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Statistics for Computing 
Research Students

Experiment design

Example 1: Algorithm speed

• Aim: To compare speed of 3 sorting 
algorithms A, B, C.

• Method: Run each algorithm once on 
the same data.

• Results:    A: 7.3s  B: 6.5s  C: 11.8s

• What can we conclude?

Variables

• Explanatory/covariate (independent)
– Variable that is controlled/known in the 

experiment

• Response/outcome (dependent)
– Variable that is measured outcome

• Variables in example 1?

Confounding Variables

• Related to both independent and 
dependent 
– As time passes, child grows taller and 

country’s GDP increases.
• Could falsely conclude: child’s growth impacts 

GDP.

– Study of gender risk of cancer
• Smoking confounds

– See also “Simpson’s paradox”

Dealing with confounding 
variables

• Control
– Remove all smokers from cancer study

• Conclusions are limited to non-smokers
• May bias results if choice to smoke is related to 

other cancer-causing factors (e.g. suburb) 

• Measure and model
– Include smoking as an independent

variable in model
– Estimate risk due to smoking and

gender

Randomness

• Identical circumstances can produce 
different outcomes

• Real-world measurements are subject 
to measurement error
– Response variable and/or covariate

• Individual cases are subject to unknown 
factors and real-world randomness

• Modelled as random noise in
response variable; noise in covariate
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Example 1: Algorithm speed

• Aim: To compare speed of 3 sorting 
algorithms A, B, C.

• Method: Run each algorithm once on 
the same data.

• Results:    A: 7.3s  B: 6.5s  C: 11.8s
• What are:

– Independent and dependent
– Possible confounding variables
– Sources of randomness?

A ‘valid’ conclusion

• B is fastest
– On that data set   (independent)
– Using that code    (independent)

– In that programming language  (ind)

– With that compiler   (ind)
– On that machine    (ind)

– Running that OS    (ind)

• Provided there were no other 
programs running during the tests!

Let’s design an experiment

• Many data sets – easy
• Different sizes of data set – not so easy

• Different machines – not much choice
• Different languages – difficult

• Different programmers
• Different OS – not much choice
• Control/measure background 

activity

Example 1: Experiment

• A variety of data set sizes: 
10,20,50,100,200,500,1000,…

• N random data sets of each size

• Run each algorithm on each data set
• Control other computer activity as much 

as possible
• Use different machines, compilers, OS

Allocation strategy

• Complete
– All combinations of explanatory variables

• Same data sets for each algorithm
• Test all algorithms on all machines, OS, etc

• Randomised
– Randomised blocks – balanced random 

selections

• Experiment design
– Selects subset of cases to study

Example 2: Human factors

• Question: Do users find it easier to use 
web sites that have drop-down menus 
or ones that use on-screen menus?

• Ethics approval for human experiments
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Variables

• Explanatory
– Drop-down vs on-screen menus

• Response (what we measure)
– User preference statements (informal)
– Likert scale 1-5

• “Site B was easier to use than site A”
• SD, D, N, A, SA

– Time taken to complete a task

• Frame the research question clearly…

Other explanatory variables

• Prior experience of the user
• Gender, age, ethnicity

• Physical ability (to control mouse etc)
• Input device (mouse, touch pad, etc)

• Site colours, appearance, fonts
• Colour blindness

Confounding variables

• Site complexity
– Larger sites more likely to use drop-down 

menus, but may be more difficult to 
navigate because they are larger

• Site designer ability
– More experienced designers may be

more likely to use drop-down menus
and also produce better site
organisation + ease of use

Experiment design

• Control confounding variables?
– Custom-built web sites for tests
– Same content and design
– Differ only in menu technology
– But:

• Are the test sites representative?
• Design, structure, placement of menus –

comparable?
• Test site designer is an 

independent variable!

