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A Cloud-friendly RFID Trajectory Clustering
Algorithm in Uncertain Environments

Yanbo Wu, Hong Shen, and Quan Z. Sheng Member, IEEE

Abstract—In the emerging environment of the Internet of Things (IoT), through the connection of billions of radio frequency
identification (RFID) tags and sensors to the Internet, applications will generate an unprecedented number of transactions and
amount of data that require novel approaches in mining useful information from RFID trajectories. RFID data usually contain
a considerable degree of uncertainty caused by various factors such as hardware flaws, transmission faults and environment
instability. In this paper, we propose an efficient clustering algorithm that is much less sensitive to noise and outliers than the
existing methods. To better facilitate the emerging cloud computing resources, our algorithm is designed cloud-friendly so that it
can be easily adopted in a cloud environment. The scalability and efficiency of the proposed algorithm are demonstrated through
an extensive set of experimental studies.

Index Terms—Internet of Things, radio frequency identification (RFID), uncertainty, clustering algorithm, cloud computing.
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1 INTRODUCTION

Identification technology is the bridge to connect the phys-
ical world with the digital one. Accurate and efficient iden-
tification is very important to realize automatic traceability.
Radio Frequency Identification (RFID) has the capability of
automatically extracting information from microelectronic
tags attached to objects using radio waves. The identifi-
cation is wireless and does not require the line of light.
RFID was first explored in 1940s [13]. In the past decade,
research initiatives by academic organizations, industrial
interests from companies and government initiatives have
rapidly escalated new development and interests in RFID
technology. Alongside, Moore’s law has ensured that inte-
grated circuits reduce in size, cost and power consumption.
Consequently, RFID systems have become more efficient
and affordable.

Networked RFID is one of the important technological
advances that help make RFID-enabled traceability possi-
ble [29]. The basic idea behind this technique is to connect
otherwise isolated RFID systems and other software. RFID
tags only carry an unambiguous ID, meanwhile other data
pertaining to the objects, including the past and current
states are stored and accessed over the Internet. Networked
RFID brings significant and promising benefits to trace-
ability applications. For example, it makes it possible for
applications to automatically analyze recorded RFID events
to discover the current or past information of an object,
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without physical access to it. Many organizations are plan-
ning or already exploiting RFID to enable traceability. Wal-
Mart, the world’s largest public corporation by revenue, in
2005, mandated its top 100 suppliers to tag their pallets
and cases using RFID [2]. The U.S. Department of Defense
released a policy on the use of RFID to its external suppliers
and for internal operations in July of 2005 [28].

However, due to the cost and power constraints of RFID
tags, reliability concerns arise under certain circumstances.
In particular, RFID tags might not be read at all, lead-
ing to the mistaken belief that the object is not present
(noted as “missing reading”). While some errors are of
continuous nature, for example, tags which are attached to
metal surface might never be detected, most of the missing
readings only occur temporarily. For example, collisions on
the air interface or interference from other radio sources.
In distributed traceability applications that use RFID to
judge whether a number of tagged objects are presented, the
temporary missing readings result in unreliable operations.
One of the consequences is that objects’ trajectories become
incomplete. This not only affects the tracking and tracing of
individual objects (Individual Traceability), but also causes
inaccurate statistics (Statistical Traceability), which leads to
biased business decisions. We illustrate these two problems
in the following two everyday life services.

Individual Traceability. One of the key functionalities in
postal services is to allow end customers to track and
trace their products. Currently, this is enabled by using bar-
code labels, which is time-consuming and labor-intensive
because barcode has to be read by an operator using a
scanner. RFID has the ability to eliminate this operation.
However, due to the possibility of missing readings, it may
generate confusing information. For example, a package
may seem to have “jumped” from one country to another
without clearing customs. Improving the accuracy of RFID-
based traceability can boost its adoption in this kind of
applications and save human resources.
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Statistical Traceability. In supply chain management sys-
tems, distribution route planning is very important for the
cost control. Historical shipping information can be used
to adjust the routes. However, missing readings seriously
affect its accuracy. For example, assuming the average
missing reading rate is 5%, in a path where there are 10
nodes, 45% of trajectories generated by the RFID system
are incomplete in the worst case (where different objects
are missed at different nodes). Moreover, 210 different
routes may be generated in the worst case. Consequently,
it becomes very difficult for trajectory-based mining and
analysis.

One approach to tackle these problems would be to
design more sophisticated tags that are not as vulnerable to
shielding or interference. However, for RFID technology
to be ubiquitous, they must be affordable and able to be
used in hostile environments. Given these constraints, it is
more feasible to deal with uncertainties of RFID data in the
software layer [39]. There have been many data cleaning
and probabilistic event extraction methods ([9], [8], [26],
[11]) as middleware to improve the quality of RFID data.
However, most of them do not take the RFID trajectory as
the target, especially in a distributed application that may
be deployed in a wide area.

In this paper, we propose a software approach that
handles uncertainties in distributed RFID-enabled traceabil-
ity applications. We formalize the problems as trajectory
clustering and propose an efficient clustering algorithm with
a novel similarity measurement model. In a nutshell, the
major contributions of our work are as the following:

• We propose a novel similarity measure model which
is designed for RFID trajectories. This model can deal
with variants in both time and space dimensions.

• We propose an efficient clustering algorithm which
is much less sensitive to noise and outliers than
existing methods. We further parallelize the clustering
algorithm using MapReduce paradigm to make better
use of the cloud computing resources.

• We evaluate our approach with extensive experiments
and the results demonstrate the efficiency and scala-
bility of the proposed approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we give a brief review of the state-of-the-art research
on uncertainties in RFID-based systems. In Section 3,
we formalize the trajectory recovery problem. Then we
introduce the similarity measurement models for RFID
trajectories in Section 4. The clustering and merging al-
gorithms are presented in Section 5. In this section, we
also further present the parallelization of the clustering
algorithm based on MapReduce. We report the experimental
evaluation results in Section 6. Finally, we offer some
concluding remarks in Section 7.

2 RELATED WORK

In this section, we overview major techniques that are most
closely related to our work discussed in this paper.

