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The emerging Internet of Things (IoT) bridges the gap between the physical and the digital worlds, which
enables a deeper understanding of user preferences and behaviors. The rich interactions and relations
between users and things call for effective and efficient recommendation approaches to better meet users’
interests and needs. In this article, we focus on the problem of things recommendation in IoT, which is
important for many applications such as e-Commerce and health care. We discuss the new properties of
recommending things of interest in IoT, and propose a unified probabilistic factor based framework by fusing
relations across heterogeneous entities of IoT, for example, user-thing relations, user-user relations, and
thing-thing relations, to make more accurate recommendations. Specifically, we develop a hypergraph to
model things’ spatiotemporal correlations, on top of which implicit things correlations can be generated. We
have built an IoT testbed to validate our approach and the experimental results demonstrate its feasibility
and effectiveness.
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1. INTRODUCTION

The emerging Internet of Things (IoT) is accelerating the growth of data available on
the Internet, which makes the traditional search paradigms incapable of digging the
information that people need from massive and deep resources. Furthermore, given
the dynamic nature of devices, organizations, and social structures involved in the
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IoT, intelligent and automated approaches are needed to support decision makers with
the knowledge derived from the vast amount of information available through IoT
networks. IoT is more desirable of an effective and efficient paradigm of proactive dis-
covering rather than postactive searching, in which a user who has certain information
needs will search on the Internet for related resources, while the concept of “discov-
ery” refers to the ability to push relevant and related resources to the user, especially
according to the metadata collected from the user’s historical activities in terms of
activities on resources or with other people.

To realize proactive discovery on the future Internet, in this article, we explore the
topic of things recommendation. Things recommendation is a crucial step for promoting
and taking full advantage of the IoT, where it benefits the individuals, businesses, and
society on a daily basis on two main aspects. On the one hand, it can deliver relevant
things (e.g., things that users might need) to users based on their preferences and
interests. On the other hand, it can also serve to optimize the time and cost of using IoT
in a particular situation. Physical things in reality have multiple unique attributes.
For instance, physical things have states (e.g., in use or not in use; expired or not
expired). When a certain thing is in use, it cannot be used simultaneously by another
user. Under this circumstance, a recommender system can refer the user to a list of
similar things that are available. Recommendation in IoT is more spontaneous, context
dependence and monopolistic under certain circumstances compared with traditional
recommendations. Consequently, things recommendation is much more complex than
traditional recommender systems like recommending books or movies to consumers.
The following are some of the reasons that cause the additional complexity in things
recommendation:

—Diverse relations. The heterogeneous relationships and interdependencies between
entities (people and things), data, information, and knowledge in the IoT are growing
exponentially, leading to complexity and gross inefficiencies. Failure to distinguish
the various types of relations may result in inaccurate recommendation results.

—Highly dynamic. The dynamic nature of things calls for models that can rapidly
adapt to the constantly changing status of things and always present the most up to
date recommendation results.

—Spatiotemporal correlated. User behaviors on things are intrinsically correlated both
spatially and temporally. The heterogeneous nature of spatiotemporal data is a big
challenge for recommendation.

—Incomplete description. Things are usually associated with descriptions, categories
,or social tags to describe their attributes of functionality or nonfunctionality. How-
ever, unlike traditional recommendation (i.e., recommending a movie), the textual
information associated with things is usually incomplete and ambiguous.

In light of the preceding challenges, we propose a probabilistic matrix factorization
based framework to address the things recommendation problem in IoT. We fuse infor-
mation from social networks of users and correlation networks of things, by learning
shared latent factors stemming from the probabilistic matrix factorization on three ma-
trices, namely, users relationships, things’ correlations, and observable things’ usage in-
teractions. A user’s social connections can provide valuable clues about her preferences.
However, constructing a collaborative user model is not trivial, since not all informa-
tion from the social environment is equally useful. In our framework, we leverage the
social relation information in designing the social regularization term to constrain the
matrix factorization objective function. The social regularization term can indirectly
model the propagation of the user’s interest and preference.

We also propose a graph-based approach to uncover things’ correlations by analyzing
their usage frequency, which reflects two implications: (i) users’ preferences or needs on
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things can be partially revealed by how frequently a user uses a thing; and (ii) higher
usage frequency on a thing from a user indicates more needs on this thing. Our ap-
proach adopts the probabilistic matrix factorization based on dimensionality reduction
techniques. More specifically, the user-thing frequency matrix (induced from things us-
age logs) is factorized into two low-dimensional factor matrices: user latent matrix and
thing latent matrix. Finally, the state of physical things are rapidly updated and one
thing cannot be used by multiple users in certain circumstances. For instance, an ATM
machine being in use can not be used by another person. We embed a sequential Monte
Carlo based mechanism into our proposed framework to continuously refine the things
availability temporally, and integrate this latest information in the recommendation
results. Our main contributions are summarized as follows:

—We focus on things recommendation and systematically analyze things’ correlations,
which has substantial impact on users behaviors on things usage and human decision
making process. This work is based on our previous work on correlation discovery of
ubiquitous things in IoT and our preliminary exploration on things recommendation
[Yao et al. 2013, 2014b].

—Things correlations can be uncovered and utilized for serving user-thing usage pat-
tern prediction. In particular, we develop a hypergraph-based approach to derive
things implicit correlations in a query-rank style, in which complex relations in user-
thing interactions can be represented at utmost without unnecessary information
loss.

—We propose a sequential Monte Carlo based method to continuously track the avail-
ability status of physical things, and embed such dynamic feature of physical things
into our proposed framework to improve recommendation results.

—We validate and evaluate our model on a real-world IoT testbed. The experimental
results demonstrate the feasibility and effectiveness of our approach.

The rest of this article is organized as follows. We formulate our problem in Section 2.
We present the proposed framework and technical details in Section 3. We describe the
setting of our experimental environment and report our evaluation results in Section 4.
Finally, we overview the related work in Section 5 and discuss some future research
directions in Section 6.

2. PROBLEM FORMULATION

We argue that both users’ relations and things’ correlations should be taken into
account for making accurate recommendations in IoT. Indeed, users’ relations (e.g.,
friendships) can have significant impact on things usage patterns. Personal tastes are
correlated. Research in Kameda et al. [1997] shows that friendships and relations
between users play a substantial role in human decision making in social networks.
For instance, people usually turn to a friend’s advice about a commodity (e.g., hair
straightener) or a restaurant before they go for them. Sometimes, such influence from
the friend circle is even more substantial than high ratings given by other people [Sinha
and Swearingen 2001]. In addition, if one user is using a certain thing (e.g., a laptop),
the status of thing can spread to her social network circle, and the people in her cir-
cle will know the thing is not available. They therefore need to turn to other similar
things if they need them. Such kind of situation typically happens in the IoT, and af-
fects the things’ usage events. It also affects the people’s decision making process and
recommendation results.

