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Data-driven Web services build on service-oriented technologies to provide an interoperable method of in-
teracting with data sources on top of the Web. Data Web services composition has emerged as a flexible
solution to answer users’ complex queries on the fly. However, as the number of Web services on the Web is
growing quickly, a large number of candidate compositions that would use different (most likely competing)
services may be used to answer the same query. User preferences are a key factor that can be used to rank
candidate services/compositions and retain only the best ones. In this paper, we present a novel approach
to compute the top-k data service compositions based on user preferences. In our approach, we model user
preferences using fuzzy sets and incorporate them into the composition query. We use an efficient RDF query
rewriting algorithm to determine the relevant services that may be used to answer the composition query.
We match the (fuzzy) constraints of the relevant services to those of the query and determine their matching
degrees using a set of matching methods. We then rank-order the candidate services based on a fuzzifica-
tion of Pareto dominance and compute the top-k Data service compositions. In addition, we introduce a new
method to increase the diversity of returned top-k compositions while maintaining as much as possible the
compositions with the highest scores. Finally, we describe the architecture of our system and present a thor-
ough experimental study of our proposed techniques and algorithms. The experimental study demonstrates
the efficiency and the effectiveness of our techniques in different settings.
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1. INTRODUCTION
Recent years have witnessed a growing interest in the use of Web services as a reliable
means for e-commerce, content publication and management, enabling users to per-
form several operations, like searches, purchases and data uploads [Carey et al. 2012;
Dustdar et al. 2012]. This type of Web services is known as data-driven Web services
[Deutsch et al. 2004] or data services for short, where Web services are typically pow-
ered by databases. Moreover, Web users often need to compose different Web services
to achieve a more complex task that cannot be fulfilled by an individual Web service.

User preferences play a major role in the customization of the composition process.
Therefore, it is important to help users formulate their preferences since they may
not be able to identify their concrete preferences, i.e., their preferences are with some
fuzziness. A more general and crucial approach to represent this kind of preferences
is based on the fuzzy sets theory [Dubois and Prade 2000][Hadjali et al. 2008]. Fuzzy
sets are very appropriate for the interpretation of linguistic terms, which constitute a
convenient way for users to express their preferences. For example, when expressing
preferences about the “price” of a car, users often employ linguistic terms like “rather
cheap”, “affordable” and “not expensive”.

One of the most challenging problems in data service composition is that due to the
proliferation of data services and service providers, a large number of candidate com-
positions that would use different (most likely competing) data services may be used
to answer the same query. It is therefore important to set up an effective data service
composition framework that would identify and retrieve the most relevant data ser-
vices and return the top-k data service compositions according to the user preferences.

The following example presents a typical scenario that clearly shows the different
challenges involved in finding the top-k data service compositions.

1.1. Motivating example
Consider a set of car trading Web services in Table I (i.e., typical data services that
can be provided by systems like the e-Bay). The symbols “$” and “?” denote inputs and
outputs of data services, respectively. Services providing the same functionality belong
to the same service class. For instance, the services s21, s22, s23 and s24 belong to the
same class S2. Each data service has its (fuzzy) constraints on the data it manipulates.
For instance, the cars returned by s21 are of cheap price and short warranty.

Table I: Example of data services
Data service Functionality Constraints

s11($x, ?y)
Returns the automakers y in
a given country x

-

s21($x, ?y, ?z, ?t) Returns the cars y along with
their prices z and warranties
t for a given automaker x

z is cheap, t is short
s22($x, ?y, ?z, ?t) z is accessible, t is [12, 24]
s23($x, ?y, ?z, ?t) z is expensive, t is long
s24($x, ?y, ?z, ?t) z is [9000, 14000], t is [6, 24]
s31($x, ?y, ?z) Returns the power y and the

consumption z for a given
car x

y is weak, z is small
s32($x, ?y, ?z) y is ordinary, z is approximately 4
s33($x, ?y, ?z) y is powerful, z is high
s34($x, ?y, ?z) y is [60, 110], z is [3.5, 5.5]

Let us now assume that a user, Bob, wants to buy a car. He sets his preferences and
submits the following query Q1: “return the French cars, preferably at an affordable
price with a warranty around 18 months and having a normal power with a medium
consumption”. Bob uses the services described in Table I to obtain such information.
He will have to invoke s11 to retrieve the French automakers, then invoke one or more
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of the data services s21, s22, s23, s24 to retrieve the French cars along with their prices
and warranties. Finally, he will invoke one or more of the data services s31, s32, s33, s34
to retrieve the power and the consumption of retrieved cars.

To select the car that better satisfies his requirements, Bob needs to go through a
series of trial-run processes. If the number of available services is large, this manual
process would be very painstaking and raises the following challenges:

— how to understand the semantics of the published data services to select the relevant
ones that can contribute to answering the query at hand.

— how to retain the most relevant data services (several similar data services offer the
same functionality but are associated with different constraints) that better satisfy
the user’s fuzzy preferences (i.e., preferences based on fuzzy terms).

— how to generate the best k data service compositions that satisfy the query.

1.2. Contributions
We already tackled the first challenge by proposing in [Barhamgi et al. 2010] a se-
mantic annotation of data services that describes the services functionality and an
efficient RDF-based query rewriting approach that generates automatically the data
service compositions for a given query (which does take into account any user prefer-
ence). In this paper, we focus on the second and third challenges. We leverage our RDF
query rewriting algorithm to find the relevant data services that can contribute to the
resolution of a given preference query. Since the number of candidate data services
for a composition may be still large, performing an exhaustive search, i.e., generate
all possible combinations, to find the best data service compositions is not practical as
the problem of composition using query rewriting techniques is known to be NP-hard
[Ludäscher and Nash 2004; Deutsch et al. 2007; Li and Chang 2001], i.e., any exact
solution to this problem has an exponential cost. Therefore, reducing the search space
by focusing only on the best data services of each service class is crucial for reducing
the computational cost. Our main contributions include the following:

— As data services of the same class have the same functionality and only differ in
their constraints, the relevance of each service w.r.t. a given query can be reduced
to the relevance of their constraints w.r.t. the user preferences. For this purpose,
we investigate multiple methods for computing the matching degrees between the
preferences involved in the query and the data services’ constraints.

— We present a method for further reducing the search space by examining only the
top-k data services of each service class. In particular, we define a ranking criterion
based on a fuzzy dominance relationship in order to select the top-k data services
in each service class, we then compose these data services and return only the top-k
data service compositions.

— To avoid returning similar data service compositions, i.e., those returning similar
informations, we also propose a diversified top-k data service compositions method
that aims to both improve the diversity of top-k selection and maintain as possible
top-k highest ranked ones.

— We propose a comprehensive architecture of our composition system and evaluate
our approach through a set of thorough experiments.

The rest of the paper is organized as follows. In Section 2, we provide the necessary
background on fuzzy sets. In Section 3, we formally define the studied problem. Sec-
tion 4 describes the proposed fuzzy dominance relationship and a ranking approach
for data services. Section 5 is devoted to both top-k and diversified top-k data service
composition methods for answering preference queries. Section 6 presents the archi-
tecture of our implemented composition system for preference query answering and
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Fig. 1: Trapezoidal Membership Functions Examples

reports the results of a set of thorough experimental evaluations. In Section 7, we
review the related work in the literature. Finally, Section 8 concludes the paper and
outlines some perspectives for future work.

2. BACKGROUND ON FUZZY SETS
2.1. Basic Notions
Fuzzy set theory was introduced by Zadeh [Zadeh 1965] to model sets whose bound-
aries are not well defined. Typical examples are those described using adjectives of
the natural language, such as “cheap”, “affordable” and “expensive”. For such sets, the
transition between full membership and full mismatch is gradual rather than crisp.

Formally, a fuzzy set F on a referential X is characterized by a membership function
µF : X → [0, 1] where µF (x) denotes the grade of membership of x in F . In particular,
µF (x) = 1 reflects full membership of x in F , while µF (x) = 0 means absolute non-
membership. When 0 < µF (x) < 1, x has partial membership in F . F is normalized if
∃x ∈ X , µF (x) = 1.

Two crisp sets are of particular interest when defining a fuzzy set F :

— The core C(F) = {x ∈ X | µF (x) = 1}, which gathers the prototypes of F .
— The support S(F) = {x ∈ X | µF (x) > 0}, which contains the elements that belong to

some extent to F .

In practice, the membership function associated with F has often a trapezoidal
shape. Then, F is expressed by the quadruplet (A,B, a, b) where C(F) = [A,B] and
S(F) = (A − a,B + b) (see Figure 1). A regular interval [A, B] can be seen as a fuzzy
set represented by the quadruplet (A,B, 0, 0).

Let F and G be two fuzzy sets in the universe (i.e., referential) X , F ⊆ G iff ∀x ∈
X , µF (x) ≤ µG(x). The complement of F , denoted by Fc, is defined by µFc(x) = 1 −
µF (x). The cardinality of F is defined by |F| =

∑
x∈X µF (x). Furthermore, F ∩ G (resp.

F ∪ G) is defined in the following way:

— µF∩G = >(µF (x), µG(x)) where > is a t-norm operator that generalizes the conjunc-
tion operation (e.g., >(x, y) = min(x, y) and >(x, y) = x · y).

— µF∪G = ⊥(µF (x), µG(x)) where ⊥ is a co-norm operator that generalizes the disjunc-
tion operation (e.g., ⊥(x, y) = max(x, y) and ⊥(x, y) = x+ y − x · y).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and com-
plementation correspond respectively to conjunction ∧, disjunction ∨ and negation ¬.
Interested readers are referred to [Dubois and Prade 2000] for more details.

A fuzzy implication is a mapping I : [0, 1]2 → [0, 1] satisfying the boundary conditions
I(0, x) = 1 and I(1, x) = x for all x in [0, 1]. Moreover, it is required that I be decreasing
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in its first, and increasing in its second component. Two families of fuzzy implications
are studied in the fuzzy literature (due to their semantic properties and the fact that
their results are similar with the ones of usual implications, material implications,
when the arguments are 0 or 1):

— R-implications: are defined by I(x, y) = sup{β ∈ [0, 1],>(x, β) ≤ y}, where > is a t-
norm operator. The two most used R-implications are Godl implication (IGd(x, y) = 1
if x ≤ y, 0 otherwise) and Goguen implication (IGo(x, y) = 1 if x ≤ y, y/x otherwise).