2.1 RFID Data Cleaning

To compensate the unreliability of RFID streams, most of
the RFID stream cleaning middleware employ the “Smooth-
ing Filter” technique. SMURF [9] is a first declarative,
adaptive smoothing filter for RFID data cleaning. SMURF
models the unreliability of RFID readings by viewing RFID
streams as a statistical sample of tags in the physical world.
SMURF continuously adapts the size of the smoothing
window size to provide accurate RFID data. However,
it does not propose the optimal smoothing filter for the
readings of single tag and an aggregate signal. In [8], the
authors propose an abstracted adaptive RFID framework
called MDI-SMURF which cleans the RFID data while
shields applications from the challenges that arise when
interacting directly with sensor devices. However, this work
does not consider the impact of energy consumption of
sensor devices.

The work in [26] introduces a deferred approach for
detecting and correcting RFID data anomalies. Unlike
SMURF which cleans data according to its own rules, this
work allows applications to define detection and correction
rules and rewrites the queries based on these rules on the
data. However, it requires more overhead for the cleaning
task. In [21], a new adaptive data cleaning scheme called
WSTD is proposed. WSTD compares two window subrange
observations or estimated tag counts to detect when transi-
tions occur within a window. It does not consider how to
deal with duplicates and false positive readings.

In [41], the authors introduce a data cleaning approach
that exploits basic characteristics of RF signals and maxi-
mum likelihood operations. This method enables reasoning
about the position of RFID tags in the reader’s range
without measuring the signal strength of tag responses.
However, the scheme considers simplified properties of RF
signals, rather than general properties arising in applica-
tions. The work in [19] deals with another problem when
data streams collected by multiple readers usually contain
cross-reads1, by introducing a method that estimates the
density of each tag using a kernel-based function and keeps
the event from the reader corresponding to the micro-cluster
with the largest density. However, this scheme assumes a
fixed window size, which is not applicable for most appli-
cations. In [12], a Bayesian inference-based framework for
cleaning RFID raw data is proposed. The authors first study
an n-state detection model and formally prove that 3-state
model can maximize the system performance. Then they
extend the model to support 2-dimensional RFID reader
arrays, which is not suitable to support RFID readers in a
3-dimensional space.

There are also some generic data cleaning frameworks.
The work [5] proposes a cleaning framework that takes
an RFID data set and a collection of cleaning methods,
with associated costs, and a cleaning plan that optimizes the
overall cleaning costs by determining the conditions under
which inexpensive methods are appropriate and necessary.

1. In a small environment, a tag may be read by more than one readers at
the same time, as a result, its location is uncertain because of inconsistency
derived from the readers.
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Although the proposed scheme can achieve reduced cost, its
accuracy is not discussed. The work [7] presents the Exten-
sible Sensor Stream Processing (ESP) framework to build
sensor data cleaning infrastructures. ESP is designed as a
pipeline using declarative cleaning methods, which does not
consider the energy consumption of sensor devices.

These cleaning methods for RFID streams mostly focus
on improving the data quality in the statistical perspective,
i.e., they are specifically designed for aggregated queries
such as COUNT, AVG and SUM. Moreover, these methods
are mainly concerned with the aggregated information of
individual objects. As the result, they are not suitable
for dealing with cross-site trajectory queries in distributed
traceability applications.

2.2 Probabilistic RFID Event Processing

In the uncertain environment, extracting and processing
events from RFID data streams poses various challenges.
Consequently, regular event processing techniques are no
longer effective. In [11], a probabilistic approach called
PEEX is presented for high-level event extraction from
RFID data. PEEX translates event definitions into SQL
queries and replies on confidence tables to determine the
probability of ambiguous events. It uses partial events to
handle data errors. PEEX just adopts the existing proba-
bilistic data models and shows no improvement in effec-
tiveness. In [27], an event processing system named Lahar
for probabilistic event streams is proposed. Lahar exploits
the probabilistic nature of the data to enable declarative
queries over real time and archived streams of probabilistic
events. Lahar proposes algorithms for each class of queries
including regular queries, extended regular queries, safe
queries and unsafe queries. Unfortunately, it does not pro-
vide a comprehensive analysis on the performance of these
algorithms. Cascadia [38] is another RFID event processing
system which can cope with ambiguous RFID data by trans-
forming RFID readings into probabilistic events. However,
the event detection performance of the scheme needs to
be improved. In [23], the authors propose an approach to
perform complex event processing directly over unreliable
RFID event streams by incorporating cleaning requirements
into complex event specifications. The approach, however,
suffers a higher cost.

In [36] and [37], the authors introduce an approach for
event materialization under uncertainty, which includes a
model for representing materialized events using Bayesian
Network, and the algorithms for specifying the probability
space of an event history where Monte Carlo sampling
algorithm is used to assess materialized event probabili-
ties. This approach does not discuss other factors, such
as the priority of events. In [31], the authors propose a
probabilistic model to capture the mobility of RFID readers,
object dynamics and noisy readings. This model can self-
calibrate by automatically estimating key parameters from
the observed data. Based on the model, the authors also
propose a sampling-based technique to infer clean, precise
information about object locations from raw streams from
mobile RFID readers. However, it does not discuss query

processing over inferred data for various monitoring appli-
cations.

These models, algorithms and frameworks are designed
mainly for the extraction of high-level events from unreli-
able RFID data and derivation of their confidences. They
focus on each individual RFID-tagged object and location,
rather than the trajectories of their movements.

2.3 Uncertain RFID Stream Processing

RFID data generated by distributed-deployed readers are
often treated as streams. As the result, generic uncertain
data stream processing techniques can be applied. In fact,
some of these techniques are actually motivated by the
research on RFID data streams.

In [33], a system called PODS is proposed which
supports stream processing for uncertain data captured
using continuous random variables. It also includes a data
model that is flexible and allows efficient computation.
The authors develop evaluation techniques for complex
relational operations based on the model. However, their
work on ranking in probabilistic databases give simplistic
solutions to handling continuous distributions. The au-
thors further propose an evaluation framework [32] that
includes a general data model, approximation metrics and
approximate representations for uncertain data streams.
With this framework, both deterministic and randomized
data-stream algorithms are designed to answer complex
conditioning queries with approximate distributions with
bounded errors. However, this work mainly focuses on
the discrete probabilistic attributes. In [30], the CLARO
system is presented, which extends the work in [32] by
considering query planning for complex queries given an
accuracy requirement.

