Viethen
4th June 2009

Abstract

PDF documents form a rich resource repository of knowledge on the Internet both for
academia and for business. With their high portability and capability of rendering, they are
easy for human readers to read, print, and exchange. However, the lack of logical structure
information in PDF documents greatly limits the possibilities of Natural Language
Processing tasks such as automatic information retrieval, high-accuracy search or in-depth
corpus analysis. In order to enhance their usability, the logical entities of a PDF document,
such as title, headings, paragraphs, or reference items for academic articles, need to be
detected and annotated. This project builds on previous work extracting the physical layout
information of conference papers from PDF files and aims to detect the logical structure
from the physical layouts. We applied a two-phase strategy of detection and designed one
algorithm for each phase, respectively. In Phase |, blocks with homogeneous physical
features in the XML source files are aggregated. In Phase Il, each block generated in the
previous phase is further annotated with a logical label by heuristic rules based on the
general format of the articles in the Association for Computational Linguistics (ACL)
Anthology, which is the corpus of interest in our research. The algorithms are implemented
using objected-oriented technology which has advantages such as knowledge
transparency and high flexibility of extension. The results from a preliminary evaluation
have shown this detection strategy on logical entities such as title, abstract heading and
abstract, section headings, and authors and affiliation, obtains a satisfactory accuracy.

Acknowledgments

I'd like to express many thanks and appreciation here to my supervisor Jette Viethen,
providing much information and advice on the design of algorithms and evaluation
strategies. During the development with a tight time limit, her words are both valuable and
encouraging. | also appreciate Brett Powley’s efforts, who extracted a rich set of physical
information from the ACL Anthology corpus. Moreover, comments on workshop paper from
Professor Robert Dale and other two anonymous reviewers contribute to the final
presentation of this research as well.

TABLE OF CONTENTS

Y22 I 3V -1 I
ACKNOWLEDGMENTScccotiiimriismnrsssssssssssssssssssssssssassss sasssssassssssssss s ssssss sasass sasans sasanssnssnsssssnnesss I
L | 11510 16 0= 1 0 1
1.1 BACKGROUNDcettiiiiiiiitt ettt e e e ettt e e e e e e et e e e e e e e e e e e abbbe e e e e e e e e e e s sbbbeeeeeeeeeeaannnneees 1
LI~ I = 21 11N 1@) SRR 2
1.3 DOCUMENT ORGANIZATION ... ttteeeeeautitteeeeeaaeaeaaissee et ae e e s e e aasssseeeeaeeeeaaannseneeeaeaeesaannnneees 3

2 LITERATURE REVIEW.......coocoeieirssereseessssssnsssssessssessnssssmssssssssassssnsssssesssssssasssssesssssssnssasnansns 4
2.1 DOCUMENT ANALYSIS AND UNDERSTANDINGuuuutteeeeeeeeeeaaintreeeeeeeessaannsssseeeaeeessasnnnseees 4
2.2 METHODS FOR PHYSICAL LAYOUT ANALYSISceiitiietiesiieeseeeeteeseeesseeesessneeessessnsessneeesneeenee 5
2.3 METHODS FOR LOGICAL STRUCTURE ANALYSIS.....ciiiuutiieeeeeaeeeeaiiiisteeeeea e e s s sssnsneeeeeeaeseeannns 7
2.3.1 RUIE-DASEA ADPIOACHES ...ttt sssssssssnsnnnnnnnne 10
2.3.2 SYNtAcCHC APPIOACRESooeeeeeeeeeeeee et a e 15

2.4 SUMMARY ...itieiuieetieetee st e stee e e e ssee e beeanteesaee e teeamteeas et enbeeeneeeaRe e e neeente e st e enreeeneeenneeenneens 17

R T 1 18 I =1 7 18
4 METHODOLOGY....cccoctiiimrrrsmnrsssnsssssnsssasnssassnssassmssassmsssssmsssssnsssssasssasasssasanssassnssassnssnsnssnssns 20
4.1 AGGREGATION OF HOMOGENEOQOUS PHYSICAL BLOCKSutiiiiiiiaiiiiiiiieieeee e 21
4.2 DETECTION OF LOGICAL STRUCTURE ...ccuetetiriueeeiueeateesseeesseeansesssseesnesensessnseessesansessnsessnes 25
4.2.1 DEECHION Of TItlE.......ceeeeeeeeeeeeeeeeeeeeeeeeeeeeet ettt ssssssssssnnnnnnes 25
4.2.2 Detection of Abstract Heading and ADSHACE...............cooueeccummieeiiiiiaeecieeeeeee e 26
4.2.3 Detection of Authors and Affiliations...................ueeeeeiii i 26
4.2.4 Detection of Page NUMDEIS...............oeeuiii i 28
4.2.5 Detection of Section HEAAINGS...........uueuaa i 28

O T © U U I R 29
4.3.17 XML SOUICE DY LINE ...ttt a e 29

4.3.2 XML PRYSICAI BIOCKSccceeiiiiaeeeeee et 30

4.3.3 XML LOGICAI BIOCKS ...ttt a e e e e 30

4.3.4 HTML PRYSICAl SIUCHUIE ..ot 32
4.3.5 HTML LOQICAI SHTUCHUIE ...ttt 32

5 IMPLEMENTATIONoiiisnssnnssnssssssssssnsnnnnnnnnnnnnns 34
5.1 SYSTEM ARCHITECTURE ...t titiitttiettee e e e e e ettt et e e e e e e st e e e e e e e e s e snan e et e e e e e e e e e annnnbeneeeeaeeas 34
5.2 USER INTERFACE ...uteiitieiiieeitieeiee sttt estee et e ssteateesmteesseeenbeesmteesseeanseesnseenneeanseesneeenneeenneens 36

I 0 0 0 [0] 38
6.1 T P 38
6.2 ERROR ANALYSIS ..ttt e ettt e oo e ettt e e e e e e e b ettt e e e e e e e e nnnb b e e e e e e e e e e aannnnneees 38
8.3 FUTURE WORK.....ctetitiutie it eeteeetee sttt e teeenteesseeeteesnteesseeenteesmteesneeenseesneeeaneeanseesneeenneeenneens 39
REFERENCEScooiiiimimniiiiiisssssss s sssss s s s smm s s s e mm s e e e e e e n s ammmnn e s e e e e nnnnn 39
APPENDIXooissnsnssnnnnnnnnnnnnns 41
AT XML SOURCE BY TEXT ..uuttttttttaaeeaaaittiteteeeaeeeaasssseeeeae e e s s aasssse e e e e e e e e s aannaseeeeeeaeeeaannnssneeaaaeens 41
A2 XML SOURCE BY LINE.....etitieiuteeitieetee et e sieeeteesseeesaeeateesseeesseeasesssseesseeenseesnseesneeensessnseesnees 42
A.3: XML PHYSICAL BLOCKS AND LOGICAL BLOCKSeutttiieieiiiiiiieieee e et e e 43
A4 HTML PHYSICAL STYLESHEET ..ttt ettt eitee sttt eteesneeesseeasteesseeesneeensesssseessesesessnseesneeasessnseesnes 44
A5 HTML LOGICAL STYLESHEET ..iiiiuutttteteeeaeeeaaiussseeeeaeeessaasssseeeeeasessaaannsseeeeeeaeeaaaannnssneeeeaeens 45
A.6: SUMMARY OF DETECTIONtctiutteiueteteeauteesueeentessnseesseeaseesaseesneeasesssseesnesansessnsessneeansessnseesnes 48

TABLES

TABLE 1: TERMINOLOGY OF DOCUMENT LAYOUT AND STRUCTUREtetitieiuireeieereesieeeseeeeneeesneeesnee e 2
TABLE 2: TERMINOLOGY OF DOCUMENT CONTENTS ..cciiiiiiiuittrereeeaeeeeasiissreeeeeaeesssssnnsnneeeeeesssasnnsneees 2
TABLE 3: TERMINOLOGY OF DOCUMENT IMAGE ANALYSISciuuiieiuieeasuteeeameeeesneeeesseeesneessneeesneeesnneeas 3
TABLE 4: LOGICAL STRUCTURE ANALYSIS METHODS SUMMARIZED BY LEE [LEE ET AL, 2003]................. 8
TABLE 5: LOGICAL STRUCTURE ANALYSIS METHODS SUMMARIZED BY MAO [MAO ET AL, 2003].............. 9
TABLE 6: SUMMARY OF CLASSIFICATIONS OF LOGICAL STRUCTURE ANALYSIS METHODScoeeveeeennen. 9
TABLE 7: SYNTAX OF A TYPICAL NEWSPAPER [NIYOGI & SRIHARI, 1995]ooviiiiiiiiiieeeiee e 11
TABLE 8: EXAMPLE OF RULES IN DELOS [NIYOGI & SRIHARI, 1995].... et 11
TABLE 9: TRANSFORMATION RULES [TSUJIMOTO & ASADA, 1992] ...couiiiiiiieeiiiiee et 13
TABLE 10: ALGORITHM OF AGGREGATION (ONLY FOR THE FIRST 3 LINES) ...cceteieeiiiiiiiieeeeaeeeeeiiieeeees 23
TABLE 11: ALGORITHM OF AGGREGATION (FOR THE REST OF LINES) ...c.uvteitieeieesiieesieeeieesneeenieesneens 24
TABLE 12: ALGORITHM OF DETECTING THE TITLE ...utiteitieeeiueeeestieeessieeesneeeesseeeesneeeesnneeesneeseneeeennns 25
TABLE 13: ALGORITHM OF DETECTING THE ABSTRACT HEADINGcceutiieureeeriieeesieeesneeesneeesneeesnne 26
TABLE 14: ALGORITHM OF DETECTING AFFILIATIONSuviieiiuieeenueeeesneeeesneeeesneeeesseeesnseeesnneessnseessnnns 27
TABLE 15: ALGORITHM OF DETECTING AUTHORS......ucteitieeiteeeannteeassteeesnteeesnneessnteeesnseessneeesneeesnnes 28
TABLE 16: ALGORITHM OF DETECTING PAGE NUMBERScciiutieiiuieeeutieesnreeesneeeeseeeesnneeesnneeseneeesnnes 28
TABLE 17: ALGORITHM OF DETECTING SECTION HEADINGScceiutteauiieaiieeennieeesreeesreessneeesneeesnnes 29
TABLE 18: ALGORITHM OF DETECTING SECTION HEADINGScceiutteeiuiieenneeeeseeeesreeesnreeesnneesenseesannes 35
TABLE 19: SUMMARY OF DETECTION RESULTS OUT OF 40 RANDOMLY SELECTED DOCUMENTS 38

FIGURE 1:

FIGURE 2:

FIGURE 3:

FIGURE 4:

FIGURE 5:

FIGURE 6:

FIGURE 7:

FIGURE 8:

FIGURE 9:

FIGURE 10:

FIGURE 11:

FIGURE 12:

FIGURE 13:

FIGURE 14:

FIGURE 15:

FIGURE 16:

FIGURE 17:

FIGURE 18:

FIGURE 19:

FIGURE 20:

FIGURE 21:

FIGURE 22:

FIGURE 23:

FIGURES

PHYSICAL LAYOUT AND LOGICAL STRUCTURE OF A DOCUMENT IMAGEcccoviuiireeiiniieeaenns 5
HORIZONTAL AND VERTICAL PROJECTION PROFILES [NAMBOODIRI, 2003]ccccvvvieeeeeannn. 6
THE DELOS SYSTEM [NIYOGI & SRIHARI, 1995].....cuiiiiiiiiiiie e 10
GEOMETRIC STRUCTURE TREE [TSUJIMOTO & ASADA, 1992]......ceiiiiiiiiiiiiiiiieeeee e 12
LOGICAL STRUCTURE TREE [TSUJIMOTO & ASADA, 1992]cceviiiiieeiiiiiee e 12
TRANSFORMING FROM A GEOMETRIC INTO LOGICAL STRUCTUREveeeiiieeeieeeeneeeeneeenns 14
TRANSFORMATION FROM A GEOMETRIC STRUCTURE IN FIGURE B.......cvvveeeiiiiieeeeiiieeeene 14
PROCESSING STAGES [CONWAY, 1993] ittt 16
EDGE FROM PARSING AN ENGLISH SENTENCE [CONWAY, 1993]cooiiiiiiieeiiiiiee e, 16
PHYSICAL FEATURES OF A PDF DOCUMENTvtttttttteteteeseseeeesessennessssssnssnssssnnsssnsnnnnnsnnnes 18
AN EXAMPLE OF XML SOURCE BY TEXT ..eiciiutiiieeeeitieeeeestieeeessisaeeeessssseeesssnseeeasssnseneasanns 19
EXTRACTION SEQUENCE OF XML SOURCE BY TEXT ...uuuuuueruueeeeeeenneernnnennennsnnnnnnnnsnnnnnnnnnes 19
PROCESS OF LOGICAL STRUCTURE DETECTION. ..cccciiutrtreeeastreeeeennreeeasessseeeessnssseeesssnsseeens 20
ALGORITHM FOR AGGREGATING BLOCKSceteutieeiutieesieeesieeesnseeeateeesneeesseessnneeesnnsesens 22
TYPES OF BLOCK OF AUTHORS AND AFFILIATIONSeeeiutiieiiieeecitieesieeeeteeesseeesseeesnnneeens 27
AN EXAMPLE OF XML SOURCE BY LINEccciiiiiieeeieeeeeeeee ettt 30
AN EXAMPLE OF XML PHYSICAL BLOCKSuvviiieiiiiieeeeiiiieeeesiiieeeesstteeeeesnneeeesesnnaeeaeenns 31
AN EXAMPLE OF XML LOGICAL BLOCKScceeieeeeeeeeeeeeeeeeeeeee ettt 31
AN EXAMPLE OF HTML PHYSICAL STRUCTUREutiieeiiiiieeeeiiieeeeessteeeaessnneeeeessnnneeaeenns 32
AN EXAMPLE OF HTML LOGICAL STRUCTUREccittiiiieieeeeeeeeeeeeeeeeeee e e e eeee e e e e e e e e aaeees 33
CLASS DIAGRAM OF THE INFERRING DOCUMENT STRUCTURE SYSTEM (IDSS) 34
MAIN FRAME OF IDSS.... e utiutiitiiiiiiiiiiiiiiiteeee et asaseesssssssssnssssnsssnsssnnnnnnnes 37
CONFIGURATION FRAME OF IDSS......ooiiiiiiiiieeiiiiee ettt e e e 37

1 Introduction
1.1 Background

With the use of the Internet spreading fast in the last decade, the demand of transforming
document images into machine-readable documents with logical structure is rapidly
increasing. The document images available on the internet mostly come from early-age
archives in libraries, such as out-of-date newspapers, magazines, etc., as well as a large
volume of PDF documents from the later year of the digital age since the 1990s, such as
academic articles, technical instructions, and business advertisements. Most document
image are generated for the aims of reducing storage space or facilitating printing and
representation. However, since they do not provide information about their logical structure,
such as titles, authors, section headings, figures and tables, the possibilities for automatic
information processing, such as retrieval, modification, and transformation, are limited in
many ways. For example, we cannot perform specific queries on academic documents in
PDF with specific search criteria, such as “Author = ‘John Smith’ or “Title LIKE ‘%Mobile
Commerce%’"”, since this logical information is not specified in those documents. This may
result in low search accuracy and longer search times for Internet search engines that have
to match the search keywords to the full text, instead of concentrating on title, abstract, or
headings only. On the other hand, if logical structure information is provided, re-formatting
can be easily done in an automated manner. Readers can choose preset stylesheets or
even design their own to reformat the document according to their preference of reading
without need to change the original document. In many academic areas, researchers can
do more in-depth analysis. For example, linguists can analyse the writing style of an author.

Due to the many advantages of documents being annotated with logical meaning, there
have been a large number of related studies on the detection of logical structure in
document images during the last decades. This research builds on previous work by
Powley et al. (2008) that has extracted the physical layout information from conference
papers from PDF into an XML (Extensible Markup Language) format. Our aim is to detect
the logical structure of the articles from these XML files. We developed two algorithms, one
for homogeneous block aggregation and one for logical structure detection, and
implemented them in an extensible object-oriented framework. We have perfomrmed a
preliminary evaluation on a small number of unseen articles from the Association for
Computational Linguistics Anthology, the corpus we are working on.

1.2 Terminology

Table 1: Terminology of document layout and structure

Terminology

Description

Alternate Terms

Physical layout

Physical location and boundaries
of various regions in the

Physical structure

Namboodiri , iy Page layout [Conway, 1993

; document. [Namboodiri, 2007] ge layout | 4]

2007] . o
Geometric structure [Niyogi,
1995]

Logical Logical or functional structure in | Logical layout

Structure the document, such as title,

aragraph, captions, etc, with
[Namboodiri , paragrap P

2007; Conway,
1993]

meaningful purposes of reading
or understanding. [Namboodiri,
2007]

Table 2: Terminology of document contents

Terminology

Description

Alternate Terms

Physical block

[Niyogi, 1995]

Physically homogenous regions
in the document, such as figures,
background, text block, text lines,
words, characters, etc.
[Namboodiri, 2007]

Physical region [Namboodiri ,
2007]

Physical segmentation [Niyogi,
1995]

Logical entity

[Niyogi, 1995]

Meaningful regions in the
document for reading or
understanding, such as title,
paragraph, figure, table, caption,
etc. [Namboodiri, 2007]

Logical component [Lee, 20083;
Stehno & Retti, 2003]

Logical label [Namboodiri,
2007]

Table 3: Terminology of document image analysis

Terminology Description Alternate Terms
Physical Layout Decompose a document Document layout analysis
Analysis image into hierarchy of [Namboodiri, 2007; Niyogi, 1995]

homogenous regions, such as , ,
[Mao, 2003] 9 9 Geometric structure analysis

figures, background, text
block, text lines, words,

characters, etc. [Namboodiri, | Layout analysis [Stehno, 2003]
2007]

[Lee, 2003]

Document analysis [Nagy, 1992;
Tsujmoto & Asada, 1992]

Logical Structure | The process of extracting the | Logical structure derivation

Analysis logical structure from the [Niyogi, 1995]
document [Niyogi, 1995] or
[Mao, 2003; Lee, - fr[omythge h sit]:al Document structure
2003] PPINg Py understanding [Namboodiri, 2007]

regions (i.e. physical blocks) in
the document to their logical Document understanding [Stehno,
labels (i.e. logical entities) 2003; Tsujmoto & Asada, 1992]

[Namboodiri, 2007]

1.3 Document Organization

This research first examines related literature both on physical layout analysis and logical
structure analysis. Some of the methodologies in the literature are similar to the ones
adopted by this research. Section 3 outlines the structure of our source material. In Section
4, we introduce a two-phase processing strategy for logical structure detection and
describe our algorithms for aggregating homogeneous blocks and detecting logical
structure. The implementation of these algorithms is sketched in Section 5, followed by
some final remarks in Section 6.

2 Literature Review

The study dealing with document image processing is recently referred as “document
analysis and understanding”, which involves two major processes: physical layout
analysis and logical structure analysis [Lee, 2003; Namboodiri, 2003; Niyogi & Srihari
1995]. There have been a large number of studies done in this research area for the last
two decades. This section first examines two major issues along with their terminologies in
the field of document analysis and understanding (in Section 2.1), followed by a deep
review on those previous studies on physical layout analysis (in Section 2.2) and logical
structure analysis (in Section 2.3). The end of this section summarizes related literature and
gives a suggestion to the methodology that will be adopted by this project.

2.1 Document Analysis and Understanding

Namboodiri [2003] defined document images as those digital documents with both texts
and graphics, which are digitally generated from scanner or digital cameras. A digital library
usually stores out-of-date newspapers or magazines in films or PDF, which are the major
source of document images. Generated and stored digitally, document images were
basically aimed to reduce the storage space of a great amount of paper-based literature in
traditional libraries.

When reading a document, a human reader can use various clues from its formatting layout,
such as the title, headings, tables, and figures, easily to gain the main ideas of the
document or quickly to retrieve certain contents he or she is interested. In fact, those
formatting features reveal the logical structure of a document with more meaningful
instructions for human’s processing (see Figure 1). However, even though document
images are digitally stored and can be viewed by human readers from computer screens,
they are not accessible by machines to retrieve document content in the same manner, let
alone to understand the document. They only contain physical layout of a document, such
as the position of each text, and its font size, style, and alignment, mainly used for
rendering. Without logical or structural information embedded, document images are still as
less efficient as paper-based documents from the perspectives of document processing,
such as retrieval, modification, and transform [Lee et al., 2003; Stehno & Retti, 2003].

Document analysis and understanding is a field of document image processing with an aim
of transforming a document image into logical or structural version. Many researchers [Lee,
2003; Namboodiri, 2003; Niyogi & Srihari 1995; Stehno & Retti, 2003] agreed that it
consists of two major processes: physical layout analysis and logical structure analysis.

Namboodiri [2003] defined document layout analysis as a process of “decomposing a
document image into a hierarchy of maximally homogeneous regions, where each region is
repeatedly segmented into maximal sub-regions of specific type.” Those homogeneous

4

regions or physical blocks include of figures, background, text block, text lines, words,
and characters, etc. There are two major strategies for extracting those physical blocks
from a document image: top-down and bottom-up methods, which will be introduced in
Section 2.2.

Miles dbbore
rvistan of Informenics
e .d.m.m} Author

United Kirgdan

/P- Scaling Conditional Random Fields Using Error-Correcting Codes } Title

Header

\

Fags Abstract

Block of text _<

S

Header

1 Inirsduciion
Condiiond u'.dnJlu i

al, 31| & prevabil

\ Fonter {
Physical layout Logical structure

Figure 1: Physical layout and logical structure of a document image

Those physical blocks are then identified as meaningful logical entities according to their
functionalities of document processing, such as retrieval, modification, or transformation.
Namboodiri [2003] defined the process of “assigning the logical layout labels to physical
regions identified during physical layout analysis” as logical structure analysis. Simply
speaking, the logical structure is a mapping from the physical blocks in the document to
their logical entities. Document images with logical structure information are now useful for
machines to process documents.

2.2 Methods for Physical Layout Analysis

According to Namboodiri [2003], the algorithms of document layout analysis can be divided
into top-down approaches and bottom-up approaches based on their order of
processing. Top-down approaches start with the whole document image and repeatedly
break it down into smaller homogeneous regions until each region is recognized as a
primitive unit, such as a pixel, word, or graphics. Bottom-up approaches, on the other hand,

5

start with those primitive units and repeatedly group them into larger regions such us words,
lines, or text-blocks.

Namboodiri [2003] stated the X-Y Cut algorithm is a typical top-down approach proceeding
by splitting a document image into smaller regions using horizontal and vertical projection
profiles. It starts dividing a document image based on valleys in their projection profiles.
The algorithm repeats to project the regions of the current segment both on the horizontal
and vertical axes until a stop criterion that determines the minimal unit of a region is
reached. Other top-down approaches include shaped-directed cover algorithm and the
white stream based segmentation.

P Antibody Responses to Sheep Red Blood Cell and Brucella abortus Antigens
— in a Turkey Line Selected for Increased Body Weight
et and lts Randoembred Control’

e Z. 1i* K. E. Nestor,” Y. M, Saif. and). W, A

ot
"‘H‘(H’Wf\w‘m’kﬁ‘l"MJk\'ﬂw')ﬁ]"n WW;FJJHwiu.“q(";yﬁr,jjw I”M‘

‘ ||,‘"J

Figure 2: Horizontal and vertical projection profiles [Namboodiri, 2003]

Bottom-up approaches, such as the run length smoothing algorithm (RLSA), first define the
basic unit in order to start the grouping process. It consists of four major steps: a horizontal
smoothing, a vertical smoothing, a logical AND operation and an additional horizontal
smoothing [Fisher et al., 1990]. In those steps, the distance between two adjacent units is
calculated and compared with a threshold, either a horizontal threshold or vertical one. If
the distance is less than the threshold, then two units are joined together. The vertical
smoothed image is then logically ANDed with the horizontal smoothed one, and is
horizontally smoothed one more time. The resulting image is the so-called RLSA image.

2.3 Methods for Logical Structure Analysis

Compared to studies on physical layout analysis with an aligned set of terms for their
methodology, researchers dealing with logical structure analysis diverse in their selection of
names for the methods they adopt. Even though some researchers have tried to classify
the method adopted by previous research, they use different names for methods. For
example, Lee et al. [2003] divided related work for logical structure analysis into the
syntactic methods and the model-matching methods (see Table 4). Mao et al. [2003]
stated that document logical structures are represented by models derived either from a set
of rules or from formal grammars (see Table 5). Stehno and Retti [2003] categorised
models representing the logical structure into three: rule-based models, grammar-based
models, and models using statistical or probabilistic methods.

