Natural Language Engineering 10 (1): 91-94. © 2004 Cambridge University Press 91
DOI: 10.1017/S1351324903003309 Printed in the United Kingdom

Industry watch

ROBERT DALE

Centre for Language Technology, Macquarie University, Sydney, Australia

(Received 4 December 2003)

If you wanted to make some money out of natural language processing, an appropri-
ate strategy might be to identify an area of technology that was relatively mature—
one where the more fundamental technical problems had been resolved through
a significant amount of research activity—and then identify potential applications
for that technology.

You might adopt a ‘research activity bell-curve’ model of identifying technology
maturity: see whether the number of published research papers in a specific area has
peaked and is now sloping off. On that basis, a technology that might be ripe for
commercialisation would be parsing technology. This is a very well-explored area
theoretically, and we now have a very well-established body of techniques that can
be pressed into service.

Of course, one technology doesn’t make an application. Anyone who teaches an
introductory NLP class will have spent time explaining to students that you can’t
do much with parsing technology on its own. The output of a parser serves as
fodder for the next stage of an application. It’s just one component amongst many,
and most conventional language technology applications will also require some
semantic analysis before they can do anything useful. But, provided you believe in
the autonomy of syntax, there is one application for which parsing would appear to
be the only language technology you need: grammar checking.

Grammar checking technology goes back, in one form or another, at least to the
late 1970s, when the Unix Writer’'s Workbench tools were developed (Macdonald
1983). That early system used simple pattern matching to detect a range of basic
grammatical and stylistic errors; but the same technology formed the basis of a
number of commercial products over the next 10 years, perhaps the most well
known of these being the early incarnations of Grammatik.! There are still other
products on the market today that appear to be based on this technology.

It doesn’t take much reflection to see that simple pattern-matching approaches
quickly reach their limits when you try to apply them to more complex errors. But
if you thought there might be an opening here where you could apply all that stuff
you know about syntax and parsing, you’d be too late. George Heidorn and Karen
Jensen were already applying parsing techniques to the grammar checking problem
in the early 1980s, resulting in IBM’s Critique system (Heidorn et al 1982). Heidorn

! The more recent versions that have surfaced insider Corel’s WordPerfect appear to be more
sophisticated.

92 R. Dale

and Jensen subsequently moved to Microsoft and led the development of the Word
grammar checker, first released as part of Word 97.2 Damn, another window of
opportunity missed.

But you’ve invested a lot of your career in parsing, and you're not one to give
up easily. So, where else might you try to deploy grammar checking technology to
commercial advantage? You might consider, for example, focussing on the needs of
specific groups, such as those who want or need to learn a language. Or you might try
to build a grammar checker for a language that doesn’t have one. Again, not surpris-
ingly, there are already active players on both of these fronts. Indeed, an apparently
popular strategy is to create a grammar checker for a language not already covered
in Word and then to sell or licence this technology to Microsoft. Given Word’s
international penetration, that’s a good way to reach the largest possible user base:
there are around 400 million legitimate copies of Microsoft Office out there, and
probably three or four times that number of copies when you take software piracy
into account.

Another direction you might pursue is to develop grammar checking capabilities
for other platforms. We might take ‘platform’ here to mean ‘application’, but that’s
unlikely to get you very far. On the Windows desktop, there’d be little point in trying
to develop another word processor just to sell your neat grammar checking ideas; the
two leaders, Word and WordPerfect, are too entrenched, and customers are unlikely
to switch just because of the grammar checker. Other standard office applications
from the same vendors can just use the same components, so there’s also little point
in developing a grammar checker for PowerPoint. Or you might consider ‘platform’ in
the sense of operating system: last time I looked, Star Office didn’t have a grammar
checker, so there is an opportunity there: Linux users are waiting for your contribu-
tion. With a broader interpretation of ‘platform’, there might also be possibilities on
other devices. For example, the inevitable slowness of handwriting in pen interfaces
makes it sensible to consider functionalities like automatic word completion, which
would be far less useful on the desktop. Maybe new devices also throw up possibilities
for grammar checking that aren’t so obvious on the desktop?

But these don’t seem like killer apps. So you might consider the more obvious
route to competing with products in the existing marketplace: build something that is
faster, cheaper, or better. Faster or cheaper won’t work in this case, since the speed of
current grammar checkers seems quite fast enough, and few people will pay you for
something that is part of something they’ve paid for already.

But better might work. You don’t have to look hard to find complaints about exist-
ing grammar checking technology; the web abounds with pieces on the flaws of gram-
mar checkers. More often than not, these are thinly disguised anti-Microsoft rants,
and they’re often more about user interface issues than the underlying technology.
People who are addicted to passive sentences seem to get particularly upset. Not
surprisingly, some marketing pitches play on the street perception of grammar
checkers. For example, StyleWriter, which claims not to be a grammar checker,

2 See (Heidorn 2000) for an interesting inside look at the development of the Word grammar
checker.

Industry watch 93

includes in its web pages the statement ‘we all know how annoying grammar
checkers are to use’. There are more serious critical pieces; for example, Daniel Kies’
Modern English Grammar page considers the results of running instances of the 20
most frequent errors in English through a number of grammar checkers, with less
than encouraging results;> but such empirical analyses are relatively rare.