In [18], the similarity join processing problem on un-
certain data streams is studied. The authors formalize this
problem and propose effective pruning methods on both
object and sample levels to filter false alarms. Only event
queries including regular queries are handled. In [16], the
authors model the noisy sensor data, including RFID data,
as Morkovian Streams and develop the access methods
on a Markovian stream event query processing system in
Lahar [27]. This work ignores the correlations that can
result in highly inaccurate results to the queries, such as
aggregate queries, and what-if queries.

Pattern matching over uncertain event streams is another
important topic. In [1], the authors propose a formal evalu-
ation model that offers precise semantics for the new class
of queries and a query evaluation framework permitting
optimizations in a principled way. Though this work can
obtain good performance through a variety of optimizations,
it imposes a fixed evaluation order determined by the state
transition diagram, and hence is hard to handle concurrent
events. The work in [40] proposes a model to measure
pattern frequentness based on the possible world semantics.
Two mining algorithms are developed based on the model
for mining frequent sequential patterns. This work focuses
on approximate string matching over sequence data, which
may not be applicable for subsequence matching in the
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general case due to the existence of essential differences
between the semantics of subsequence and string matches.
In [20], two solutions for dealing with out-of-order event
streams are proposed, namely aggressive and conservative
strategies. The aggressive strategy produces maximal output
under the optimistic assumption that out-of-order event
arrival is rare, while the conservative one is to deal with
the common out-of-order data. In [35], the authors model
the mining of frequent itemsets as a Poisson binomial
distribution and develop an approximate algorithm which
can efficiently and accurately discover frequent itemsets in
a large uncertain database. The proposed approach is useful
for a probabilistic database with Boolean attributes, but not
applicable for probabilistic, quantitative data.

2.4 Trajectory Clustering

Trajectory clustering is an important topic in data manage-
ment and mining, which has a wide range of applications in
various areas, such as traffic monitoring, video surveillance,
cattle tracking and supply chain management.

The authors of [3] propose a clustering algorithm based
on probabilistic modeling of a set of trajectories as indi-
vidual sequences of points generated from a finite mixture
model consisting of regression model components. The
proposed method is a model-based approach that is not
scalable. Moreover, it implicitly assumes that the trajec-
tories follow the basic models, which is not applicable for
many real datasets. Unsupervised learning is carried out
using maximum likelihood principles. In [14], a feature
generation framework called TraClass for trajectory data
is proposed. TraClass generates a hierarchy of features
by partitioning trajectories and exploring two types of
clustering: (1) region-based and (2) trajectory-based. The
work in [15] presents a partition-and-group framework for
clustering trajectories, which partitions a trajectory into a
set of line segments and then groups similar line segments
together into a cluster. A problem with this approach is that
not all potential stops can be found during the clustering
process.

The authors in [17] present an effective trajectory clus-
tering framework in which a coarse-to-fine strategy is
taken. A feature called trajectory directional histogram is
proposed to describe the statistic directional distribution
of a trajectory in the feature extraction stage. Both coarse
clustering and fine clustering are based on a graph-theoretic
clustering algorithm called dominant-set clustering. The
resulting smoothed track can only be interpolated and sam-
pled to a fixed size. In [25], the authors propose an on-line
trajectory clustering algorithm. Trajectories are clustered
on-line as the data are collected, and clusters are organized
in a tree-like structure that, augmented with probability
information, can be used to perform behavior analysis. The
quality of the clusters built by the method decreases as the
number of real-time requirements increases and the object
resolution decreases.

The work [22] present an adaptation of a density-based
clustering algorithm to trajectory data based on a simple
notion of distance between trajectories. A new approach to

the trajectory clustering problem, called temporal focusing,
is sketched, to improve the quality of trajectory cluster-
ing by exploiting the intrinsic semantics of the tempo-
ral dimension. However, spatio-temporal co-presence does
not explicitly include the interactions within individuals.
Relations such as “leading”, “following”, or “setting a
trend” cannot be investigated by clustering alone. In [34],
the authors formalize non-metric similarity functions based
on the Longest Common Subsequence (LCSS), which are
very robust to noise and provide an intuitive notion of
similarity between trajectories by giving more weight to the
similar portions of the sequences. However, gaps between
similar subsequences are not considered, which may lead
to inaccuracy. The work [10] formalizes the concept of a
convoy query using density-based notions. Three efficient
algorithms are developed for convoy discovery that adopt
the well-known filter-refinement framework. The proposed
work focuses on raw trajectories, therefore missing the
related semantic information contained in the background
geographic and application databases.

3 PROBLEM DEFINITION
In this section, we first formally define basic concepts in
typical RFID-enabled traceability systems and then specify
the research problems targeted in this paper.

Definition 1 (Traceability Network). A traceability network
is a directed graph G = (V,E). V represents the set of
nodes where RFID readers are deployed and E represents
the set of possible connections between nodes. A node vi
is represented by its unique identifier, and a connection is
represented by (vs, ve) where vs and ve are two nodes.

It should be noted that a node refers to a location where
more than one readers might be installed. Unlike other
RFID systems where each reader is treated as a location, we
aggregate the readers at the same location as one node. This
is a reasonable abstraction in distributed RFID systems.

Definition 2 (Trajectory). A trajectory of a given RFID-
tagged object oi is a polyline in a three dimensional
space (V,Ts,Te), where Ts is the time space for arrival
readings and Te is the time space for leaving readings.
A trajectory TRi of oi is represented as a sequence of
points, accompanied by a unique ID of the object: TRi =
{oi, {(v1, ts1 , te1), (v2, ts2 , te2), . . . , (vn, tsn , ten)}}. Its
V-axis values, ordered by Ts values, form a path P in G.
The set of all trajectories is denoted as ST.

The deployment of RFID readers may affect the times-
tamps of arrival/leaving readings:
• If readers are deployed at the entrance and exit of a

node, ts and te (captured by entrance reader and exit
reader respectively) are different, i.e., ts < te.

