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Guaranteeing the high availability of Web services is a significant challenge due to the varying number of
invocation requests the Web services have to handle at a time, as well as the dynamic nature of the Web.
The issue becomes even more challenging for composite Web services in the sense that their availability is
inevitably dependent on corresponding component Web services. Current Quality of Service (QoS)-based
selection approaches assume that the QoS of Web services (such as availability) is readily accessible and
services with better availability are selected in the composition. Unfortunately, how to provide real-time
availability information of Web services is largely overlooked. In addition, the performance of these ap-
proaches will raise questions when the pool of Web services to select from becomes large. In this paper,
we tackle these problems by exploiting particle filtering-based techniques. In particular, we developed al-
gorithms to accurately predict the availability of Web services and dynamically maintain a subset of Web
services with higher availability ready to join service compositions. Web services can be always selected
from this smaller space, thereby ensuring good performance in service compositions. Our implementation

and experimental study demonstrate the feasibility and benefits of the proposed approach.
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1. INTRODUCTION

Web services and service-oriented computing (SOC) represent a paradigm for building distributed
computing applications over the Internet. Unfortunately, after the development of nearly one decade,
Web services are still in their infancy [Papazoglou et al. 2007; Hwang et al. 2007; Yu et al. 2008;
Rosario et al. 2008; Sheng et al. 2010]. According to a recent study in Europe [Domingue and Fensel
], the Web currently contains 30 billion Web pages, with 10 million new pages added each day. In
contrast, only 12,000 real Web services exist on the Web. Even worse, many Web services have
been deployed with dependability problems (e.g., unexpected behaviors and lack of reliability and
availability details). This presents a major hurdle for enterprises and government agencies seeking
to embrace Web services as a development technology for their mission critical applications.

Guaranteeing the availability of a Web service is a significant challenge due to the varying number
of invocation requests the Web service has to handle at a time, as well as the dynamic nature of the
Web. Over the last few years, many works have emerged in addressing Web services availability
problem. Almost all of these approaches are based on the concept of service community where
Web services with similar functionalities (but different non-functional properties such as quality
of service (QoS)) [Medjahed and Bouguettaya 2011; Benatallah et al. 2003; Zeng et al. 2003] are
grouped in a particular “cluster”. The basic idea on improving the availability of Web service in a
composition is to substitute Web services with poor quality using peers with better quality from the
same service community. This typically involves QoS based service selection.

Most QoS service selection approaches assume that the QoS information (e.g., availability of Web
service) is pre-existing and readily accessible. This unfortunately is not the case in most real world
applications. In reality, the availability status, as well as other QoS properties, of a Web service is
highly uncertain, which changes over time. How to accurately estimate and predict the availability
status of a Web service becomes an important research problem. In addition, given the wide adoption
of Web service technologies in industry, more and more Web services will be available and the size
of service communities will be inevitable large. Selecting from such a large space will inevitably
lead into performance problems. Ideally, low quality Web services should be automatically filtered
and not be considered during service composition.

The work in this paper focuses on solving the above problems, which is an extension of our
work published in [Yao and Sheng 2011]. In particular, we propose a particle filter based approach
to accurately predicate and adjust Web service availability in real time. We further propose an al-
gorithm to dynamically filter low quality Web services from service communities so that service
compositions have to deal with only partial set of high quality component services. As a result, our

approach offers a more efficient and effective solution to service composition which ensures the
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high availability of the generated composite Web services. In a nutshell, our contributions are as

follows:

— A model for assessing Web services availability using particle filter technique, which can return
precise and dynamic prediction of this availability. In our approach, the availability of a Web
service combines both historical availability information and predicted availability.

— An algorithm to optimize Web services selection from a cluster of Web services (like service
community where all services offer similar functionalities) by dynamically reducing the candidate
Web services search space during Web services composition. Top Web services with high QoS
can be always maintained for each service community, which are recommended to composite
Web services, thereby not only ensuring the high availability of composite Web services, but also
significantly improving the efficiency of Web service composition, and

— An implementation of a research prototype system using a number of state-of-the-art technologies.
To validate the feasibility and benefits of our approach, we conducted extensive experimental

studies.

The rest of the paper is organized as follows. Section 2 briefly introduces service availability
model and the particle filter techniques. Section 3 describes the details of our approach and the
algorithms. Section 4 reports on the implementation and some preliminary experimental results.
Finally, Section 5 overviews related work and Section 6 provides some concluding remarks and

future research directions.