A digression: around 15 years ago—this was before the time of Word’s grammar
checker, and in the era of the simple pattern-matching checkers—I recall giving a
talk at a conference on computers and writing, in which I heavily criticised the
grammar checkers of the day as being more than slightly brain-dead. I bolstered
my arguments with a wide range of examples where grammar checkers would give
erroneous advice or fail to catch egregious errors. At the end of the talk, someone
who taught writing to engineering students at a further education college came up
to me expressing concern. For years he’d been using the very tools I had been
criticising, and he was of the view that, despite their acknowledged limitations, they
resulted in a significant improvement in the writing of those students. I’d only started
teaching at that point and hadn’t a real idea of how awful students’ writing could
be. I've marked enough student essays in the intervening years to understand where
he was coming from.

The moral of that little story is that, if you’re reading this journal, you’re probably
better educated than the average member of the population, and you can probably
write reasonably well. Your writing is probably sufficiently good that, more often
than not, the errors the grammar checker identifies will be false positives. But
there are plenty of people who can and do benefit from the current abilities of
the technology. The point is that the grammar checker wasn’t designed for literate
language technologists. Tools like Word’s grammar checker represent a substantial
feat of technology transfer and engineering—we’re talking here about a parser that
you can throw absolutely any sentence at without it falling over*—and they provide
a valuable service to many people.’

Nonetheless, it’s clear that the current grammar checking technology out there
in the marketplace is far from perfect, and there’s lots of room for improvement.
Microsoft knows that, of course, but there’s no business case to support the develop-
ment of improvements, so the technology has remained relatively static for a number
of years. We're left with a technology base that can address a wide range of simpler
grammatical errors, but leaves a number of aspects of writing support untouched.
This is particularly the case for ‘grammatical’ errors that are more contextual
in nature, requiring that attention be paid to the subtleties of lexico-semantics,
rhetorical structure and discourse analysis. My guess is that people won’t upgrade

3 See http://papyr.com/hypertextbooks/engl_126/gramchek.htm.

4 Well, almost. I recall, but can no longer track down, an article on ZDNet or something
similar a few years ago that reported that too many prepositions or conjunctions in one
sentence could cause Word to crash. If you have a pointer to this piece, I'd be very pleased
to receive it.

3> At this point, I should make it clear that I used to work for Microsoft—although not on
the grammar checker—and that I still own shares in the company; but don’t worry, this
text has been run through a soon-to-be-released bias-checking program, and received a
high objectivity rating.

94 R. Dale

their grammar checkers until support is provided at these broader levels. Now, there
is a fair bit of research out there that might play a role in developing such tools. But
to make use of it you need two things: first, you need the syntactic substratum that
a truly broad coverage parser can provide; and you need that substratum provided
in an interactive environment so that you can build writing advisory tools around it.
These infrastructural elements are very costly to build.

And why should you build them? If you’re a Microsoft Office user, you already
have them on your desktop, inside Word. The only problem, of course, is that you
can’t get at them; there’s no API that lets you get at the results of the parser, and
Microsoft has no current plans to make an API available. If there were such an
API, we could expect a wide range of experiments built on top of it, and it’s quite
likely that some really smart tools for writing assistance would be developed. Some
life would be injected into the moribund grammar checking market. But without the
API, there’s no point in trying: any innovation you might want to build is crippled
without this infrastructure.

What are the lessons of all of this? There are at least four. First, if you really
want to use the research activity bell-curve model for identifying commercialisable
technologies, you still won’t be able to avoid a bit of crystal ball gazing. If you
wait for the peak to pass, you’ll be too late. Second, stop complaining, learn how
to switch off the specific grammar checking features you don’t like, and appreciate
the technology for what it is. Third, choose your target natural language well, so as
to avoid head-on competition with the really big guys. Fourth, next time you have
dinner with some Microsoft NLPers at a conference dinner, remind them that you’d
really like to have access to an API for the parser that’s inside Word.

If you have views on any of the above, drop a note to rdale®@acm.org, and I'll
follow up in a future column.

References

Heidorn, G., Jensen, K., Miller, L., Bird, R. and Chodorow, W. (1982) The EPISTLE Text
Critiquing System. IBM Systems Journal, 21(3), 305-326.

Heidorn, G. (2000) Intelligent writing assistance. In A4 Handbook of Natural Language
Processing: Techniques and Applications for the Processing of Language as Text, R. Dale,
H. Moisl and H. Somers (Eds.). New York: Marcel Dekker.

Macdonald, N. H. (1983) The UNIX Writer’'s Workbench Software: Rationale and Design.
Bell System Technical Journal, 62(6), 1891-1908. Reprinted in Plain Language: Principles
and Practice, Erwin Steinberg (Ed.). Detroit: Wayne State University Press (1991).

