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Abstract

In this paper, we reflect on what we can learn about the
processes involved in the generation of referring expres-
sions by looking at a corpus of human-produced data.
We find that the data vastly underspecifies what might
be involved algorithmically, but it does rule out a num-
ber of popular algorithms for referring expression gen-
eration as candidates for models of what people do. We
posit an alternative algorithmic schema which forces us
to focus more clearly on the questions that need to be
answered experimentally if we are to develop algorithms
that emulate human behaviour on this task.

Introduction

There are two distinct exercises we might be en-
gaged in when we develop algorithms for content de-
termination in referring expression generation. One
is an exercise in engineering, where the goal is to de-
velop algorithms that are able to effectively identify
intended referents for hearers, for use in sophisti-
cated applications of natural language generation.
Alternatively, we might be engaged in an exercise
in computational psycholinguistics, where our goal
is to model what it is that a speaker does when
he or she refers to an entity. Much existing work
is ambivalent as to which of these two tasks is the
primary concern; and while we might argue that
the two exercises are not unrelated, there are also
quite significant differences that follow from pursu-
ing either goal. Our interest in the present paper
is in the second of these exercises: how might we
develop algorithms that emulate the referring be-
haviour of humans, and in so doing, perhaps begin
to explain how humans carry out this task?

An obvious starting point for such an endeavour is
to see what the nature of human data might tell
us about possible algorithms. So, in this paper, we
examine a collection of human-produced referring
expressions, and make some observations based on
this data. Then, we consider current algorithms,
and establish that they do not serve as good mod-
els of what people do. Next, we attempt to iden-
tify some constraints that algorithms would have
to meet in order to be compatible with the human
data, and on the basis of this analysis we propose a

general schema for the task of referring expression
generation. Finally, we identify a number of crucial
details this schema leaves unspecified. Our aim is
to provoke questions that lead to experimental work
that will help to illuminate how these details might
be determined.

The Data

The data we explore here has been discussed in de-
tail elsewhere (see (Dale & Viethen, 2009)), so we
will provide here only a summary for present pur-
poses.

The GRE3D3 corpus was gathered via a web-based
experiment where subjects were asked to produce
referring expressions that would enable a listener
to identify one of a number of objects shown on the
screen. Kach participant was assigned one of two
trial sets of ten scenes each; the two trial sets are
superficially different, but the elements of the sets
are pairwise identical in terms of the factors ex-
plored in the research. Scenes were presented one
at a time. The complete set of 20 scenes is shown
in Figure 1: Trial Set 1 consists of Scenes 1 through
10, and Trial Set 2 consists of Scenes 11 through 20.
Each scene contains three objects, which we refer to
as the target (the intended referent), the potential
landmark (a nearby object), and the distractor (a
further-away object). From the experiment we col-
lected 623 descriptions of objects produced by 63
participants. Every one of these descriptions is an
instance of one of the 18 content patterns shown in
Table 1; for ease of reference, we label these pat-
terns A through R. Each pattern indicates the col-
lection of attributes used in the description, where
each attribute is identified by the object it describes
(tg for target, Im for landmark) and the attribute
used (col, size and type for colour, size and type,
respectively).

Table 2 shows the distribution of different patterns
across the 10 different scenes.! The primary ob-

'Recall that Scene 1 is essentially the same as Scene 11,
Scene 2 is essentially the same as Scene 12, and so on; so we
consolidate the data for these pairwise similar scenes.



Label | Pattern Example
tg_col, tg_type) the blue cube
tg-col, tg_type, rel, Im_col, Im_type) the blue cube in front of the red ball
tg_col, tg_type, rel, Im_size, Im_col, Im_type) the blue cube in front of the large red ball
tg_col, tg_type, rel, Im_size, Im_type) the blue cube in front of the large ball

(

(

(

(

(tg_col, tg_type, rel, Im_type)

(tg_size, tg_col, tg_type)

(tg-size, tg_col, tg_type, rel, Im_col, Im_type)
(tg-size, tg_col, tg_type, rel, Im_size, Im_col, Im_type)
(tg_size, tg_col, tg_type, rel, Im_size, Im_type)
(tg_size, tg_col, tg_type, rel, Im_type)
(tg-size, tg_type)
(tg-size, tg-type, rel, Im_size, Im_type)
(tg-size, tg-type, rel, Im_type)
(tg-type)
(tg-type, rel, Im_col, Im_type)
(tg-type, rel, Im_size, Im_col, Im_type)
(tg-type, rel, Im_size, Im_type)
(tg_type, rel, Im_type)
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Table 1: The 18 different content patterns corresponding
in the GRE3D3 corpus.
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to the different forms of description that occur