2. BACKGROUND

In this section, we briefly discuss some basic concepts, namely Web service community, Web service

availability, and particle filtering. We then present a motivating example.

2.1. Web Service Community

The concept of Web service community [Medjahed and Bouguettaya 2011; Zeng et al. 2003] is
proposed to handle the large number and dynamic nature of Web services (e.g., emergence of new
services and retraction of old ones) in a flexible way. A service community is a collection of Web ser-
vices with a common functionality but different nonfunctional properties such as different providers
and different QoS. Service communities provide descriptions of a desired functionality without re-
ferring to any potential service. When a community receives a request to execute an operation, the
request is delegated to one of its current members based on appropriate selection strategies [Bena-

tallah et al. 2003].
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Fig. 1. TIllustration of Web service communities

Figure 1 illustrates the basic process of creating a community and registering Web services with
it. Communities are specified by community providers (step 1), who then register the communi-
ties with service registry (step 2). A community is a service that is created, advertised, discovered,
and invoked in the same way that regular Web services are. Communities are published in a ser-
vice registry (e.g., UDDI) so that they can be discovered by service providers. Service providers
search the service registry to find the appropriate communities (step 3) and register their services
(atomic or composite) with the communities (step 4). After registering with a community, a Web
service becomes a member. It should be noted that a service community can be a member of another

community.

2.2. Modeling Web Services Availability

There are different classifications of availability and many ways to calculate it [Elsayed 1996].
Almost all existing approaches (e.g., [Zeng et al. 2004; Liu et al. 2004; Guo et al. 2008]) use op-
erational availability that measures the average availability over a period of time (i.e., the ratio of
the service uptime to total time). Although this is simple to calculate, it is hard to measure the

availability of a Web service at a specific time.
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In this work, we model Web service availability as instantaneous (or point) availability. The
instantaneous availability of a Web service s is the probability that s will be operational (i.e., up and
running) at a specific time ¢. The following discusses how this is calculated.

At a given time ¢, a Web service s will be available if it satisfies one of the following conditions:

— The Web service s is working in the time frame of [0,¢] (i.e., it never fails by time ¢). We represent

Ta(t)
Ts(t)

component Web service and 7T (t) is the toteil measurement time [Ran 2003].

the probability of this case as R(s,t) = , where 7,(t) is the total available time for each

— The Web service s works properly since the latest repair that occurred at time u (0 < uw < t). The

probability of this condition is fot R(s,t — w)m(s,u)du, where m(s,u) is the renewal density
e Mk
k!

function of s. In our work, we model m (s, u) as Poisson distribution m(s, u) ~

Based on these two conditions, the availability of s at time ¢, A(s,t), is calculated using the

following formula:

A(s,t) = R(s,1) +/O Ris,t — w)m(s, u)du )

2.3. Particle Filtering

We consider the availability of Web services as a dynamic system (i.e., it changes over time), which
can be modeled as two equations: state transition equation and measurement equation. The states
can not be observed directly and need to be estimated, while the measurements can be observed
directly. For a very simple example, if we track a robot, we can model its state as a vector including
the robot’s position and velocity {p, v}, and the observation of the position (i.e., measurements) can
be obtained from the GPS. For Web services, [Guo et al. 2008] exploits Extended Kalman Filter
to predict the Web service dependability state. In our work, we model the component Web service

availability state as:

Ty = ft(xtflvvtfl) )

where f; is a non-linear state transition function of the availability of a component Web service,
xt, 41 are estimated and previous states of the component Web services respectively, and v;_1
is the state noise in a non-Gaussian distribution (e.g., disturbance caused by network throughput
to the Web service availability). Similarly, measurement equation for the component Web service

availability is represented as

2t = hy(xe, ny) 3)
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Fig. 2. The main processes of the particle filter technique

where h; is a non-linear measurement function, z; is a measurement, x; is the estimated Web service
availability state, and n; is the measurement noise which is not confined as Gaussian distribution,
(e.g., observation error).