Learning

• Doing a task changes a person – they 
learn

• Using one test web site affects 
performance on paired test web site

• Cross-over design

• For limitations and alternatives:
– http://www.uq.edu.au/~hmrburge/

stats/twotrials.html

Sample size

• How much data do I need to have a 
strong chance of seeing the effect I am 
looking for if it is there?
– An experiment that could never show the 

desired outcome is worse than useless.
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Experiment validity

• Internal validity: 
– Is the experiment conducted properly?  
– Are there confounding variables etc not 

considered?

• External validity:
– Do the results generalise?

• Test, re-test
– Repeat the whole expt and analysis

Algorithm adaptation

• During algorithm development, we may 
test and then improve the algorithm 
iteratively.

• This can ‘adapt’ the algorithm to 
perform well on test data but it
may not perform well on other
data.

A (silly) example

• What is the fastest algorithm to sort the 
following data (assume it is in an 
array)?
1  7  3  8  11  9  2  6  16  5  0  4

Real examples

• Choose the best statistical model (or 
Artificial Neural Network/Decision 
Tree/other learning system) for your 
data.

• Just about any program to extract 
information from data can be
adapted.
– Solving CAPTCHAs

– Parsing English queries

Ways not to avoid adaptation

• My algorithm is based on fundamental 
principles
– Only OK if truly established a priori

• I have a large data set that I use for 
testing

• All parameters are set from the
data in my final algorithm

Avoiding adaptation

• Reserve a portion of data set for final 
testing
– Once-off run of final tests, report those 

results whatever they are

• If your algorithm sets parameters from 
data, (e.g. learning or fitting
a statistical model), use
cross-validation for final testing
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Cross validation: motivation

• Algorithm where:
– Run A on training data to set parameters P
– Run A(P) on new data to analyse it

• E.g.
– ANNs and statistical models

– Decision trees

– Person (face/gait/voice/etc) 
recognition

Problem

• If we use data to set the parameters 
and then test performance on the same 
data, results are biased (‘adapted’)

• Idea: 
– Set parameters (train) on N/2
– Test on remaining N/2

• Problem:
– Limited training data (N/2) and

test data (N/2)

Cross validation

• Train on, say 80% and test on 20%.
• Do that 5 times.

Take-home messages

• Think response, explanatory, 
confounding.

• Other variables – are they having a 
random effect or held constant?

• Formulate the research question clearly 
in advance.

• Understand what result is expected.
• Human experiments are more

difficult.

Take-home messages

• Develop algorithms using a subset of 
your data.

• Test algorithms on data not previously 
used.

• Use cross-validation for algorithms that 
involve training.

• Design for analysis: next time

Statistics for Computing 
Research Students

Analysis of Results



6

• You’ve done your experiment
now what ?

• Depends on the model you are 
testing…

Models

• Understand model before experiment…
• Mean + noise

– The data items have a mean value plus 
noise

• Mean time to sort 10000 items 
– Algorithm   A: 7.3s   B: 6.5s  C: 11.8s
– Is B really better than A?
– What about C?

Distributions and randomness

• Actual measurements:
– A: 7.8 7.4 6.9 7.0 7.3 7.2 6.8 7.7 …
– B: 6.3 6.7 6.2 6.5 6.6 6.8 6.4 6.9 …

– C: 12.9 11.2 10.7 12.3 10.1 11.9 11.5 …

• Central Limit Theorem
– Mean is Gaussian (Normal)

with std dev s/√N where s is
sample std dev

Gauss distribution

• Well-known bell curve

µ µ+σ µ+2σµ-σµ-2σ

Estimation

• A statistic T is an estimate of a true 
parameter θ
– AverageX is an estimate of mean µ
– Std devn s is an estimate of σ

• The question is: 
how accurate is the estimate?

Confidence interval

• B:X = 6.5   s = 1.2   N = 100
– We are 95% sure that an individual sample X will 

lie between µ – 2σ and µ + 2σ
• i.e. 4.1 and 8.9 (approximating µ byX, σ by s)

– We are 95% sure thatX lies between 
µ – 2σ/10 and µ + 2σ/10
• i.e. X is within 2σ/10 of µ.