— S-implications: are defined by I(x, y) = ⊥(1−x, y), where⊥ is a co-norm operator. The
two most popular S-implications are Kleene-Dienes implication (IKl(x, y) = max((1−
x, y)) and Lukasiewicz implication (ILu(x, y) = min(1− x+ y, 1)).

For a complete presentation on fuzzy implications, readers are invited to check
[Dubois and Prade 2000].

2.2. Modeling Preferences
Fuzzy sets provide a suitable tool to express user preferences [Dubois and Prade
1996][Hadjali et al. 2008]. The notion of membership functions is used to describe
these preferences for each attribute domain involved in the query. The more the de-
gree of an element x is close to 1, the preferred is. Appendix A shows the membership
functions of the preferences involved in the query of our example.

In this context, the user does not specify crisp (Boolean) criteria, but fuzzy (grad-
ual) ones like “affordable”, “very cheap” and “fairly expensive”, whose satisfaction is a
matter of degree. In complex queries, individual satisfaction degrees associated with
elementary conditions are combined using a panoply of fuzzy set connectives, which
may go beyond conjunctive and disjunctive aggregations. Such connectives can cap-
ture the different user’s attitudes concerning the way the different criteria present in
his/her query compensate or not.

Then, the result of a given query is no longer a flat set of elements but a set of
rank-ordered elements according to their global satisfaction w.r.t. the fuzzy criteria
appearing in the query. So, a complete pre-order is obtained. One can limit the number
of answers by using a quantitative calibration (i.e., return the top-k answers) or a
qualitative calibration (i.e., return the answers that satisfy the query with a degree
above a threshold η).

3. PREFERENCES-BASED DATA SERVICE COMPOSITION MODEL
3.1. Preference Queries
We adopt a declarative approach to Web services composition, i.e., instead of selecting
and composing Web services manually, users formulate their composition queries over
domain ontologies. We consider conjunctive preference queries expressed over domain
ontologies using a slightly modified version of SPARQL, the de facto query language
for the Semantic Web. Figure 2 depicts a portion of the mediated ontology in an e-
commerce domain, in particular the automobile domain.

Formally, a conjunctive preference query Q has the form Q(X):-<ϕ(X,Y ),P>,
where:

—Q(X) is the head ofQ, has the form of a relational predicate and represents the result
of the query.

— ϕ(X,Y ) is the body of Q, contains a set of RDF triples where each triple is of the
form (subject.property.object). X and Y are called distinguished and existential
variables, respectively. Distinguished variables appear in the query head Q(X) (they
may also appear in the query body ϕ(X,Y )). In contrast, existential variables appear
only in the query body.
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—P = {p1, ..., pd} is a set of preferences expressed using fuzzy sets on X and Y vari-
ables.

Membership functions of fuzzy terms are implemented as Web services and can be
shared by users. They are used in the PREFERRING clause of the query where the URL
of the implementing Web service is mentioned. More details are provided in Section 6.
The head and body of Q are defined in SELECT and WHERE clauses, respectively.

For instance, Q1 of the example given in Section 1 is expressed as follows:
URL=http://soc.univ-lyon1.fr:8080/FunctionsDescription/index.jsp
SELECT ?a ?b ?c ?d ?e ?f
WHERE {?Au rdf:type AutoMaker ?Au hasCountry ‘France’ ?Au makes ?C

?Au hasName ?a ?C rdf:type Car ?C hasName ?b ?C hasPrice ?c
?C hasWarranty ?d ?C hasPower ?e ?C hasConsumption ?f}

PREFERING {?c is ‘URL/Affordable’, ?d is ‘URL/around(18)’,
?e is ‘URL/Normal’, ?f is ‘URL/Medium’}

As said earlier, the query head Q(X) corresponds to the SELECT clause, thus the
distinguished variable set X includes “?a”, “?b”, “?c”, “?d”, “?e” and “?f”. The existential
variable set Y includes “?Au”, and “?C”.

The predicate ?d is ‘URL/around(18)’ means that the user prefers data services
that provide cars with a warranty of around 18 months. The semantics of “around
18” is given in http://soc.univ-lyon1.fr:8080/FunctionsDescription/index.jsparound(18).
SELECT and WHERE clauses define the head and body ofQ, respectively. PREFERING clause
indicates the preferences in Q. Figure 3 is the graphical representation of query Q1.
Automaker and Car ovals are concepts in the ontology. Arcs (e.g., Constructs, hasPrice,
etc) are properties in the ontology. A and C ovals are existential variables, and a, b, c,
d, e and f are distinguished variables.

3.2. Data Services
The functionalities of data services, as opposed to traditional Web services that en-
capsulate software artifacts, can be only captured when representing the semantic
relationship between inputs and outputs [Barhamgi et al. 2010; Martin et al. 2004].
Therefore, we modeled data services as RDF Parameterized Views (RPVs) over do-
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Fig. 3: Graphical Representation of the (Fuzzy) Composition Query

main ontologies. Each view captures the semantic relationships between input and
output sets of a data service using concepts and relations whose semantics are for-
mally defined in ontologies. Functionalities of data services are provided under some
data constraints. For example, z is cheap, t is short (for data service s21 in Table I).

Formally, a data service sij is described as a predicate sij($Xi, ?Yi):-
<φi(Xi, Yi, Zi), Cij> where:

—Xi and Yi are the sets of input and output variables of sij , respectively. Input and
output variables are also called distinguished variables. They are prefixed with the
symbols “$” and “?”, respectively.

— φi(Xi, Yi, Zi) represents the functionality of the data service. This functionality is
described as a semantic relationship between input and output variables. Zi is the
set of existential variables relating Xi and Yi.

— Cij = {Cij1 , ..., Ciji} is a set of constraints expressed as intervals or fuzzy sets on Xi,
Yi or Zi variables.

Each data service requires a particular set of inputs (parameter values) to retrieve
a particular set of outputs; i.e., outputs cannot be retrieved unless inputs are bound.
For example, one cannot invoke data service s31 without specifying the car for which
it need to know the power and the consumption. Inputs and Outputs are prefixed
with “$” and “?”, respectively in the head of the view (sij($Xi, ?Yi)). We annotate the
service description files (e.g., HTML pages for RESTful Web services and WSDLs for
SOAP- based Web services) with the defined RDF views and (fuzzy) constraints. Anno-
tations have concretely the form of SPARQL queries (extended with preferences). For
instance, the following SPARQL query represents the functionality and constraints on
data service s21 in Table I:
URL=http://soc.univ-lyon1.fr:8080/FunctionsDescription/index.jsp
RDFQuery{
SELECT ?y ?z ?t
WHERE {?Au rdf:type AutoMaker ?Au name $x

?Au makes ?C ?C rdf:type Car ?C hasName ?y
?C hasPrice ?z ?C hasWarranty ?t}}

CONSTRAINTS{?z is ’URL/Cheap’, ?t is ’URL/Short’}
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SELECT and WHERE clauses define the functionality of s21 and CONSTRAINTS clause gives
the fuzzy constraints on service s21 given in Table I. Figure 4 gives the graphical rep-
resentation of the data services given in Table I.

Annotations can be straightforwardly added to service description files. For-SOAP
based services, WSDL files can be annotated using the extensibility feature of WSDL.
In fact, the specification of WSDL allows the addition of new XML elements and at-
tributes in certain locations to a WSDL file. This is known as the extensibility feature
of WSDL. We exploit this feature as follows: for each “operation” element, we define
a new child element called “RDFView” to hook the operation with the SPARQL query
capturing its semantics. Appendix B, gives an example of an annotated WSDL file.

For RESTful Web services, the semantic annotations can be added to their HTML
pages, as most of these services have HTML pages that describe to users what the
service does and how to invoke it. The SA- REST proposal [Sheth et al. 2008] already
defined different RDF predicates to annotate HTML pages of RESTful services with
semantic information about their inputs, outputs, operations and faults. We exploit
‘sarest:operation” to link the operation to its associated SPARQL query. Appendix B,
gives an example of an annotated HTML page.

3.3. Rationale and Benefits of Using Service Constraints
In this section, we discuss the reasons and benefits of adopting constraints to enrich
the semantic descriptions of data services.

From a modeling point of view, service providers can define their data ser-
vices in different ways. They can adopt a restrictive way in which explicit con-
straints are specified on service parameters (i.e., on inputs and outputs). For ex-
ample, a data service s21($automaker, ?car, ?price, ?warranty) can be defined in a re-
strictive way by specifying a constraint on the “?price” parameter to return only
cheap cars for a given automaker, i.e. the service is implemented in such a way
to return only cheap cars. They can also adopt a non-restrictive way with no con-
straints specified at all. For example, the service s21 can be defined as follows
s21($automaker, $price1, $price2, ?car, ?warranty) to return the cars whose prices are
in the supplied range [price1, price2] and made by a given automaker; i.e., there is no
constraint on the price parameter. Note that the price is an output in the first case and
an input in the second.

When all services are defined in a non-restrictive way, service composition algo-
rithms (such as our query rewriting algorithm [Barhamgi et al. 2010]) are able to
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generate all service compositions that cover a user query. In this case, there is no way
to select the best services (and the compositions thereof), as we have no knowledge
about the data manipulated by services. In the absence of such knowledge, the user
could select a composition returning an empty result set at the composition execution
time. For example, service s21 could be employed in the selected composition and could
return no data for a given range of prices (supplied by the user). This will be known
only at the composition execution time.

Data services’ constraints, when specified in a service description, allow the differ-
entiation between data services based on their manipulated data and help users select
the best services and compositions that do return relevant data at the service/composi-
tion execution time. In this paper, we consider data services enriched with constraints
characterizing their accessed data and focus on selecting the best services that do re-
turn relevant data at execution time.

There are benefits of defining data services in a restrictive way with constraints on
the manipulated data, as assumed in this paper.

— It makes the contextual information about a service’s provided data explicit.
Such contextual information could not be learned from service signature alone,
and often are not stored in the provider’s database. For example, all cars in
s($automaker, ?car, ?price) are cheap with implicitly two months of warranty. This
information about warranty is only known by the service provider and his regular
data consumers.

— It allows for representing the dependency relationships between service parameters.
For example, it is hard to represent in the case of a non-restrictive service definition
the fact that the warranty depends on the price (the warranty is low when the price
is low; it is high when price is high). Defining such a dependency is easier in the
case of restrictive service definition by having two constraints on price and warranty,
respectively. For example, s($automaker, ?price, ?warranty, ?cars) annotated with the
constraints warranty < 6moths and price < 3000 shows that the low warranty of the
cars returned by s is limited since the price is low too.