The availability of Web services changes over time, which is full of uncertainty due to problems
of network issues, hosting servers’ loads, and even service requester environments. However, the
state transition of availability from time ¢ — 1 to time ¢ can not be guaranteed as a linear transition,
and in the measurement equation, the noise can also not be guaranteed as Gaussian distribution. We
therefore propose to exploit the generic particle filter [Kitagawa 1996] to solve the dynamic avail-
ability of Web services. Particle filtering can deal with the non-linear and non-gaussian distribution

situation presented in Web services, which will be detailed later.
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Algorithm 1: Generic Particle Filter Algorithm

Let ]@ be the effective particle sample size and \; be the threshold of the particle size.

fori=1:Nsdo
Draw ac% ~ q(wt\xifl, zt)
p(z¢l))p(zfle)_1)

Assign the particle a weight, w} according to wj o< wy_ ilat )
AT 1%t

, q(+) is a proposal function,and can

be defined.
end
Calculate total weight: t = Zfﬁl wi
fori=1:Nsdo
Normalize: wé = wé/t ;
end
Calculate ]@ using ]@ = %
2= (wy 2
if Neff < N; then
| Resample (Algorithm 2).
end

The reasons backing particle filter adoption are as follows:

— Particle filters can represent arbitrary probability densities by a collection of particles with weight;

— Unlike Kalman filters, particle filters can converge to the true posterior even in non-Gaussian,
non-linear dynamic systems; and

— Compared to grid-based approaches, particle filters are very efficient because they automatically

focus their resources (particles) on regions in state space with high probability.

Briefly, the particle filter is a technique for implementing Bayesian filter recursively by Mont
Carlo sampling, and it is a sequential Monte Carlo methods based on particles representations of
probability densities other than the Gaussian distribution which can be used in more general areas
and for any state space model [Arulampalam et al. 2002; Ng et al. 2002]. The particle filter aims
at tracking the state of a system as it evolves over time and typically with a non-Gaussian and po-
tentially multi-model probability density function (pdf). It represents the pdf as particles which are
associated with weight, and estimates the states by recursively updating approximations of poste-
rior. Figure 2 shows the basic implementation process of the generic particle filter, consisting the

following three main processes:

(1) Particle generation: draw N particles with weights for state from a proposal distribution func-
tion, the proposal distribution function can be defined freely (e.g., uniform distribution).

(2) Weight update: the weights of particles are recursively updated and normalized.
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Algorithm 2: Resampling Algorithm
Let CDF be the Cumulative Density Function.
Initialize CDF: ¢; = 0;
fori =2 : N5 do

‘ Construct CDF: ¢; = ¢;_1 + wi;

end
Start at the bottom of the CDF: i = 1
Draw a starting point: u; ~ U|0, J\/S_l}
forj =1: N do
Move along the CDF: u; = u1 +NTYG-1)
while u; > c; do
| i=14+1;
end
Assign sample: 27* = xt ;

Assign weight: w{ =Nt

Assign parent: i/ = i ;

end

(3) Resampling: when implementing the generic particle filter, after a few iterations, most of parti-
cles have negligible weight. In other words, the weight is only concentrated on a few particles.
The resampling process stochastically discards particles with negligible weight, and replaces

them with the particles with large weights.

Algorithm 1 shows the detailed algorithm of the generic particle filter. The resampling algorithm,
which is also called systematic resampling and is simple to implement, is shown in Algorithm 2. Its
time complexity is O(N) where U[a, ] is the uniform distribution on the interval [a, b]. Interested

readers are referred to [Kitagawa 1996] for more details.

2.4. Motivating Example

To illustrate the motivations of our approach, we take the widely-used fravel agency service (Fig-
ure 3) as an example. When a user travels to a place, she usually needs to book her flight, accommo-
dation, and perhaps needs also to rent a car. A travel agency service plays like a composition engine,
which composes different Web services to fulfill the user’s travel requirements. Ideally, the travel
agency service should be highly available so that users can use it for their travel planning whenever
they need it. Since the travel agency service relies on other Web services (e.g., flight booking ser-
vice and hotel booking service), high availability of the travel agency service essentially means the

selection of highly available component Web services.
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However, it is quite common that there might be a large number of Web services (normally
with very different QoS) providing same services (e.g., flight booking). Searching such a large
service pool is not only time-consuming, but more importantly, unreliable since the availability of
Web services dynamically changes over time. Our approach (Section 3) dynamically maintains the
availability information of Web services and effectively filters Web services with high availability

(i.e., reduce the search space), thereby improving the quality of composition Web services.

