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ABSTRACT

Online human gesture recognition has a wide range of ap-
plications in computer vision, especially in human-computer
interaction applications. Recent introduction of cost-effective
depth cameras brings on a new trend of research on body-
movement gesture recognition. However, there are two ma-
jor challenges: i) how to continuously recognize gestures
from unsegmented streams, and ii) how to differentiate dif-
ferent styles of a same gesture from other types of gestures.
In this paper, we solve these two problems with a new ef-
fective and efficient feature extraction method that uses a
dynamic matching approach to construct a feature vector
for each frame and improves sensitivity to the features of
different gestures and decreases sensitivity to the features
of gestures within the same class. Our comprehensive ex-
periments on MSRC-12 Kinect Gesture and MSR-Action3D
datasets have demonstrated a superior performance than the
stat-of-the-art approaches.

Categories and Subject Descriptors

1.4.8 [Image Processing and Computer Vision]: Scene
Analysis - Motion; 1.5.5 [Pattern Recognition]: Imple-
mentation - Interactive systems
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1. INTRODUCTION

Human body gesture recognition has many valuable appli-
cations in computer vision such as human-computer inter-
action, electronic entertainment, video surveillance, patient
monitoring, nursing homes, smart homes etc. The early
work done by Johansson [12] suggests that the movement
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Figure 1: Scenario of online human gesture recogni-
tion from motion data stream. Depth camera is used
to capture the human skeleton data stream. The
gesture labels are assigned automatically to each
frame by recognition. The frames without gesture
label are considered as not belong to any pre-defined
gesture.

of the human skeleton is sufficient to be used for distin-
guishing different human gestures. The recent introduction
of cost-effective depth camera and the related motion cap-
turing technique [27] enables the estimation of 3D joint po-
sitions of the human skeleton, which can further generate
body motion data. This phenomenon has brought on a new
trend of research on body-movement gesture recognition [6,
8, 16, 32].

Similarities exist among three concepts: gesture, action,
and activity. The boundaries between them are not very
clear. In this paper, we give our definitions based on [1].

e Gestures are elementary movements of human body
parts, and are the atomic components used to describe
meaningful motions of human body. One example of
a gesture could be “stretching arms” or “raising legs”.

e Actions are single-person activities that may be com-
posed of multiple gestures organized temporally, such
as “walking” and “waving”.



e Activities refer to the interactions where two or more
persons with/without objects involved.

As atomic components, gestures are less complex than ac-
tions. Research on gesture recognition lays foundation for
action recognition. In this paper, we do not consider activ-
ity recognition, because objects that could be involved in
activities may not be represented with the human skeleton.
A scenario of online human gesture recognition from motion
data stream is illustrated in Figure 1.

Gesture recognition needs to assign labels to gesture in-
stances. Different gesture instances should be assigned with
different labels, while the same gesture instances should be
assigned with the same label. However, variations may occur
to a gesture that has different appearances or different styles.
We call this situation as intra-class variations. Recently,
Veeraraghavan et al. [31] considered three sources of intra-
class variations which may affect the performance of gesture
recognition, namely viewpoint, anthropometry, and execution
rate. Viewpoint variation describes the relationship between
human body and the viewpoint of a camera. Anthropometry
variation is related to the differences between human body
sizes, and is about human physical attributes and does not
change with human movements. Execution rate variation is
related to temporal variability caused by the speed of hu-
man movement or by different camera frame-rates. Besides
these three variations, we also advocate that the personal
style of gestures is the fourth notable intra-class variation,
which should also be considered, since different people may
perform the same gesture differently.

There are two major challenges in dealing with intra-class
variations. The first challenge is about how to continu-
ously recognize gestures from unsegmented streams. Cur-
rently, most methods choose to segment gesture instances
from streaming data before the recognition of gestures [8,
9]. Unfortunately, those methods suffer from the decision on
the size of the segment when dealing with streaming data.
By using either fixed-size or dynamic size of segments, the
segmentation process itself on the streaming data introduces
a new avenue of errors due to execution rate variation.

The second challenge is about the ability to differenti-
ate intra-class variations from inter-class variations, because
we need to decide whether those differences of gestures are
within the same class or are between different classes. Mis-
classification errors may occur if we do not ignore the dif-
ferences of intra-class variations or not discern the differ-
ences between classes. Online gesture recognition from mo-
tion data stream can be regarded as a problem of subse-
quence matching with multi-dimensional time series, where
each dimension represents a specific human-body-part move-
ment. Miiller et al. and Sakurai et al. in [20, 25] proposed
approaches to segment motion data stream and recognize
gestures by comparing stream data with some pre-learned
motion templates. A template in their approaches is at
a gesture level. A template is a generic gesture instance
used to match with the data stream for a class of gestures.
The gesture-level motion template approaches have a ma-
jor weakness on dealing with intra-class variations. Since
the same gesture may have different instances because of
intra-class variations, the problem of their approaches is in
twofold: firstly, intra-class variations cannot be differenti-
ated if one gesture class is represented by only one single
motion template. Secondly, if every variation is to be rep-
resented by a different motion template, there must be a
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large number of motion templates for a single gesture class.
In practice this is inefficient for dealing with real-time data
streams.