– Therefore, we can say that 95% likely that 
the true mean µ lies within 2σ/10 ofX. 

• i.e. µ is likely between 6.2 and 6.8 (approximating σ by s)
• This does not say whether B is better

than A or not
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Confidence interval

• Range of values with probability 1-α that 
the true parameter θ lies in the range

• e.g. Under normality, 95% (α = 0.05) CI 
for the mean isX ± 1.96σ/√N
– (If s is used instead of σ, the CI changes 

somewhat – see Student’s t-distribution)

Comparing two means

• T-test
– Take difference between means
– Test whether it is zero

• If data are paired (same test data for 
sorting in each pair), use paired t-test

• Assumes equal variance

Testing a hypothesis

• Hypothesis: “Algorithm B is better than 
algorithm A”

• More formally: “The mean execution 
time for algorithm B is less than A”
– Median may be more appropriate?

The null hypothesis

• What would be the case if our 
hypothesis of signifiance is not true?

• “The mean execution time for 
algorithms A and B are the same”

• H0: µA = µB

• H0: µA – µB = 0

Hypothesis testing

• We say that the null hypothesis is 
rejected (and that there is a statistically 
significant effect) if 
– the probability of 
– results at least as extreme as the results 

we obtained

– occurring by chance
– is sufficiently small (<5%).

Hypothesis testing example

• Flip a coin N times and we happen to 
get heads every time.

• Is the coin ‘fair’ or is it a double-headed 
coin?

• N=2   25% chance of HH with fair coin

• N=4  6.25% chance of HHHH with fair
• N=10 0.1% chance of HHHHHHHHHH!
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Hypothesis testing

• We are interested in the probability
that a result at least as extreme as 
our result could happen by chance if 
the null hypothesis is true (i.e. if there 
is nothing significant happening).

• P-value: This probability.
• If p-value < 0.05, we say it is significant.
• Reporting p-values is sensible: p-value 

of 0.001 is much more significant!

Relating CI and Hypothesis 
testing

• If the null hypothesis lies inside an α-
level confidence interval, then the null 
hypothesis is accepted.

• The α-level that puts the null hypothesis 
at the edge of the confidence interval is 
the p-value of the hypothesis test.

Relating CI and Hypothesis 
testing

T

α-level CI

Tail probabilities
total α

H0: θ = 0

0

Subtleties

• Single-sided test versus double-sided 
test

• Different kinds of confidence intervals

Regression and residuals

• A linear model
– y = Ab + c
– y, b, c are vectors; A is a matrix

• Fitting model yields
– y = Ab + c

• Residuals: error in model fit
– r = y - y

ˆ ˆ ˆ

ˆ

Regression and residuals
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ANOVA

• ANalysis Of VAriance
• Determine whether linear model 

parameters are significant

• Assumes normality (Gaussian 
distribution) of residuals

Regression and residuals
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ANOVA

• SS = r.r = Σr i
2

• Compare mean model with line model
– SSline = r.r
– SSmean = Σ(y-y)2

• ANOVA says:
– SSmean = SSline + SSslope

– If SSslope is large compared to
SSline then slope is significant

-

ANOVA

• SSslope / SSline is F(1,N-2) [a known 
distribution] – F-test

• Assumes residuals are:
– Normal (Gauss) distribution
– Zero mean
– Equal variance

• MANOVA: Multivariate

More models

• GLM (Generalised Linear Models)
– y = f(Ax + b)
– f is monotonic

• Feed-forward ANNs
– y = f(Σif(Aix + b) + A0x + b)