3. THE PARTICLE FILTER BASED APPROACH

Figure 4 shows the basic idea of our approach. Specifically, we propose to add a filtering layer
between Web service layer and composition layer (right side of Figure 4). The layer of Web ser-
vices contains several service communities and each of them consists of Web services with similar
functionalities. Each community may be heavily populated with Web services.

The filtering layer is essentially a subset of service communities in the Web service layer, which
consists of Web services with high availability that will directly involve in service compositions. The
Web services are selected based on the accurate estimation and ranking algorithm described in this
section. It should be noted that the relationship between Web service communities and the filtering
layer is dynamic and adaptive. Our approach dynamically adjusts the members in the filtered service
communities where degrading Web services are automatically and transparently replaced with Web

services of better availability from the Web service layer.
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3.1. Particle Filtering Based Estimation

Web services’ availability state is highly dynamic and therefore needs an adaptive approach to mon-
itor and track each Web service’s state. This is important to conduct optimized selection algorithms
for composite Web services such as [Zeng et al. 2003; Alrifai et al. 2010]. We apply the particle
filtering technique to make accurate estimation of Web service’s availability state, which serves the
foundation for dynamically optimized selection of Web services in composition.

We consider that the changes of availability of Web services are uncertain. The availability mod-
eling function is non-linear and the noise (Section 2.3) can not be guaranteed as a Gaussian distribu-
tion. Particle filter can improve the performance over the established non-linear filtering approaches
since it provides optimal estimation in non-linear and non-Gaussian state space models, as well as
estimation of non-linear models without making any assumption on the measurement noise distribu-
tion. Particle filter can estimate a system states sufficiently when the number of particles (estimations
of the state vectors that evolve in parallel) is large.

The particle filter refers to belief using a number of particles. There are two main steps in the
particle filter algorithm: prediction and update. Particle filters realize Bayes filter updates accord-
ing to a sampling procedure, often called sequential tmportance sampling with resampling

[Fox et al. 2003]. Whenever new observations z; are discovered, the filter predicts the state using
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Algorithm 3: Particle Filter based Algorithm

1. Initialization: compute the weight distribution Dy, (a) according to IP address distribution.

2. Generation: generate the particle set and assign the particle set weight, which means A/ discrete hypothesis

— generate initial particle set Py which has A particles, Py = (po,0, Po,1, ---Po,A—1) and distribute them in a uniform
distribution in the initial stage. Particle py ;, = (ag i, weighto ) where a represents the Web service availability.

— assign weight to the particles according to our weight distribution Dy, (a).
3. Resampling:

— Resample N particles from the particle set from a particle set 7; using weights of each particles, refer to Algorithm 2.

— generate new particle set P41 and assign weight according to Dy, (a)

4. Estimation: predict new availability of the particle set PP; based on availability function f ().

5. Update:
2

0
Lk ), where

1 ai
7ﬁ2w)emp(— 252

— recalculate the weight of P; based on measurement maq, wy k= [(Dw(at,x))(
dag k= Ma — ay

— calculate current availability by mean value of p (a¢)

6. Go to step 3 and iteration until convergence

Bel™ « [ p(xi|xi—1)Bel(xi—1)dxi—1. And then the filter will correct the predicted estimation
using Bel(x;) < aup(z¢|xi)Bel™ (x;), where Bel(x;) is a probability distribution over z;.

In our approach, we model the availability of a Web service ¢ at time ¢ as x;(¢), which maintains
the probability distribution of the service availability at ¢. The state transition of Web service i’s

availability can be represented as:
zi(t+1) = g(xi(t)) + ¢i(t) “4)

where g(x;(t)) denotes the nonlinear transition of service i’s availability and ¢;(t) denotes the
noise to service ¢’s availability. We can further define the observation equation of the Web service
1’s availability as:
zi(t) = h(z;(t)) + 6;(¢) 5)
where z;(t) is the observation value of service 4’s availability, h(z;(t)) is the observation function,
and 0;(t) is the observation noise. In our particle filtering approach, the posterior distribution of
x;(t) can be inducted as the belief Bel(x;(t)) = {x;(t),w;(t)}, i = 1,2, ..., M, where w;(t) are
the different weight values, which indicate the contribution of the particle to the overall estimation,
also called important factors (3 w;(t) = 1).
Algorithm 3 shows steps to summarize the particle filtering process. Firstly, we initialize a uni-
formly distributed sample set representing a Web service’s availability state. We assign each sample

a same weight w. Secondly, when the availability changes, the particle filter calculates the measure-
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Algorithm 4: Overall Adaptive Filtering Algorithm

Input: initial availability values, «, 7.