Scene #

Pattern | 1 2 3 4 5 6 7 8 9 | 10
A 17 24 36 | 32 | 26 40
B 14 | 8 3 16| 7 | 8 3 10
C 4 1 3 1
D 1 1 1
E 4 1 2
F 2 1 15 | 44 | 5 3 2 125 |40 8
G 1 14 2 1 14 1
H 1 1 13 | 2 1 2 1 17 2
I 3 1
J 1 1 1
K 12 15
L 1
M 1 7 4
N 11 | 13 14 | 14
(@) 4 1
P 1
Q 3 2
R 13| 5 9 2 2 1

Table 2: The number of content patterns per scene.

Pattern Sequence No of
(Scene #, Content Pattern participants
(1,A), (2,A), (3,G), (4,F), (5,A), (6,A), (7,A), (8,G), (9,F), (10,A) 2
(1,B), (2,B), (3,G), (4,H), (5,B), (6,B), (7,B), (8,G), (9,H), (10,B) 2
(1,N), (2,N), (3,K), (4,F), (5,A), (6,N), (7,N), (8,K), (9,F), (10,A) 6
(1,A), (2,A), (3,F), (4,F), (5,A), (6,A), (7,A), (8,F), (9,F), (10,A) 9

Table 3: Sequences of content patterns found more than once.
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Figure 1: The stimulus scenes.

servation of relevance here is that there is no one
‘correct’ answer for how to refer to the target in any
given scene: the number of semantically-distinct re-
ferring expressions varies from five (in Scenes 4, 5,
9 and 10) to 12 (in Scene 7). All of these are distin-
guishing descriptions, so all are acceptable forms
of reference, although some contain more redun-
dancy than others. Most obvious from the ta-
ble is that, for many scenes, there is a predomi-
nant form of reference used; for example, pattern
F ((tg_size, tg_col, tg_type)) accounts for 43 (68%)
of the descriptions used in Scene 4, and pattern A
((tg_col, tg_type)) is very frequently used in a num-
ber of scenes.

All participants were presented with the scenes in
the same order, so we can also look at variation
across subjects in terms of the sequences of descrip-
tions they provided. Across the 63 subjects, there
are 47 different sequences; of these, only four occur
more than once. The recurrent sequences, i.e. those
used by at least two people, are shown in Table 3.

All of the above supports an observation which is
hardly new, and yet appears to have been ignored
until only recently: when it comes to reference, dif-

ferent people do different things and each person
does different things in different situations.

A second observation from this data is that the re-
ferring expressions that people produce are often
informationally redundant. 372 of the 623 descrip-
tions in the corpus (59.71%) contained at least one
property that could be dropped without rendering
the description ambiguous. Of these, 217 contain
at least two redundant properties.

Existing Algorithms

Existing algorithms have generally not been de-
signed with variation in mind. As we noted earlier,
much of the work on algorithms does not clearly
state whether its objective is an engineering one or
a psycholinguistic one, following the distinction we
made at the beginning of this paper; and so, if these
algorithms were actually developed with engineer-
ing objectives in mind, it would be unfair to criticise
them for failing to meet the objectives of psycholin-
guistic modelling. Nonetheless, an examination of
the ways in which these algorithms do not match
human behaviour is insightful.



Given an intended referent R, a set of distractors
C, a set of attributes Ly, and the set of properties
to use in a description D:
Let D=0
repeat
add one selected attribute € Li to D
recompute C given D
until C' =0

Figure 2: The structure of referring expression gen-
eration algorithms

We focus here on two algorithms that form the basis
of many more recent approaches: the Greedy Algo-
rithm (Dale, 1989) and the Incremental Algorithm
(Dale & Reiter, 1995), the latter of which has served
as a starting point for many other algorithms in the
literature. The Greedy Algorithm targets the con-
struction of minimal distinguishing descriptions, i.e.
fully distinguishing descriptions which contain no
informational redundancy and are as short as pos-
sible. The Incremental Algorithm drops the explicit
aim of finding the shortest description, but, like the
Greedy Algorithm, considers its work done as soon
as it has constructed a distinguishing description.
It selects properties from an ordered predefined list
without backtracking, which can sometimes result
in descriptions containing redundant properties.