• If only one reader is deployed at a node and only one
reading of each object is captured, ts = te.

• If only one reader is deployed at each node, but the
first and last readings of each object are captured, ts
and te (captured by the same reader) may be different,
i.e., ts ≤ te.

Figure 1 shows examples of RFID trajectories. When
objects move together, e.g., o2 and o3 in Figure 1, the
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Fig. 1: Examples of RFID Trajectories

timestamps when they are captured at the same node fall
into a certain range [ts, te]. With this, we define the concept
of Trajectory Cluster as the following:

Definition 3 (Trajectory Cluster). A trajectory
cluster TC is a sequence of node-range pairs,
which describes the common temporal-spatio
relationship of a group of objects. Formally, TC =
{(v1, (ts1 , te1)), (v2, (ts2 , te2)), . . . , (vn, (tsn , ten))}.

Now we define the research problems of managing
uncertainties for traceability as follows.

• Outlier Detection. Suppose TR is the real trajectory of
an object and TR′ is the one captured by the readers,
the first task is to determine whether TR′ = TR, i.e.,
to determine whether there are missing readings in the
process of capturing the object. Evidently, there is no
deterministic way to do so in the software layer. We
define the probability of TR′ 6= TR as poutlier(TR′).
The reason why we classify this problem as outlier
detection is that when objects move together and
are correctly captured, these objects should follow
the same path P during the same time range. When
TR′ misses at least one segment of the trajectory,
it can be treated as an outlier. TR′ is an outlier
if poutlier(TR′) ≥ εoutlier, where εoutlier is a pre-
defined threshold.

• Classification. If TR′ is detected as an outlier (missing
readings exist), the next task is to recover the missing
readings. Similar to the outlier detection, we can
assume that most objects’ trajectories are captured
correctly. Suppose we have the correct and complete
trajectory clusters SC = {TC1, TC2, . . . , TCn}, the
recovery task can be transformed to a classification
problem.

• Clustering. In most cases, the set of trajectory clusters

SC = {TC1, TC2, . . . , TCn} is not known before-
hand. Moreover, it may change occasionally. As the
result, in order for the classification to work, it is
necessary to generate SC by clustering the existing
trajectories.

If we can cluster the trajectories into different classes,
it is possible to detect the outliers and recover the missing
readings. Clearly, clustering is the key issue. A number of
clustering algorithms have been reported in the literature.
The representative algorithms include k-means, BIRCH,
DBSCAN, OPTICS, and STING. The models and algo-
rithms discussed in Section 2.4 are designed to cluster
trajectory data. However, in RFID-enabled traceability net-
works, especially those distribution systems such as postal
services and supply chains, clustering trajectories as a
whole could not detect similar portions of the trajectories.
We note that a trajectory may have a long and complicated
path. Hence, even though some portions of the trajectory
show a common behavior, the whole trajectory might
not. For example, in a supply chain network, when the
products are first shipped from the manufacturer’s facility
to warehouses and distribution centers, objects all move
together. Later, when they are distributed to supermarkets
and eventually end customers, their trajectories no longer
share the common patterns. If we cluster the trajectories as a
whole, it will be too sparse. As a result, the outlier detection
will not be effective because an outlier will most likely to
be treated as a different cluster. For example, in Figure 1,
objects o1, o2, o3 moved in groups from node v1 to v3. Their
sub-trajectories from v1 to v3 can be clustered in the same
group, though the full trajectories fall into different clusters.
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Name Definition Limitations

Eu
√∑n

i=1
dist(TR1(i), TR2(i))

Sensitive to noise.
TR1 and TR2
must have the same length.

DTW


0 if |TR1| = |TR2| = 0
∞ if |TR1| = 0, or|TR2| = 0
dist(TR1(1), TR2(1)) +min{ otherwise
DTW (Rest(TR1), Rest(TR2)),
DTW (Rest(TR1), TR2),
DTW (TR1, Rest(TR2))}

Sensitive to noise...
Cannot handle time range.

ERP



∑|TR1|
1

dist(TR1(i), g) if |TR2| = 0∑|TR2|
1

dist(TR2(i), g) if |TR1| = 0
min{ otherwise
ERP (Rest(TR1), Rest(TR2)) + dist(TR1(1), TR2(1))
ERP (Rest(TR1), TR2) + dist(TR1(1), g),
ERP (TR1, Rest(TR2)) + dist(TR2(1), g)}

Sensitive to noise...
Cannot handle time range.

LCSS


0 if |TR1| = 0, or|TR2| = 0
LCSS(Rest(TR1), Rest(TR2)) + 1 if TR1(1).v = TR2(1).v
max{ otherwise
LCSS(Rest(TR1), TR2)),
LCSS(TR1, Rest(TR2))}

Cannot handle time range.

EDR


|TR1| if |TR2| = 0
|TR2| if |TR1| = 0
min{ otherwise
EDR(Rest(TR1), Rest(TR2)) + subcost,
EDR(Rest(TR1), TR2) + 1, }
EDR(TR1, Rest(TR2)) + 1}

Cannot handle time range.

TABLE 1: Similarity Measurement Models

4 SIMILARITY OF TRAJECTORIES

The challenge of measuring the similarity of two RFID
trajectories lies on the variation of both time and space
dimensions. As a result, we cannot simply adopt the models
such as Euclidean Distance (Eu), Dynamic Time Warping
(DTW), Edit Distance with Real Penalty (ERP), Longest
Common Subsequence (LCSS) and Edit Distance on Real
Sequences (EDR). In this section, we will first briefly re-
view these similarity measurement models and then propose
our model.

All the models we mentioned assume that the space
dimension is a two (or higher) dimensional vector such
as v = (x, y), thus Euclidean Distance for points are
used to determine the distance between two locations,
i.e., dist(v1, v2) =

√
(v1.x− v2.x)2 + (v1.y − v2.y)2. We

cannot simply degrade this function to one dimension
by eliminating its y axis, because the locations in our
model are represented by IDs. In our model, Euclidean
Distance of two locations will degrade to: dist(v1, v2) ={

1 if v1 = v2
0 if v1 6= v2

. For the simplicity of discussion, we

denote the ith element of a trajectory TR by TR(i) and
the length of TR by |TR|. Given two trajectories TR1 and
TR2, their distance is defined by each of these models as
shown in Table 1.