— It allows for avoiding empty query responses. Defining services with ranges given as
input parameters will not allow for qualifying the data that the service can return.
In some cases, the set of returned data can be simply empty. Defining data services in
a restrictive way will certainly reduce the risk of empty responses since only services
whose constraints more or less match the user constraints are selected.

— It allows for discriminating data that can be provided by different and may be com-
petitive providers.

Constraint derivation and learning are an important issue. One approach is to query
data services in an exhaustive manner. However, this is unpractical and may not be
authorized by service providers. In this paper, we suppose that service providers de-
scribe the semantics and constraints of their services. This may not necessarily make
service providers lose their potential service consumers, as there is no restriction on
the number of services that the same provider can provide. For example, a provider
may provide three semantically identical services s, s′, and s′′, but with different price
ranges: [16000, 24000], [9000, 17000], and [3000, 11000], respectively. In practice, when the
stored data objects set is very large (as is in our example), service providers tend to
provide, for performance concerns, multiple data services accessing different portions
(or clusters) of the data set and optimized to provide fast and real-time data access in-
stead of providing one single data service accessing the whole data set with a degraded
performance. A rich number of clustering techniques were proposed in the literature
to cluster data based on data constraints [Wagstaff and Cardie 2000; Davidson 2009;
Wagstaff 2010]. Note that the fuzzy constraints that service providers use to describe
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their data services could be simply the clustering functions that are used to segregate
the data set into different portions.

3.4. Discovering Relevant Services
Given a preference queryQ and a set of candidate data services, we show in this section
how we select relevant data services to Q and classify them into a set of classes S. We
rely on an efficient RDF query rewriting algorithm [Barhamgi et al. 2010] to select
services based on their functionality. Our rewriting algorithm has two phases.

The first phase is to find relevant services. The algorithm compares the RDF compo-
sition query with the RDF views of available data services and determines the parts
covered by each of the views. The algorithm stores information about covered nodes
and object properties as a partial containment mapping in a mapping table. The map-
ping table points out the different possibilities of using an RDF view to cover a part of
Q. We illustrate this phase based on our example (RDF representations of the query
and the services are given in Figure 3 and Figure 4, respectively). Data service s11
covers node AQ(?a,“France”) with the partial mapping AQ → As11 , France→ x, a→ y.
Note that it covers the functional datatype property hasName (i.e., identifier property)
of the node AQ which could be used to make the connection with the other parts of Q
that are not covered by s11. This containment mapping is inserted in the first line of
Table II. Data service s21 covers the property makes (AQ, CQ) and partially the nodes
AQ and CQ. It covers from these two nodes the functional property hasName that could
be used to make the connection with the uncovered parts of Q. The same discussion
applies to data services s22, s23 and s24, hence their insertion in the third, the fourth
and the fifth row of Table II. Similarly, data services s31 through s34 cover partially
node CQ.

Table II: Partial Containment Mapping Table
Data service Partial containment mapping Covered nodes & object properties

s11(“France”, ?a) AQ → As11 , France→ x, a→ y AQ(?a,“France”)

s21($a, ?b, ?c, ?d)
AQ → As21 , CQ → Cs21 ,

AQ(?a), makes(AQ, CQ), CQ(?b, ?c, ?d)a→ x, b→ y, c→ z, d→ t

s22($a, ?b, ?c, ?d)
AQ → As22 , CQ → Cs22 ,

AQ(?a), makes(AQ, CQ), CQ(?b, ?c, ?d)a→ x, b→ y, c→ z, d→ t

s23($a, ?b, ?c, ?d)
AQ → As23 , CQ → Cs23 ,

AQ(?a), makes(AQ, CQ), CQ(?b, ?c, ?d)a→ x, b→ y, c→ z, d→ t

s24($a, ?b, ?c, ?d)
AQ → As24 , CQ → Cs24 ,

AQ(?a), makes(AQ, CQ), CQ(?b, ?c, ?d)a→ x, b→ y, c→ z, d→ t
s31($b, ?e, ?f) CQ → Cs31 , a→ x, e→ y, f → z CQ(?b, ?e, ?f)
s32($b, ?e, ?f) CQ → Cs32 , a→ x, e→ y, f → z CQ(?b, ?e, ?f)
s33($b, ?e, ?f) CQ → Cs33 , a→ x, e→ y, f → z CQ(?b, ?e, ?f)
s34($b, ?e, ?f) CQ → Cs34 , a→ x, e→ y, f → z CQ(?b, ?e, ?f)

The second phase is to generate service classes. The algorithm groups the services
according to the parts of Q they cover; i.e., data services covering the same part are
put in the same group or class (for a definition and detailed discussion about the cov-
erage notion, we refer the reader to our previous work [Barhamgi et al. 2010]). In our
example we have three service classes. Then, the algorithm considers only the classes
whose union of covered nodes and object properties cover the entire query (covers its
different nodes and object properties). In our example classes S1, S2 and S3 cover the
query entirely; see Table III. These classes will then be used to generate the composi-
tions in the subsequent sections. Note that in the general case we may have different
class combinations coveringQ, in which case we will need to generate the compositions
for each class combination.
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Table III: Generated Service Classes
Service class Data service Covered nodes & object properties
S1 s11(“France”, ?a) AQ(?a,“France”)

S2

s21($a, ?b, ?c, ?d)

AQ(?a), makes(AQ, CQ), CQ(?b, ?c, ?d)
s21($a, ?b, ?c, ?d)
s21($a, ?b, ?c, ?d)
s21($a, ?b, ?c, ?d)

S3

s31($b, ?e, ?f)

CQ(?b, ?e, ?f)
s32($b, ?e, ?f)
s33($b, ?e, ?f)
s34($b, ?e, ?f)

3.5. Computing the Matching Degrees
In the previous section, we computed the different service classes S = {S1, . . . ,Sn}
that could be combined together to answer the query. In the following, we compute the
matching degrees of data services in the different classes.

Candidate data services in each service class Si cover the same part of Q, referred to
as qi. The constraints on each service sij in Si may match completely or partially the
preference constraints involved in qi. Therefore, to differentiate the most relevant data
services, we need to compute the matching degrees between the preference constraints
involved in qi and the data services’ constraints.

To determine the matching degree of a service sij , traditional approaches assign
a matching degree to each constraint corresponding to a preference in qi. Then, this
degree can be computed as an aggregation of individual matching degrees (i.e., the
matching degree of each constraint). One direction is to assign weights to individual
matching degrees [Dong et al. 2004]. However, users may not know how to set trade-off
between different relevancies using numbers and an imprecise specification of weights
could miss their desired services. They thus lose the flexibility to select their desired
services. Computing the skyline from services [Alrifai et al. 2010; Yu and Bouguettaya
2010b; Yu and Bouguettaya 2010a] comes as a natural solution to overcome this limita-
tion. Skyline computation has received significant consideration in database research
[Börzsönyi et al. 2001; Tan et al. 2001; Kossmann et al. 2002; Papadias et al. 2003;
Chomicki et al. 2003; Godfrey et al. 2005]. For a d-dimensional dataset, the skyline
consists of the set of points which are not dominated by any other point. A point u
dominates another point v if and only if u is at least as good as v in all dimensions and
(strictly) better than v in at least one dimension.

However, as shown in [Skoutas et al. 2009; Skoutas et al. 2010b] considering a sin-
gle matching method for evaluating services is a very coarse metric. For this purpose,
we investigate multiple methods from the fuzzy set theory [Dubois and Prade 2000]
to compute the matching degrees between user preferences and data services’ con-
straints, namely, constraints inclusion methods that measure the to what extent the
items returned by a given data service satisfy the user preferences.

Let C ≡ x is F and C ′ ≡ x is G be two fuzzy constraints, i.e., a constraint where
authorized (or possible) values are restricted by means of a fuzzy set. Two classes of
constraint inclusion methods are considered.

— Quantitative Method (QM). The inclusion degree between C and C ′ is computed in
the following way: Deg(C ⊆ C ′) = |F∩G|

|F| =
∑

x∈X >(µF (x),µG(x))∑
x∈X µF (x) where the intersection

is interpreted by a t-norm operator >. In the following, the methods that rely on >
=“min” and > = “product” are denoted by M-QM and P-QM, respectively.

— Logic Method (LM). Now, the degree of inclusion is given by the following expression:
Deg(C ⊆ C ′) = minx∈X(µF (x) −→f µG(x)) where −→f stands for a fuzzy implication.
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In our example, we make use of two fuzzy implications: Gödel (a →G b = 1 if a ≤ b,
0 otherwise) and Lukasiewicz (a →L b = 1 if a ≤ b, 1 − a + b otherwise) implica-
tions. The methods based on these two implications are denoted by G-LM and L-LM,
respectively.

Each relevant data service is then associated with a set of matching degrees. For
instance, Table IV shows the matching degrees between each service sij in Table I and
its corresponding component qi (of the query Q1). Service s11 covering component q1
does not have a matching degree because there are no user preferences involved in q1.
However, each data service covering component q2 is associated with four (number of
methods) degrees. Each matching degree is formulated as a pair of real values within
the range [0, 1], where the first and second values are the matching degrees of the
constraints price and warranty, respectively. Similarly, for the matching degrees of
the data services covering component q3, the first and second values represent the
matching degrees of the constraints power and consumption, respectively.

Table IV: Matching Degrees between Services’ Constraints and Preference Constraints
of Q1

sji qj M-QM P-QM G-LM L-LM
s11 q1 - - - -
s21

q2

(1, 0.57) (0.98, 057) (1, 0) (0.80, 0)
s22 (0.89, 1) (0.77, 1) (0, 1) (0.50, 1)
s23 (0.20, 0.16) (0.13, 0.13) (0, 0) (0, 0)
s24 (0.83, 0.88) (0.83, 0.88) (0.60, 0.50) (0.60, 0.50)
s31

q3

(0.50, 0.36) (0.46, 0.32) (0, 0) (0, 0)
s32 (0.79, 0.75) (0.69, 0.72) (0, 0.25) (0.40, 0.50)
s33 (0.21, 0.64) (0.17, 0.61) (0, 0) (0, 0)
s34 (0.83, 0.85) (0.83, 0.85) (0.50, 0.50) (0.50, 0.50)

3.6. Problem Statement
Assume we are given a preference query Q:-<q1, ..., qn>. Each part (query component)
qi is a tuple (qi,Pqi), where qi represents qi without its preferences Pqi . Given a set of
services classes S = {S1, · · · ,Sn} where a class Si regroups data services that are rele-
vant to a query part qi and a set M = {M1, · · · ,Mm} of matching methods to compute
the matching degrees between the constraints on relevant services and the user’s pref-
erence. The problem to address is how to rank data services in each class Si to select
the most relevant ones and how to rank generated data service compositions to select
the top-k ones that can answer the preference query Q.