The behaviour of both these algorithms is cap-
tured by the algorithmic schema shown in Figure 2.
What makes one algorithm different from another,
in terms of this schema, is the particular means by
which the next attribute to include is selected: in
the Greedy Algorithm the attribute which rules out
most potential distractors is chosen next, whereas
in the Incremental Algorithm the next attribute se-
lected comes from a pre-determined preference or-
der, and is included provided it adds some discrim-
ination to the description. This embodies what we
might call ‘the assumption of serial dependence’:
both algorithms make the inclusion of a property
dependent on its discriminatory power given the
properties that have been selected so far.

Now, neither of these algorithms were necessarily
developed as models of the human production of
referring expressions. However, it is instructive to
review how they behave differently from humans.

First, while these algorithms strive to avoid re-
dundancy in the descriptions they produce, as we
have already noted, people on the whole do not.

The Greedy Algorithm’s prioritisation of minimal-
ity above all else makes it a poor model of human
behaviour. The lack of backtracking in the Incre-
mental Algorithm can sometimes result in descrip-
tions that contain redundant properties, and this
might lead us to think that it is a better model of
human behaviour. But our data contains some re-
dundant expressions that the algorithm will never
generate, such as the top yellow cube for Scene 15,
where either the top cube or the yellow cube would
have sufficed to describe the target.

The algorithms also fail as models of the variation
found in human data. In the case of the Greedy
Algorithm, the only scope for variation in output
arises from random choices to be made whenever
multiple properties have the same discriminatory
power. In earlier work (Viethen & Dale, 2006), we
demonstrated that the Incremental Algorithm could
account for most variation in a different corpus by
changing the preference ordering; but in order to do
this for either corpus, a given speaker’s preference
ordering has to change from one scene to the next,
which does not seem an entirely plausible charac-
terisation of what people do.

What The Data Supports

So: existing algorithms don’t seem to serve as good
explanations of the human data. Can the data tell
us what a more explanatory algorithm would have
to be like?

In (Dale & Viethen, 2009), we noted that, while
there appears to be great variety at the level of the
descriptions the participants in our experiment pro-
duced, there is less variety, and more commonality,
when we look instead at the extent to which the
use of particular properties is shared by different
speakers on the basis of what we called character-
istics of scenes.? We used Weka (Witten & Frank,
2005) to train decision trees on the scene character-
istics and participant IDs to predict whether each
property, taken individually, should be included in
a description; we also tried to learn the full content
pattern. The learner’s success rate was compared to
the baseline of Weka’s 0-R classifier, which simply
chooses the majority class.?

Table 4 demonstrates that the data allows us to

2See (Dale & Viethen, 2009) for a full description of what
counts as a characteristic of a scene; in essence, these are
primarily binary properties of the scene as a whole, such as
whether or not the target object and the landmark object
share colour.

3The results reported are for the accuracy of a pruned J48
decision tree, under 10-fold cross-validation.



Using Scene Using Scene Number
Learned Item Baseline | Characteristics || Characteristics of
(0-R) Only and Participant | Heuristics
tg_col inclusion 78.33% 78.33% 89.57% 5
tg_size inclusion 57.46% 90.85% 90.85% 1
rel inclusion 64.04% 65.00% 81.22% 17
Im_col inclusion 74.80% 87.31% 93.74% 15
Im_size inclusion 88.92% 95.02% 95.02% 1
full content pattern | 28.01% 47.99% 57.62% 37

Table 4: Accuracy of learning attribute inclusion and full content patterns.

increases (p<0.01) are marked in bold.

Statistically significantly

learn whether an individual property should be in-
cluded with a much higher success rate than it
allows us to learn which content pattern to use,
no matter which set of features we look at. The
last column in Table 4 shows the number of differ-
ent scene-based heuristics across speakers for each
learned item. To predict the full content pattern for
each person, the learner requires 37 different heuris-
tics, of which 32 are only used for one participant
each. The numbers of different heuristics required
to predict the inclusion of individual properties are
much lower, and, as we discuss in (Dale & Viethen,
2009), there is quite a lot of overlap between par-
ticipants in terms of the heuristics used.