As mentioned previously, things are functionality oriented and things that have
similar or same functionalities hold strong relationships. We argue that physical things
have more distinctive structures and connections in terms of their functionalities in
real life (i.e., usefulness), as well as nonfunctionalities (i.e., availability). For example,
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Fig. 1. The graph induced from users’ social networks and things correlations. The connections consist of
three types of links, including users’ relationships within users’ social network, things correlations with
correlation graph of things, and things usage links within user-thing interactions. Our task is to predict the
dyadic relationship between users and things, in other words, recommending certain things to users.

different things provide different functionalities (e.g., microwave and printer), and will
be of interest to different groups of people. Pairwise things with strong correlations
indicate either they have similar functionalities or they have more likelihood to be used
together. For instance, a water tap and a chop board are both in use when we prepare
meals, since most of the time we need to wash cooking materials (e.g., vegetables) before
chopping them. In either case, similar things usage pattern will be reflected and the
latent correlations between things will be revealed, which have the potential to affect
the recommendation process in an implicit way and have not been explored much yet.

Figure 1 gives an overview of user-thing interactions in the IoT, in which the addition
of interactions (things usage events) creates new relations and correlations. We can
build three graphs from it: a user-thing graph, a thing-thing graph, and a user-user
graph.

—User-thing graph. In the user-thing graph (shown in the middle with black dash
lines of Figure 1), there are two types of nodes, users and things. An edge starting
from a user and ending at a thing indicates that the user has used or invoked the
thing (e.g., used an ATM machine in KFC), and the weight of the edge can indicate
the number of usage. We name this as things usage events in this article.

—User-user graph. In the user-user graph (shown on the right with blue lines in Fig-
ure 1), a node is a user and an edge is the original connection between two users in
an existing social network.

—Thing-thing graph. In the thing-thing graph (shown on the left with red lines in
Figure 1), a node is a thing and a directed edge between two things indicates that
some users consecutively use and invoke the things. The weight associated with an
edge represents the strength of the correlation between two things, which is derived
from the users’ interactions on the things; for example, two things may be connected
if they have been used at a similar time or at similar types of locations. These
implicit relations initially cannot be observed and are inferred from things usage
events (Section 3.2).

Formally, given the historical things’ usage logs Y ∈ R
I×J of I users P = {p1, . . . , pI}

and J things T = {t1, . . . , tJ} with rij as the number of times user pi used thing tj . We
have the profile information for each yij , such as temporal information, which indicates
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what time the usage event happens, and spatial information, which indicates where
the thing is used. The things correlations can be derived by mining the usage patterns.
In the meantime, we craft the social information of users in terms of their connections
with each other.

Things usage logs represent the interactions between users and things, and each log
is created when a person interacts with a particular thing. The location L denotes the
things’ location information, where S is a set of time stamps, indicating that a user
accesses a thing at a specific time in a specific location. Each usage event record is a
triple of ThingID, Timestamp, Location as described in the following.

Definition 1 (Things Usage Event). Let T = {t1, . . . , tn}, U = {u1, . . . , um}, S =
{s1, . . . , sp}, and L = {l1, . . . , lq} represent the set of things, users, timestamps, and
locations, respectively. A usage event of a thing t, denoted by h ∈ H = {h1, . . . , hi} =
{<t, u, s, l>|t ∈ T ∧ u ∈ U ∧ s ∈ S ∧ l ∈ L}, indicates that user u used thing t located in a
specific location l at timestamp s.

Things recommendation in IoT can be formulated as predicting the dyadic rela-
tionships between people and things by leveraging informative relations from the
thing-thing graph, the user-thing graph, and the user-user graph. In other words,
our model merges three heterogeneous types of dyadic relationships, namely, people
to things ({∃yi, j,∀i ∈ P, j ∈ T }), people to people ({∃si,i′,∀i, i′ ∈ P}), and things to things
({∃ti,i′,∀i, i′ ∈ T }), where P and T denote people and things, respectively. Figure 1 shows
the graphical representation of the three relationships.

We aim at recommending certain things (e.g., Microwave 2 at lunch time in Figure 1)
to users according to predicted things usage value, which is reflected by the usage
frequency of things. In particular, a pair of user-thing instance (i, j),∀i ∈ T ,∀ j ∈ P
generates the interactive relationship, which can be abstracted as

{(i, j) → yij} where i ∈ T , j ∈ P, (1)

which forms a matrix Y ∈ Y |I||J |. Our goal is to predict the missing entries yĩ j̃ given
testing pair (ĩ, j̃). Things with bigger values of yĩ j̃ will be recommended to a given user.

3. PROPOSED RECOMMENDATION FRAMEWORK

In this section, we introduce our unified framework, where the information from social
relations and things correlations are coupled simultaneously through shared latent
factors learned from three matrices: the user-user relationship matrix, the thing-thing
correlation matrix, and the user-thing usage matrix. Our methodology fuses user rela-
tionships, things correlations, and user-thing interactions together, and incorporates
three relationships: user-user connections, thing-thing correlations, and user-thing in-
teractions (thing usage). We describe how to encode these three relationship matrices
in our model from Section 3.1 to Section 3.2.

3.1. Decoding Users Relationship

We construct a directed weighted graph Gu = (Vu, Ev), whose vertex set Vu corresponds
to users set {u1, . . . , um}; edges set Ev represents the relationships between users and
the range of their associated weight are in [0, 1]. Bigger weights indicate stronger ties
between users. The weight Wu indicates the user similarity influenced by the social
links between users, reflecting the homophily (i.e., similar users may have similar
interests). We use the cosine similarity to calculated sii′ as follows:

sii′ = eαcos(b(i),b(i′))∑
k∈�(i) eαcos(b(i),(b(k))

, (2)
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where cos(b(i), b(i′)) = b(i)·b(i′)
||b(i)||||b(i′)|| , �(i) is the set of the user i’s connections (i.e., j ∈ �(i)),

b(i) is the binary vector of things used by user i, || · || is the L-2 norm of vector b(·), and
α is a parameter that reflects the preference for transitioning to a user who interacts
with the same things.

After we obtain the users’ relationship matrix from Gu, we factorize users’ rela-
tionship matrix to derive a high-quality, low-dimensional feature representation to
user-based latent features vectors ui ∈ R

1×m and factor-based latent feature vectors
u′

i′ ∈ R
1×m on analyzing the social network graph Gu. The conditional probability of sii′

over the observed social network is determined by

sii′ ∼ Pr
(
sii′ |uT

i u′
i′ ; σs

)
where ui ∼ N

(
0, σ 2

u

)
, u′

i′ ∼ N
(
0, σ 2

u′
)
.

(3)

Similar to the Web link adjacency, if a user i has lots of links to other users, the trust
value of sii′ should be decreased. While if a user i is trusted by many other users, the
trust value sii′ should be increased; since the user can be considered as local authority,
sii′ should be adjusted as

s∗
ii′ =

√
d−(i′)

d+(i) + d−(i′)
× Sii′ , (4)

where d+(i) represents the out-degree of node i, while d−(i′) indicates the in-degree of
i′. Equation (3) can be reformulated as

s∗
ii′ ∼ Pr

(
s∗
ii′ |uT u′; σs

)
. (5)

3.2. Decoding Things Correlations

Compared with users’ social relations, things correlations are implicit and not straight-
forward to obtain, and there are some unique challenges in order to learn things cor-
relations [Yao et al. 2013]. To fully utilize the rich information in things usage logs
mentioned previously, we extract implicit things correlations by mining the underlying
connections among things and their spatiotemporal patterns in this article.