DTW and ERP both suffer from the noise in the data. To
illustrate this, suppose we have four trajectories, namely2:

• TR1={(1, 1, 2),(2, 3, 4),(3, 5, 6),(4, 7, 8)},
• TR2={(1, 1, 2),(3, 5, 6),(4, 7, 8)},
• TR3={(1, 1, 2),(2, 3, 4),(4, 6, 8),(3, 9, 10)}, and
• TR4={(1, 1, 2),(3, 3, 6),(4, 7, 8),(2, 9, 10)}.

2. To be able to adopt these models, we ignore the time dimension
values and use the order as the time dimension.

If TR1 is the query trajectory, and TR2 is the same
trajectory but with readings at node v2 missing. DTW and
ERP will produce the same order: TR3, TR2, TR4, while
the correct ranking should be: TR2, TR3, TR4 (notice that
the time ranges of the trajectories are different). LCSS and
EDR do not consider the variant of time dimension either.

In this paper, we propose a similarity measurement
model called Time-parameterized Edit Distance (TED)
(see Definition 4), where the time dimension values are
also used in the calculation. Similar to the other models,
we normalize the time dimension values. The normalization
is done against the time range in consideration, i.e., if we
want to cluster the trajectories from T1 → T2, the ts and
te values will be normalized as normalized(ts) = ts−T1

T2−T1

and normalized(te) = te−T1

T2−T1
. For the sake of simplicity,

we will use ts and te to represent their un-normalized
counterparts in the remaining discussions.

In TED’s definition, we introduce a new function called
Time-parameterized Distance for two elements e1 and e2
in two trajectories, namely distt(e1, e2), which is defined
in Definition 5. TED is derived from EDR by replacing
the subcost with a time-parameterized cost. It will yield
high precision for trajectory mining tasks, whereas its recall
will not be as good as EDR because it imposes a heavier
penalty. To cope with different requirements of different
mining tasks, we also propose a recall-oriented similarity
measurement model, called Time-parameterized Longest
Common Subsequences (TLCSS), which is defined in
Definition 6.

Similarity Function TR2 TR3 TR4

TED 1 1.28 3
TLCSS 3 2.9 2.8

TABLE 2: Examples of TED and TLCSS
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Definition 4 (Time-parameterized Edit Distance).

TED(TR1, TR2) =


|TR1| if |TR2| = 0
|TR2| if |TR1| = 0
min{distt(TR1(1), TR2(1)) + TED(Rest(TR1), Rest(TR2)), otherwise
TED(Rest(TR1), TR2) + 1, TED(TR1, Rest(TR2)) + 1}

Definition 5 (Time-parameterized Distance).

distt(e1, e2) =

{ √
(e1.te − e2.te)2 + (e1.ts − e2.ts)2 if e1.v = e2.v√
(e1.te − e2.te)2 + (e1.ts − e2.ts)2 + 1 if e1.v 6= e2.v

Definition 6 (Time-parameterized Longest Common Subsequence).

TLCSS(TR1, TR2) =

 0 if |TR1| = 0, or|TR2| = 0
LCSS(Rest(TR1), Rest(TR2)) + 1− distt(TR1(1), TR2(1)) if TR1(1).v = TR2(1).v
max{LCSS(Rest(TR1), TR2)), LCSS(TR1, Rest(TR2))} otherwise

Table 2 shows the similarity of TR1 against aforemen-
tioned TR2, TR3 and TR4, which is calculated using the
two methods. Both methods yield the correct ranking. It
should be noted that with TLCSS, the larger the value is,
the more similar the trajectories are, which is the opposite
of edit-distance-based models.

5 TRAJECTORY CLUSTERING

In this section, we present our algorithms in trajectory
clustering. We also further discuss an algorithm that enables
parallel trajectory clustering based on MapReduce.

5.1 Hierarchical RFID Trajectory Clustering
Our clustering algorithm is a hierarchical one. The basic
idea is to first cluster the points projected on the (Ts, Te)
plane. Then for each cluster in this plane, expand it to the
third dimension - the location. During the expansion, the
clusters are divided into sub-clusters which represent the
“branches” at that node. The algorithm is formally defined
in Algorithm 1 (see Figure 2).

In Algorithm 1, a cluster TCpi has two characteristics,
namely the path p and the sub-cluster ID i. Path p high-
lights this cluster with the common moving path of the
trajectories, which is the projection of the trajectories on
the V dimension, while the sub-cluster ID i highlights the
difference of the trajectories along the same path p, by
clustering them with the values of the depthth elements
in Ts and Te dimensions.

The algorithm works as the following. Firstly, for all
existing clusters, we split the trajectories belonging to each
of them to different sets, according to their next stops (line
6 - 13). Then, for each set, the OPTICSt clustering routine
is performed on the time dimensions of the next stop (line
13 - 16). This process continues recursively until the length
of the path reaches the MAX DEPTH constant (line
19). This algorithm actually generates a forest of clusters
incrementally as illustrated in Figure 3. A demonstration of
the process is shown in Figure 4.

OPTICS is a typical density-based clustering algorithm.
The basic idea of OPTICS is that for each object in a
cluster, the neighborhood of a given radius ε has to contain

Algorithm 1: Hierarchical RFID Trajectory Clustering
Input: The set of trajectories: TR = {TR1, TR2, . . . , TRn}.
Output: The set of trajectory clusters: TC.