4. FUZZY DOMINANCE AND FUZZY SCORES
In this section, we introduce the notion of fuzzy dominance relationship considered
between data services. To further motivate why the fuzzy dominance is needed, we
first investigate the difference between fuzzy dominance and Pareto dominance. We
then define the scores associated with both the data services and the data service
compositions based-on the fuzzy dominance relationship.

It is well known that under a single matching degree method (mono criteria), the
dominance relationship is unambiguous. When multiple methods are applied, result-
ing in different matching degrees for the same constraints, the dominance relationship
becomes uncertain. The model proposed in [Pei et al. 2007], namely probabilistic sky-
line overcomes this problem. Contrariwise, Skoutas et al. show in [Skoutas et al. 2009;
Skoutas et al. 2010b] the limitations of the probabilistic skyline to rank services and
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introduce the Pareto dominating score of individual services. There is, however, still
some problems when applying the Pareto dominance as shown bellow.

4.1. Fuzzy Dominance vs Pareto Dominance
We start by defining formally the Pareto dominance, then discuss the reasons that
motivate to make it fuzzy.

Definition 4.1. (Pareto dominance)
Given two d-dimensional points u and v, we say that u dominates1 v, denoted by u � v,
iff u is at least as good as v in all dimensions and (strictly) better than v in at least one
dimension, i.e., ∀ı ∈ [1, d] , uı ≥ vı ∧ ∃ ∈ [1, d] , u > v. �

One can see that Pareto dominance does not allow discrimination between points
with a large variance, i.e., points that are very good in some dimensions and very bad
in other ones (e.g., (1, 0) and (0.80, 0) in Table IV) and good points, i.e., points that are
(moderately) good in all dimensions (e.g., (0.89, 1) and (0.77, 1) in Table IV). To further
illustrate this situation, let u = (u1, u2) = (1, 0) and v = (v1, v2) = (0.90, 1) be two
matching degrees (or two points in general). In Pareto order, we have neither u � v
nor v � u, i.e., the instances u and v are incomparable. However, one can consider that
v is better than u since v2 = 1 is too much higher than u2 = 0, contrariwise v1 = 0.90
is almost close to u1 = 1. This is why it is interesting to fuzzify the Pareto dominance
relationship to express the extent to which a matching degrees vector (more or less)
dominates another one [Benouaret et al. 2011d; Benouaret et al. 2011a]. We define
below a fuzzy dominance relationship that relies on particular monotone comparison
function expressing a graded inequality of the type “strongly greater than”, as the
higher the value, the better is the matching degree.

Definition 4.2. (fuzzy dominance)
Given two d-dimensional points u and v, we define the fuzzy dominance to express the
extent to which u dominates v as:

deg(u � v) =
∑d
ı=1 µ�(uı, vı)

d
(1)

Where µ� is a membership function of the fuzzy relation� that expresses the extent
to which uı is more or less (strongly) greater than vı. The membership function µ� can
be defined in an absolute way (i.e., in terms of x− y) as follows:

µ�(x, y) =

 0 if x− y ≤ ε
1 if x− y ≥ λ+ ε

x−y−ε
λ otherwise

(2)

Where λ > 0, i.e.,� is more demanding than the idea of “strictly greater”. We should
also have ε ≥ 0 in order to ensure that � is a relation that agrees with the idea of
“greater” in the usual sense. �

Figure 5 gives the graphical representation of µ� in terms of x − y where H is a
fuzzy parameter associated with the relation � such that µ�(x, y) = µH(x − y). One
can easily check that the trapezoidal membership function of H is (λ+ ε,∞, λ, 0).

One can explain the semantics of µ� in the following way:

— if x− y is less than ε, then x is not at all strongly greater than y.
— if x− y is larger than λ+ ε, then x is all much greater than y.
— if x− y is between ε and λ+ ε, then x is much greater than y to some extent.

1Without loss of generality, we assume here the greater the value uı, the better is.
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x-y

μH

λ+εε0

1

Fig. 5: Graded inequality representation in terms of x− y

It is worth to note that λ and ε values are subjective parameters, and then user-
defined and domain-specific. They express the semantics of the (gradual) relation µ�
in a given domain for a given user.

Let us reconsider the previous instances u = (1, 0), v = (0.90, 1), with ε = 0 and
λ = 0.2. We have deg(u � v) = 0.25 and deg(v � u) = 0.5. This is more significant than
|u � v| = |v � u| = 0 (i.e., u and v are incomparable) provided by Pareto dominance,
where |u � v| = 1 if u � v, 0 otherwise. In the following sections, we will use the
defined fuzzy dominance to compute scores of data services and their compositions.

4.2. Associating Fuzzy Score with a Data Service
We generalize the (Pareto) dominating score defined in [Skoutas et al. 2009; Skoutas
et al. 2010b] to fuzzy dominance and propose the fuzzy dominating score (DSf ) of a
data service. The DSf of a data service sij indicates the average extent to which sij
dominates the whole data services of its class Si.

Definition 4.3. (Fuzzy dominating score of a service)
The fuzzy dominating score (DSf ) of a data service sij in its class Si is defined as:

DSf (sij) =
1

(|Si| − 1)m2

m∑
ı=1

∑
sik∈Si

k 6=j

m∑
=1

deg(sıij � s

ik) (3)

where sıij is the matching degree of the data service sij obtained by applying the
ıth matching method and m stands for the number of matching methods applied. The
term (|Sj |−1) is used to normalize the fuzzy dominating score and make it in the range
[0, 1]. �

Table V shows the fuzzy dominating scores of the data services of our running ex-
ample (see Section 1).

4.3. Associating Fuzzy Score with a Composition
Different data service compositions can be generated from service classes Si to answer
a user query. To rank such generated compositions, we extend the previous defined
score, i.e., the fuzzy dominating score (DSf ) to data service composition and associate
each composition with a DSf . The fuzzy dominating score of a composition CS is an
aggregation of different DSf scores of its component data services. It indicates the
average number of possible compositions that CS more or less dominates.

Definition 4.4. (Fuzzy dominating score of a composition)
Let CS = {s1j1 , ..., snjn} be a composition of n services and d = d1 + ... + dn be the
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number of preference constraints in Q, where di is the number of constraints (resp.
preferences) involved in the service siji (resp. in the query component qi). The DSf of
CS is then computed as follows:

DSf (CS) =
1

d

n∑
i=1

di ·DSf (siji) (4)

It is important to note that not all compositions are valid. A composition CS of
data services is valid if (i) it covers the user query Q; (ii) it contains one and only
one data service from each service class Si and (iii) it is executable. A composition
is said to be executable if all input parameters necessary for the invocation of its
component data services are bound or can be made bound by the invocation of prim-
itive data services whose input parameters are bound. For example, the composition
{s11($x, ?y),s21($x, ?y, ?z, ?t),s31($x, ?y, ?z)}) is executable since the inputs parameters
of its component data services are all bound (the value of the variable x is supplied by
the user). More details are provided in [Barhamgi et al. 2010].

Table V: Services’ scores and top-k services
Data service Service class Score Top-k
s11 S1 - s11

��s21
S2

0.527
s22 0.657 s22

��s23 0.027 s24
s24 0.533
��s31

S3

0.083
s32 0.573 s32

��s33 0.187 s34
s34 0.717

5. TOP-K DATA SERVICE COMPOSITIONS
In this section we show how we compute efficiently the top-k compositions. Note that
in the general case, users may be interested in computing the top-k compositions (k >
1) for many reasons:

— The selected composition may become un-executable; for instance, if one of its com-
ponent services becomes unavailable or temporarily inaccessible. Computing top-k
compositions provides a user with alternative compositions that he/she can exploit
even if they are less good than the top-1 one.

— The top-k compositions are computed based on user’s preferences about the accessed
data sets. However, a user may have also other preferences that are not explicitly
represented in the user’s constraints. For instance, a user may prefer the services
provided by a particular provider (e.g., eBay), and thus would be interested in se-
lecting the best composition including a service of his preferred provider even if it is
less better than the top-1 composition. Computing the top-k compositions provides
users with the best compositions along with the necessary information (i.e., scores
and component services) that helps them choose the one that suits them the best.

— As services could be offered by independent service providers managing different
data sets (with different, sometimes overlapping, constraints), a user may need to
select more than one composition to entirely satisfy his/her preferences. For instance,
assume a user looking for cars with prices in [5000, 12000] and two cars retrieving
services s1 and s2 with two constraints on price attribute [5000, 10000] and [9000,
12000], respectively. The top-1 composition will include the top-1 service s1 as its

ACM Transactions on Internet Technology, Vol. x, No. x, Article 34, Publication date: October 2014.



34:16 K. Benouaret et al.

constraint overlaps with the user’s preference more than that of s2, which is the top-
2 service and forms the top-2 composition. However, the user will need to select both
of these two compositions to satisfy his/her constraint, and thus compute the top-2
compositions.

5.1. Efficient Generation of Top-k Compositions
The problem of top-k data service compositions entails computing the scores of each
data service composition and returning the top-k highest ranked ones.

A straightforward method to find the top-k data service compositions that answer
a query is to generate all possible compositions, compute their scores, and return the
top-k ones. Clearly, this approach results in a high computational cost, as it needs to
generate all possible compositions, whereas, most of them are not in the top-k. In the
following, we provide an optimization technique to find the top-k data service compo-
sitions. This technique allows for eliminating data services from their classes before
generating the compositions, i.e., data services that we are sure that if they are com-
posed with others, the obtained compositions are not in the top-k. The basic idea is to
compute the score of each data service in its class, then only the best ones in each class
are retained. The retained data services are then composed, and the scores of obtained
compositions are computed, the top-k ones can be then returned to users. To this end,
we introduce the following Lemma and Theorem.

LEMMA 5.1. Let CS = {s1j1 , ..., snjn , s} and CS ′ = {s1j1 , ..., snjn , s′} be two similar
data service compositions that only differ in the data services s and s′. Then, the follow-
ing statement holds: DSf (s) > DSf (s

′) =⇒ DSf (CS) > DSf (CS ′).