Table 6 compares the classification schemes by the three different papers to each other.
Although they did not give definitions for each method, by inspecting the approaches in
each classification, it can be inferred that syntactic or grammatical methods regard the
document as a sequence of repeated objects. For example, Lee et al. view a document as
a sequence of headers and bodies [Lee et al., 2003], while Conway regards a document as
a string or sentence to be parsed [Conway, 1993]. They create a grammar to describe the
logical structure in terms of sequences of neighbouring blocks. By applying a certain
parsing algorithm repeatedly, the logical structure is identified either in a top-down manner
[Lee et al., 2003] or in a bottom-up manner [Conway, 1993].

On the other hand, model-matching methods or rule-based methods do not create a syntax
or grammar to represent the logical structure. Instead, they encode the knowledge about
mapping each physical block to the most likely logical entity in the form of rules and by
applying the preset rules toward each physical block, each block can be specified with a
logical entity label. For example, such a rule could say: “If a block is of type ‘large text’ and
located at the beginning of the document, then it is a title”. By applying these rules to
predict each physical block to be a logical entity these approaches build up the logical
structure of the whole document. They also apply rules to regulate the process of logical
structure detection.

Both the grammar and the knowledge established in the two respective methods are
subject to a certain document type, such as newspaper pages, books, journal articles, or
business letters. Therefore, it might not be possible to generate a universal domain model
fitting all types of documents. Statistical or probabilistic methods uses a large volume of
annotated data and adopts statistical pattern recognition algorithms to enable a logical
structure detector to apply a corresponding grammar, based on documents it is fed.

Since there are no annotated data sets available in this project, the statistical methods are

beyond consideration. Instead, we will adopt rule-based and syntactic approaches for
7

the logical structure analysis. The next two sub-sections inspect some specific models from
these two categories.

Table 4: Logical structure analysis methods summarized by Lee [Lee et al, 2003]

Classification Author Year Characteristics
Magy et al. [6] 1992 | Describe logical hicrarchical structure based on the
Krishnamoorthy ct al. [7] 1993 [length and frequency of a pixel
Story et al, [15] 1992 | Describe relative position of logical structure
clements ete.
Hu and Ingold [14] 1993 [Allow error-tolerant parsing based on fueey logic
Syntactic Conway [17] 1993 | Describe geometric characteristics and spatial

relations using a page grammar

Tateisi and Ttoh [18] 1994 | Search the lowest cost path from a graph which is
a part of connecting relations between text lines

Klein and Fankhauwser [19] 1997 | Propose a arammar based on an SGML DTD

Klein and Abecker [20] 1 G
Dengel and Barth [12] 1988 [Describe higrarchical structure in a form of decision
Dengel et al. [13] 1997 |lree using the relative size and location of regions
Tsujimoto and Asada [11] 1992 | I3efine four rules for transformation of a geometric
structure tree into a logical structure tree
M“‘i‘{l - Baver and Walischewski [31] | 1995 | Describe geometric characteristic, frequency, and
matching lexical information
Farrow et al. | 10] 1996 | Based on rules about geometric characteristics and
simple layout model
Miyvogi and Srihari |9] 19496 | Describe knowledge and control process in a from
of rules
Lin et al. [29] 1997 | Use general knowledge about content structure
Rus and Summoers [23] 1997 | Create hierarchical structure using the size and the
Surmimers [26] 1998 | location of white spaces
Eaochi and Saita [30] 1998 [Dieseribe geometric churacteristics of target objects
Hite et al. |27) 1999 | Describe statistical probability distribution of

hierarchical structure

Worring and Smeulders [32] | 1999 | Based on geometric characteristics and OCR

Table 5: Logical structure analysis methods summarized by Mao [Mao et al, 2003]

Model Authors Key Idea Logical Labels Domain
Formal | Conway page grammar title, heading, paragraph, | not
gramma | [1993] figure mentioned
rs Krishnamoort | page parsing, block title, author, abstract journal

hy [1993] grammar pages
Tateisi [1994] | stochastic grammars, headings, paragraph, list | not
physical zones available item mentioned
Ishitani emergent computation, rule | headline, header, footer | various
[1999] based note, caption, program, documents
formula, title, list
A set of | Tsujimoto mapping a physical tree to | title, abstract, sub-title, various
rules [1990] a logical one paragraph, header, footer | documents
page number, caption
Fisher1 rule-based section heading, figure, not
[1991] figure caption, page mentioned
heading, page footings
Niyogi [1995] | rule-based, title, story, sub-story, newspaper
knowledge-based photo, caption, graph pages
Summers logical prototype, matching, | paragraph, heading, list | technical
[1995] physical zones available item reports
Table 6: Summary of classifications of logical structure analysis methods
Classifier Lee et al [2003] Mao et al [2003] Stehno et al [2003]
Method | Model- Syntactic A set of | Formal Rule Grammar | Statistics
Research matching rules grammars | Model | Model Model
Tsujimoto [1992] ° °
Niyogi [1996] ° ° °
Fisher [1990] ° °
Nage [1992] ° ° °
Conway [1993] ° ° °
Tateisi [1994] ° °
Lee [2000] °
Altamura [1999] °
Cesarini [1999] °
Brugger [1997] °
Ittner [1993] °
Palmero [1999] °

2.3.1Rule-based Approaches

e Niyogi & Srihari [1995], Knowledge-Based Derivation of Document Logical
Structure

Niyogi and Srihari [1995] established a knowledge-based system for the derivation of
logical structure of newspaper pages. A computational model is developed consisting of a
Knowledge base, Inference Engine and a Global Data Structure representing the syntax of
a typical newspaper. Figure 3 illustrates the architecture of proposed system (Delos).

Dal.oS

-
: !
i 1
[
] Global |
Cantrol 3
1 Doman Data Daty Dt E
i Fariscn Pariifion Strcture]
: E
:]
i)
] ¥ L] i
: H i I
1 1 3 i
i i
I [
' :
i Sralegy !
i Knowledga Eonirgl
i Ruas P Rudes Fudes ‘:
]
! !
! i
' 1
: i
| Knowbadge Base infaanca Engine
i
1

Figure 3: The DelLos system [Niyogi & Srihari, 1995]

The Global Data Structure stores the syntax of newspapers as shown in Table 7. It is used
to specifying a logical entity label to a physical block by applying the rules in the knowledge
base. The Knowledge Base contains all the rules in form of first-order predicates. These
rules define the general characteristics of each logical entity in a newspaper as well as the
relationships between such entities. All common characteristics of different logical entities
and their geometrical constraints are encoded in the knowledge base. This knowledge is
then used for block segmentation, block grouping, or text block ordering. An example of
these knowledge rules is shown in Table 8 (a).

The Inference Engine contains two more levels of rules: control rules and strategy rules.
Control rules regulate the invocation of a knowledge rule while strategy rules determine
which control strategy is to be applied. The application starts with segmenting a document
image using a bottom-up algorithm, then those segmented blocks are grouped, and finally
the grouped blocks are imported intothe DelLos system and a logical tree structure is

derived [Niyogi & Srihari, 1995; Mao et al., 2003]. The output of the system is a tree
10

representing the logical structure of the imported document. The system was tested on 44
US newspaper pages and the performance, in terms of block classification accuracy, block
grouping accuracy, and read-ordering accuracy, is fairly high [Mao et al., 2003].

Table 7: Syntax of a typical newspaper [Niyogi & Srihari, 1995]

<document> : : = { <page> }
<page> .1 ={ <block> }
<block> . 1 = <large-text> | <medium-text> |

<small-text> | <line-drawing> |

<half-tone> | <boundary>
<boundary> : : = <horizontal-line> | <vertical-line> |

<line-rectangle>

(a) Physical structure

<document info> : : = { <unit>)
<unit> . . = <title> | <graphical area> |
<story> | <photoblock>
<photoblock> .. = [<title> | <photo> <caption>
<graphical area> : : = <page banner> | <horizontal band, |
<other graphics>
<story> .. =[<sub-story>] |

<title> <sub-title> |
{ <text-para> } [<photoblock>]
[[<title>] <chart> <caption>]
[[<title>] <table> <caption>]
<sub-story> .. = <story>

(b) Logical structure

Table 8: Example of rules in DeLos [Niyogi & Srihari, 1995]
IF a block Z is of type "large-text",
OR IF it satisfies the following three conditions:
(it is of type "medium-text",
AND it is below another block W,
AND block W is not of type "large-text"
or "medium-text" 1,

THEN block 2 is a major headline.

(a) Knowledge Rule

IF the grouping mode is on,
AND a block has been selected,
THEN find all the immediate neighbors
of the selected block.

(b) Control Rule

IF any partially grouped units remain,
THEN apply all unit-related control rules
for each of these units
until there are no more partial units.

(c) Strategy Rule

11

e Tsujimoto & Asada [1992], Major Components of Complete Text Reading System

Tsujimoto and Asada [1992] present a method to document analysis, document
understanding, and character segmentation/recognition for a text reader system. The
document analysis component extracts text lines from a document image and obtains the
geometric structure tree (see Figure 4 b) as a hierarchy of physical blocks. The document
understanding component then maps a pre-defined logical structure tree (see Figure 5)
with the geometric structure tree using four transformation rules that deal with the tree
nodes movement during the transformation. The character segmentation/recognition
component extracts characters from a text line and recognises them based on the
heuristics of character composition and recognition results.

| 9B ll i

_h___.__.__E15_.”]~_|
| 4H [30H 7|

IS R1: 3 |

[20H

128 } | 7;}[_|

__'. 178 |

138 228 ||

|r_3H:| L 1 '

{a)

MULL
‘——-:___——__:.;__‘____hh
BH98 14B,15H168 18E19B Z0H

Ay
10H,118,128,138 178 218,228

1H.2B,3H 5H.6B.7B

Figure 4: Geometric structure tree [Tsujimoto & Asada, 1992]

i)

documeant{page)
article(title) articla(titia)
abstract sub-title
sub-title sU DE paragraphs
paragraphs paragraphs

Figure 5: Logical structure tree [Tsujimoto & Asada, 1992]
12

The algorithm for the geometric to logical structure transformation is composed of four
transformation rules that define the conditions under which an element in a node list is
moved. These rules are shown in Table 9 and illustrated in Figure 6, where H indicates a
head block, B indicates a body block, and S indicates that a block can be either body or
head. Each node in the tree is sequentially numbered in the depth-first order [Tsujimoto &
Asada, 1992]. Rule (a) is based on the observation that each line can only belong to a
single paragraph, and Rule (b) is similar to Rule (a). Rule (c) extracts chapters of sections
for a subtitle, and Rule (d) attaches a unique class (head/body) to each node [Tsujimoto &
Asada, 1992]. Figure 7 shows an example of the transformation from the geometric
structure of the document shown in Figure 6.

They tested the algorithm on 106 pages from different sources and obtained a logical
structure recognition accuracy of 94/106 [Mao et al., 2003].

Table 9: Transformation Rules [Tsujimoto & Asada, 1992]
Rule (b):
If

Rule (a):
If

a node (say A) is a terminal node, and
the first element of node A is a body,
and
the preceding node (say B) in the
depth-first indexing is a terminal node,
then
remove the first element from node A,
and
append it to the last element of node B.

a node (say A) is a terminal node that is
not connected to the root node, and
the preceding node (say B) in the
depth-first indexing is a terminal node,
and
the first element of node A is not NULL,
and
last element of node B is a head,
then
remove the first element from node A,
and
append it to the last element of node B.

Rule (c):
If
a node (say A) contains a head block,
and
it is not the first element of the node,
then
generate a younger sister node (say D),
and
remove the head-body sequence that
begins with that head block and ends
with the last element of node A, with
daughters of node A, if any, and
attach them to the younger sister node
D.

Rule (d):
If
there is a head block sequence in a
node, and
it is the first part of the node,
then
generate a daughter node, and
move the body sequence that follows the
head sequence to the daughter node.

13

NULL CC—— NULL ————

)]]
D | L'IIE‘ 2
® ot @d/\:@ DE ®
e ° ewpue 28 \®
Head-body sequence Head-body se?:::;e
@% ©
@ !