The set of outliers: OL.
1: TC = Φ, OL = Φ
2: hrtc(TC,OL, 1)
3:
4: function hrtc(clusters, outliers, depth)
5: for each cluster TCpi in clusters with |pi| = depth
6: for each trajectory TRi belongs to TCpi
7: if |TRi| > depth
8: p′i = pi + TRi(depth)
9: if TCp′

i
exists, assign TRi to TCp′

i
10: otherwise add TCp′

i
to clusters

11: end if
12: end for
13: for each newly added TCp′

i
14: replace TCp′

i
with OPTICSt(TCp′

i
)

15: outliers+ = outlier(OPTICSt(TCp′
i
))

16: end for
17: remove TCp from clusters
18: end for
19: if depth ≤MAX DEPTH
20: hrtc(clusters, outliers, depth+ 1)
21: end function

Fig. 2: Hierarchical RFID Trajectory Clustering

at least a minimum number (npts) of objects, i.e., the
cardinality of the neighborhood has to exceed a given
threshold. Therefore, in the case that noise emerging to an
object results in a missing reading (outlier), it is guaranteed
that the missing reading can be recovered through merging
the readings of some ε-neighbors of the object. For this
reason, OPTICS is robust to noise and outliers. In our work,
we use it as the clustering algorithm to group the time
dimension values for trajectory elements. In order for this
to work, we treat (ts, te) as a point in a two dimensional
plane. As a result, we denote the function as OPTICSt.
MAX DEPTH is an application-specific constant. In a
quasi-static traceable network, it is easy to determine the
value of the constant to gain the best clustering result.

5.2 Merging Clusters

The algorithm in Section 5.1 handles the outliers in time
dimensions, but does not handle the missing readings.
Generally, when missing readings happen, the trajectories
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Fig. 3: Examples of Hierarchical RFID Trajectory
Clustering
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Fig. 4: Demonstration of Hierarchical RFID Trajectory
Clustering

will have a missing node. For example, a cluster with path
p1 = {v1, v2, v3, v4} will become p′1 = {v1, v3, v4} when
objects are not read at v2. Using the hierarchical clustering
algorithm, this path will be treated as a different path than
p1, instead of an outlier. However, noticing that p′1 is a sub-
path of p1, we can merge these two clusters to recover the
missing readings.

Merging operation is simple: just merging two sets of

Algorithm 2: Trajectory Cluster Merging
Input: The set of trajectory clusters: TC = {TC1, TC2, . . ., TCn}.
Output: The set of merged trajectory clusters (in place merging):
TC.
1: Sort TC by the lengths of the paths
2: for each TC in sorted TC
3: find the set of candidates to merge to:
{TC1, TC2, . . . , TCm}

where |TCi| − |TC| = 1 and the difference of nodes is 1
4: for each TC′ in candidates
5: if TED(RT (TC), RT (TC′)) is the minimum and

TED(RT (TC), RT (TC′)) < ε
6: merge TC into TC′, re-calculate the RT for TC′

7: break
8: end for
9: end for

Fig. 5: Trajectory Cluster Merging

trajectories into one set. However, the key question is
when to do the merging. To determine this, we develop
an efficient approach. Given two clusters TC1 and TC2,
the first condition is that the difference of their node sets
must be 1, i.e., there is only one different node in their
paths. It is worth noting that the orders of nodes in the
paths must be the same. For example, {v1, v2, v3, v4} and
{v1, v3, v4} might be able to be merged, but {v1, v2, v3, v4}
and {v1, v4, v3} might not. Obviously, the time complexity
of this merge is O(1).

We also need to consider the time dimension in merging.
In this paper, we use the similarity function TED intro-
duced in Section 4 to determine whether two clusters are
similar enough to be merged. However, since clusters might
contain many trajectories, calculating average similarity for
trajectories in TC1 and TC2 will take O(|TC1| ∗ |TC2|)
in calculation time. This is inefficient in large-scale appli-
cations. As a result, we define Representative Trajectory
Similarity (RTS) of two clusters which reduces the running
time complexity of merging detection to O(|TC1|+|TC2|).
RTS is the similarity of the representative trajectories of
two clusters. First, we need to generate the representative
trajectory of a cluster. Given the fact that a cluster might
contain trajectories of different lengths because of previous
merging, we choose the longest path as the node dimension
representation. In order to generate the time dimension
representations, we calculate the average ts/te for all tra-
jectories at each node. If a trajectory does not contain
the values for a node, the average value of all the other
trajectories will be used. That is, we simply ignore this
trajectory when calculating the average time representations
at that node. This method is formally defined in Definition
7. It is easy to prove that the calculation of RT is of
complexity O(|TC|). As the result, calculating RTS will
take O(|TC1|+ |TC2|) time.

With RTS, we propose the cluster merging algorithm in
Algotithm 2 (see Figure 5). Firstly, the clusters are sorted
by the length of the paths (line 1), so that the merging is
an one-path operation. Then starting from the cluster with
the shortest path, we find all the candidate clusters (line
2-3) and choose the one with the minimum TED distance
and the distance is lower than a given threshold ε to merge
into (line 4 - 6). Note that the calculation of RT can be
time consuming, we cache that the value for each cluster
and re-calculate it (line 6) only when the merging happens.
The recalculation does not need to scan all the trajectories.
As the result, we only need one pass of all trajectories to
the merging, so the merging cost is O(|TR|).

5.3 Nearest Neighbor Classification

For outliers detected in Section 5.1, we are able to classify
them to one of the clusters. There are two approaches to
do so. On the one hand, we can calculate the similarity
between the representative trajectory of each cluster and
the outlier to find the nearest cluster. On the other hand,
we can calculate the average of the similarity between
the trajectory in a cluster and the outlier as the similarity
between the cluster and the outlier. Both approaches have
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Definition 7 (Representative Trajectory (RT)).

RT (TC) = {(
∑|TC|

i=1
e1.tsi

|TC| ,

∑|TC|
i=1

e1.tei

|TC| ), (

∑|TC|
i=1

e2.tsi

|TC| ,

∑|TC|
i=1

e2.tei

|TC| ), . . . , (

∑|TC|
i=1

em.tsi

|TC| ,

∑|TC|
i=1

em.tei

|TC| )}, where m is

the length of the longest trajectory in TC.

Algorithm 3: Map-Reduce Based Trajectory Clustering
1: function Map(Trajectory Set TS)
2: split TS to a set of sub trajectory sets: TS1, TS2, ..., TSn

3: for each TSi

4: TCi = OPTICSt(TSi)
5: emit(TSi,TCi)
6: end for

7: function Reduce(Trajectory Cluster Sets TC: TC1, TC2, ...,
TCm)

8: merge(TC) using Algorithm 2 in Figure 5
9: do classification for the outliers

Fig. 6: MapReduce-based Trajectory Clustering

their advantages and disadvantages. The first approach is
fast and simple, because the representative trajectory is
known after the cluster merging. However, it loses the
diversity of the trajectories in the cluster. The second
approach is better with the diversity, however, it takes much
longer to calculate because the complexity is O(|TC|).