Our study builds on the theory of homophily from the field of social networks, which
implies that people with similar characteristics tend to form relationships [McPherson
et al. 2001]. Then, the presence of relationships among people can be used to infer
their similarities. Moreover, the stronger the tie, the higher the similarity. This infer-
ence is particularly useful when characteristics of people are not directly observable
or incomplete. We advocate that the homophily principle applies to things as well,
that is, things with strong interactive relationships tend to have strong correlations.
We propose a unified hypergraph to represent the various entities and heterogeneous
relations in collection of things usage events in terms of temporal and spatial dimen-
sions; hypergraph is a generalization of the ordinary graph, where the edges, also
known as hyperedges, are arbitrary nonempty subsets of the vertex set [Zhou et al.
2006; Agarwal et al. 2006]. With hypergraph modeling, the vertices represent various
types of entities in user-thing interactions (e.g., people, things, temporal and spatial
information, etc.), and the hyperedges represent heterogeneous relations among enti-
ties via connecting arbitrary subsets of vertices. In this way, we not only incorporate
heterogeneous relations, for example, the similarity between locations, but also utilize
the spatiotemporal historical interactions on things collections. On top of this unified
hypergraph, we develop a ranking-based algorithm to learn the most related things
according to a query by propagating the information of target thing through the struc-
ture of this constructed hypergraph. We take an example to show processing of things
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Table I. Samples of One User’s Things Usage Log

ThingID Timestamp Location

1 20101108020307 Office-1
5 20101109073226 Sec4-KitchenHome
5 20101109074235 Sec4-KitchenHome
5 20101109075139 Sec4-KitchenHome
4 20101109091202 Sec2-LivingRoom1
4 20101109091408 Sec2-LivingRoom1
2 20101109171643 Sec4-KitchenHome
... ... ...

Table II. Processed Samples of One
User’s Things Usage Log

ThingID Timestamp Location

t1 s1 p2
t5 s4 p4
t5 s4 p4
t5 s4 p4
t4 s3 p1
t4 s3 p1
t2 s2 p4
... ... ...

Fig. 2. Spatiotemporal matrices extracted from samples shown in Table I.

usage logs as follows. Table I shows some raw samples of things usage events in terms
of time and location dimensions, and Table II shows the same samples after processing
where things, locations, and timestamps are represented using unique IDs. Note that
the second, the third, and the fourth timestamps fall into a same time period, and they
are therefore given the same timestamp ID. Figure 2 reflects the location-thing and
time-thing matrices extracted from logs.

Given things usage logs in terms of temporal and spatial factors, thing-thing corre-
lation derivation can be formally formulated as Problem 1.

PROBLEM 1 (THINGS CORRELATION DERIVATION). Given each thing denoted as a vector yi
whose initial entry corresponding to the target thing is 1, 0 otherwise, its relations of the
rest of other things related to the given thing can be quantified by learning a ranking
function.

To solve this problem, there are two subproblems that need to be solved sequentially,
defined as subproblem 1 and subproblem 2, respectively.
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Fig. 3. Overview of the Proposed Things Correlation Derivation: stage ©1 is to represent heterogeneous
entities and relations (e.g., things, locations, and timestamps) in things usage events to a unified hypergraph;
stage ©2 is to develop a ranking algorithm to search related things (the blue arrows show the training stage
while the orange arrows show the testing stage).

Fig. 4. Illustrative example of hypergraph versus conventional graph on modeling things usage events in
terms of unified relations and high-order relations: (a) the conventional graph (left) in which a pair of user
and thing is connected if the user accessed this thing. This graph cannot clearly reflect whether the graph
measures pairwise relations, for example, <time1, t1> and <time2, t1>, and the hypergraph (right), where
each hyperedge can contain any number of arbitrary nodes to exhibit more complex relations, for example,
hyperedges can be written as <time1, time2, t1> (ellipse shadow), from which we can clearly know thing t1
is accessed at <time1, time2>; (b) the conventional graph (left) in which two things can be connected if they
are accessed at same time interval, but it cannot tell whether this thing is accessed at other time frames,
and the hypergraph (right) can reasonably represent this complex relation.

SUBPROBLEM 1 (MODELING). Given a collection of things usage events H, construct a
hypergraph-based model HG representing the heterogeneous entities and their complex
relations across and within the entities.

SUBPROBLEM 2 (INFERENCE). Given the constructed hypergraph HG induced from things
usage events collection H, learn a ranking function that can produce a list of related
things for each target thing.

These two subproblems have successive relations. Ideally, a solution should be robust
in capturing and reflecting the hidden pattern in usage events, and also be efficient in
ranking the candidates.

Our proposed solution (see Figure 3) can be decomposed into two stages: (i) descrip-
tive stage and (ii) predictive stage. The first stage aims at embracing the multiple
relations in things usage events, and we particularly propose a hypergraph to model
the heterogeneous entities and relations of things usage events (corresponding to Sub-
problem 1). In the second stage, we infer a list of most related things given a querying
thing by developing a ranking algorithm on top of the descriptive model in stage 1
(corresponding to Subproblem 2).

3.2.1. Hypergraph Preliminary. As a generalization of the conventional graphs, a hyper-
graph can naturally address these mentioned challenges (as demonstrated in Figure 4).
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The fundamental idea is to explore the underlying similarity relationships among ver-
tices via constructing a hypergraph with various hyperedges to capture the high-order
and complex similarities. Hypergraph has been extensively explored in recommenda-
tion [Bu et al. 2010] and multilabel classification [Sun et al. 2008].

Let HG(V, E) be a hypergraph with the vertex set V = T ∪ L ∪ S and the set of
hyperedges E . A hyperedge e is a nonempty subset of V where ∪e∈E = V. Let HG(V, E,W)
be a weighted hypergraph where W : E → R

+ is the hyperedge weight. The hypergraph
is said to be connected when there is a path between each pair of vertices. A path
is a connected sequence of vertices over hyperedges {v1, e1, v2, e2, . . . , ek−1, vk} where
{vi, vi+1} ⊆ ei. A hyperedge e is said to be incident with v when v ∈ e. A hypergraph has
an incidence matrix H ∈ R

|V|×|E | and each entry h(v, e) is defined as follows [Bu et al.
2010; Zhou et al. 2006]:

h(v, e) =
{

1 if v ∈ e
0 if v /∈ e. (6)

So, the degree d(v) of vertex v and the degree δ(e) of hypergraph degree e are defined
as

d(v) =
∑
e∈E

W(e)h(v, e),

δ(e) =
∑
v∈V

h(v, e) = |e|,
(7)

where W(e) is the weight of the hyperedge e, and δ|e| is the number of vertices in e.
We use De and Dv to denote the diagonal matrices of the degrees of hyperedges and
vertices, respectively.

3.2.2. Subproblem 1: Modeling. We first introduce some intuitions behind using hyper-
graph to model things usage events, and then describe how to realize the modeling
task defined in subproblem 1.

As mentioned before, things usage event is a four-elemental tuple containing object,
user, timestamp, location, which means there are four types of entities and multiple
relationships across these entities. We summarize three major challenges in order to
exploit and model the rich information:

—How to model heterogeneous relations with minimal information loss. The various
entities and relations make it difficult to develop a unified framework taking into
account all objects and relations. For example, there are three types of contextual
attributes in things usage events. To illustrate their relations with objects, we gener-
ally need to construct three separate graphs, for example, location-thing graph and
time-thing graph. However, dividing multiple relations into separated graphs can
cause nontrivial information loss.