5._

-S 5-5,B
b b &l
(a) (c)
NULL C——] MULL
S —
— "
- | e—
? i
: o U0 o
o e Head-body se[qluazn:a? él—ﬂ
[@1.a<,
@ B—B
@ ® 22a3
8—-S8H 5,—S .HS
b b al

(b) (d)
Figure 6: Transforming from a geometric into logical structure [Tsujimoto &
Asada, 1992]

NULL
Rula(c)
BH,9B 148,15H,168 188,198 20H NULL

44 10H11E128,138 178 218,228 Lo LT -
1H,2B,3H 5H,6B,7B /\ |

4H 10H,11E,128,13B,14B 17B,21B,228
Rute(a)
1H28 3H.5H6B.7B
NULL
Rule(d)
BHEB 15H,16B.188,198 __“E?H NULL

| (page)

4 10H.11B128,13B,14B T

178,218,228 g
/\5 (title) (title) {titie)
1H,2B,3H 5H,5B,78 I

B 168,188,198 1?3.21'5.225
l Aule(b) {abstract) {paragraph) (paragraph)
MULL (sub-titie) 10H
[{sub-title)
. [3H5H
BHOB 15H,16B.18B,198 F0H (sub-tile) (sub-titie) 11B,12B,138,14B
| I | (paragraph)
/\ | 28 88,78
B 10H,118,12B,138,148 178,218 208 (paragraph} {paragraph)

1H,.2B,3H,5H 6B 7B

Figure 7: Transformation from a geometric structure in Figure 6 [Tsujimoto &
Asada, 1992]

14

2.3.2Syntactic Approaches

e Conway, 1993, Page grammar and page parsing: A syntactic approach to document
layout recognition

Conway [1993] adopted page grammars and page parsing techniques to recognize logical
structure from physical document layout. He described the physical layout of a certain type
of documents as a page layout grammar similar to a context free string grammar. In other
words, he viewed the page as a “sentence” to be parsed. In his system, the first step is to
segment the page image using run length smoothing segmentation and produce segments
corresponding to text lines and graphic objects. Then the page parser groups segments
according to physical layout and produces a list of text and graphic items tagged as
headings, paragraphs, figures, etc. in a reading order. Figure 8 illustrates the process of
parsing.

The grammar is a set of rules similar to the rules in rule-based approaches mentioned
earlier that specify how the logical entities are embedded in the whole document, but in a
more syntactic manner. For example, in Conway’s system he presented the layout of a
typical title page like the following:

TitlePage > (over Title Author Organisation Body)
Body > (leftside Column Column)
Column - (over ParaBody ? (Paragraph | Figure)*
Paragraph - (over textline dirst-indented> ParaBody)
ParaBody > (over textline<aligned>’)
Title > (over textline[large, bold]ccentred>+)
etc.
Each logical entity, such as TitlePage or Body, has a grammatical rule with the pattern like:
X = (ruletype X;...Xn)

Where ruletype is one of the relations: above, leftof, over, leftside, and closeto. It means
an entity X can be made up of a sequence of entities Xj...Xn, which are linked by the
relationship ruletype. Then the page parsing algorithm applied Kay’s active chart parsing,
which is mainly used for natural language processing, to parse the entire page. The active
chart parsing is based on a data structure called an edge, which consists of four
components:

<label start end remainder>

15

The label is a grammar symbol, start and end are positions in the sentence and
remainder is a list of grammar symbols like the label.

Segment,
Classify,
/ OCR
Page Images
Tiths
s | A o2,
Figure : Parser
Paragraph
Content in %
Reading Order
Logical
] =7| Structure
Logical | = Parser
Structure |
Grammar
Structured Document
(SGML)

Figure 8: Processing stages [Conway, 1993]

An edge with an empty remainder is called complete while an edge with non-empty
remainder is called an active edge. For example, <VP 1 5 ()> in Figure 9 represents the
verb phrase “had a little lamb”, which is complete, and <VP 1 2 (NP)> represents a partial
verb phrase “had” which requires a noun phrase at position 2 to be complete, and therefore
is an active edge.

S (NP VP) VP (NP)
Figure 9: Edge from parsing an English sentence [Conway, 1993]

The basic operation on edges is to continue an active edge with a complete edge. If given
an active edge a = <A a; a2 (X4...Xn)> and a complete edge b = <B by b ()>, then b can
continue a if Xy = B and a; = by. The resulting edge is <A a; b, (X2...Xn)>. For example, in
Figure 9, the edge <VP 1 2 (NP)> can be continued by <NP 2 5> resulting in a complete
edge <VP 15 ()>.

16

The page parsing algorithm is similar to the string parsing algorithm described above, with a
difference that the page edge data structure represents page blocks and the rule for
continuing these page edges [Conway, 1993]. A page edge is defined as:

<label ruletype consumed remainder>

The label and remainder have the same meaning as in string edges. The ruletype
specifies the relation that is required to hold between consecutive sub-edges and to be one
of five relations mentioned earlier. The start and end components are replaced by
consumed component which holds the sequence of sub-edges making up the completed
portion of the edge [Conway, 1993]. Thus, the rule for continuing page edges is like:

a = <Arule, (as..a) (X4...Xn)> (active)
b = <B rule;, (b+..bj)> (active)

Then b can continue a if X1 = B and rule, (ai, b) holds. The resulting edge is then a = <A
rule; (a;..ai b) (Xa...X,)>.

Using page grammar rules and the edges definition, his system applied the chart parsing
algorithm to parse pages and generates the logical structure of the document page.

2.4 Summary

In this section we have reviewed literature in the field of document analysis and
understanding. Several methods are introduced both for physical layout analysis and
logical structure analysis. Some previous works of logical structure analysis applying
syntactic approaches as well as rule-based approaches are inspected. This project focuses
on physical blocks grouping and logical structure analysis since it continues previous work
which delivers an XML version with geometric information for each word in a PDF
document. Thus, the extraction of physical blocks from a document image is not part of this
project. However, grouping of the words into physical blocks is the first task to be
accomplished, followed by mapping from physical layout to logical structure.

Due to the nature of the input file of this project, which provides rich geometric information
but doesn’t extract table contents and graphic object, a bottom-up algorithm such as run
length smoothing algorithm (RLSA) will be adopted in the early stage of physical block
grouping. A rule-based approach, matching each physical block to a preset logical entity
model for journal articles in both top-down and bottom-up manner, will be applied in the
later stage of detecting logical structure from the physical blocks format.

17

3 Material

XML (Extensible Markup Language) is a structural mark-up language that allows users to
define their own mark-up elements, or tags. It aims to provide a human- and
machine-readable data format for encoding and sharing information via the internet. This
research is based on an XML version of the post-2000 portion of the ACL Anthology corpus
which was derived by running Powley et al.’s (2008) software over the online PDF
documents in the ACL Anthology corpus from the year 2000 and later. The left-hand side of
Figure 10 is an example of the PDF documents from the ACL Anthology corpus and Figure
11 is the XML source with all physical features extracted from that PDF document. Although
these PDF documents are different from document images generated by scanning
mentioned in Section 2 since they contain specific physical information about the contained
text, their logical structure still remain unknown to machines and thus need to be detected.

The derived XML source provides a rich set of physical features for each word roughly in
the order of reading on a page, one page after another. Those physical features include the
height and width of a document page as well as the font, font size, and the position of each
word on that page. The physical meaning of attributes in the XML source of Figure 11 is
illustrated in the right-hand side of Figure 10. The extraction sequence of the XML source is
roughly in the order of reading, from top to bottom, left to right, and left column to right
column, as shown in Figure 12. Simply speaking, the XML source is merely a raw file
extracting each word sequentially from a PDF document and representing the text in a
hierarchical structure using an XML format, which makes later processing easier. The XML
source will be referred to as XML Source by Text in the remainder of this report for
differentiation from other XML formats we use. One example is included in Appendix A.1.

x1 .

[—— UAGIALULL GULUIEUIITS LA W ATEY VAL WG G BT s s

+ Are Morpho-Syntactic Features More Predictive for : —
! thaResolution of Noun Phrase Coardination Ambiguity provision of potentially large amounts of semantic

i than Lexico-Semantic Similarity Score:?

»

R
alter
(©2008. Licensed under the Creative Commons jden
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (hitp:/icr org/licensesby-nc-sa3.0), and
Some rights reserved. n Vv

Ekaterisa Buyko 324 Ude Haba

e 89
(Proceedings v the 22nd International Conference on Compua
Manchester, August

i Abstract b

b

Cepetinaoc) in b plrases b pos
i problema et elipcied parts hve

]

start="0" end="12"
x1="104.952003"
X2="149.371552"

y="809.973022"

h="4.971869"
font="NimbusRomMNo9L-Regultal”
fontsize="8.966400"

start end

l l
: n | Proceedings.of
e (c1,) o2y)
Figure 10: Physical features of a PDF document

18

<%xml version="1,0" encoding="UTF-8" 7>
- <document>
<page index="1" height="841.890015" width="595.276001"> |

- <text start="0" end="12" x1="104,952003" x2="149,371552" y="809,973022" h="4,971869" font="NimbusRomNo9L-Regultal
fontsize="8.966400">
<I[COATA[Proceedings]]»
</text>

- <text start="12" end="15" ¥1="151.613159" x2="158.589020" 1;:"309.973022" h="4.971869" font:"NimhusRamNagL-ReguItal"
fontsize="8.966400">
<I[COATA[of 1]
</ftexts
- <text start="15" end="19" x1="160.830627" x2="171.787567" y="809.973022" h="4.971869" font="NimbusRomNo9L-RequItal'
fontsize="8.966400">
<I[COATA[the)
</texts
- <text start="19" end="24" x1="174.029175" x2="191,961975" y="809.973022" h="4,971869" font="NimbusRomNo9L-Regultal"
fontsize="8.966400">
<![COATA[22nd]2
</text>
- <text start="24" end="38" x1="194.203583" »2="241.528244" y="809.973022" h="4.971869" font="NimbusRomNo9L-Requltal'
fontsize="8.966400">
<\[COATA[International]

<ftexts
Figure 11: An example of XML Source by Text
2 T|t|e Are Morpho-Syntactic Features More Predictive for
the Resolution of Noun Phraze Coordinarion Ambiguity
than Lexico-Semauntic Similarity Scores”
3 Author Ekaterins Buyko tod Ude Haks

Jeza Univesuiry
Lazpaage & Isformation Engineesisg (JULIE) Lab
Farsseagraber 30. 07743 Jeoa, Gemazy
RATET INA DUYKS | ud0 Dannaunl - Jend . de

4 Abstract Heading] 9 Body
——e :;;EEE E; E W UL THRITH WTE DDy (o
5 Abstract T T e

FrOper emazic »
preuace Uformmany. e detectac of Iodued. previous tessarch by gebered kot of
coodizated beads xod idemrifoation of - | | idence it cogoiond elemeat td © be s
Sputied element ootoreny Jad 9 mz- maacally siilae The imporant role of semc
bepuon reccestarnon abematte. While | | v somleney cnmna for propesy soreng o coo]
Sogiac tonaton sugpests e semontc | | e s e vested by R (1999). He o]
ot maghs v an mporiaat 0t | | oged @ formeboncontent-baed iy
pemor. sole o dwmbopatzy molkhoc saszee thas was WoaoNet (Fellbeaz, 1996) 29
altermadves, O expefiments oo e re- Jexico-semuntic Tesouce and case 1p wich Sl
azootased WSJ part of the Peca Treebazk | | cluim ot vemmaic smzlaricy ts belpfa o ackonn
Sidicane that solely mOrpho-(YIINEL (ot Higher covenge iz coordnation resolisicn for <o+
i 2e mane predcive Bas solely ke ordnaed Do plies of the form mown] 1o
semacec oces We alio focnd et e mowt] nownd’ than similacity measares besed o)
ombimation of bork criversa does Dot yield morpholapcal isforten ey

oy substantal STt I 2 vy vein Hogas (20070 cupecsed
6 Head ng . WoroNer axluity md nlasdness menvzed
— L_._._ll Introduction =4 mecpad deiz role o coofct idesif
“Toouim A oun phiases sodh 85 cmice Her dam reveals that sevesal moensioed)
? BOdy [B vt dop ovre of pemaotc weed szalariny cao imdeed detecy
aovals and ronel Soaks” confmct sieaboey, For the maority of thess
S propes coordmanas resding (rod srvpmen] | [B D, he dfmences benoeer D
smibarion of coordinased besds) s mean sizalaity of coordmased elemenn and noc
‘et crarar AND og ovener” coorkaxed aue: wee szmsvaly upoifom]
noves’ D Toves Soaks” mﬂwMuﬁ::uMm
&hm wud all coordizaned)
Sy bewes o 1 g’ 1 et 1] | e e el bemd 3 edced o
Books® ely. I s were 2 e} by ok’ harmey '@ hard work ond harmony
m:rmwmdmkhmmdw 'Mupﬂ_‘mwiuiiwwmwpma-
mhdw‘mmﬂ:m Rarly el sarsizes for comjuact idestdcation.
Fues el (2002 2 0 ewcher shucy presented ard
—————————— | altetmatte beuriscs-based spprosch o coisey
.w&-..x._qm'-a- e A8 \,u-ul- 14 noun nownd’. Toay eplon, o3, lookmpy
sau‘mmmd TWospMer fx 2 coppornd cour 3¢ 2 cond

I 10 Page number

| [T T R VRS R —— a.“(;.-m;q.-uam:cmnnu |
s — | 1Footer

Figure 12: Extraction sequence of XML Source by Text

19

4 Methodology

This section describes the methodology we adopt for logical structure detection of
academic articles. We introduce our two-phase detection strategy, followed by the
description of the algorithms implementing the two phases, one for aggregating
homogeneous blocks from XML Source by Text (Section 4.1) and one for annotating each
block with a logical label (Section 4.2). In the end, four output files are introduced to provide
a quick overview of the outcomes of this research.