Since the merging process is not mandatory, we suggest
that when the merging process exists, we use the first
approach. Otherwise, when the diversity is important, or
the merging process does not exist, we use the second ap-
proach. If the merging process does not exist, we still need
O(|TC|) time to calculate the representative trajectory.

5.4 Parallelizing Clustering in the Cloud Using
MapReduce
Our proposed Hierarchical RFID Trajectory Clustering al-
gorithm can be naturally parallelized because it adopts the
divide-and-conquer paradigm to reduce cost for dealing
with large set of trajectory data. The sub-sets of trajectories
do not overlap with each other, because they do not follow
the same routes. The merging and classification steps are
essentially gathering results from the subsets and providing
a result in aggregation. In cloud computing environment,
MapReduce is the best tool to parallelize such kind of
algorithms.

We further propose a MapReduce-based parallel trajec-
tory clustering algorithm, Algorithm 3 as shown in Figure 6.
The algorithm works as the following. In the Map function,
the sets of trajectories are split into subsets according
their routes (line 2). For each subset, we use OPTICSt

algorithm to cluster it (line 3). The small clusters are then
sent to workers for further processing (line 4). During the
Reduce phase, we merge the small clusters generated from
the worker nodes (line 8) and classify the outliers to their
nearest clusters (line 9).

6 EXPERIMENTAL EVALUATION
We have conducted extensive experiments to evaluate the
performance of the proposed approach. In this section, we

particularly focus on reporting four experimental results:
i) the quality of our trajectory clustering algorithm; ii) the
performance of the clustering algorithm; iii) the effects of
different distance functions, and iv) the performance of the
MapReduce-based parallelizing clustering. All experiments
were conducted on a Quad Core 2.7GHz PC with 2GBytes
of main memory, running on Windows 7. Our proposed
algorithms were implemented in Java 6.0.

6.1 Experimental Datasets
To the best of our knowledge, at the time of this writing,
there are no public datasets for RFID trajectories available.
In our experiments, we altered the CENTRE [4] trajectory
generator to generate several sets of data. CENTRE is a
generator of spatio-temporal objects that evolve in space
and time producing a sequence of samples (i.e., spatial
locations and their corresponding observation times) called
trajectories. The main idea is to generate trajectories that
follow some pre-defined clusters in order to stress and
probe the limits of a clustering algorithm. In order to
adapt with RFID trajectories, we modified the algorithm to
generate spatial value single-dimensionally, while generate
observation time as two-dimensional points.

Dataset Density Noise
1 Low Low
2 High Low
3 Low High
4 Medium Medium

TABLE 3: Datasets Generation

The alerted generation algorithm works as the following.
Firstly, we define the centroid trajectories which serve as
the base of the generation. Then, for each node at the
trajectory, we generate a randomized point in the time
plane which is within a given threshold away from the cen-
troid point. We name the threshold as Shift Threshold. To
simulate the missing readings, we randomly choose some
nodes at which no observations are made. The trajectories
are along routes in an RFID network which is randomly
generated. This network has 100 nodes and each node has
random outbound degree between 1 and 10. The modified
trajectory generator can produce data varying in several
aspects.
• Number of clusters: We can control the number of

clusters contained in the generated trajectories by
specifying different number of centroid trajectories.

• Density of clusters: We can control the density of clus-
ters by constraining the shift threshold. The smaller the
shift threshold is, the denser the cluster is. The effect
of this attribute of clusters is that when the density of
the clusters is high, they have less chance to be mixed
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Fig. 7: Clustering Quality Comparison

with each other. In contrast, when the density of the
clusters is low, they have more chance to get mixed.
We define three discrete values for densities, namely
High, Medium and Low, as the following: for a node at
a centroid trajectory, suppose the average distance at
time dimensions is d, then we have high density when
the shift threshold is 0.3 ∗ d, medium density when
the shift threshold is 0.6 ∗d and low density when the
shift threshold is 0.8 ∗ d.

• Noise level: We control the level of noises by spec-
ifying different probabilities of missing reading hap-
pening (noted as pmr) during generation. Similar to
the generation of different densities of clusters, we
define three discrete values of noise levels, namely
High, Medium and Low, as the following: we have
high level of noising when the value of pmr is 0.5,
medium level of noising when pmr is 0.3, and low
level of noising when pmr is 0.1.

In our experiments, we generated four static sets of
data with different configurations, as described in Figure 3.
Specifically, Dataset 1 is the “mixed scenario” where the
density of the clusters are low, meaning they will likely
overlap with each other. Dataset 2 is the “good scenario”
where the objects move together and they seldom overlap
with each other in the time dimension. In addition, Dataset
2 contains less missing readings. Dataset 3 is the “worst
scenario”, because the density is low while it contains
more missing readings. Finally, Dataset 4 is the “medium
scenario”.

6.2 Clustering Quality

In this experiment, we compared our trajectory clustering
algorithm with two other algorithms in terms of quality.
One is the Time-Focused Clustering (TFC) algorithm [22]
and the other is the Fuzzy C-Means (FCM) [24]. We
implemented the variations of these two algorithms using
the trajectory definition in our work.

Our aim is to measure the clustering quality while
varying the number of clusters in the datasets. Unfortu-
nately, there is no well-defined measures for density-based
clustering methods. We therefore defined a simple quality
measure for our analysis. In particular, we exploited the
Sum of Squared Error (SSE) [6] to represent the quality of
the clustering.

Definition 8 (Qualify Measure of Clustering Algorithms).

Q =
∑nclusters

i=1 ( 1
2|Ci|

∑
x∈Ci

∑
y∈Ci

distt(x, y))

Figure 7 shows the SSE for the three clustering al-
gorithms (HRTC, TFC and FCM) with the four datasets
defined in Table 3. From the results, we can conclude that
the number of clusters affects the performance of all three
algorithms. The reason behind this is that with the increase
of the number of clusters, trajectories are more likely to
overlap in time dimension. As a result, the clustering errors
will increase.