PROOF. Denoting by d′ the number of constraints contained in s and s′, we have:
DSf (CS) = 1

d

∑n
i=1 di · DSf (siji) +

d′

d · DSf (s) and DSf (CS ′) = 1
d

∑n
i=1 dj · DSf (siji) +

d′

d · DSf (s
′). Then, DSf (CS) − DSf (CS ′) = d′

d (DSf (s) − DSf (s
′)). Since d′

d > 0 and
score(s)− score(s′) > 0, we have DSf (CS) > DSf (CS ′).

Lemma 5.1 indicates that the best data services in their classes will generate the
best compositions.

THEOREM 5.2. Let CS = {s1j1 , ..., snjn} be a composition of n data services. Let top-
k.Si and top-k.CS be the top-k data services of the service class Si and the top-k data
service compositions, respectively. Then, ∃siji ∈ CS; siji /∈ top-k.Si =⇒ CS /∈ top-k.CS.

PROOF. Assume that ∃siji ∈ CS; siji /∈ top-k.Si but CS ∈ top-k.CS. This means that
∃s′ij1 , ..., s

′
ijk
∈ Si such as DSf (s′ij`) > DSf (siji). Now, by replacing siji in CS with the

services s′ij1 , ..., s
′
ijk

, we obtain k compositions CS1, ..., CSk such asDSf (CSi) > DSf (CS)
according to Lemma 5.1. This contradicts our hypothesis. Hence, CS /∈ top-k.CS.

Theorem 5.2 means that the top-k sets of the different service classes are sufficient
to compute the top-k data service compositions that answer the considered query.

The fourth column of Table V shows the top-k (k = 2) data services in each ser-
vice class according the fuzzy dominating scores. Thus, relevant data services that are
not in the top-k of their classes are eliminated. They are crossed out in Table V. The
other data services are retained. The top-k data service compositions are generated
from different top-k.Si classes. Table VI shows the possible compositions along with
their fuzzy dominating scores, as well as the top-k compositions (i.e., CS2, CS4) of our
running example.
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Table VI: Compositions’ scores and top-k ones
Composition Composition score Top-k
CS1 = {s11, s22, s32} 0.615
CS2 = {s11, s22, s34} 0.687 CS2
CS3 = {s11, s24, s32} 0.553 CS4
CS4 = {s11, s24, s34} 0.625

5.2. Top-k Service Compositions Algorithm
The algorithm, hereafter referred to as TKSC, computes the top-k data service compo-
sitions according to the fuzzy scores (see Algorithm 1). The algorithm proceeds as the
following steps.

ALGORITHM 1: TKSC

Input: Q preference query; S = {S1, · · · ,Sn} set of service classes; M = {M1, · · · ,Mm}
set of matching methods; k ∈ N; ε ≥ 0;λ > 0;

Output: the top k compositions
1 begin
2 foreach Si in S do
3 if Pqi 6= ∅ then
4 foreach sij in Si do
5 foreachM` in M do
6 ComputeMatchingDegree(Cij ,Pqi ,M`);
7 end
8 end
9 end

10 end
11 foreach Si in S do
12 if Pqi = ∅ then
13 top-k.Si ← random(Si, k);
14 else
15 foreach sij in Si do
16 ComputeServiceScore(sij);
17 end
18 top-k.Si ← top(k,Si);
19 end
20 end
21 CS← ComposeServices(top-k.S1, · · · , top-k.Sn);
22 foreach CS in CS do
23 ComputeCompositionScore(CS);
24 end
25 return top(k,CS);
26 end

Step 1: compute the matching degrees (lines 2-10):
After applying our query rewriting algorithm, relevant data service are
found and service classes are generated. For each service class Si touch-
ing the query’s user preferences, i.e., there is one or more preference con-
straint involved in the query part covered by the data services of Si, we
compute its different matching degrees, between the constraints of the
data services Cij and the user preferences Pqi , according to the number of
methods.
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Step 2: eliminate less relevant data services (lines 11-20):
For each relevant service class Si whose data services do not touch the
user preferences, we select randomly k services since they are all equal
with respect to user preferences. Otherwise, i.e., its data services touch
the user preferences, we first compute the score of its data services, we
then retain only the top-k ones.

Step 3: return top-k compositions (lines 21-25):
We first compose the retained data services, i.e., the top-k in each rele-
vant service class, then, we compute the scores of generated data service
compositions. Finally, we provide the user with the top-k ones.

Taking the top-k data services of each service class (Theorem 5.2, TKSC generates
in the worst case kn data service compositions. However, the baseline algorithm needs
to generate all possible data services composition, i.e.,

∏n
i=1 |Si|. Thus, our algorithm

reduces significantly the number of generated data service compositions.

5.3. Diversity-aware Top-k Compositions
Different similar data services could exist in each class Si leading to similar data ser-
vices compositions. A little variety in the top-k data services compositions list will
probably lead to the user frustration. For this reason, it is crucial to provide users with
the data service compositions that are still relevant to their preferences but less simi-
lar to each other, i.e., as diverse as possible. Diversification is then needed to improve
user satisfaction. Diversification allows for finding compositions that cover many as-
pects of users information needs. Consider, for instance, a user who wants to buy a
car and submits the query Q1 given in Section 1. A diverse result, i.e., a result that
contains various prices and warranties with different horsepower and other technical
characteristics, is intuitively more informative than a result that contains a homoge-
neous result containing only cars with similar features.

The diversity problem has attracted a lot of attention in the context of recom-
mender systems, information retrieval and case-based reasoning systems. Some re-
search works highlight that the diversity can be considered as important as similarity
to the target query [McSherry 2002; Ziegler et al. 2005]. Two main definitions of a
set diversity are introduced: (i) average dissimilarity of all pairs of elements and (ii)
average rarity of the elements in the set. Different similarity/dissimilarity and rarity
measures were defined and used in different heuristic algorithms for computing the
diversified set that maximizes the diversity without loss of similarity (see for instance
[Drosou and Pitoura 2010]).

In the context of our top-k data service compositions approach, we challenge and
tackle the lack of top-k data service compositions variety by proposing a method for
maximizing the diversity of data service compositions while maintaining an acceptable
satisfaction level (expressed in terms of fuzzy scores) of data service compositions. We
propose to diversify the top-k data service compositions by firstly diversifying the top-k
data services of each class Si, and then by diversifying the data service compositions
themselves. The diversity of the top-k data services of a class Si means that the data
services should be dissimilar each other.

A principled way to improving diversity of the top-k data services of a class Si, while
at the same time maintaining satisfaction of data services, is to explicitly use both
diversity and satisfaction of data services during the top-k data services selection. To
this end, we make use of the following quality metric that combines diversity and
satisfaction:

Quality(sij) = DSf (sij)×RelDiv(sij , dtopk.Si) (5)
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The quality of a data service sij in its class Si is proportional to its satisfaction, and
to its relative diversity to those diversified top-k data services so far selected dtopkSi.
Initially, dtopkSi is an empty set, and its first element will be necessary one of the data
services sij with higher DSf . The relative diversity of a data service sij to the current
set dtopk.Si is defined as the average dissimilarity between sij and the so far selected
data services [McSherry 2002] as described in the following equation:

RelDiv(sij , dtopk.Si) =

{
1 dtopk.Si = ∅∑

Si`∈dtopk.Si
Dist(sij ,si`)

|dtopk.Si| otherwise
(6)

The relative diversity of a service sij to an initial empty set, i.e., |dtopk.Si| = 0, is
set to 1. The quantity Dist(sij , si`) represents the distance (i.e., dissimilarity) measure
between the two services sij and sj`. Recall that data services of the same class have
the same functionality and only differ in their constraints, therefore the data services
dissimilarity can be reduced to the dissimilarity of their constraints to quantify the
extent to which two data services have similar constraints on their variables (i.e., they
provide the same information about the same variable).

Given two data services sij , si` ∈ Si having the constraints Cij =
{x1 is F1, ..., xdi is Fdi} and Ci` = {x1 is G1, ..., xdi is Gdi}, respectively, . The distance
between sij and si` can be measured by Dist(sij , si`) = maxı∈{1,...,di}Dist(Fı,Gı), where
Dist(Fı,Gı) = maxx∈Xı |µFı(x)− µGı(x)| is the distance between the fuzzy sets Fı and
Gı [Dubois and Prade 2000]. Of course, the distance between two fuzzy sets can be
measured by others distance metrics. We provide the effects of the distance metric in
Section 6.

5.3.1. Diversified Top-k data services computing strategy in a given class. The above quality
measure guides the construction of the diversified top-k data services of each relevant
service class Si. This construction is achieved in an incremental way as described in
Algorithm 2 refereed to as DTKS. During each step, the remaining data services of
a class Si are rank-ordered according to their quality and the data service with the
highest quality is added to dtopk.Si. The first data service of the diversified top-k of
a service class Si to be selected is always the one with the highest DSf . The initial
service class Si can be bounded to a smaller size equivalent to k · η (η > 1) to decrease
the search space especially when Si is too large. Also, to give the user the flexibility to
make a tradeoff between the score of data services and their diversity, i.e., the quality.
Specifically, when η increases the diversity of the top-k data services increases but
their scores decrease and vice versa. It is worth to note that for the service classes
whose services do not meet the user preferences, we just select randomly one data
service, as they are all strictly similar.

5.3.2. Diversified Top-k data service compositions computing. The top-k data service com-
positions set is made more diverse (by applying a diversification on its component
compositions) while maintaining acceptable compositions scores. The quality of a data
service composition CS is an aggregation of qualities of its component services. Let
CS = {s1j1 , ..., snjn} be a composition of n data services and d = d1 + ... + dn be the
number of user preference involved in the query, where di is the number of constraints
involved in the service siji . The quality of the composition CS is then computed using
a weighted average as follows:

Quality(CS) = 1

d

n∑
i=1

di ·Quality(siji) (7)
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ALGORITHM 2: DTKS

Input: k ∈ N; η ∈ N; Si service class;
Output: dtopk.Si diversified top-k data services of the class Si;

1 begin
2 S ′j ← top(k · η,Si);
3 dtopk.Si ← ∅;
4 for i=1 to k do
5 ComputeQuality(S ′i);
6 dtopk.Si ← dtopk.Si∪ {MaxQuality(S ′i)};
7 S ′i ← S ′i−{MaxQuality(S ′i)};
8 end
9 return dtopkSi;

10 end

The diversified top-k data service compositions algorithm referred as DTKSC is ob-
tained from TKSC (the top-k data service compositions algorithm) by applying the
following modifications:

— line 13: for relevant service classes whose data services do not meet user preference,
we select randomly one data service instead of k data services as motioned above. So
line 13 writes: top-k.Si ← random(Si,1).