Figure 13 illustrates the process of logical structure detection consisting of two phases. In
Phase |, the XML Source by Text is read-in and words with same y-position are grouped
into a line (1a. in Figure 13). This process produces a newly created XML file, referred to as
XML Source by Line. The lines in the XML Source by Line are further aggregated into
homogeneous blocks according to their physical features and the process produces
another new XML file, XML Physical Blocks (1b. in Figure 13). This process applies an
algorithm that will be detailed in Section 4.1. From XML Physical Blocks an HTML file with a
line break between each block of texts is created by applying an XML Stylesheet (XSLT) on
XML Physical Blocks. The HTML file is referred to as HTML Physical Structure and can be
displayed in human-readable form in a web browser.

XML SN 5“’

5 &

<xml [> -

E > ¢
XML Source 1a. Grouping HTML Physical

by Text texts into lines Structure

XML § xviL SN

Phase I <xml /> |) §<xmlf'>‘§
Aggregation of R

Homogeneous XML Source 1b. Aggregating XML Physical

Blocks by Line lines into blocks Blocks
\—'m'—/

Phase Il

Detection of ']

Logical XML Jaet 54\;;:)

Structure <xmi ,z>;5 C

HTML Logical XML Logical 2. Annotating blocks
Structure Blocks with a logical label

Figure 13: Process of logical structure detection
20

In Phase II, another algorithm is applied to the XML Physical Blocks file to predict the
logical meaning of each block according to rules which are based on the knowledge of the
format of academic articles in the ACL Anthology corpus. This process (2 in Figure 13)
annotates each block with a logical label such as title, author, section-heading, or
paragraph, and produces an XML Logical Blocks file, which is the final product of our
research. It can be further used to produce an HTML Logical Structure file which facilitates
the manual evaluation process at a later stage. Section 4.2 describes the algorithm and
specific rules applied for detecting logical entities.

There are many advantages of separating the detection into two phases. First, separating
the implementation of both algorithms can prevent the confusion of errors caused by the
physical layout analysis or the logical structure detection. Second, both algorithms can be
further refined and extended according to the results of an evaluation. The more precise the
block aggregation is, the more accurate the detection of the logical structure will be. With
the experience of testing throughout the development, we found this can greatly enhance
the accuracy of final detection. Third, the modularisation using object-oriented technology
makes it possible for the software to behave as a shell in the future detecting different types
of documents by accommodating different layout knowledge for different document types.

4.1 Aggregation of Homogeneous Physical Blocks

The aggregation of homogeneous physical blocks before directly detecting the logical
structure of a document is mimicking the process of a person visually taking in the structure
of a document. When humans read a document, the attention is first drawn to the physical
features of that document, instead of logical features. In other words, human readers first
identify the homogeneous blocks of lines or texts according to their physical attributes, such
as position, dominant font size or font style, and spacing between those blocks. Then they
start to have a closer look at the blocks according to the message that each block transmits
to them; for example, read the most upper block with the biggest font size on the first page
of the document, which is assumed to be the title at the stage of block aggregation and
confirmed as such after reading.

Our approach applies the same strategy and aggregates lines with homogeneous physical
features into a block. The method we use is similar to the Run Length Smoothing Algorithm
(RLSA) used for physical layout analysis. Our algorithm, as shown in Figure 14, assumes
words in the same line in an XML Source by Line document belong to one homogeneous
block and then reads in three lines at a time to determine which lines, with their words,
could further belong to the same block. The algorithm only considers the dominant font size
of each line, which is the most frequent font size among the words in a line, and the spacing
between lines to define physical homogeneity.

As Figure 14 shows, first the dominant font sizes of the first three lines are considered. If
21

the dominant font sizes of three lines are not identical, cases AAB, ABB, A1BA2, and ABC,
lines with the same dominant font size are aggregated into one block, and the rest into
another or all lines are assigned to three different blocks. If the dominant font sizes of three
lines are identical, then the y-spacing between lines is further examined. Lines with smaller
spacing are aggregated into one block, and lines with a larger spacing split off into another
block. If the spacing is the same, the three lines are aggregated into one block. In the next
iteration of the algorithm, the last line of the previous iteration is read in again as the first
line of the next three for a continuous aggregation.

Table 10 and 11 are the pseudo-codes of the aggregation algorithm. It processes each
page element in XML Source by Line, where lines of words are either grouped into a new
block (as createBlock in Table 10 and 11) or appended to the currently processing block
(as appendToBlock in Table 11). The criteria applied to determine either to create or to
append includes the font size combination of three lines for each round of reading (as
shown in Figure 14), and the spacing conditions including three categories: 1)
SAME_SPACING, where the spacings between three lines are identical, 2)
LARGER _THEN_SAMLLER, where the spacing between the first two lines is larger than
that between the last two lines, while SMALLER THEN_LARGER, vice versa, 3)
NEGATIVE_SPACING 1, where the spacing between the first two lines is negative, which
means the change of column occurs between those lines, while NEGATIVE_SPACING_2
means the change occurs between the last two lines.

Read-in
3 lines at a time

Check
dominant

o] [we | [en | [nen] [
¢ 5o o0 T

A, B, C: lines of texts with different
dominant font sizes

A,, A, lines of texts with the same
dominant font size
@ @ §,: spacing between A, and A,

§,: spacing between A, and A,

8,8, 8,78, 8,78,

: belongs to the same block

Figure 14: Algorithm for aggregating blocks

22

Table 10: Algorithm of aggregation (only for the first 3 lines)

FOR EACH page IN all pages
read-in 3 lines (line1, line2, lin3)
check {font_size_combination, spacings_condition} (line1, line2, lin3)

previousSpacing = 0.0

CASE font_size_combination = AAA:
IF(spacings_condition == SAME_SPACINGS)
createBlock (line1, line2, lin3)
previousSpacing = spacing (line2, line3)
ELSE IF(spacings_condition == NEGATIVE_SPACING_1 OR LARGER_THEN_SMALLER)
createBlock (line1)
createBlock (line2, lin3)
previousSpacing = 0.0
ELSE IF(spacings_condition == NEGATIVE_SPACING_2 OR SMALLER_THEN_LARGER)
createBlock (line1, line2)
createBlock (lin3)
previousSpacing = 0.0
CASE font_size_combination = AAB:
createBlock (line1, line2)
createBlock (lin3)
previousSpacing = 0.0
CASE font_size_combination = ABB:
createBlock (line1)
createBlock (line2, lin3)
previousSpacing = 0.0
CASE font_size_combination = ABA:
createBlock (lin1)
createBlock (lin2)
createBlock (lin3)
previousSpacing = 0.0
go to the Algorithm in Table 11
go to next page (page id = page id + 1)

23

Table 11: Algorithm of aggregation (for the rest of lines)

read-in 3 lines (linet, line2, lin3)
check {font_size_combination, spacings_condition} (line1, line2, lin3)
CASE font_size _combination = AAA:
IF (spacings_condition == SAME_SPACINGS)
appendToBlock (line2, line3)
previousSpacing = spacing (line2, line3)
ELSE IF (spacings_condition == NEGATIVE_SPACING_1 OR LARGER_THEN_SMALLER)
CASE NEGATIVE_SPACING_1:
createBlock (line2, line3)
previousSpacing = 0.0
CASE LARGER_THEN_SMALLER:
createBlock (line2)
previousSpacing = 0.0
go to next round (cursor = cursor +1)
ELSE IF (spacings_condition == NEGATIVE_SPACING_2 OR SMALLER_THEN_LARGER)
appendToBlock (line2)
createBlock (line3)
CASE font_size _combination = AAB:
IF (previousSpacing == 0.0 OR previousSpacing == spacing (line1, line2))
appendToBlock (line2)
ELSE
createBlock (line2)
createBlock (lines)
previousSpacing = 0.0
CASE font_size _combination = ABB:
IF (spacing (line2, line3) > the most frequent spacing)
createBlock (line2)
createBlock (line3)
ELSE
createBlock (line2, line3)
previousSpacing = 0.0
CASE font_size combination = ABA AND ABC:
createBlock (line2)
createBlock (line3)
previousSpacing = 0.0

go to next round (cursor = cursor +2)

24

4.2 Detection of Logical Structure

Our research aims to detect the most important items of the logical structure, including the
title, authors and affiliation, abstract heading, abstract, section headings, and body text by
applying heuristic rules. These rules are based on the unique characteristics of each logical
entity and compared with the statistics of the characteristic of the whole document. When
choosing rules to be applied, we try to be as general as possible to accommodate the
majority of document we observe from the corpus. Therefore, it is hardly possible to find a
single set of rules that apply to all the variations in the format of the conference papers. This
section first describes the detection sequence of the above-mentioned logical entities,
followed by seven sub-sections discussing the details of the detection of them.

The detection of logical structure is based on the outcome from Phase |, which is XML
Physical Block. This file contains blocks of words with homogeneous physical features on
each page. The aim of the detection algorithm is to specify a logical label to each of blocks.
The detection is then divided into two categories: unique entities and multiple-occurrence
entities. Unique entities include title, abstract heading, and abstract, while
multiple-occurrence entities include authors, affiliations, section-headings, page numbers,
and paragraphs. Since unique entities only appear once and thus can be good benchmarks
for the detection of other entities, they are detected first, followed by the detection of
multiple-occurrence entities. The detection sequence of logical entities is as follows: 1) title,
2) abstract heading, 3) abstract, 4) affiliations, 5) authors, 6) page numbers, and 7) section
headings.

4.2.1 Detection of Title

The detection of title in our research only considers the dominant font size and the position
of a block. First of all, the title is always located on the first page. Then we observed the
majority of development set from the corpus and found that font size of titles is almost the
largest one through the entire document. To increase the detection accuracy, we also add
one rule that the title should always be on the upper half of the first page. Table 12
illustrates this simple algorithm.

Table 12: Algorithm of detecting the title

FOR EACH block IN first page
IF (the block’s dominant font size == the largest font size AND block is on upper page)
annotateLogicalType (block, “title”)
stop
go to next block (block id = block id + 1)

25

4.2.2 Detection of Abstract Heading and Abstract

The detection of abstract heading is as straight-forward as that of the title. The algorithm
shown in Table 13 first considers a block from the first page if its dominant font size is larger
than the most frequent font size, which is the font size of context, and the content equals to
“abstract” as well as its location is on the upper page, then the block is annotated as the
abstract heading. Since there are still quite a few documents whose font size of abstract
heading is as large as that of context, the algorithm continues to search again without
requiring the font size condition.