Output: predicted availability, referencing availability, candidate list.

1. Read in the initial parameters;

2. Calculate each values for Web service a;; (s, t) in Web service community j at time ¢;
3. Predict the availability state of next time slot using particle filter (Algorithm 3);

4. Looking up database and calculate the mean values of availability 7.

5. Calculating the reference availability R.

6. Update the top k candidate list in each Web services community for every time interval 7;

7. Go to step 2, and iterating.

ment by adjusting and normalizing each sample’s weight. These samples’ weights are proportional
to the observation likelihood p(z|x). The particle filters randomly draw samples from the current
sample set whose probability can be given by the weights. Then we can apply the particle filters to
estimate the possible next availability state for each new particle. The prediction and update steps
will keep running until convergence.

We calculate the weight distribution by considering the bias resulted from the routing information
between users and targeting component Web services (e.g., routing-hops between the user and the
component Web service or whether user and targeting services are in the same IP address segment).
The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo method that forms the basis
for particle filters. The SIS algorithm consists of recursive propagation of the weights and support
points as each measurement is received sequentially. To tackle the degeneracy problem, we adopt a
more advanced algorithm with resampling [Arulampalam et al. 2002]. It has less time complexity

and minimizes the Monte-Carlo variation. The resampling algorithm is given in Algorithm 2.

3.2. The Dynamic Filtering Algorithm

Based on the algorithm mentioned above (i.e., Algorithm 3) , we can sort the top £ Web services with
high availability according to the monitoring and prediction. We call this estimated availability &;.
In addition, for the overall filtering algorithm, we also take the history information on availability
‘H, into account, on top of the estimated availability by using the particle filter technique. The
historical fluctuation of Web services availability has important impact on the current availability
of the services. We call this historical fluctuation H impact as availability reputation. The most
common and effective numerical measure of the center tendency is using the mean, however, it is
sensitive to the extreme values (e.g., outliers) [Han and Kamber 2006]. In our work, we define the

final availability of a Web service as reference availability R, which is calculated using:

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:13

advertise/discover
services

i (WSDL + SOAP)
uDDI >

publish/execute .
services (SOAP + Web Services

WSDL)

S(Secify/di scover/monitor/ execute
services (SOAP + WSDL)

predicated service
Services Availability Services avail ability
Modeler Monitor

o
. Filtered : -
Services Services Controller P o| ServicesFilter

Service Candidates predicated service
Developer avail ability
L egend ) 5
O websavice ©%%e ) Service Community Composite Web Service

Fig. 5. Architecture of the prototype system

T—1

Ri(r) =0c&(1)+ (1 — 0’)7‘[1‘(2(7 -1)) (6)

1
where 7 is a time span which can be defined by users and o € [0,1] is the weight and users
can assign different weight based on their different preference between predication and history of
service availability. For example, if o is 1, the availability of a Web service will totally depend
on the estimation value obtained by the particle filtering algorithm. Here, the historical values can
be considered as the smoother for the reference availability R. Finally, we summarize the overall

particle filter algorithm for Web service selection in Algorithm 4.

4. IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of the proposed approach and also report on some

experimental results.

4.1. System Implementation

The proposed approach has been implemented as a Web-based prototype system. Figure 5 shows
its main modules. The Service Availability Modeler is responsible for building the
Web service availability model. In particular, we have built a Particle Filter for each Web service

and tagged a multiple Particle Filter according to each Web service community. The Services
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Monitor is responsible for estimating and predicting the availability of Web services using the
availability model. The module takes as inputs the availability values for each Web service and
outputs the updated estimation of the availability for each Web service. The new estimation is also
stored in a database (i.e., Service History Archive) that keeps the historical availability
for each service.

The Services Filter is responsible for ranking the Web services of a community and rec-
ommend the top N/ Web services with the highest availability in real-time. In order to do so, the
Service Filter retrieves the historical information from the archive and calculates the ref-
erence availability of Web services using Equation 6. Finally, the Services Controller is
responsible for running the selection algorithm to generate the candidate Web services lists and
update the candidate pool (e.g., replacing the degrading Web service with the one with better qual-
ity). As a consequence, Web service composition only needs to interact with this small number of
candidates, which guarantee the high availability of the generated composite Web services.