—How to robustly model high-order relations. There exist some relations that are more
complex, and it will cause information loss if simply being modeled using a low-
order modeling approach, for example, using pairwise similarity based graphs. Plus,
a pairwise relation between two nodes is only based on their own characteristics.
If one of them is corrupt, their relation will be broken. As a result, the relations
between pairwise nodes are not stable.

—How to reveal latent connections. The complex dependencies among a variety of
entities make it hard to detect a latent relationship between entities. For example,
although the usage frequency of thing <t1, t3> being used together falls below some
threshold, they might actually be meaningfully related. Let us say things <t3, t2> are
used together frequently, and <t1, t2> are also used frequently together. The presence
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Table III. Hyperedges in Things Usage Events

External Relations across Entities
Index Notation Hyperedges
1 ET T I Thing-Thing-Time
2 ET T L Thing-Thing-Location
3 ELLT Location-Location-Thing
4 EIIT Time-Time-Thing

Internal Relations within Entities
Index Notation Hyperedges
5 ELp

p-nearest locations

of t2 actually provides some possible latent connection for <t1, t3>, which needs to be
uncovered.

Conventional graphs can overcome these obstacles partially. However, it is difficult to
fully capture the heterogeneous and complex relations in things usage events by using
conventional graphs. For instance, the underlying cross-entity relationships in things
usage events usually have richer structures than conventional graphs can contain.
Figure 4(a) shows a simple example to compare the scenarios of using conventional
graph (left) and of using hypergraph to model temporal relations of things (right). In
this example, a thing t1 is accessed at time1 and time2. The conventional graph obviously
cannot capture this connection; for example, to show time1 and time2 relations with t1,
respectively, it needs two edges <time1, t1> and <time2, t1>. From this representation,
we cannot derive relations whether t1 and t2 are accessed in the same time interval.
However, the hypergraph can tackle this problem naturally due to the fact that its
edges can contain any number of arbitrary nodes. The hyperedge <time1, time2, t1>
clearly demonstrates the relations among the entities. Figure 4(b) shows one thing is
highly possible to be accessed at multiple specific time frames. The conventional graph
(left) describing binary correlations cannot capture this high-order relation, however,
hypergraph (right) can accomplish this complex relation naturally.

A hyperedge in our things usage hypergraph can be a set of vertices with either
the same type or different types. The former kind of hyperedge captures the relations
among the same type of objects, while the latter captures the relations across different
types of objects. Things usage events consist of four types of entities. Let T denote the
set of things, I denote the set of timestamps, and L denote the set of locations. In our
data model, we formalize a hypergraph HG that contains six different implicit and com-
plex relations with different entities, namely, external relations across entities. Another
two high-order relations are constructed within two types of entities including users
and locations, which we call internal relations. Table III summarizes all the hyperedges
modeled by our unified hypergraph. We briefly introduce them in the following.

External Relations. There are four external relations in our model:

—ET T I . This represents the scenario that two things are used at a same time period.
The weight w(etitj ik) for this relation is set to be the frequency that both things ti and
tj are used in same time period ik. The calculation is the same as Equation (9),

w(etitj ik) = |{(ti, tj, ik)}|ti ∈ T , tj ∈ T , ik ∈ L| (8)

and it can be normalized as

w(etitj ik) = w(etitj ik)√∑|T |
l=1 w(etltj ik)

√∑|T |
m=1 w(etitmik)

. (9)
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Table IV. The Incident Matrix H of Our Proposed
Hypergraph

ET T I ET T L ELLT EIIT ELp

T T ET T I T ET T L T ELLT T EIIT 0
I IET T I 0 0 IEIIT 0
L 0 LET T L 0 LELLT LELp

—ET T L. This represents that two things are used at a same location. The weight w(etitj lk)
for this relation is set to be the frequency that both things ti and tj are used in the
same location lk. The calculation is similar to Equation (9).

—EIIT . In this relation, if one thing is used at the same timestamp, we assign the
weight as 1.

—ELLT . In this relation, if one thing is used in the same location, we assign the weight
as 1.

Internal Relations.

—ELp
. In this relation, we consider the similarity between different locations. In the

hypergraph, a hyperedge of this type is each location and its top p similar locations.
For each location li, its weight of hyperedge is calculated as

w(elp
i ) = 1

p

p∑
j=1

sim(li, lj), (10)

where sim(li, lj) is the similarity between two locations. Given two locations, we
measure their similarity using the Jaccard coefficient between the sets of things
used at each location:

sim(li, lj) = |�o
i ∩ �o

j |
|�o

i ∪ �o
j |

, (11)

where �o
i and �o

j denote the set of used things at location li and location lj ,
respectively.

Based on the hypergraph model introduced previously, we can derive the vertex-
hyperedge incidence matrix H (as shown in Table IV) and also the weight matrix W.
The size of both matrices depends on the cardinality of different element sets involved
in the matrices, and they are all sparse matrices.

3.2.3. Subproblem 2: Inference. To infer the related things for a given querying thing, we
adopt a spectral clustering based semisupervised learning framework [Zhu 2006]. The
goal is, given each thing i, to estimate a ranking function f that allocates other things
with different relatedness scores f (i) over hypergraph HG, indicating their relevance
with querying thing i ∈ V. Let ti ∈ t be the query vector for thing i. The learning process
can be formulated under a regularization framework as follows:

Q(f) = E(f) + μ�(f, t), (12)

where E(f) is the quadratic energy function, which smooths the vertices nearby ac-
cording to Markov assumption; in other words, the nearby vertices on HG should have
similar relatedness scores, and �(f, t) is the loss function measuring the difference be-
tween predicted relatedness score and true scores. μ is the regularizer. The equation
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ALGORITHM 1: Hypergraph-Based Things Correlation Learning
Input: A sequence of things usage events H and things set t = {t1, . . . , tn}
Output: Relation matrix of things T

1 Constructing hypergraph HG as described in Section 3.2.2;
2 Computing incident matrix H;
3 Computing weight matrix H;
4 Computing vertice degree matrix Dv;
5 Computing hyperedge degree matrix De;
6 Computing � = D−1/2

v HWD−1
e HTD−1/2

v ;
7 Initializing T = ∅;
8 for i=1:n do
9 Initializing relatedness score vector ti as: the i-th element is ti

i = 1, other elements are
equal to 0;

10 Let f0 = ti;
11 while δ < ξ do
12 f j+1 = α�f j + (1 − α)ti;
13 for k = 1:n do
14 δ ← max |f j+1

k − f j
k |;

15 end
16 end
17 Output {t1, . . . tn} sorted by relatedness score with ti ;
18 T = T ∪ ti ;
19 end

can be expanded as

Q(f) =1
2

|V|∑
i, j=1

∑
e∈E

1
δ(e)

∑
(vi ,v j )⊂e

W(e)

∣∣∣∣∣ fi√
d(vi)

− f j

d(v j)

∣∣∣∣∣
2

+ μ

|V |∑
i=1

||fi − ti||2. (13)

The optimal relatedness scores can be learned recursively by solving the optimization
problem in a closed form [Zhou et al. 2006]:

f∗ = argminf Q(f) = (1 − α)(1 − α�)−1t
where

α = 1/1 + μ and � = D−1/2
v HWD−1

e HTD−1/2
v .