Table 13: Algorithm of detecting the abstract heading

FOR EACH block IN first page
IF (the block’s dominant font size > the most frequent font size AND the content equals to “abstract”
AND block is on upper page)
annotateLogicalType (block, “abstract-heading”)
stop
go to next block (block id = block id + 1)

IF NOT found
FOR EACH block IN first page
IF (the content equals to “abstract” AND block is on upper page AND number of line ==1)
annotateLogicalType (block, “abstract-heading”)
stop
go to next block (block id = block id + 1)

The detection of abstract comes after the abstract heading, which assumes the abstract is
the block next to the abstract heading. This can only be true when the aggregation of
homogeneous block on abstract is correct. In some cases, we found the abstract is divided
into two or more block due to the variation of font size and spacing occurred in those
abstract. More considerations need to be taken into account to fix this problem in the future.
For example, it can be applied a rule saying that those blocks between abstract heading
and the first section heading can be abstract. However, we recommend revising the
aggregation algorithm to minimize the possibility of this error.

4.2.3 Detection of Authors and Affiliations

There are three major types of the block of authors and affiliations in the corpus as shown
in Figure 15. To adapt this variation, the detection of authors and affiliations comes in a
fixed order. First, the algorithm of detecting affiliations assumes those blocks between title
and abstract heading are mixture candidates of authors and affiliation, and annotated those

blocks with affiliation. Another algorithm continues to detect the authors using an exclusion
26

set of string, including keywords of organization, such as “department”, “center”, “university”,
“laboratory”, “of”, etc., country names as shown in the address, and certain characters
appeared in the e-mail address, such as “@”, “{“, or ”}". The contents of those blocks
annotated with affiliation are examined to check against the exclusion set of string. Those
blocks without matching any item in the exclusion set are then annotated with author. Table

14 and 15 show the pseudo-codes of these two algorithms.

A Hierarchical Account of Referential Accessibility

Nancy IDE Dan CRISTEA
Department of Computer Science Department of Computer Science
Vassar College University “Al I Cuza”
Poughkeepsie, New York 12604-0520 USA Tas:, Romania
ide@cs.vassar.edu denistea@infoiasi ro

Type 1. one person-one column

A Deterministic Word Dependency Analyvzer
Enhanced With Preference Learning

Hideki Isozaki and Hideto Kazawa and Tsutomu Hirao
NTT Communication Science Laboratories
NTT Corporation
2-4 Hikaridai. Seikacho. Sourakugun. Kyoto. 619-0237 Japan
{isozaki, kazawa, hirac}@cslab.kecl.ntt.co.jp

Type 2. many persons-one combined column

Applying Natural Language Generation to Indicative Summarization

Min-Yen Kan and Kathleen R. McKeown Judith L. Klavans
Department of Computer Science Columbia University
Columbia University Center for Research on Information Access
New York. NY 10027. USA New York, NY. 10027

{min, kathylé@cs.columbia.edu klavansé@cs.columbia.edu

Type 3: mixed column

Figure 15: Types of block of authors and affiliations

Table 14: Algorithm of detecting affiliations

find block id of the title (title_id) and block id of the abstract heading (abstract_heading_id)
FOR EACH block IN first page
IF (the block id falls between title_id AND abstract_heading_id)
annotateLogicalType (block, “affiliation”)
IF (the block id == abstract_heading_id)
stop
go to next block (block id = block id + 1)

27

Table 15: Algorithm of detecting authors

find block id of the title (title_id) and block id of the abstract heading (abstract_heading_id)
FOR EACH block IN first page
IF (the block id falls between title_id AND abstract_heading_id)
IF (block’s contents do not contain any element in the exclusion set)
annotateLogicalType (block, “author”)
IF (the block id == abstract_heading_id)
stop

go to next block (block id = block id + 1)

exclusion set: { "university", "center", "department”, "research", "laboratory

, "computer”, "science",

"computing", "computational" ,"division" ,"information", , "group",

communication", "of", "@", "{", "}" }

4.2.4 Detection of Page Numbers

The detection of page numbers considers several physical features. First, the dominant font
size is larger than the smallest font size, which excludes footnotes and footers whose font
sizes are usually the smallest ones. Second, the block always falls on the lower page. Third,
the count of words equals to one and the block’s content should be numeric. For most
cases in the ACL Anthology corpus, the page number is centered, and thus the algorithm
assumes the block of page number should fall between the page’s center with 20 pixels in
both sides. Table 16 shows the algorithm of detecting page numbers.

Table 16: Algorithm of detecting page numbers

FOR EACH page IN all pages
FOR EACH block IN page
IF (the dominant font size > the smallest font size AND the block is on the lower page
AND the x-coordinate of the block’s center falls in the range of page’s center + 20.0
AND the count of words in block == 1 AND block’s content is numeric)
annotateLogicalType (block, “page-number”)
go to next block (block id = block id + 1)
go to next page (page id = page id + 1)

4.2.5 Detection of Section Headings

The detection of section headings relies on the dominant font size and their common
characteristic of starting with a number. The algorithm also considers those section
headings that do not start with a number. Table 17 shows the pseudo-codes of the
algorithm. It assumes the dominant font size is larger than the most frequent font size,
which is the font size of the context. This assumption obviously does not match a minority

of document whose font size of section heading is as large as that of context. Therefore,
28

there should be other rules to address this flaw in the future. The algorithm then examines
the first word of the block. If the first word is numeric or the block contents contain any of
keywords such as introduction, conclusion, reference, and acknowledge, then the block
could be a section heading.

Table 17: Algorithm of detecting section headings

FOR EACH page IN all pages
FOR EACH block IN page
find the first word of the block (first word)
IF (the dominant font size of block > the most frequent font size AND
(the first_word is numeric OR the block contents contain any of element in heading set))
annotateLogicalType (block, “section-heading”)
go to next block (block id = block id + 1)
go to next page (page id = page id + 1)

exclusion set: { "introduction”, "conclusion”, “reference”, “acknowledge” }

4.3 Output Files

There are four different output files generated by our algorithms, two of which are in XML
format and the other two, HTML. This section describes the structure for each output file
format as well as its purpose to provide an overview of outcomes by this research. In this
section, <text>, <line>, and <page> refer to mark-up elements or tags in those XML files
mentioned above.

4.3.1 XML Source by Line

XML Source by Line is derived from XML Source by Text by grouping the <text> elements
with the same attribute values for the y-coordinate together. <text> elements in the same
group are appended under a newly created tag <line>, which is inserted under the existing
<page> tag, with extra attributes, such as dominantFont, dominantFontsize, left, right,
words, and y-position. The values of the above attributes are summary information of each
line expressing collectively physical features or statistics of words in the same line. For
example, the attribute dominantFont specifies the most frequent font among the <text>
elements in that line, while the attribute words specifies the number of <text> elements and
attributes left and right specify the horizontal margins for that line. Figure 16 is an example
of XML Source by Line derived from the example XML Source by Text shown in Figure 11.
One example is included in Appendix A.2.

29

#BAED) [&] CroutputiC08-1012_tine sam) RISEEE

<Tuml version="1.0" encoding="UTF-8" standalone="no" 7> I
- zdocument:=
- <page height="841.890015" index="1" lines="86" width="595.276001" word=="623">
- <line dominantFont="NimbusRomMo9L-Regultal" dominantFontsize="8.966400" id="1"
left="104.952003" right="495.990173" words="16" y-positicn="809.973022">
- =text end="12" font="NimbusRomMNo9L-Regultal" fontsize="8.966400"
h="4.971869" start="0" ¥1="104.952003" x2="149.371552" v="809.973022"-
< [CDATA[Proceedings]]=
< et
- =text end="15" font="NimbusRomMNo9L-Regultal" fontsize="8.966400"
h="4.971869" start="12" ®x1="151.613159" x2="158.589020" v="809.973022">
<ICDATA[o]]=
B =1
- «<text end="19" font="NimbusRomMNo9L-Regultal" fontzize="8.966400"
h="4.971869" start="15" x1="160.830627" x2="171.787567" v="809.973022">
<ICOATA[the]l=
</texts

€l T e
Figure 16: An example of XML Source by Line

| KL

4.3.2 XML Physical Blocks

XML Physical Blocks is derived from the XML Source by Line by applying the algorithm of
aggregation introduced in Section 4.1. Figure 17 is an example of XML Physical Blocks
derived from the example XML Source by Line shown in Figure 16. In this version, a newly
created tag <block> is inserted under the existing tag <page> containing some <line>
elements according to the algorithm, with several attributes, such as marginLeft,
marginRight, marginTop, marginBottom, and lines. Similar to the attributes of <line> for its
<text> elements, these attributes specify the summary information about these <line>
elements aggregated as a block. One example is included in Appendix A.3.

4.3.3 XML Logical Blocks

XML Logical Blocks is the same file format as XML Physical Blocks, but annotated with
logical labels according to the algorithm discussed in Section 4.2, by adding a new attribute
logicalType to the tag <block>. Figure 18 is an example of XML Logical Blocks files
annotated with a logical label title from the example of XML Physical Blocks shown in
Figure 17. Except for this attribute appeared in most of <block> element, the rest of
structure is the same as XML Physical Blocks. One example is included in Appendix A.3.

The two XML files introduced in this section and in Section 4.3.2 are the major outcomes of
our research. With the annotated information for each block of texts, these files can be
processed by machines for more creative uses, such as search or in-depth analysis.

30

#81D) [=) Coutputio08-1012_block xml =] Dz s >

-
<7xml version="1.0" encoding="UTF-8" standalone="no" 7> —
- <document>

- «page dominantFont="Times-Roman" dominantFontsize="10.909100" height="841.890015"
index="1" lines="86" marginBottom="821.299988" marginLeft="72.138969"
marginRight="525.694946" marginTop="90.82605" width="595.276001" words="623">

- =<hlock blockid="1" dominantFont="NimbusRomNo9L-Requltal”
dominantFontsize="8.966400" lines="1" marginBottom="809.,973022"
marginLeft="104.952003" marginRight="495.990173" marqnTop="809.973022">
- zline blockid="1" dominantFont="NimbusRomMNo9L-Regultal”
dominantFontsize="8.966400" id="1" |left="104.952003" right="495.990173"
words="16" y-position="809.973022">
- ztext end="12" font="NimbusRomNo9L-Regultal" fontsize="8.966400"
h="4.971869" start="0" »1="104.952003" x2="149.371552" y="809.973022">
<|[CDATA[Proceedings]]=
</ texts
- «<text end="15" font="NimbusRomNo9L-Requltal" fontsize="8.966400"
h="4,971869" start="12" x1="151.613159" x2="158,589020"
y="8009,973022">
<!|[CDATA[of]]=
< text>
- <text end="19" font="NimbusRomMNo9L-Reqgultal" fontsize="8.966400"
h="4.971869" start="15" »1="160.830627" »2="171.787567"
y="809.973022">
<I[CDATA[the 1l
«/texts

a

43 C:\outpuitC08-1012_block.xml =B
BRE REE BRY AHEEW TAD A | &
OQtE-O-XN3& 0| e SameE €| - B-0 k@

E)] @c:\nmpuﬂcns-1mz_hluck_m j #z-i ‘ﬁfz‘ﬁ 2

s

<Tuml version="1.0" encoding="UTF-&" standalone="no" 7>
- <document=
- <page dominantFont="Times-Roman" dominantFontsize="10.909100" height="841.890015"
index="1" lines="86" marginBottom="821.299988" marginLeft="72.138969"
marginRight="525.6949468" marginTop="90.82605" width="595.276001" words="623">
+ =hlock blockid="1" dominantFont="NimbusRomMNo9L-Regultal"
dominantFontsize="8.966400" lines="1" marginBottom="809.973022"
marginLeft="104.952003" marginRight="495.990173" marginTop="809.973022">
+ =block blockid="2" dominantFont="NimbusRomNo9L-Regqu"
dominantFontsize="8.966400" lines="1" marginBottom="821.299988"
marginLeft="254.455978" marginRight="346.487244" marginTop="821.299988">
- <hblock blockid="3" dominantFont="Times-Bold" dominantFontsize="14.346200" lines="3"
logicalType="title" marginBottom="122.713135" marginLeft="128.344009"
marginRight="469.472351" marginTop="90.82605"=
- <line blockid="3" dominantFont="Times-Bold" dominantFontsize="14.346200" id="3"
left="140.053009" right="457.768341" words="2?" y-position="00.82605">
- =text end="133" font="Times-Bold" fontsize="14.346200" h="9,898879"
start="129" x1="140.053009" x2="162.892685" v="90.826050">
<!CDATA[are]l=
“ftexnts
- =text end="139" font="Times-Bold" fontsize="14.346200" h="9.726724"
start="133" x1="166.476898" x2="216.544250" v="00.826050">
<I[COATA[Morpho]]=
<ftents
- =text end="150" font="Times-Bold" fontsize="14.346200" h="10.200149"

€] LT TS e

Figure 18: An example of XML Logical Blocks
31

L

4.3.4HTML Physical Structure

This research also produces two other HTML file for human evaluation of the two major
XML formats. The first file is HTML Physical Structure, transformed by applying an XML
Stylesheet (XSLT) on XML Physical Blocks. It shows the result of block aggregation in the
web browser with a line break between each block of texts. Figure 19 is an example of
HTML Physical Structure derived from the example XML Physical Blocks shown in Figure
17. From this view of aggregation results, it is straightforward to check how successful the
physical block aggregation algorithm is doing during development.The XML Stylesheet to
transform XML Physical Blocks into HTML Physical Structure is included in Appendix A.4.