The prototype system has been implemented in Java and is based on state-of-the-art technolo-
gies like XML, SOAP, WSDL, and UDDI [Curbera et al. 2002]. Java2WSDL, a tool provided by
Apache Axis', is used to generate WSDL descriptions from the Java class files so that all the com-
ponents of the system can be invoked as Web services. Services are deployed on Apache Axis. In

our implementation, we use Apache Tomcat® as a Web server where Apache Axis is deployed.

4.2. Experimental Results

In this section, we present four experimental results. The first one studies the estimation accuracy
of our approach. The second experiment compares the availability of composite Web services with
and without our approach. The third experiment studies the impact of o on the error rate of estima-
tion accuracy. The last experiment studies the performance in composing Web services using our
particle filter based approach. For the experiments, we simulated 500 Web services of five different
Web service communities (i.e., 100 Web services for each service community). We set the failure
probability for the Web services as 3.5 percent, which complies with the findings in [Kim and Rosu
2004].

Estimation Accuracy. The purpose of this experiment is to study the accuracy of our availability
estimation approach. In the experiment, we simulated Web services’ availability fluctuation and
tracked their fluctuation of availability for 50 time steps (each time step counted as an epoch). The

actual availability of Web services and corresponding estimated availability using our particle filter

Lhttp://ws.apache.org/axis/index.html.
2http://jakarta.apache.org/tomcat/.
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approach were collected and compared. Figure 6 shows the result of one particular Web service.
From the figure, we can see that our approach works well in tracing and predicting the availability

of Web services.

Availability of Composite Web Services. The purpose of the second experiment is to study the impact
of our approach on the availability of composite Web services. We randomly generated composite
Web services by composing services from five different communities. We simulated a comparatively
significant fluctuation on the availability (i.e., changes in availability) of Web services for 50 differ-
ent rounds and collected the availability information of the composite services under the situations
of i) using our approach and ii) without using our approach. In our experiment, the availability of
a composite Web service, A, is a product of eA6iY) where ¢ is a composite Web service, s; is a
component Web service of ¢, and A(s;, t) is the availability of component service s;.

Figure 7 shows the availability of a particular composite Web service. From the figure we can
see that the availability of the composite Web service is more stable when using our approach. In
contrast, without using our approach, its availability is very sensitive to the fluctuations of service
availability. The reason is that our particle filter based approach can dynamically predict the avail-

ability of component Web services and proactively substitute the services with poor availability.
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The impact of o for average error rate on accuracy. This experiment aims to study the impact of
o (Equation 6) on the accuracy of availability estimation. In the equation, the value of ¢ represents
the weight between the predicted availability and historical availability. In particular, the weight
of the historical availability (i.e., 1-sigma) is considered to be a smoother. In this experiment, we
set the smoother over a range of 0 and 0.8 to show the impact on the accuracy of prediction for
component Web services. Figure 8 shows the result of a particular Web service. From Figure 8 we
can see that although the error rate stays relatively stable when the smoother is less than 0.2, the
average availability error rate increases constantly when the smoother becomes bigger. The reason
is that the role of historical data played in the particle filtering prediction process, which is based on
the Markov assumption.

We also studied the impact of o on the availability of composite Web services. In the experiment,
we set the values of the smoother as 0, 0.2, and 0.5. Figure 9 shows the result of one composite Web
service. From the figure we can see that when we take the smoother into account, the availability of
the composite Web service is more stable. Interestingly, there are no significant changes when the

value of the smoother is set as 0.2 and 0.5. As a result, by combining our findings on estimation
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accuracy of component Web services (Figure 8), in our implementation, we chose to set the value

of the smoother as 0.2.