(14)

Equation (14) can be reformulated as

f∗ = α�f∗ + (1 − α)t. (15)

Our things correlation approach is implemented in a two-stage process. We first
integrate both interactive relationships formulated across things, timestamps, and
locations, and pairwise relationships formulated between any homogeneous entities
from the things usage events in a unified hypergraph. Then, given the hypergraph
representation of things usage events, we treat correlation derivations as a ranking
problem over the hypergraph, where each thing is treated as a query ti (line 9 in
Algorithm 1). Our task is to rank other nodes on the hypergraph according to their
related score to the query node (from line 8 in Algorithm 1). Following this process, we
can derive pairwise relations of things. The detailed algorithm of things derivation is
summarized in Algorithm 1.
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3.3. Decoding User-Thing Interactions

User-thing interactions yij are embodied by the usage frequency of thing i by user j in a
certain time span. We can map the usage frequency to interval [0, 1] by using function
f (x) = (x − ymin)/(ymax − ymin) without loss of generality, where ymax and ymin are the
maximum and minimum usage values, respectively. The dyadic relationship between a
user and a thing does not only depend on their latent factor U T V , whose vulnerability
is that it makes use of past interactions and cannot handle brand new things well,
that is, cold-start problem. To tackle this issue, we use the explicit features directly by
profiling users observable features xi ∈ R

c (i.e., age, gender, location, etc.) and things
observable features zj ∈ R

d (i.e., textual description of things functionalities, things
contextual information, etc.) [Yang et al. 2011b]. Here c and d are the dimensionality
of users observable features and things observable features, respectively. The dyadic
relationship (thing usage value) depends on not only the inner product of latent factors
of users and things, but also their observable features. Things usage value yij can be
defined as the following conditional probability:

yij ∼ Pr
(
yij |ui, v j, xi, zj, σ

2
y

)
. (16)

We adopt the bilinear product to specify the similarity between user observable
features and thing observable features [Chu and Park 2009]. The pairwise similarity
between xi and zj can be denoted as

rij = wT (
xi ⊗ zj

)
, (17)

where w is a column vector of entries {wmn}, and xi ⊗ zj denotes the Kronecker product
of xi and zj . Equation (17) can be rewritten as

rij = xT
i Wzj, (18)

where matrix W ∈ R
m×n is a weight coefficients capturing pairwise associations be-

tween user i’s explicit feature vector and thing j’s explicit feature vector including key
state indicator or descriptive information of things. The explicit feature vector xi of
user i reflects demographic information of users like gender, identity, etc.

The explicit feature vector zj of things includes static features and dynamic features.
The static features contain textual descriptors of things, and property information.
Since the dynamic feature consists of things availability that changes over time, we
adopt a particle filtering based tracking method to obtain the latest things’ availability
[Yao and Sheng 2011], which indicates things availability temporally.

So the thing usage value depends on both the inner product of user and thing la-
tent factors and the bilinear product of user observable features and thing observable
features. Equation (16) can be reformulated as

yij ∼ Pr
(
yij |uT

i v j + rij, σ
2
y

)
. (19)

3.4. The Fusion Model

Given observable data for O = {Oy, Os, Ot}, our framework can be denoted as an opti-
mization problem of minimizing the negative logarithm of Pr(O|
)Pr(
) via

min



L(
) = min λy

∑
i j∈Oy

�
(
yij, uT

i v j + rij
) + λs

∑
ii′∈Os

�
(
s∗
ii′ , uT

i u′
i′
) + λt

∑
j j ′∈Ot

�
(
tj j ′ , vT

j v′
j ′
)

+ λw||w||2 + λU ||U ||2 + λV ||V ||2, (20)

where �· is a loss function (we adopt the most widely used �2 loss). A gradient descent
process can be implemented to solve the parameters. Given a training dataset {yij}, the
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objective function in Equation (20) can be found by performing gradient descent in ui,
v j , and wmn.

ui → ui − δ ×
(

∂�

∂ui

(
yij, uT v + rij

)
v j + uT

i ui

)
,

v j → v j − δ ×
(

∂�

∂v j

(
yij, uT v + rij

)
ui + vT

j v j

)
,

w → w − δ ×
(

∂�

∂w

(
yij, uT v + rij

)
uiv

T
j + wT w

)
,

(21)

where δ is the learning rate. After we obtain the optimal parameters 
∗, we can use
them to predict the given testing data {ĩ, j̃, yĩ, j̃}:

yĩ j̃ = uT
ĩ v j̃ +

cd∑
mn

xĩnz j̃mw∗
mn, (22)

where c and d are the dimensionality of users’ explicit features x and things explicit
features z.

Our proposed fusion model couples three types of relations: user social relations,
thing correlations, and user-thing relations. The model is constrained by three types of
information: similar user regularization, similar thing correlation, and similar cohe-
sion between users and things. We use the aforementioned information to help better
shape the user and thing latent representative spaces to generate more accurate rec-
ommendation results on things of interest.

4. EVALUATIONS

We conducted several experiments to evaluate the performance of our proposed ap-
proach. The first experiment is to compare our approach with other state-of-the-art
methods. The second experiment is to demonstrate the impact of social networks and
things correlations on recommendation, respectively. The third experiment demon-
strates the impact of different methods of things correlation derivation. We also study
the impact of different time granularity decomposition in the fourth experiment.

4.1. Experimental Settings

We set up a testbed that consists of several different places (e.g., bedroom, bathroom,
garage, kitchen), where approximately 127 physical things (e.g., couch, laptop, mi-
crowave oven, fridge) are monitored by attaching RFID tags and sensors. This task
greatly benefits from our extensive experience in a large RFID research project [Wu
et al. 2012]. We have developed a research prototype that provides an environment
where users can check and control things real time via a Web interface.1 Figure 5(a)
shows some RFID devices and sensors used in the implementation and Figure 5(b)
shows part of the kitchen setting in our testbed. In our implementation, things are
exposed on the Web using RESTful Web services, which can be discovered and accessed
from a Web-based interface.

Figure 6 shows the architecture of our testbed. The system features a layered archi-
tecture, and is developed using the Microsoft .NET framework and SQL Server 2012.
Physical things and their related data and events are mapped to corresponding virtual
resources, which can be aggregated and visualized via a range of software components.
The system provides two ways to identify physical objects and connect them to the

1https://www.youtube.com/watch?v=t4DHt0vUulY.
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Fig. 5. The settings of system: (a) some sensors and RFID devices, and (b) part of the kitchen setting (e.g.,
sensor-enabled microwave oven and toaster).

Web. The first one is to use RFID technology, where the physical objects are attached
with RFID tags and interrogated by RFID readers. The second one is to combine sen-
sors with objects to transfer the raw data to the network. The raw data captured by
readers and sensors will be further processed. The data access layer (i) manages RFID
tags and sensors associated with physical things, (ii) collects raw RFID and sensor
data and processes them, and (iii) provides a universal API for higher level programs
to retrieve the status of things. Due to inherent characteristics of RFID and sensor
data (e.g., volatile) [Sheng et al. 2008], this layer contains several software components
for filtering and cleaning the collected raw data, and adapting such data for high-level
applications. The advantage of the data access layer is to allow the system to provide
data synchronously. This is important since some devices work with more than one sen-
sor and the sensor readings may come asynchronously. This layer works in a scalable
plug-and-play fashion, where new sensors can be easily plugged in and the existing
sensors can be removed.