4.3.5HTML Logical Structure

By applying another XSLT stylesheet on the XML Logical Blocks file from Figure 18, HTML
Logical Structure, as shown in Figure 20, is created. It gives the developer with a clear view
of the logical structure detection output. The stylesheet gives each logical entity a distinct
format shown in the web browser, such as the centered bold title, centered authors,
affiliations and abstract heading, and table of contents of section headings as hyperlinks.
The XML Stylesheet to transform XML Logical Blocks into HTML Logical Structure is
included in Appendix A.5.This file is produced mainly to assist the manual evaluation
process discussed in Section 6.

[} CO8-1012_lngieal himl » | [COB-1012_physizal html k@

C fr filediCiontput/C02- 1012 physical html
Froceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) | pages 89 —96
MWanchester | August 2008

Are Morpho -Syntactic Features More Predictive for the Resolution of Moun Phrase Coordination Ambiguity than L
Scores ?

Ekaterina Buyko and Udo Hahn

Jdena University Language & Information Engineering (JULIE) Lab F urstengraben 30 07743 Jdena |, Germany
ekaterina buykoludo hahn @uni -jena de

Abstract

Zoordinations in noun phrases often pose the problem that elliptified parts have to be reconstructed for proper sen
Unfortunately |, the detection of coordinated heads and identification of el - liptified elements notoriously lead to am
alternatives . While linguistic intuition suggests that semantic criteria might play an important |, if not su - perior | rolg
alternatives | aur experiments on the re - annotated YW part of the Penn Treebank indicate that solely marpho -sy
predictive than solely lexico - semantic ones . We also found that the combination of bath criteria does not yield an

1 Introduction

Figure 19: An example of HTML Physical Structure

32

' [CO8-1012_logical html

€« C ¥ fileHCriontput/C08-1012_logical himl > O~ F-

Are Morpho -Syntactic Features More Predictive for the Resolution of Noun Phrase j
Coordination Ambiguity than Lexico -Semantic Similarity Scores ?

Author: Ekaterina Buyko and Udo Hahn |

Affiliation
Ekaterina Buyko and Udo Hahn

Jena University
Language & Information Engineering (JULIE | Lab
F urstengraben 30 , 07743 Jena , Germany

ekaterina buykoludo hahn @uni -jena .de
Abstract

Coordinations in noun phrases often pose the problemn that elliptified parts have to be reconstructed for proper
semantic inter - pretation . Unfortunately | the detection of coordinated heads and identification of el - liptified
elements notoriously lead to am - biguous reconstruction alternatives . While linguistic intuition suggests that
semantic criteria might play an important | if not su - perior | role in disambiguating resolution alternatives | our
experiments on the re - annotated WSJ part of the Penn Treebank indicate that solely morpho -syntactic crite - ria
are more predictive than solely lexico - semantic ones . We also found that the combination of both criteria does
not yield any substantial improvement .

Table of Contents

1 Introduction

2 Data Sets for the Experiments
3 Methods

4 Results and Error Analysis

5 Conclusions and Future Wyork

Acknowledgements
References

Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008) , pages 89 —96 |

Figure 20: An example of HTML Logical Structure

33

5 Implementation
5.1 System Architecture

Inferring Document Structure System (IDSS) implemented the above-mentioned algorithms
using Java (JDK1.6) on Windows 2003 Server. To obtain the flexibility of change and
software extensibility, the design of system architecture is based on the concept of
decoupling and modularization. Figure 21 is the class diagram of the system, including two
Java interfaces and 15 major classes. Table 18 lists the functionalities for all interfaces and

classes.

BlockAggregator

-linel: Element
-line2: Element
-line3: Element

ainterfaces
PhysicalStructureDetector

+aggregate()

+checkSpacing(): bool

+checkFontsize(): bool
+appendBlack(Document)
+appendBlock(Daocument, Document)
+appendBlack(Dacument, Dacument, Dacument)

0

ACLHomoBlockAggregatar

-source: Documert
-output Document
-helper; XMLHelper
-report; PhysicalRepart
-paths: String]]

XMLHelper

-source: Documert
-parser. DocumentBuilder
-paths: String|]

+read(String)
+write(N ode String)

+addPageSummarizer(Summarizer)

Detectar

-doc: Document
-report PhysicalREport

-statistics: Arraylist<Statistic>
-statnames: String]]
-waordCount: int

-lineCount: int

-pageCount: int

7 +aggregate()
PhysicalReport +createSourceByLine()
-docSummarizer: Summanzer +ereateHTML) Statistic
-pagesSummarizers: ArrayList<Summarzers . _
+repartalliDetails() -stath ame.. Stnng
+getAllDetails() Summarizer -frequency: int

+compareTo(Object): int

+addStatistic(int, String)

-result; ArrayList +s0rt() winterfaces
+detectTitle() +printStatistic(int) LogicalStructureDetectar
+detectAbstractHeading() +getStatistic(int): String +detect()
+detectAbstract()
+detectAbstract() A
+detectAthor() '
+detectP ageMumber() ACLDetector
+detectSectionHeading() -repart; PhysicalReport
+getTexts(Element block) Tsummarize()
+update(Document, String) TcreateHTML()
/M +getResult(); ArayList

TitleD etectar AbstractHeadingDetector AbstractDetector
+detect() +detect() +detect()
PageNumberDetectar AuthorDetectar
+detect() +detect()
SectionHeadingDetector AffiliationDetectaor
+detect() +detect()
Figure 21: Class diagram of the Inferring Document Structure System (IDSS)

34

Table 18:

Algorithm of detecting section headings

Class/Interface Name

Functionality

PhysicalStructureDetector*

Interface for aggregating homogeneous blocks

LogicalStructureDetector*

Interface for detecting logical structure

ACLHomoBIlockAggregator

An
aggregate homogeneous blocks from ACL Anthology corpus. The

implementation of PhysicalStructureDetector specific to
algorithm of aggregation is defined in this class. It provides
methods to summarize the statistics of physical feature from XML
Source by Text, and to create XML Source by Line, XML Physical

Blocks, and HTML Physical Structure.

ACLDetector

An implementation of LogicalStructureDetector specific to detect
logical structure from ACL Anthology corpus. It provides methods
to summarize the statistics of physical feature from XML Physical
Blocks, to detect logical structure with assistance from class
Detector, and to create HTML Logical Structure.

BlockAggregator

A helper class to assist class ACLHomoBlockAggregator in
checking font sizes and spacing of imported line elements as well
as create new blocks containing associated line elements

according to the algorithm of aggregation.

Summarizer

A helper class to assist classes ACLHomoBlockAggregator and
ACLDetector in summarizing the statistics of physical feature from
XML Source by Text and XML Physical Blocks.

PhysicalReport

A report class to report summary information of a processing
document derived from classes ACLHomoBlockAggregator and
ACLDetector, the
largest/smallest font size, the most frequent spacing, and the

such as the most frequent font size,

number of lines, words for each page as well as for the entire
document. Many detections of logical structure rely on this
summary information.

Statistic

A data wrapper class to hold the frequency for each physical
feature, in a pair of {feature, frequency}, such as the font size, font,
and spacing.

XMLHelper

A helper class to assist in manipulating XML parsing and
modification.

Detector

A helper class to assist class ACLDetector in detection of all logical
entities including the title, abstract heading, abstract, affiliation,
It fulfills the
modularization and decoupling to maintain the flexibility and

author, page number, and section heading.

extensibility.

35

Class/Interface Name Functionality

TitleDetector It defines the algorithm of detecting the title (see Table 12)

AbstractHeadingDetector It defines the algorithm of detecting the abstract heading (see
Table 13)

AbstractDetector It defines the algorithm of detecting the abstract

AffiliationDetector It defines the algorithm of detecting affiliations (see Table 14)

AuthorDetector It defines the algorithm of detecting the author (see Table 15)

PageNumberDetector It defines the algorithm of detecting page numbers (see Table 16)

SectionHeadingDetector It defines the algorithm of detecting section headings (see Table
17)

AutoRun The main access entry of the system with a user interface for
testing functionalities and evaluating performance of aggregation
and detection.

ConfigFrame A user interface for configuring system parameters such as the
source path, output path, and the number of documents randomly
selected for evaluation.

*- Java Interface
5.2 User Interface

Figure 22 is the main user interface for testing functionalities and evaluating performance of
aggregation and detection. It separates each functionality in an independent button, such
as analyze document (it creates XML Source by Text), aggregate blocks (it create XML
Physical Blocks), view physical result (it creates HTML Physical Structure), detect layout (it
annotates logical entities to generate XML Logical Blocks), and view logical structure (it
creates HTML Logical Structure). It also provides a batch functionality to execute all steps
in the button Batch Detection toward a single document specified in the text box of upper
screen.

The user interface also provides a functionality of evaluation. By clicking the button
Detection Evaluation, the system randomly selects a fixed number of documents from the
appointed directory containing all the XML Source by Text files. Figure 23 is the user
interface for specifying system parameters such as the source path, output path, and the
number of documents randomly selected for evaluation. One example of detection
summary with only two selected documents is included in Appendix A.6.

36

B Inferring Document Structure System -0 x|
Enter the XML source flie: |C:'l.dE'-.-"|.W|:I|:I-1 429 bdxml | Choose..

Anahlyze Document

==Detection Result of Chdevibin-1428 bt xml======

Aggregate Blocks

Fage count: 8

View Physical Result

Title found: Knowledige Acquisition far Batural Language
[Generation

Detect Layout

Ahstract heading found: Ahstract

View Logical Result

Ahstract found
ffiliation found: Ehud Reiter and Roma Robertson Dept of

Batch Detection

Computing Science Univ .

Detection Evaluation

Affiliation found: Lies! Osman Dept of Medicine and
Therapeutics Uiniv of Aberdeen ..

Configuration

Affiliation found: | . osman @abdn, ac . uk

Exit

Althor found: Ehud Reiter and Roma Robertson
Althar found: Liesl Osman

[»

<[]

Figure 22: Main frame of IDSS

ol x|

Enter Output Path: [C:loutput

Enter Evalution Path: |C:idev

Enter Batch Count: |20 |

Select

Select

Save Close

Figure 23: Configuration frame of IDSS

37

6 Conclusion
6.1 Resulis

This research uses the ACL Anthology corpus both for development and testing. Around 10
percent of the corpus was selected as the development set, accounting for 572 academic
papers roughly evenly distributed over 13 conferences and 1 journal since 2000. Another
10 percent of unseen corpus is selected as the test set for a final evaluation of detection
accuracy. Due to constraints on time and resources in this project, we were not able to
perform a full evaluation on the test set. Instead, a preliminary evaluation was be done by
manually comparing the logical structure of the final HTML files to the original PDF
document for 40 randomly selected articles neither used for development nor part of the
test set. Table 19 summarizes the detection results for title, author and affiliation, abstract
heading, abstract, section heading, and page number for these 40 documents. For the time
being, the author and affiliation are detected as one block due to their large variation in
format.

From the summary, we can see the system obtains fairly high accuracy when detecting title
(97.5%), abstract heading (90%), and abstract (90%). The accuracies for authors-affiliation,
page numbers, and section headings are lower. Generally speaking, the accuracy of
detection is satisfactory considering the limited implementation time.