For Dataset 1 (Figure 7a), we can see that our proposed
HRTC outperforms the other two algorithms after the
number of clusters becomes considerably large (70 in our
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Fig. 8: Clustering Quality vs. Uncertainty

experiment). This is because HRTC is best among the three
in describing the co-location characteristics of RFID objects
that dominate the quality of clustering (SSE) when the
number of clusters is large (above 70 in our experiment),
FCM suits for the RFID data that follows a linear regression
model when the data appears truly random, and TFC is best
when the number of clusters is relatively small. However,
TFC quickly becomes the worst among the three with the
increase of the clusters because it does not cope well with
uncertainties.

For Dataset 2 (Figure 7b), we can see the SSE for three
algorithms are much similar with Dataset 1. This is because
Dataset 2 is the “good scenario” where almost no uncer-
tainty is introduced to the clustering data. Though HRTC
and FCM both take uncertainty into account, they only
outperform TFC noticeably when the number of clusters
is significantly high (100 in our experiment), where the
trajectories are more likely to overlap.

For Dataset 3 (Figure 7c), it is clear that in extreme
conditions where trajectories overlap a lot and the level
of noise is high, HRTC outperforms the other algorithms.
The reason is twofold. Firstly, HRTC introduces the clas-
sification process which puts the identified outliers into
the best possible clusters, which minimizes the errors. The
other two algorithms both perform the hard partition where
outliers are not identified but forced to be accepted by one
of the clusters. Secondly, HRTC treats locations in the RFID
trajectories as non-directional points and models the time
dimension as a range, while the other two algorithms have
to take the median of range in order to work.

For Dataset 4 (Figure 7d), the result exhibits a similar
pattern as for Dataset 1, with the exception that TFC is
always outperformed by the other two algorithms. We can
conclude that for an RFID trajectory which has its unique
characteristics, a model that fits better can bring much
benefit for the clustering.

Because in most application scenarios, the number of
clusters produced is usually large due to the high level of
uncertainties in the datasets and weak correlation among
events, our HRTC is clearly superior to FCM and TFC in
clustering quality measured by SSE. This outperformance
becomes increasingly significant as the number of clusters
increases because HRTC can cope with uncertainties much
better than the other two. This observation can be easily
verified from Fig. 7a, Fig. 7c and Fig. 7d, with the ex-
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ception of Fig. 7b in which no uncertainty is taken into
consideration.

We are also interested in how HRFC performs on differ-
ent datasets. Figure 8 shows the result of this experiment.
It is easy to see that the performance of HRFC is affected
by the level of uncertainty in the datasets. For Dataset 2, it
performs the best, while for Dataset 3, the SSE increases
noticeably faster than the other scenarios. However, the
overall performance of HRFC is quite steady.

6.3 Clustering Efficiency
In this experiment, we compared our trajectory clustering
algorithm with two other algorithms (TFC and FCM) in
terms of efficiency. We recorded the time that was used to
finish clustering for all three algorithms, and the results are
shown in Figure 9.

In general, we can see that TFC outperforms the other
two algorithms. This is because it does not care about
uncertainties in the data so it does not spend extra time
on it. Between the two algorithms that take uncertainty
into account, HRFC outperforms FCM because FCM needs
to run several rounds of the clustering algorithm on all
trajectories in the dataset as a whole, while HRFC splits the
dataset first and run clustering algorithm on each partition.

From Dataset 3, we can see that both HRFC and FCM
suffer from the uncertainties in terms of running time.
For HRFC, it is because there are more outliers so more
classification steps (numberoutliers∗numberclusters) were
involved. For FCM, because it has to run more rounds
of clustering to reach the stable condition, a significant
amount of time is required. From Dataset 2, we can see
that when the level of uncertainty is not high, the running
time required by HRFC is close to TFC.

We are also interested in how efficient HRFC is for
the four different datasets. Figure 10 shows the result of
this experiment. From the figure, it is easy to see that the
performance of HRFC is affected by the level of uncertainty
in the datasets.

6.4 Similarity Functions
In this experiment, we compared the quality of our pro-
posed algorithm with different similarity functions, includ-
ing LCSS, EDR and the two functions that are introduced
in Section 4, namely TED and TCLSS. The result is shown
in Figure 11.
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Fig. 9: Clustering Efficiency Comparison

From the figure, it is clear that the proposed TED and
TCLSS produce better clustering quality than LCSS and
EDR. This is mainly due to the reason that they take the
time dimension into account for measuring the similarity
of two trajectories. TED and TCLSS almost yield the same
clustering quality in all four datasets.

6.5 Parallelization Performance
In this experiment, we compared the performance of HRFC
algorithm under centralized and parallelized settings. We
particularly implemented the MapReduce-based clustering
algorithm proposed in Section 5.4. The parallelized algo-
rithm was implemented in Java using Hadoop framework.
The experiment was conducted using ten Amazon EC2
micro instances. The result is illustrated in Figure 12.

From the figure, we can see that the MapReduce-based
algorithm outperforms its centralized counterpart when the
number of clusters reaches 55. When the number of clusters
is less than 55, the communication cost used to transfer
the data to worker nodes is larger than the time saved by
parallelization.

7 CONCLUSION
Recent advances in technologies such as radio-frequency
identification (RFID) have made automatic tracking and
tracing possible in a wide range of applications. However,
there are still numerous technical difficulties in realizing
traceability applications in large-scale, uncertain environ-
ments such as the emerging Internet of Things (IoT). In
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this paper, we have introduced an efficient trajectory model
and developed a novel clustering algorithm to cluster RFID
trajectories with the capability to recover missing read-
ings. Our algorithm is scalable and efficient, outperforming
existing methods such as Time-Focused Clustering (TFC)
algorithm and Fuzzy C-Means, as demonstrated by the
results from extensive experimental studies.

The experimental studies of our clustering algorithm
have been conducted using synthetic and offline data. Our
future work includes further performance evaluation with
real data from a large-scale supply chain management
system, and online clustering and recovering of RFID
trajectories.
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Fig. 11: Similarity Functions Comparison
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