— line 18: instead of taking the top-k data services in each class based on their scores,
we take them based on their qualities, i.e., we take the diversified top-k ones, by
applying Algorithm 2, so line 18 writes: top-k.Si ← DTKS(k, η,Si).

— line 23: we compute the quality of the data service compositions instead of their
scores. This line writes: ComputeCompositionQuality(CS).

— line 25: instead of returning the top-k data service compositions, i.e., the top-k with
the highest scores, we return the diversified top-k ones, i.e., the ones having the best
qualities. So line 25 writes: return Diversifiedtop(k,CS);

5.4. Impact of User Constraints on Composition
In the previous section we showed how user constraints are exploited to select the best
compositions. In this section, we show the impact of constraints on the execution of a
selected composition.

The number of results returned by executing a given composition may be very large
which may mean missing the ones that are most relevant to a user’s needs. User con-
straints can be exploited to resolve this problem by ranking the data returned by com-
ponent services and the composition based on their relevance to a user’s constraints.
For this purpose, we propose a grade-aware composition algebra to orchestrate the
data services in a selected composition.

The proposed algebra relies on the mature fuzzy database foundations [Dubois and
Prade 1996] to rank data, and allows for ranking the returned results based on how
well they satisfy the user’s constraints. We describe below our proposed ranking aware
orchestration operators we use to orchestrate data services in a composition, we then
explain them based on the composition CS2 selected in the previous sections.

Grade-aware Composition Algebra: our defined orchestration operators assume
that each manipulated tuple is associated with a grade computed as the aggregation
of the different grades associated with its attributes that are involved in constraints.
We define the following operators:
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Table VII: Implemented norms and conorms
Name TNorm : >(x, y)
Zadeh min(x,y)

Probabilistic xy
Lukasiewicz max(x+ y − 1, 0)
Hamacher xy

γ+(1−γ)(x+y−xy)

Weber

 x if y = 1
y if x = 1
0 else

Name Conorm :⊥ (x, y)

Zadeh max(x, y)
Probabilistic min(x+ y, 1)
Lukasiewicz max(x+ y − 1, 0)

Weber

 x if y = 0
y if x = 0
1 else

•Grade-ware Invocation Invokeg(S, tgin, O
g): Let S be a service, tgin be the graded in-

put tuple with which S is invoked, Og be the graded output set, and S.O be the
output returned by S. The Invokeg operator relays the tuples from S.O to Og, and
for each relayed tuple ti this operator computes the grade g(ti) as follows. First, as-
sume ti is involved in n fuzzy constraints Pj(where 1≤ j ≤n), the operator computes
g1(ti)= >(µP1(ti), µP2(ti), ..., µPn(ti)) where > is a t-norm operator (that generalizes the
conjunction operation) and µPi

the membership function associated with Pi. We im-
plemented the T-norms presented in Table-VII. Zadeh t-norm is the greatest t-norm,
thus leading to an optimistic aggregation strategy. Lukasiewicz and Weber t-norms
yield a pessimistic aggregation strategy. Second, this operator computes g(ti) as fol-
lows: g(ti)=>(g(tin), g1(ti)).
•Graded Join: ∞g(Ig1, I

g
2), where Ig1 and Ig2 are two graded data sets. The grade of an

output tuple is given by:
g(∞g(t, t′)) = >(g(t), g(t′)) where > is a t-norm, and t and t′ are joined tuples from Ig1
and Ig2 respectively.
•Graded Projection

∏g
A. The projection is an operation that selects specified at-

tributes A={a1, a2, ...} from a results set. The grade of an output tuple t is: g(t) =⊥
(g(t′1), .., g(t

′
i), .., g(t

′
n)) where t =

∏
A(t
′
i)i=1:n and ⊥ is the co-norm corresponding to

the t-norm > used in the graded join.
•Graded Union ∪g. The grade of an output tuple t is:
g(t)= ⊥ (g(t′1), .., g(t

′
i), .., g(t

′
n)), where t′i = t and i = 1 : n

Example: We explain the previous operators based on our running example. The com-
position CS2 involves s11, s22 and s34. They can be orchestrated as follows (Figure 6).
s11 is invoked with the desired country (e.g., France) to return the automakers (de-
noted by variable a). Then, service s22 can be invoked with automakers to return their
different cars along with their prices and warranties. Service s34 can be invoked then
with the car name to return its characteristics such as power and fuel consumption.
All of these operators compute the tuples’ rankings according to our defined equations.

Figure 7 shows the results (along with their rankings) at the output of each of these
operators, and the final results at the composition’s output. Note that the outputs of
operator Invokeg(s11) have all the grade “1” as they are not involved in any constraint.
The grades of car “c1” at the output of Invokeg(s22) are computed as follows: based
on the membership functions associated with the price and warranty constraints, the
grade of price attribute (i.e., c) is 0.1 and the grade of warranty attribute (i.e., d) is
0.25. Hence, g1Zadeh

(c1) = min(0.1, 0.25) = 0.1, g1Probabilistic
(c1) = 0.1 ∗ 0.25 = 0.025,

and g1Lukasiewicz
(c1) = max(0.1 + 0.25 − 1, 0) = 0; and the grades are TZadeh(c1) =

min(1, 0.1) = 0.1, TProbabilistic(c1) = 1∗0.025 = 0.025, and TLukasiewicz(c1) = max(1+0−
1, 0) = 0. The grades of the other tuples are computed similarly. The final results are
ordered based on their grades.
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Invokeg s11

Composition Plan

Invokeg s22 Invokeg s34

Begin End
“france” a a, b, c, d a, b, c, d, e, f

Fig. 6: The Composition Plan

Invoke
g
 s11

Country a
Grade

TZ TP TL

France Peugeot Inc. 1 1 1

France Reno Inc. 1 1 1

a n pr w
Grade

TZ TP TL

Peugeot Inc. c1 19000 3 0.1 0.025 0

Peugeot Inc. c2 12000 9 0.75 0.6 0.55

Reno Inc. c7 8000 18 1 1 1

Reno Inc. c9 16000 6 0.4 0.2 0

a n pr w pw co
Grade

TZ TP TL

Peugeot Inc. c1 19000 3 40 7 0.1 0.0015 0

Peugeot Inc. c2 12000 9 60 6 0.75 0.3375 0.05

Reno Inc. c7 8000 18 80 5 1 1 1

Reno Inc. c9 16000 6 50 6.5 0.4 0.05 0

a n pr w pw co
Grade

TZ TP TL

Reno Inc. c7 8000 18 80 5 1 1 1

Peugeot Inc. c2 12000 9 60 6 0.75 0.3375 0.05

Reno Inc. c9 16000 6 50 6.5 0.4 0.05 0

Peugeot Inc. c1 19000 3 40 7 0.1 0.0015 0

Invoke
g
 s22

Invoke
g
 s34 Final Results (ordered)

a b c d

b c d e fb c d e f

Fig. 7: The intermediate and final results along with their grades

6. SYSTEM ARCHITECTURE AND EXPERIMENTAL EVALUATION
Our different technique and algorithms have been evaluated and tested in the con-
text of a French project called PAIRSE [Benslimane et al. 2013; Barhamgi et al. 2013],
whose objective was to propose Web service composition as a viable solution to answer
data integration needs on the fly. In the rest of this section, we first describe the ar-
chitecture of our system. Then, we focus on the efficiency aspect of our algorithms, as
their performance impacts directly the query resolution time.

6.1. System Architecture
In this section we outline the basic components of our implemented system [Benouaret
et al. 2011c], describe their roles and how they interact with each other. A high-level
overview of our system is presented in Figure 8. The system consists of the following
major components:

The Fuzzy Membership Functions Manager is used to manage fuzzy linguistic terms.
It enables users and service providers to define their desired fuzzy terms along with
the associated fuzzy membership functions. The defined terms are stored in a local
fuzzy terms knowledge base which can be shared by users, and are linked to their
implementing Web services. Examples of fuzzy terms along with their implementing
services can be found on http://vm.liris.cnrs.fr:36880/FuzzyTerms. Users and service
providers can directly test the proposed membership functions on that link and use
the associated fuzzy terms. For each fuzzy term we provide a shape that gives a graph-
ical representation of the associated membership function, a form that helps users to
compute the degree to which a given value is in the fuzzy set of the considered fuzzy
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Fig. 8: Data Service Composition Architecture

term, and a WSDL description of the Web service that implements the membership
function.

The Service Annotator allows service providers to (i) define the functionalities of
their data services in the form of RDF parameterized views (RPVs) and specify the
defined views with the desired fuzzy terms to represent the services’ constraints and,
(ii) annotate the services description files (e.g., WSDL files) with the defined views.
This annotation is implemented by adding a new XML element called “rdfQuery” to the
“Operation” elements in the XML Schema of WSDL as in the WSDL-S approach. The
annotated WSDL files are then published to a service registry. The ontology manager
uses Jena API to manage domain ontology (i.e., to add/delete concepts).

The Preference Query Formulator provides users with a GUI implemented with Java
Swing to interactively formulate their queries over a domain ontology. Users are not
required to have knowledge about SPARQL (or any specific ontology query languages)
to express their queries, they are assisted interactively in formulating their queries
and specifying the desired fuzzy terms.

The Top-k Service Composition Module consists of five components. The RDF Query
Rewriter implements an efficient RDF query rewriting algorithm from [Barhamgi et al.
2010] to identify the relevant data services that match (some parts of) a user query. For
that purpose, it exploits the annotations that were added to the service descrition files
(e.g., WSDls). The Service Locator feeds the Query Rewriter with data services that
most likely match a given query. The Top-K Composition component computes (i) the
matching degrees of relevant data services, (ii) the fuzzy dominating scores of relevant
data services, (iii) the top-k data services of each relevant service class, and (iv) the
fuzzy compositions scores to return the top-k compositions. The diversification-aware
Top-k Compositions component implements the proposed quality metrics to compute
the diversified top-k data service compositions. The (diversified) top-k data service com-
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positions are then translated by the composition plan generator into execution plans
expressed in the XML Process Definition Language (XPDL)2. They are executed by a
workflow execution engine. In our implementation, we use the Sarasvati3 execution
engine from Google.

6.2. Experimental Evaluation
This section presents an extensive experimental evaluation of our approach, focusing
on : (i) the efficiency of our algorithms in terms of execution time, (ii) the effects of the
used distance measure on the retrieved diversified top-k data service compositions,
(iii) the effects of ε and λ on the top-k data service compositions/diversified top-k data
service compositions and the benefits in terms of diversity, resulting from the use of
the diversity aspect and (iv) the effectiveness of the use of the fuzzy dominating score
for ranking Data services.