The Virtual Things module maps a collection of classes (also called virtual things) to
their corresponding physical things. Each virtual thing communicates with the sensor
hive, collects the information, and interprets the current status of the corresponding
physical device. The Event Management layer focuses on event processing that auto-
matically extracts and aggregates things usage events based on the data feeds from the
virtual things layer in a pipelined fashion. The pipeline consists of three main phases:
the event detection, the contextual information retrieval, and the event aggregation.

In our implementation, there are two ways to detect usage events of things: sensor-
based for detecting state changes and RFID-based for detecting mobility [Yao et al.
2013]. In the sensor-based detection, the usage of an object is reflected by changes of the
object’s status, for example, a microwave oven moved from an idle to an in-use state. In
the RFID-based detection, the movement of an object indicates that the object is being
used. For example, if a coffee mug is moving, it is likely that the mug is being used. In
this situation, we adopt a generic method based on comparing descriptive statistics of
the Received Signal Strength Indication (RSSI) values in consecutive sliding windows
[Parlak et al. 2011]. The statistics obtained from two consecutive windows are expected
to differ significantly when an object is moved.

The Contextual Information Retriever fetches contextual information contained in
things usage events. In our current implementation, we focus on three types of contex-
tual information: identity (user), temporal (timestamp), and spatial (location) informa-
tion [Yao and Sheng 2012; Yao et al. 2013]. For the spatial information, we consider
two situations. For static objects (e.g., refrigerator), the spatial information is a prior
knowledge. For mobile objects (e.g., RFID-tagged coffee mug), we provide coarse-grain
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Fig. 6. The system architecture.

and fine-grain methods for localization. The coarse-grain method uses the RSSI signal
received from a tagged object to approximate its proximity to an RFID antenna. Each
zone is covered by a mutually exclusive set of RFID antennas. The zone scanned by
an antenna with the maximum RSSI signal is regarded as the object’s location. The
fine-grain method compares the signal descriptors from an object at an unknown lo-
cation to a previously constructed radio map or fingerprint. We use the Weighted k
Nearest Neighbors algorithm (w-kNN) to find the most similar fingerprints and com-
pute a weighted average of their 2D positions to estimate the unknown tag location
[Yao et al. 2013].
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Table V. Statistics of the Dataset

No. Category # Things # Scale

1 Entertainment 44 68–1132
2 Office 26 511–1790
3 Cooking 42 54–2442
4 Transportation 13 31–870
5 Medicine/Medical 10 22–89
6 House Appliances 44 46–2863

Finally, the Service Layer consists of a rule engine and a service container. The ser-
vice container converts events and data into corresponding services. In particular, the
service repository stores the descriptions of services (in the form of RESTful APIs) for
things, where applications can easily access the data associated with a particular thing
stored in the database (e.g., usage history of a device), as well as manipulate the actu-
ators (e.g., turning on or off a light). The APIs are represented using JavaScript Object
Notation (JSON), which is developed from the JavaScript for representing simple data
structures and associated objects. The service manager is responsible for abstracting
services from the lower level, representing them as services, and storing them into the
service repository.

Ten volunteers participated in the data collection by interacting with RFID-tagged
things for a period of 4 months, generating 20,179 records on the interactions of tagged
things. The dataset collected from our testbed is still small. To make the dataset big
enough for experimental studies, we augmented our dataset with Washington State
University’s CASAS datasets,2 which were also collected from a smart home envi-
ronment. More specifically, we used dataset1 [Cook and Schmitter-Edgecombe 2009]
and dataset2 [Singla et al. 2010]. From the datasets, we identified 52 more things
(e.g., bowel, door, coffee table, and water tap) and deduced things usage events. For
the location information, we referred to the sensor layout of each dataset for group-
ing sensors into corresponding locations. For example, L-11 to L-15 are located in
the bathroom, so we mapped the location of things usage events related to L-11 to
L-15 to the bathroom. Each activity was transformed into things usage events, to be
used in our experiments. For example, consider the activity of “reading a magazine in
couch,” we converted it into two events, <magazine, person1, timestamp, livingroom>
and <couch, person1, timestamp, livingroom>. The detailed data preparation process
can be found in Yao et al. [2014a] and Table V is a summary of the statistics of the
dataset. It should be noted that “scale” in the table refers to the usage frequency be-
tween the least frequent used things and the most frequent used things. For example,
for Cooking, one of the least used things is a blender (54 times), while one of the most
used things is a fridge (2,442, the door open/close times of the fridge).

We adopted Mean Absolute Error (MAE) to measure the accuracy of our approach.
MAE calculates the average of absolute difference between predicted usage values and
actual values as the following:

MAE =
∑

i j |yij − ỹi j |
n

, (23)

where yij is the actual thing’s usage values between user i and thing j, ỹi j is the
predicted thing’s usage value, and n is the number of the predicted thing’s usage
values. The lower the MAE, the better the performance. Due to the size of our dataset,
in our experiments, we calculated MAE based on the overall MAE on prediction things
usage value across all categories.

2http://ailab.wsu.edu/casas/datasets/.
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Table VI. MAE Comparison with Other Approaches on All Categories

Training Data 10% 20% 50%
# of Factors 5 10 5 10 5 10

NMF 0.8803 0.8734 0.8602 0.8535 0.8517 0.8477
PMF 0.8767 0.8715 0.8511 0.8208 0.7917 0.7749
SVD++ 0.8734 0.8514 0.8404 0.8268 0.7673 0.7426
SoRec 0.8287 0.7916 0.7956 0.7772 0.7507 0.7326
FST 0.7903 0.7746 0.7712 0.7648 0.7231 0.7106
FST/S 0.7894 0.7867 0.7747 0.7710 0.7273 0.7217
FST/T 0.7927 0.7893 0.7782 0.7739 0.7311 0.7304

4.2. Results

4.2.1. Performance Comparison. This experiment compares the prediction accuracy of
our proposed approach based on Fusing Social networks and Things correlations (FST)
with some state-of-the art approaches based on probabilistic factor analysis, namely,
Probabilistic Matrix Factorization (PMF) [Salakhutdinov and Mnih 2007], SoRec [Ma
et al. 2008], and SVD++ [Koren 2008].

—NMF applies nonnegative matrix factorization on user-location matrix to predict the
possibility of thing usage. The user-thing interaction matrix can be decomposed into
two lower dimension matrices in this method:

min
U,V

1
2

m∑
i=1

n∑
j=1

(
yij − uT

i v j
)2

. (24)

—PMF is briefly defined as

yij ∼ Pr
(
uT

i v j, σy
)
, (25)

where ui and v j are the low-dimensional factors learned from user-item interactions.
—SoRec integrates users’ social network structure and the user-item interaction ma-

trix. The integration is based on the probabilistic factor analysis through the shared
user latent feature space ui, by learning the low-rank user latent feature space ui and
u′

i′ on social network, and the item latent feature space v j on user-item interaction
matrix. It can be defined as

sii′ ∼ p
(
sii′ |uT

i u′
i′ , σr

)
,

yij ∼ p
(
yij |uT

i v j, σy
)
.