– More levels are possible but
two levels gives a universal 
approximator

Statistics 
Mean(s)
Regression fit
Median(s)
…

Data'
3 9 6 4
1 7 6 2
7 3 9 2
1 7 6 2
…

Statistics 
Mean(s)
Regression fit
Median(s)
…

Bootstrap
Data
1 7 6 2
3 5 8 2
3 9 6 4
7 3 9 2
…

Statistics (e.g.)
Mean(s)
Regression fit
Median(s)
…

Analysis

Data'
3 9 6 4
1 7 6 2
7 3 9 2
1 7 6 2
…

Resample
Analysis

Conf Intervals 
for statistics,
p-values, 
conclusions

Boo
tst

ra
p

an
aly

sis
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Types of bootstrap

• Resampling method
– Random with replacement
– Blocks (time series, or other correlated)

• CI estimation methods
– Percentiles (1st order accurate)

– BC, studentized (2nd order accurate)

Comparison of bootstrap

• Bootstrap: Non-parametric: distribution 
(of statistics) need not be known
– Flexible: can provide confidence intervals 

for statistics that are not well understood 
(i.e. not means/variances under normality)

• ANOVA/t-test, etc: Parametric:
based on analysis of distribution
– More powerful to draw conclusions

Classification/recognition tasks

• Gait/face recognition
• Spam email classifier

• “Recognise photos of the Pope”

• Calculate some measurement(s)
• Classify as A/B (good/bad) etc.

– Linear/non-linear classifier

Spam classifier

Distribution of measurements of Spam

Distribution of measurements of
good email

Spam score

•Where to put the decision threshold?

“Pope” recognition

Distribution of “Pope” measurements

Distribution of measurements of
non-Pope people

Facial parameter

•Where to put the decision thresholds?

Classification: ROC

• Receiver Operating Characteristic 
(ROC) curve

• Plot
– True positives 

(= 1-false negatives)

– False positives

• As threshold is
varied T

ru
e 

p
os

iti
ve

s 
(s

en
si

tiv
ity

)

False positives (specificity)
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ROC

• If the system is made more sensitive to 
true positive cases, it is more likely to 
produce false positives as well.

• Depending upon cost/benefit ratio of 
false positive and false negative, can 
choose optimal operating threshold.

Classification, Testing and CI

• Spam classifier is a one-sided test
• Pope recogniser is a two-sided test

– H0: Photo is Pope

– H1: Photo is not Pope
– Threshold range is a CI for H0

• Level (α) is the false negative rate

– Better separation using more 
measurements (higher dimensionality)

Design for analysis

• Consider the formal hypothesis and null 
hypothesis

• Understand the planned analysis before 
conducting the experiments

• Ensure the data will enable the
analysis

Take-home messages

• ‘Formal’ hypothesis 
• Null hypothesis

• Model
• Statistical testing

– Parametric

– Non-parametric

• Confidence interval

Take-home messages

• Experimental work requires statistical 
analysis

• Plan for analysis before experiment

• Get help with statistics
– Only certain techniques will be relevant

to your particular questions
and experiments.

References

• Bootstrap
– http://bcs.whfreeman.com/ips5e/content/cat_080/pdf/moore1

4.pdf

– http://bcs.whfreeman.com/pbs/cat_140/chap18.pdf
– http://www.wiley.com/legacy/wileychi/eoenv/pdf/Vab028-.pdf

• ANOVA
– http://bcs.whfreeman.com/pbs/cat_140/chap14.pdf
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Resources

• http://www.causascientia.org/math_stat/
ProportionCI.html
– Testing and CI calculator for proportions

Case Study: Solving CAPTCHAs

• Questions:
– What CAPTCHA techniques are most 

difficult to solve automatically?
– How do humans and computers compare 

at solving CAPTCHAs?

Questions

• What does it mean to say a CAPTCHA 
has been solved by computer?

• What is the role of the 
experimenter/programmer in developing 
solution algorithms?

• How to measure difficulty of solving by 
computer?

Experiments

• How might you measure human 
performance at solving CAPTCHAs?

• How might you measure computer 
performance?

• What makes it difficult to measure?

Analysis

• How valid would it be to extend results 
of study to the wider field of 
CAPTCHAs?

• What useful conclusions might we be 
able to draw?

• Should experiments be different to 
enable analysis to lead to useful 
conclusions?