6.2.1. Experiment setting. Due to the limited availability of real data services, we im-
plemented a Web service generator. The generator takes as input a set of (real-life)
model data services (each representing a class of services) and their associated fuzzy
constraints and produces for each model service a set of synthetic data services and
their associated synthetic fuzzy constraints. The generated data services satisfy some
fuzzy constraints on the attributes of the implemented model service. The generation
of the synthetic data services is controlled by the following parameters: (i) the num-
ber of candidate data services per service class, (ii) the number of service classes, (iii)
the number of max preferences in a service class, (iv) the number of matching methods
and (v) the values of the parameters k, ε and λ. The default values of these parameters
are : 400, 4, 4, 4, 5, 0.02 and 0.2, respectively.

The algorithms TKSC and DTKSC were implemented in Java, and the experiments
were conducted on a Pentium D 2:4GHz with 2GB of RAM, running Windows.

6.2.2. Performance vs number of services per class. We measured the average execution
time required to solve the composition problem as the number of data services per
class increases. We varied the number of data services per class from 200 to 1,000. The
results of this experiment are presented in Figure 9 (plot-a). The results show that
our framework can handle hundreds of services in a reasonable time. The results also
show that computing the diversified top-k composition introduces an insignificant cost
when the factor η is small (e.g., η = η1); this cost increases as η increases (e.g., η = η2)
since the search space for the diversified services in each class becomes larger.

6.2.3. Performance vs number of classes. We measured the average execution time re-
quired to solve the composition problem as the number of service classes increases.
We varied the classes number from 1 to 6. The results of this experiment in Figure 9
(plot-b) show that the execution time is proportional to the classes number.

6.2.4. Performance vs number of constraints per service. To evaluate the effects of the con-
straints number on the efficiency of our TKSC and DTKSC algorithms, we varied the
number of fuzzy constraints from 2 to 10 for each service in all service classes. Figure 9
(plot-c) shows the time required to compute the top-k / diversified top-k data service
compositions. The result shows that time required to compute the top-k compositions
increases linearly with the number of service constraints. In the case of diversified
top-k compositions, when the search space in each service class is small (i.e., when
the factor η is small (e.g., η = η1)) the elapsed time in computing the diversified top-k

2http://www.xpdl.org/
3http://code.google.com/p/sarasvati/
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Fig. 9: Performance Results; case of η1 =
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k

⌋
and η2 =

⌊
|Sj |
k

⌋
compositions is almost as that required to compute the top-k compositions, the differ-
ence between the two is insignificant. However, when η is high, the time to compute
the diversified top-k compositions increases, as more constraints should be processed
to compute the diversity degrees.

6.2.5. Performance vs number of matching methods. We varied the number of matching
methods from 1 to 10. The results of this experiment are shown in Figure 9 (plot-d).
Once again the cost incurred in computing the diversified top-k compositions remains
insignificant as the methods number increases if the factor η has a reasonable value
(e.g., η = η1).

6.2.6. Performance vs k. The results in Figure 9 (plot-e) show that as k increases, the
cost incurred in computing the diversified top-k compositions increases slightly rela-
tive to the time needed to compute the top-k compositions.

6.2.7. The effects of the used distance measure. To compute the diversified top-k composi-
tions we implemented all of the three distance measures:

M(F ,G) =

{
0 ifF = G = ∅

1−
∑

x∈X min(µF (x),µG(x))∑
x∈X max(µF (x),µG(x)) otherwise

(8)

L(F ,G) = maxx∈X |µF (x)− µG(x)| (9)

N(F ,G) =

{
0 ifF = G = ∅∑

x∈X |µF (x)−µG(x)|∑
x∈X(µF (x)+µG(x)) otherwise

(10)
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The membership functions used in computing the distance measures were dis-
cretized with a step of the order (B + b−A+ a)/1000 (see Figure 1).

Table VIII: The effects of the used distance (dissimilarity) measure
Diversified Top-k Compositions

Composite Services Score Quality
M L N

CS1: {s1356, s2372, s3285, s4214, s5183} 0.6919484 0.6919484 0.6919484 0.6919484
CS2: {s1356, s2372, s3283, s4214, s5183} 0.68804884 0.6744621 0.6615082 0.6780993
CS3: {s1356, s2372, s3360, s4214, s5183} 0.69165516 0.6713853 0.6594182 0.6809209

Table IX: Effects of (ε, λ) for top-k compositions

(ε, λ) Top-k Compositions
Component Services Score Diversity

(0.002, 0.05)
{s1318, s2292, s3154, s4154} 0.74703556

0.6121456{s1318, s259, s3154, s4154} 0.7441032
{s1318, s2152, s3154, s4154} 0.7441032

(0.02, 0.2)
{s1318, s2292, s3154, s4154} 0.6563174

0.59373885{s1318, s2132, s3154, s4154} 0.655371
{s1318, s259, s3154, s4154} 0.65328693

(0.1, 0.3)
{s1318, s2292, s3154, s4154} 0.53315574

0.62760955{s1318, s2132, s3154, s4134} 0.5312762
{s1318, s2292, s3154, s4154} 0.53008974

Table X: Effects of (ε, λ) for diversified top-k compositions

(ε, λ) Diversified Top-k Compositions
Component Services Quality Score Diversity

(0.002, 0.05)
{s1318, s2292, s3154, s4154} 0.74703556 0.74703556

0.6995363{s1318, s2292, s3154, s4134} 0.6972428 0.7426259
{s1318, s2134, s3154, s4154} 0.6972428 0.7426259

(0.02, 0.2)
{s1318, s2292, s3154, s4154} 0.6563174 0.6563174

0.6995363{s1318, s2292, s3154, s4134} 0.612067 0.6519956
{s1318, s2134, s3154, s4154} 0.6098658 0.6515922

(0.1, 0.3)
{s1318, s2292, s3154, s4154} 0.53315574 0.53315574

0.71135545{s1318, s2292, s3154, s4134} 0.49845165 0.5312762
{s1318, s2140, s3154, s4154} 0.49460968 0.5256555

Changing the used distance measure may change the quality of a composition, lead-
ing thus to its exclusion or inclusion to the diversified top-k compositions. Table VIII
shows the diversified top-3 compositions of a given query along with their qualities
when applying each of the previously seen distance measures. The composition CS2,
for example, has a quality higher than that of CS3 if the distance measures M and L
were applied; however its quality is lower than that of CS3 if the distance measure N
was applied, thus leading to its exclusion if k was 2.
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6.2.8. The effects of ε and λ. Changing the used values of the parameters ε and λ change
the scores and the qualities for both the top-k/diversified top-k data service composi-
tions. This may consequently lead to the inclusion or to the exclusion of a composition
from top-k/diversified top-k data service compositions. Table IX and Table X show the
top-k/diversified top-k data service compositions for different values of ε and λ; the
higher the values of these parameters are, the higher the global diversity of the diver-
sified top-k compositions is. The global diversity of the diversified top-k compositions
set described in Equation 11 is the average of the diversities between each couple of
compositions in the compositions set. Note that the global diversity of the diversified
top-k compositions is always higher than that of the top-k compositions and the appli-
cability of DTKSC produce an average gain of 9, 22%.

div(top− k) =
∑k
i=1

∑k
j=i+1Dist(CSi, CSj)
(k2 − k)/2

(11)

6.2.9. Effectiveness of the fuzzy dominating score. To evaluate the quality of results re-
turned by applying our approach, we have focussed on one service class S0 containing
a small set of 100 Data services. We have considered 3 matching methods M1, M2 and
M3 and 2 preferences involved in this class of services. For comparison, we also com-
puted the top-k Data service in this service class by applying the Pareto dominating
score proposed in [Skoutas et al. 2009; Skoutas et al. 2010b].

Table XI: Top-5 Data services using Pareto dominating score and fuzzy dominating
score

Data Matching degrees Rank
service M1 M2 M3 DS DSf
s04 (0.64433336, 0.7146259) (0.5761205, 0.8961848) (0.7063923, 0.8739688) 3 2
s09 (0.80101556, 0.649472) (0.6462966, 0.83784556) (0.71121365, 0.9996651) 2 1
s22 (0.045464505, 0.4498961) (0.7529509, 0.9747615) (0.88940185, 0.88275194) 4 −
s057 (0.8508446, 0.944788) (0.38846737, 0.16781723) (0.95769846, 0.9885982) 1 5
s072 (0.8809465, 0.96614444) (0.38846737, 0.16781723) (0.9934364, 0.3117907) 5 3
s093 (0.8508446, 0.944788) (0.896329, 0.8598233) (0.71121365, 0.9996651) − 4

Table XI lists the top-5 Data services using Pareto dominating score (DS) and fuzzy
dominating score (DSf ). Table XI shows that almost all the top-5 w.r.t DS are also
in the top-5 w.r.t DSf except for S22 witch is replaced by S093. This is because S22 is
very bad according to M1, in particular for the first constraint. In addition, Table XI
shows that the rank of the Data services S04, S09, S057 and S072 is different in the two
top-5 sets. S057, the best Data service w.r.t. DS is ranked last (i.e., fifth) w.r.t. DSf . on
the other side, the Data services S04, S09 and S072 are in the top-3 (w.r.t. DSf ). This is
because S057 is very bad according to M2, in particular, for the second constraint. How-
ever, S04, S09 and S072 are good or moderately good according to all matching methods.
This is consistent with our motivation to fuzzify the Pareto dominance relationship
illustrated in Section 4.1.

7. RELATED WORK
Preferences in Web service selection/composition have received much attention. Tak-
ing user preferences into account allows for for ranking candidate services/composi-
tions and return only the ones that best satisfy the user’s requirements. ServiceTrust
[He et al. 2009] calculates reputations of services from users. It introduces transac-
tional trust to detect QoS abuse, where malicious services gain reputation from small
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transactions and cheat at large ones. However, ServiceTrust models transactions as bi-
nary events (success or failure) and combines reports from users without taking their
preferences into account. In [Wang et al. 2008], the authors use a qualitative graphical
representation of preference, CP-nets, to deal with services selection in terms of user
preferences. This approach can reason over a user’s incomplete and constrained pref-
erence. In [Palmonari et al. 2009], a method to rank semantic web services is proposed.
It is based on computing the matching degree between a set of requested NFPs (Non-
Functional Properties) and a set of NFPs offered by the discovered Web services. NFPs
cover QoS aspects, but also other business-related properties such as pricing and insur-
ance. Semantic annotations are used for describing NFPs and the ranking process is
achieved by using some automatic reasoning techniques that exploit the annotations.
Unfortunately, all these works do not deal with the problem of composition.