(26)

—SVD++ combines the neighborhood models and latent factor models together.

yij ∼ p
(
yij |ûT

i v j, σy
)
, (27)

where ûi =
∑

i′∈N〉
ωii′ u′

i′∑
i′∈Ni

ωii′
, and Ni refers to neighbor of user i.

This experiment evaluated our approach, in particular its capability in handling
the cold-start problem, an important issue in recommender systems that refers to
providing accurate prediction when some users only use few things or even have no
usage historical records at all. In order to verify the capability of our approach on
predicting usage value of things that have not been used, we randomly selected and
marked off p% of data (p= 10, 20, and 50) from our dataset as training data and
different number of latent factors (5 and 10) to test all the methods. The experimental
results are shown in Table VI.
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From the table, it is clear that our approach outperforms other methods on different
training ratios and different number of factors, especially when the training data is
small, that is, when the training ratio is 10%. The reason lies in PMF is a pure prob-
abilistic factor model. Relying heavily on user-thing usage matrix, it cannot deal with
the circumstance where little interactions information is available. SoRec works better
than PMF and SVD++ because of its aggregation of user-user internal information (so-
cial links). Our approach not only incorporates users and things internal information,
but also defines the explicit features (i.e., content) for users (e.g., users profile) and
things (e.g., description of things functionalities), which makes our approach perform
better when there is a cold-start problem. The experimental result further demon-
strates the effectiveness on improving the recommendation accuracy by incorporating
things correlations.

4.2.2. Impact of Things Correlations and Social Influence. This experiment evaluated the
impact of users’ relations and things correlations to our model. To do so, we excluded
the things correlations information from our model, denoted as FST/T, and the social
relations from the model (FST/S), respectively. FST/T is defined as

yij ∼ Pr
(
yij |uT

i v j + rij, σy
)
,

sii′ ∼ Pr
(
sii′ |uT

i u′
i′
)
.

(28)

And FST/S is defined as

yij ∼ Pr
(
yij |uT

i v j + rij, σy
)
,

tj j ′ ∼ Pr
(
tj j ′ |vT

j v′
j ′
)
.

(29)

FST/T is similar to SoRec in Ma et al. [2008], but it is imported with the explicit fea-
tures of users and things. In addition, we excluded the social influence factors, namely,
FST/S, which has the same structure as FST/T since our model FST holds a symmetri-
cal structure. We implemented FST/T, FST/S, and FST, and conducted experiments to
study their performance. We varied the training ratio as 10%, 20%, and 50%, and the
number of factors is 5 and 10, respectively.

The results in Table VI show that the performance of FST/T drops when we take out
the things correlations from FST. This validates our intuition that things’ correlations
do affect users’ decision making process and behavior pattern when they use services
offered by different things. Another finding is that FST/S consistently performs better
than FST/T. In other words, things correlations has more influence than users’ social
relations. Comparing with traditional Internet resources like images or documents,
physical things have a bigger impact on users’ behavior because of their closeness with
people and its nonduplicability. This is indeed a unique feature of IoT. For instance,
one physical thing cannot be simultaneously used by multiple users, which will affect
users’ usage behavior. For example, if microwave in room1 is in use now, someone
else has to look for another microwave in room2 even though he planned to use the
microwave in room1 because it is closer to his office. Although this affects the things
usage, we found that the improvement is not quite obvious. The reason might lie in
that our dataset is not sparse due to its relatively small size. The impact of fusing
things correlations on top of users’ relations does not have significant impact on the
recommendation accuracy.

4.2.3. Impact of Different Things Correlation Derivation. We compared our hypergraph-based
approach with other conventional graph-based approaches, which are described as
follows:

ACM Transactions on Internet Technology, Vol. 16, No. 2, Article 9, Publication date: March 2016.



9:20 L. Yao et al.

Fig. 7. (a) Impact of hypergraph-based correlations derivation and (b) impact of single-level and two-level
time decomposition.

—Trinity. This method constructs three separate graphs from things usage events,
namely, user-thing graph, time-thing graph, and location-thing graph, respectively.
We name this approach as trinity [Yao and Sheng 2012].

—STUnion. This method builds two graphs: one is using a spatiotemporal graph and
a social graph. The two graphs model things usage contextual information and user-
thing relationships, respectively. We name this approach as STUnion [Yao et al.
2013].

Figure 7(a) shows the significant improvement of the performance by using our
proposed hypergraph-based approach. Our approach outperforms the other two con-
ventional graph-based methods. The reason is that the hypergraph-based approach
naturally integrates various relations into a unified framework without information
loss, where high-order correlations across different entities are well captured, which
encodes the users’ preferences, contextual connections of things, and hence makes the
results better. Compared with the hypergraph-based unified framework, the other two
methods use conventional graphs, and squeezing the complex relations across heteroge-
neous entities causes some information loss, even though STUnion outperforms Trinity
by integrating spatial information and temporal information together. Besides, map-
ping things usage information into separate graphs needs to tune parameters to find
the optimal weight assignment of each graph. The optimal settings usually depend on
different categories of things based on our previous study, which is another reason why
the two conventional graph-based methods perform worse than the hypergraph-based
method.

4.2.4. Impact of Time Granularity. To study the influence of different time granularities
on system performance, we deployed three strategies of processing timestamps in our
proposed framework. One strategy is single-level decomposition, in which the time
was decomposed into 24 hours. Another strategy is more refined granularity, namely,
two-level time decomposition, where we decomposed the times into discrete 24 hours
and week/weekend days. Monday to 18:00 of Friday belong to the weekdays and 18:00
of Friday to Sunday belong to the weekend days. In this case, we have 24*2 time
segments. The third strategy is, namely, fine two-level decomposition, where times
were decomposed into 24 hours and 7 days, where we had 24*7 time nodes. Figure 7(b)
shows the comparative results. The fine two-level decomposition slightly outperforms
the other two strategies. The reason might be two-level strategy considers the human
periodical behavior patterns. Intuitively, users behave differently when using different
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things due to the nature of functions of things. As a result, different patterns, naturally
formed in aggregated behaviors of visitors to various kinds of things, are embedded in
the things usage logs. For instance, users generally tend to spend more time on things
belonging to entertainment category or home category, and less time on office category
on the weekend compared with weekdays. The second strategy nicely describes the
features of periods.

5. RELATED WORK

In this section, we provide an overview about collaborative filtering approaches and
thing search in the IoT, which are closely related to our approach.