Table 19: Summary of detection results out of 40 randomly selected documents

Error Type Error | Accuracy of
Found | Detection

Incorrect title or missing title 1 97.5% (39/40)
Incorrect Abstract heading or Missing Abstract heading 4 90.0% (36/40)
Incorrect Abstract or Missing Abstract 4 90.0% (36/40)
Incorrect Affiliation(s) or Missing Affiliation(s) 11 72.5% (29/40)
Missing >50% of Page number(s) or Erroneous Page number(s) found 15 62.5% (25/40)
Missing >50% Section heading(s) or Erroneous Section heading(s) found 11 72.5% (29/40)

6.2 Error Analysis

When observing the details of detection results and looking at the original XML sources and
PDF documents, we found several causes for the detection errors which can be solved in
the near future as well as some defects due to the nature of format variation.

For example, the failure to detect section heading or sub-section headings can be improved
by considering the length of lines and spacing before and after blocks. The detection of
page numbers can be improved by calculating their positions and taking into account the
total number of <page> tags. Furthermore, one abstract heading was groups into the same

38

block as its abstract text, which resulted from incorrect aggregation in Phase I. This can be
solved by refining the aggregation algorithm to separate them as different homogeneous
blocks.

Some erroneous detections of section-headings or page numbers mainly resulted from
noise in the XML source files, such as incomplete table content and mathematic formula
containing numbers and random characters. Rules dealing with noise can be introduced in
order to obtain a higher accuracy here. However, this could also be resolved by improving
Powley et al.’s [2008] extraction process from the original PDF documents. At this stage,
we regarded the loss in accuracy due to these erroneous detections of noise as inevitable.

6.3 Future Work

Both algorithms for physical block aggregation and for logical structure detection need to be
further refined until they obtain as high detection accuracy as possible for the 572
documents of the development set.

In the near future, the separation of author and affiliation, more accurate detections of
section-headings, sub-section heading, and paragraph texts need to be achieved as
mentioned in Section 4.2. Following this, noise such as table contents and mathematical
formula should also be detected as such and removed or handled separately.

References

Powley, B., Dale, R. and Anisimoff |., 2009. Enriching a Document Collection by
Integrating Information Extraction and PDF Annotation. Proceedings of Document
Recognition and Retrieval.

Powley, B. and Dale, R. 2007. High Accuracy Citation Extraction and Named Entity
Recognition. 2007 IEEE International Conference on Natural Language Processing and
Knowledge Engineering.

Powley, B. and Dale, R. 2007. Evidence-Based Information Extraction for High Accuracy
Citation and Author Name Identification. Proceedings of RIAO 2007: the 8th Conference
on Large-Scale Semantic Access to Content.

Conway, A. 1993. Page grammar and page parsing: A syntactic approach to document
layout recognition, Document Analysis and Recognition, Proceedings of the Second
International Conference, 761-764.

Fisher, L., Hinds, C. and D'Amato, P. 1990. A rule-based system for document image
segmentation, Pattern Recognition, Proceedings of the 10th International Conference, 1:
16-21

39

Lee, K., Choy Y. and Cho S. 2000. Geometric structure analysis of document images: a
knowledge-based approach, Pattern Analysis and Machine Intelligence, |IEEE
Transactions, 22(11): 1224-1240.

Lee, K., Choy Y. and Cho S. 2003. Logical Structure Analysis and Generation for
Structured Documents: A Syntactic Approach, Knowledge and Data Engineering, IEEE
Transactions, 15(5): 1277-1294.

Mao, S., Rosenfeld, A. and Kanungo, T. 2003. Document Structure Analysis Algorithms: A
Literature Survey, IBM Almaden Research Center, San Jose, USA.

Nagy, G., Seth, S. and Viswanathan, M. 1992. A prototype document image analysis
system for technical journals, Computer, 25(7): 10-22.

Namboodiri A. and Jain A. 2007. Document Structure and Layout Analysis, in Digital
Document Processing: Major Directions and Recent Advances, Springer-Verlag, London,
29-48.

Niyogi, D. and Srihari S. 1995. Knowledge-Based Derivation of Document Logical Structure,
Document Analysis and Recognition, Proceedings of the Third International Conference,
1: 472-475.

Stehno, B. and Retti, G. 2003. Modeling the logical structure of books and journals using
augmented transition network grammars, Journal of Documentation, 59(2): 69-83.

Tateisi, Y. and Itoh, N. 1994. Using stochastic syntactic analysis for extracting a logical
structure from a document image, Pattern Recognition, Conference B: Computer Vision
and Image Processing., Proceedings of the 12th IAPR International Conference, 2:
391-394.

Tsujimoto, S. and Asada, H. 1992. Major Components of Complete Text Reading System,
Proceedings of the IEEE, 80(7): 1133-1149.

40

Appendix

A.1: XML Source by Text
Example Filename: W00-1429.txt..xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document>
<page height="842.000000" index="1" lines="96" width="596.000000" words="845">
<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="0" x1="140.160004" x2="213.271408" y="116.479980">
<!/[CDATA[Knowledge]]>
</text>
<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="9" x1="213.271408" x2="297.851746" y="116.479980">
<!/[CDATA[Acquisition]]>
</text>
<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="21" x1="297.851746" x2="323.072205" y="116.479980">
<![CDATA[for]]>
</text>
<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="25" x1="323.072205" x2="381.467438" y="116.479980">
<!/[CDATA[Natural]]>
</text>
<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="33" x1="381.467438" x2="453.484741" y="116.479980">
<!/[CDATA[Language]]>
</text>
<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="42" x1="453.484741" x2="532.885132" y="116.479980">
<![CDATA[.Generation]]>
</text>
</page>
</document>

41

A.2: XML Source by Line

Example Filename: W00-1429_line.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document>
<page height="842.000000" index="1" lines="96" width="596.000000" words="845">
<line dominantFont="TimesNewRoman,Bold" dominantFontsize="15.600000" id="1"
left="140.160004" right="532.885132" words="6" y-position="116.47998">
<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="0" x1="140.160004" x2="213.271408" y="116.479980">
<!/[CDATA[Knowledge]]>
</text>
<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="9" x1="213.271408" x2="297.851746" y="116.479980">
<!/[CDATA[Acquisition]]>
</text>
<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="21" x1="297.851746" x2="323.072205" y="116.479980">
<![CDATA[for]]>
</text>
<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="25" x1="323.072205" x2="381.467438" y="116.479980">
<!/[CDATA[Natural]]>
</text>
<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="33" x1="381.467438" x2="453.484741" y="116.479980">
<!/[CDATA[Language 1>
</text>
<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="42" x1="453.484741" x2="532.885132" y="116.479980">
<!/[CDATA[.Generation]]>
</text>
</line>
</page>
</document>

42

A.3: XML Physical Blocks and Logical Blocks

Example Filename: W00-1429_block.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<document>
<page dominantFont="TimesNewRoman" dominantFontsize="9.600000" height="842.000000"
index="1" lines="96" marginBottom="801.679993" marginLeft="108.0"
marginRight="568.398804" marginTop="116.47998" width="596.000000" words="845">
<block blockid="1" dominantFont="TimesNewRoman,Bold" dominantFontsize="15.600000"
lines="1" logicalType="title" marginBottom="116.47998" marginLeft="140.160004"
marginRight="532.885132" marginTop="116.47998">
<line blockid="1" dominantFont="TimesNewRoman,Bold" dominantFontsize="15.60000"
id="1" left="140.160004" right="532.885132" words="6" y-position="116.47998">
<text end="9" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="0" x1="140.160004" x2="213.271408" y="116.479980">
<![CDATA[Knowledge]]></text>
<text end="21" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="9" x1="213.271408" x2="297.851746" y="116.479980">
<!/[CDATA[Acquisition]]></text>
<text end="25" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="21" x1="297.851746" x2="323.072205" y="116.479980">
<![CDATA[for]]></text>
<text end="33" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.764001"
start="25" x1="323.072205" x2="381.467438" y="116.479980">
<![CDATA[Natural J]></text>
<text end="42" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="33" x1="381.467438" x2="453.484741" y="116.479980">
<!/[CDATA[Language]]></text>
<text end="53" font="TimesNewRoman,Bold" fontsize="15.600000" h="10.795200"
start="42" x1="453.484741" x2="532.885132" y="116.479980">
<!/[CDATA[.Generation]]></text>
</line>
</block>
</page>
</document>

43

A.4: HTML Physical Stylesheet

Filename: physical.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<xsl:for-each select="/document/page/block">
<p>
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</p>
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

44

A.5: HTML Logical Stylesheet

Filename: logical.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html><body>
<h2><center>
<xsl:for-each select="document/page/block[@IlogicalType="title']">
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</center> </h2>

<center> <p>Author:
<xsl:apply-templates select="//block/line" mode="author"/>
</p></center>

<center>Affiliation
</center>
<xsl:apply-templates select="//block" mode="affiliation"/>

<xsl:apply-templates select="//block" mode="abstract-heading"/>
<xsl:apply-templates select="//block" mode="abstract"/>

<h3>Table of Contents</h3>

<xsl:apply-templates select="//block" mode="toc"/>

<p>
<xsl:apply-templates select="//block" mode="body"/>
</p>
</body></htmi>
</xsl:template>

45

<xsl:template match="block/line[@logicalType="author']" mode="author">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>,
</xsl:template>

<xsl:template match="block[@IlogicalType="affiliation']" mode="affiliation">
<center><table width="90%"><tr><td align="center">
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>

</xsl:for-each>
</td></tr></table></center>
</xsl:template>

<xsl:template match="block[@logicalType="abstract-heading']" mode="abstract-heading">
<center><p id="{ generate-id(.) }">
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</p></center>
</xsl:template>

<xsl:template match="block[@logicalType="abstract’]" mode="abstract">
<center><table width="80%"><tr><td>
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</td></tr></table></center>
</xsl:template>

46

<xsl:template match="block[@logicalType='"section-heading']" mode="toc">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="block[@logicalType="section-heading']" mode="body">
<p id="{ generate-id(.) }">
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</p>
</xsl:template>

<xsl:template match="block[@logicalType="page-number']" mode="body" />
<xsl:template match="block[@logicalType='title']" mode="body" />
<xsl:template match="block[@IlogicalType="affiliation]" mode="body" />
<xsl:template match="block[@logicalType="abstract-heading']" mode="body" />
<xsl:template match="block[@logicalType="abstract]" mode="body" />

<xsl:template match="block" mode="body">
<p>
<xsl:for-each select="./line">
<xsl:for-each select="./text">
<xsl:value-of select="."/>
</xsl:for-each>
</xsl:for-each>
</p>
</xsl:template>

<xsl:template match="*" mode="author" />
<xsl:template match=""" mode="toc" />
<xsl:template match=""" mode="affiliation" />
<xsl:template match="*" mode="abstract-heading" />
<xsl:template match=""" mode="abstract" />

nkn

<xsl:template match=""" mode="body" />

</xsl:stylesheet>

47

A.6: Summary of Detection

Filename: summary090604_124810.txt

Page count: 10

Title found: Simulating Language Change in the Presence of Non -ldealized Syntax ...

Abstract heading found: Abstract

Abstract found

Affiliation found: W . Garrett Mitchener

Affiliation found: Mathematics Department Duke University Box 90320 Durham ...
Affiliation found: wgm @math .duke .edu

Author found: W . Garrett Mitchener

Page number found: 10

Page number found: 11

Page number found: 12

Page number found: 13

Page number found: 14

Page number found: 15

Page number found: 16

Page number found: 17

Page number found: 18

Page number found: 19

Section heading found: 1 Introduction

Section heading found: 2 Linguistic specifics of the simulation
Section heading found: 3 Adaptation for Markov chain analysis
Section heading found: 4 Tweaking

Section heading found: 5 Results

Section heading found: 6 Discussion and conclusion

Section heading found: References

48

Page count: 10

Title found: Online Learning of Relaxed CCG Grammars for Parsing to Logical ...

Abstract heading found: Abstract

Abstract found

Affiliation found: Luke S . Zettlemoyer and Michael Collins
Affiliation found: MIT CSAIL

Affiliation found: Isz @csail .mit .edu ,mcollins @csail .mit .edu
Author found: Luke S . Zettlemoyer and Michael Collins
Author found: MIT CSAIL

Page number found: 678

Page number found: 679

Page number found: 680

Page number found: 681

Page number found: 682

Page number found: 683

Page number found: 684

Page number found: 685

Page number found: 686

Page number found: 687

Section heading found: 1 Introduction

Section heading found: 2 Background

Section heading found: 3 Parsing Extensions : Combinators
Section heading found: 4 Learning

Section heading found: 5 Related Work

Section heading found: 6 Experiments

Section heading found: 7 Discussion

Section heading found: References

49