Agarwal and Lamparter [Agarwal and Lamparter 2005] propose an automated Web
service selection approach for composition. Web service combinations can be compared
and ranked according to user preferences. Preferences are modeled as a set of fuzzy
IF-THEN rules. The IF part contains fuzzy descriptions of the various properties of a
service (i.e., a concrete Web service composition) and the THEN part is one of the fuzzy
characterizations of a special concept called Rank. A fuzzy rule describes the combina-
tion of attribute values that a user is willing to accept and to which degree, where at-
tribute values and degrees of acceptance are defined in a fuzzy way. ServiceRank [Wu
et al. 2009] considers the QoS aspects as well as the social perspectives of services.
Services that have good QoS and are frequently invoked by others are more trusted
by the community and will be assigned high ranks. In [Wang et al. 2009], the authors
propose a system for conducting qualitative Web service selection in the presence of
incomplete or conflicting user preferences. The paradigm of CP-nets is used to model
user preferences. The system utilizes the history of users to amend the preferences of
active users, thus improving the results of service selection.

Recent approaches focused on computing the skyline from Web services. All these
approaches focus on selecting Web services based on QoS parameters. The work in
[Alrifai et al. 2010] focuses on the selection of skyline services for QoS based Web
service composition. A method for determining which QoS levels of a service should
be improved so that it is not dominated by other services is also discussed. In [Yu and
Bouguettaya 2010b], the authors propose a skyline computation approach for service
selection. The resulting skyline, called multi-service skyline, enables services users to
optimally and efficiently access sets of service as an integrated service package. In the
robust work [Yu and Bouguettaya 2010a], authors address the problem of uncertainty
inherent to QoS and compute the skylines from service providers. A service skyline
can be regarded as a set of service providers that are not dominated by others in terms
of QoS aspects that interest all users. To this end, a concept called p-dominant service
skyline is defined. A provider S belongs to the p-dominant skyline if the probability
that S is dominated by any other provider is less than p. The authors provide also
a discussion about the interest of p-dominant skyline w.r.t. the notion of p-skyline
proposed in [Pei et al. 2007]. However, these works do not take user preferences into
account and except for [Alrifai et al. 2010] the problem of composition is not addressed.
In [Benouaret et al. 2011a] we addressed the problem of selecting the best atomic
services based on their QoS criteria and user preferences. In that work, each atomic
each atomic service is associated with a QoS vector, and users specify their preferences
in their service queries. The proposed approach extends existing skyline algorithms by
proposing a new concept called α-dominant service skyline. This new concept is based
on a fuzzy dominance relationship, and allows to better control the skyline size (in
order to make it smaller or bigger), and to include atomic services that provide good
compromise between the elements of the QoS vector. Even though that approach uses
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the fuzzy dominance, the addressed problem is still different as in this paper we focus
on compositions rather than on services, and consider constraints on the accessed data,
rather than QoS constraints.

The work most related to ours are [Skoutas et al. 2009; Skoutas et al. 2010b; Be-
nouaret et al. 2011b]. In [Skoutas et al. 2009; Skoutas et al. 2010b], the authors con-
sider dominance relationships between Web services based on their degrees of match
to a given request in order to rank available services. Distinct scores based on the no-
tion of dominance are defined for assessing when a service is objectively interesting.
However, that work only considers selection of single services, without dealing with
the problem of composition nor the user preferences. Furthermore, their proposed al-
gorithms (e.g. TKDD [Skoutas et al. 2010b]) uses the Pareto dominance relationship
which is not adapted when the compared services have large variance, i.e., services
that are very good in some dimensions and very bad in other ones. In [Benouaret et al.
2011b], we consider the problem of top-k Web service compositions. In this paper, we
propose an unified approach for selecting the top-k Web service compositions and the
diversified top-k Web service compositions.

One the other hand, Result diversification has recently attracted much attention
as a means of increasing user satisfaction in recommender system and Web research
[Drosou and Pitoura 2010]. In [Skoutas et al. 2010a], the authors propose a method to
diversify Web service search results in order to deal with users on the Web that have
different, but unknown, preferences. The proposed method focuses on QoS parameters
with non-numeric values, for which no ordering can be defined. However, this method
provides the same services to all users without considering their personal preferences.
In addition, the problem of composition is not addressed. In our approach both the
service composition with preferences and the result diversification are considered. In
[McSherry 2002], Mc Sherry proposes an approach to WSs retrieval that incremen-
tally selects a diverse set of cases from a larger set of similarity-ordered cases. The
same principle is adapted in our work for the diversification of the top-k Web service
compositions but with different measurements.

A large body of recent research works have addressed the problems of modeling and
querying the deep Web (a.k.a. the hidden Web). The authors in [Sheng et al. 2012] pro-
posed a set of algorithms to extract all tuples from a hidden database using the mini-
mum number of queries. The work presented in [Madhavan et al. 2008] addressed the
problem of automatically and efficiently selecting the inputs values that can be used to
query and extract the contents of deep-Web databases through their online forms. In
[Raghavan and Garcia-Molina 2001], the authors develop a generic operational model
of a hidden Web crawler, and present a prototype crawler that can extract semantic
information from search forms and response pages. Senellart et al in [Senellart et al.
2008a; Senellart et al. 2008b] present an interesting approach to automatically con-
struct data Web services on top of deep-Web databases. The basic idea is to automat-
ically wrap Web forms by data Web services and to exploit current machine-learning
techniques and heuristics to automatically infer the semantics of the service’s inputs
and outputs.

While these previous research works provide interesting algorithms to query forms-
accessed Web databases, we believe that they are not appropriate for querying
Web data services for the following two reasons. First, as Web forms target human
users, they usually contain textual semantic information about the queried deep-Web
database, and the expected form’s input and output values. Such information is ex-
ploited in most of the cited approaches to model and query the deep-Web databases.
In contrast, data Web services target machines (i.e., they are usually exploited by soft-
ware consumers), and therefore their interfaces are poor in semantics. Service signa-
tures (in service description files) are not sufficient alone to infer what the service is
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supposed to do; i.e., different services may have the same signature, but completely
different semantics. Therefore, human intervention from the side of service providers
is still required to provide semantic descriptions about their provided services. Sec-
ond, the previous data extraction algorithms cannot be used to learning the service
constraints, as most of the time these constraints refer to some implicit/contextual in-
formation that are not necessary stored in the provider’s databases. As an example,
the service s($autoMaker, ?cars, ?price) could be a service that returns cars along with
their prices with a warranty > 1. The warranty does not appear in the service signa-
ture nor in the returned data. Discovering such implicit information is not trivial and
could constitute a real challenge which is beyond the scope of this paper (it will be the
subject of our future works).

8. CONCLUSION
In this paper we proposed a novel approach to compute the top-k data-driven Web ser-
vice compositions based on user (fuzzy) preferences. We introduced the concept of fuzzy
dominance relationship to measure the extent to which a data service (represented by
its vector of matching degrees) dominates another one. This new concept allowed us
to rank-order candidate services in their respective classes and data service compo-
sitions to compute the top-k ones. In addition, we proposed a new quality metric to
assess the diversity of a composition relative to a set of compositions and an algorithm
to select the diversified top-k compositions based on that metric. We conducted a thor-
ough experimental study on a large set of data-driven Web services and demonstrated
the efficiency and the effectiveness of our techniques in different settings. We iden-
tify the following directions for future research. First, we intend to combine this work
with QoS preferences. Second, we plan to rank the data returned by the data service
compositions. We also intend to study the constraints learning problem.
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Fig. 10: Membership Functions

APPENDIX

A. MEMBERSHIP FUNCTIONS
Figure 10 shows the membership functions on the preferences (linguistic terms) in-
volved in the query of our running example.

B. DATA SERVICES’ ANNOTATIONS
We show in this appendix how we annotate the descriptions of data services with the
RDF views.

The following listing gives an example of how the WSDL description file of s21 is
annotated with its corresponding RDF view. The “rdfannot:rdfquery” element is used
to hook the operation to its associated RDF view.

<in ter face name=”s21”>
<operation name=CarByAutoMaker pattern=wsdl : in−out
wssem : modelReference =”RDFSCarOntology : AutoMaker”
wssem : modelReference =”RDFSCarOntology : Car”>
<! −RDF View i s added as extensible element on an operation −−>
<rdfannot : rdfquery name=”query1 ” value=

URL=
” http : / / soc . univ−lyon1 . f r :8080/ FunctionsDescription / index . jsp ”
RDFQuery{
SELECT ?y ?z ? t
WHERE {?Au rdf : type AutoMaker ?Au name $x

?Au makes ?C ?C rdf : type Car ?C hasName ?y
?C hasPrice ?z ?C hasWarranty ? t }}

CONSTRAINTS{? z i s ’URL/ Cheap ’ , ? t i s ’URL/ Short ’} ” / >
. . .
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</ operation>
</ inter face>

The listing hereafter gives an example of how an HTML page of a RESTful service
implementing the functionality of s21 is annotated with its corresponding RDF view.
We exploited the “sarest:operation” predicate of SA-REST proposal to hook the service
to its associated RDF view.

<html xmlns : sarest =” http : / / l s d i s . cs . uga . edu /SAREST#”>
. . .
<meta about=” http : / / carbyautomaker . com / search /”>
<meta property =” sarest : input ”
content =” http : / / l i r i s . cnrs . f r / car . owl#AutoMaker”/>
<meta property =” sarest : output ”
content =” http : / / l i r i s . cnrs . f r / car . owl#Car”/>
<meta property =” sarest : act ion ” content =”HTTP GET”/>
<meta property =” sarest : l i f t i n g ”
content =” http : / / carbyautomaker . com / api / l i f t i n g . xs l ”/>
<meta property =” sarest : lowering ” content=
” http : / / carbyautomaker . com / api / lowering . xs l ”/>
<meta property =” sarest : operation ”
content=URL=
” http : / / soc . univ−lyon1 . f r :8080/ FunctionsDescription / index . jsp ”
RDFQuery{
SELECT ?y ?z ? t
WHERE {?Au rdf : type AutoMaker ?Au name $x

?Au makes ?C ?C rdf : type Car ?C hasName ?y
?C hasPrice ?z ?C hasWarranty ? t }}

CONSTRAINTS{? z i s ’URL/ Cheap ’ , ? t i s ’URL/ Short ’} ” / >
</meta>
. . .
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