5.1. Collaborative Filtering

Collaborative Filtering (CF) techniques exploit historical interactions of user behav-
iors for future prediction based on either neighborhood methods [Sarwar et al. 2001;
Deshpande and Karypis 2004; Linden et al. 2003] or latent factor methods [Koren et al.
2009; Hofmann 2003; Salakhutdinov and Mnih 2007]. The idea behind neighborhood-
based methods is that interactions between users and items can be inferred from the
observation of users or items neighborhood. It predicts very well in learning the locality
of dependencies, but does not explain the global relationships in the user-item interac-
tions. The idea behind latent factor models is that preferences of a user are determined
by a small number of latent factors, and it can learn the informative latent feature
space but fails in capturing the local dependency of user or item neighborhood. Mul-
tiple unified models are proposed to combine neighborhood-based methods and latent
factor based methods together. For example, Koren [2008] proposes an approach com-
bining neighborhood-based CF and latent factor model together, and the performance
is significantly improved. Salakhutdinov and Mnih [2007] proposes a probabilistic ma-
trix factorization framework, which scales linearly with the number of observations
and performs well on the large and sparse dataset. However, all of them cannot handle
the cold-start problem very well. Agarwal and Chen [2009] addresses the cold-start
problem by integrating explicit features of users and items into latent factors learn-
ing process. They develop a regression-based latent factor model for rating prediction,
which uses features for factor estimation. In their methods, the user and item latent
factors are estimated through independent regression on user and item features, and
the recommendation is calculated from a multiplicative function on both user and item
factors.

However, these research efforts assume users are independent or unrelated to each
other. This assumption does not work well in the context of social networks where users
social interactions have a big impact on recommending process. Most recent research
efforts focus on exploiting the information of users’ connections for recommendation.
Many approaches have been developed to integrate users’ social information in rec-
ommendation. Jamali and Ester [2009] proposes a social recommendation framework
based on probabilistic matrix factorization via employing user social networks and
user-item ratings. Yang et al. [2011a] designs a joint friendship and interest propaga-
tion model, where the user-item interest network and the user-user friendship network
are jointly modeled through latent user and item factors. Zhou et al. [2012] proposes a
kernel-based probabilistic matrix factorization, which incorporates external informa-
tion into the matrix factorization process via assuming latent factors are in Gaussian
distribution. Gu et al. [2010] develops a unified model for CF based on graph regu-
larized weighted nonnegative matrix factorization. They adopt user demographic and
item genre information to construct neighborhood graphs and incorporated user and
item graphs in weighted nonnegative matrix factorization. Ma et al. [2008] proposes
a matrix factorization method to exploit the social network information. Compared
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with these research efforts, we construct the things correlation graph capturing global
connections and similarities between things, and integrate the graph with users’ social
relation graph to learn the latent factors simultaneously.

5.2. Things Search

Searching related things (objects) is a key service in ubiquitous environments, such as
the emerging IoT and smart environments. However, effectively searching for things
is significantly more complicated than searching for documents because things are
tightly bound to contextual information (e.g., location) and are often moving from one
status to another. In addition, things do not have easily indexable properties, unlike
human-readable text in the case of documents.

As in the traditional Web search, things search can be realized by exploiting keyword-
based methods, like Microsearch [Tan et al. 2010], and Snoogle [Wang et al. 2008]. But
the accuracy of these methods is not satisfying due to the insufficient content features
of ubiquitous things. Another mainstream solution to search in a ubiquitous comput-
ing environment (e.g., IoT) is via semantic Web-related techniques. For example, Mietz
et al. [2013] present a scalable semantic-based search model for the IoT. Perera et al.
[2013] propose a middleware for sensor search based on users’ priorities and other
characteristics of sensors (e.g., reliability and accuracy). GSN [Aberer et al. 2006], Mi-
crosoft SensorMap [Nath et al. 2007], and linked sensor middleware [Le-Phuoc et al.
2011] support search for sensors based on textual metadata that describes the sensors
(e.g., type and location of a sensor, measurement unit, object to which the sensor is
attached). Such metadata is often manually entered by the person who deploys the
sensors. Other users can then search for sensors with certain metadata by entering
appropriate keywords. There are efforts to provide a standardized vocabulary to de-
scribe sensors and their properties such as SensorML3 or the Semantic Sensor Network
Ontology (SSN).4 Unfortunately, these ontologies and their use are rather complex. It
is problematic that end users are able to provide correct descriptions of sensors and
their deployment context without the help from experts. In other words, this type of
solutions require time-consuming prior and expertise knowledge, for example, define
the descriptions of things and their corresponding characteristics under a uniform for-
mat such as Resource Description Framework (RDF). Furthermore, these solutions
do not exploit the rich information about users historical interactions with things,
containing implicit relations of different entities, for example, if some users have a
similar usage pattern on some things, which may indicate close connection of these
things.

Another alternative approach for searching things is based on search-by-example.
The work in Truong et al. [2012] adopts this approach to sensors, that is, a user provides
a sensor (respectively, a fraction of its past output as an example), and requests sensors
that produced similar output in the past. Ostermaier et al. [2010] propose a real-time
search engine for the Web of Things, which allows searching real-world entities having
certain properties. They associate a Web page to a real-world entity (e.g., a meeting
room) containing additional structured metadata about the sensors connected to it.
This method takes care of the valuable information of historical data, but misses the
relations among contextual information. Maekawa et al. [2012] propose a context-aware
web search in ubiquitous sensor environments, and Yao and Sheng [2012] and Yao
et al. [2013, 2014b] construct the models that capture the pairwise relations between
things via mapping the contextual information into separate graphs. However, more
complex relations between heterogeneous objects cannot be captured in these works.

3http://www.opengeospatial.org/standards/sensorml.
4http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.
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In addition, some useful information and structure might be lost when flatting the
multidimensional information into graphs.

Compared with the related work mentioned previously, our proposed approach has
two obvious advantages. First of all, the only data source needed in our approach
is the interactions between users and things. These interaction events are handy to
obtain with recent development of sensor networks and RFID technology. Secondly,
we solve things searching problem from extracting the underlying relations among
ubiquitous things and their interconnections via mining the rich information hidden
in the human-thing interactions.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Recommending the right thing to use at the specific time and location is a fundamental
concern in the emergent IoT research. The work presented in this article is a continuing
exploration of our previous work in Yao [2012] and Yao et al. [2013]. In particular, we
have shown that both users’ relations and things correlations have synergy effect on
things recommendation. We propose a probabilistic matrix factorization based model
integrating users’ social relations (e.g., friendship) and things correlations together,
where simultaneous latent factors are learned by revealing three dyadic relationships,
including user-user, user-thing, and thing-thing relationships. Specifically, we develop
a unified hypergraph to model complex relations of user-thing interactions for deriv-
ing latent things spatiotemporal correlations. We also integrate the content and other
additional information of users and things to cope with the cold-start problem in recom-
mendations. We conduct extensive experiments to validate and examine our proposed
model, and the results demonstrate its feasibility and effectiveness. There are a num-
ber of interesting research directions that we are planning to work to further improve
our approach:

—Recommendation in Big Data. The IoT is one of the biggest contributors to the
emerging Big Data, in which vast amounts of data would need to be processed with
more computational resources. There are two main directions to exploit our model in
the Big Data environment. The first one is related to the mathematical properties of
the algorithms (e.g., constructing more efficient data structures so that the data can
fit in memory), and the second solution is related to the software engineering aspects
of manipulating data on the scale of terabytes or even petabytes, such as constructing
efficient, distributed, I/O infrastructure for accessing and manipulating the IoT data
in a large-scale environment.

—Online Update. In the IoT, physical things are more dynamic compared with tradi-
tional Web resources. In another future work, we plan to improve our model so that
it can adaptively propagate up-to-date information from things correlations network
and make more accurate recommendations. Things states can be dynamically mon-
itored and updated in the recommending process. It is important to achieve the
capability of IoT recommendation in real time without sacrificing the accuracy.
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