Time for composing Web services. This experiment aims at studying the performance of our ap-
proach in Web services composition. In this experiment, we set the top-N Web services where A/
is 20, which means the size of candidate list for each Web service community is 20. We further set
the number of component Web services to 125, 250, 375, and 500 (i.e., each service community has
25, 50, 75, and 100 Web services respectively). We recorded and compared the time used for com-
posing composite Web services with and without our proposed filtering algorithm. The availability
of the composite Web services is manually set in this experiment (= 0.80). It should be noted that
in real situation, the requirement of a composite Web service’s availability is usually determined by
the SLA. All composite Web services produced similar results and Figure 10 shows the result of
a certain composite Web service. It can be noticed that the improvement in reducing the execution
time is obvious, particularly when the size of service communities becomes bigger. This is due to

the smaller size of the filtered service communities with high quality component Web services.
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5. RELATED WORK

There is a large body of research work related to the topic we discussed in this paper. One important
area on achieving high availability of Web services focuses on replication technology [Salas et al.
2006; Serrano et al. 2008; Sheng et al. 2009]. The underlying idea is to spread service replicas
over various locations and if needed, direct invocation requests to appropriate replica (e.g., with
lower workload). Serrano et al. [Serrano et al. 2008] discuss an autonomic replication approach
focusing on performance and consistency of Web services. Salas et al. [Salas et al. 2006] propose
a replication framework for highly available Web services. Sheng et al. [Sheng et al. 2009] further
developed the idea by proposing an on-demand replication decision model that offers the solution
to decide how many replicas should be created, and when and where they should be deployed in
the dynamic Internet environment. While these approaches focus on improving service availability
through replication, our work concentrates on monitoring and predicting service availability. Our
work is complementary to these works in the sense that the estimations provide a good source of
information for replication decisions.

Many research projects achieve high availability of Web services based on the concept of service
communities where Web services are selected based on QoS [Liu et al. 2004; Zeng et al. 2004;
Wang et al. 2006; Maamar et al. 2008; Alrifai et al. 2010; Medjahed and Bouguettaya 2011]. The
basic idea is that services with similar functionalities are gathered as communities. If a Web service
is unavailable, another service will be selected based on QoS. The work presented in [Zeng et al.
2004] is the first of few that focuses on optimizing services selection during composition. The
authors advocate that service selection should be carried out during the execution of a composite
service, rather than at design time. They further propose a global planning approach to optimally
select services based on linear programming methods. In one of the most recent works, Alrifai et al.
propose a new approach based on the notion of skyline to select services for composition effectively
and efficiently [Alrifai et al. 2010]. However, most approaches assume that QoS is readily accessible
and ignore its dynamic nature. In addition, selecting Web services from large communities may have
performance issues. Our work focuses on these issues by proposing a particle filter based approach
(could say more later).

The work presented in [Guo et al. 2008; Sirin et al. 2004; Rosario et al. 2008; Hwang et al. 2007]
are the most similar ones to our work. In [Guo et al. 2008], Guo et al. model a composition process
into the Markov Decision Process and use Kalman Filter to tracking the state of composite Web
services. Sirin et al. [Sirin et al. 2004] propose a filtering methodology that exploit matchmaking
algorithms to help users filter and select services based on semantic Web services in composition

process. Rosario et al. [Rosario et al. 2008] focus on Service Level Agreements (SLAs) of composite
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Web services and propose a soft probabilistic contracts that consist of a probability distribution for
the considered QoS parameter. These soft contracts can be composed to yield a global probabilistic
contract for composite Web services. However, these works focus on adaptive composition of Web
services and do not pay attention to the availability of component Web services. Finally, Hwang
et al. [Hwang et al. 2007] propose a probability-based QoS model for describing QoS values of
both atomic and composite Web services. Our approach uses particle filter to precisely predict the
availability of Web services in real time and dynamically maintains a subset of Web services with

higher availability, from which service developers can choose in their compositions.

6. CONCLUSION

Guaranteeing the availability of Web services is a significant challenge due to the varying number
of invocation requests the Web services have to handle at a time, as well as the dynamic nature of
the Web. Many existing approaches ignore the uncertain nature of service availability and simply
assume that the availability information of a Web service is readily accessed. In this paper, we
proposed a novel approach to monitor and predict Web service’s availability based on particle filter
techniques. Furthermore, we developed algorithms to filter Web services from service communities
for efficient service selection. The implementation and experimental results validated our approach.

There are a few directions following our work presented in this paper. First of all, we will conduct
more experiments to study the performance of the proposed approach (e.g., scalability). We also
plan to extend our approach to support other important service dependability properties such as
reputation, reliability, and security, which eventually underpins the construction of robust and highly

dependable Web services.
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