The ‘context-independent’ strategies (the 0-R base-
lines) work surprisingly well for predicting the inclu-
sion of some attributes in the human data. As has
been noted in other work, colour is often included
in referring expressions irrespective of its discrim-
inatory power, and this is borne out by the data
here. Perhaps more suprising is the large degree to
which the inclusion of landmark size is captured by
a context-independent strategy.

Improvement on all attributes other than target
colour increases when we take into account the char-
acteristics of the scenes, confirming the widely-held
view that the context of reference does indeed make
a difference. When we add participant ID to the fea-
tures used in the learner, performance improves fur-
ther still, indicating that there are speaker-specific
consistencies across contexts.

In our earlier work, we used these findings to argue
for a notion of speaker profiles, by means of which
the referring behaviour of a given speaker can be
captured as a collection of attribute-specific heuris-
tics. These heuristics are exactly what is learned in
the machine learning experiments for each individ-

ual property.

The most important observation here is that, in or-
der to capture the variation in the data, we con-
sidered the properties used in descriptions indepen-
dently of one another. As we saw in the previous
section, this is not what the Greedy Algorithm and
the Incremental Algorithm do. Both of these algo-
rithms make the inclusion of each property depen-
dent on which other properties have already been
chosen. Our analysis here suggests that if we aban-
don this assumption of serial dependency, we may
get closer to modelling the human data; it seems
plausible that humans, at least sometimes, select
properties independently of one another.

The second key element of the schema presented
in Figure 2 is a check to see if the content of
the description chosen so far is sufficient for the
task. People’s high success rate in identification
tasks makes it implausible to suggest that the world
just happens to be set up so that ‘unconsidered
references’, as we might call them, tend to work.
Examples like that cited by (Sluis, 2005) suggest
strongly that speakers do indeed self-monitor to
determine whether the descriptions they are con-
structing achieve their intended goals:

Uhm, I’'m gonna transfer to the phone on the table by
the red chair ... [points in the direction of the phone]
the ...the red chair, against the wall, uh the little table,
with the lamp on it, the lamp that we moved from the
corner? ...the black phone, not the brown phone ...

This leads us to propose a more general schema
for referring expression generation that is a gen-
eralisation of the previous one; this is presented in
Figure 3. It differs from the earlier schema in two
regards. First, to break the assumption of serial de-
pendency, we allow any number of properties to be
included without checking for satisfaction after each
one. Second, we generalise the satisfaction check so



Given an intended referent R, a set of requirements
Rpg, a set of attributes L, and the set of properties
to use in a description D:
Let D=0
repeat

add some attributes € L to D
until D satisfies Rgr

Figure 3: A proposed structure for referring expres-
sion generation

that, rather than this just being concerned with the
question of whether or not the description is distin-
guishing, any number of requirements can play into
the decision. In particular, we expect factors such
as person-specific preferences for or against redun-
dancy, akin to Carletta’s ‘cautiousness’ (Carletta,
1992), or for and against certain types of proper-
ties, will play a role here, as well as external factors
such as task-criticalness and knowledge about the
listener’s conceptualisation of the task environment.

One Step Back, Two Steps Forward

It may seem like we have gone backwards here: the
algorithm schema in Figure 3 leaves more details
unspecified than did the earlier schema. But our
point is that, in fact, this is as it should be: the
data does not warrant any stronger claims about the
nature of the process of referring expression gener-
ation. This is not a bad thing; it forces us to more
clearly identify what it is that we don’t know, and
to begin to explore how we might fill those gaps in
our knowledge. In particular, from Figure 3, we can
now see that questions such as the following should
serve as a focus of experimental investigation:

1. When are properties included in a description in-
dependently of one another?

2. What scene-specific, task-specific, and person-
specific aspects result in particular properties be-
ing chosen?

3. What factors are involved in determining whether
a description is satisfactory?

As our schema is more general than the schema that
underlies existing algorithms, these questions are
more general than the questions that had to be an-
swered in order to make existing algorithms work.

Conclusions

Based on the analysis of a data set of human-
produced distinguishing descriptions, we have
shown that the classic algorithms for content selec-
tion for referring expressions are inadequate as ex-
planations of how humans describe objects. While
these algorithms might not have been designed with
this aim in mind, it is clear that if our aim is to
model human referring behaviour, we need to fol-
low a different approach.

We have presented the most specific model that is
supported by the data, which turns out to leave
many details unspecified. Finding ways to fill out
the details in this general model is the necessary
next step for those who are interested in modelling
the human production of referring expressions.
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