A gesture may involve multiple human body parts. So a
gesture is regarded as a combination of movements of hu-
man body parts. A movement is regarded as an elementary
motion of one part of human body. So the granularity of
motion template should be fine-tuned to be at a human-
body-part movement level to reduce the redundant repre-
sentation in the template modulation process. Once motion
templates are represented at a human-body-part movement
level, different gestures therefore, can be represented by dif-
ferent combinations of motion templates. So the motion
templates with fine-tuned granularity can improve the effi-
ciency of the gesture recognition.

Based on the above discussions, we consider to have a
novel representation for extracting features of the human
skeletons at a human-body-part movement level. This fea-
ture should also be able to represent inherent human motion
characteristics such that the explicit prior segmentation pro-
cess would be avoided. We call this new feature as Struc-
tured Streaming Skeletons (SSS). In this way, the structure
of streaming skeletons is represented by a combination of
human-body-part movements. So an SSS can be denoted
by a vector of cardinal values of attributes that are used to
describe the skeleton in a frame. Each attribute in SSS is
defined as a similarity distance between the current skeleton
stream and a pre-learned movement.

The two challenges involving the four intra-class variation
problems mentioned above can then be dealt with by using
the proposed new SSS feature as follows.

e Viewpoint and anthropometry variations. Mo-
tion data is generated as normalized pairwise distances
of human body joints. Pairwise joints are regarded as
one part of human body in this paper. Then the dis-
tances are normalized by the human body size. There-
fore, SSS feature is viewpoint invariant and anthropom-
etry invariant.

e Execution rate variation. The execution rate vari-
ation problem is solved by using SSS features because
at each frame, each attribute is defined as the distance
between the best subsequence ending at the current
frame and a movement. The best subsequence is the
one which is mostly similar to this movement among all
subsequences ending at current frame. Different from
prior segment approaches [8, 9], the size of segment can
be optimized automatically during feature extraction.
Therefore SSS feature is execution rate invariant.

e Personal style variation. To deal with this problem,
we use motion templates at a granularity of human-
body-part movements level. Each motion template is
constructed by a human-body-part movement. Differ-
ent from the approaches treating motion template at
a gesture level [20, 25], we treat a template as a sin-
gle dimension human-body-part movement. Therefore
a gesture consists of multiple single-dimensional tem-
plates. One advantage is that different personal styles
of gestures can be represented by different combina-
tions of human-body-part movements. Therefore, SSS
feature can be used to achieve personal style invariant.



The rest of this paper is organized as follows. Section 2
gives an overview of the related work. Section 3 describes
our approach in details. Section 4 describes the experiments
and the evaluations. Finally, the conclusion is given in Sec-
tion 5.

2. RELATED WORK

Recognition of human gestures, actions, and activities has
been extensively surveyed in recent publications [1, 5, 23,
30]. Most existing approaches [10, 14, 33, 35, 37] are about
gesture and /or action recognition from color videos based on
visual features, rather than the features of motion data that

describe human-body-part movements. Because human-body-

part movements can lead to better recognition of human
gestures as well as actions, some researchers developed ap-
proaches to detect human-body-part locations first, then
recognize human gestures and/or actions later. In most
cases, their considerations are to recognize hand gestures
online [2, 28] or recognize pre-segmented gesture instances
off-line [29].

In research of online gesture and action recognition from
motion data streams, Fothergill et al. in [8] adopted fixed-
size sliding window and random forest classifiers to achieve
online gesture recognition. Unfortunately, their approaches
cannot handle execution rate variation and incorrect seg-
mentation problems properly. In addition to fixed-size slid-
ing window techniques, some researchers work on action
segmentation from streaming data, then recognize the seg-
mented action instances. Zhou et al. in [38] proposed a clus-
tering algorithm to cut stream into action instances. Sim-
ilarly, Gong et al. in [9] proposed an alignment algorithm
for action segmentation. However, their approaches are all
based on structure similarity between frames and are only
suitable for segmenting cyclic actions. Since the structural
similarity between frames of non-cyclic gestures are not al-
ways obvious, incorrect segmentation errors may occur. In-
correct segmentation will consequently introduce errors in
classification process. Schwarz et al. in [26] generated the
manifold embedding from joint positions of one frame into
actions. However, the motion information is not fully con-
sidered, which may limit the approach to be scaled to more
complex actions.

Template-based methods treat gesture and action recogni-
tion as a database query problem which matches data with
templates in the database. Veeraraghavan et al. in [31]
learned an average sequence and related function space of
Dynamic Time Warping (DTW) [4] to represent each class
of action. Miiller et al. in [20] presented a procedure, where
the unknown motion data is segmented and recognized by
locally comparing it with available templates. The motion
templates just keep the patterns of actions in the same class,
with the variations ignored. Ellis et al. in [6] explored the
trade-off between action recognition accuracy and latency.
They determine key frames from motion data sequence to
derive action templates. Sakurai et al. in [25] proposed an
efficient approach to monitor streams, and to detect subse-
quences that are similar to a given template sequence. How-
ever, in these approaches, one action class is represented by
only one template, which is insufficient to deal with intra-
class variations.

Recently, Wang et al. in [32] proposed to learn one sub-
set of human body joints for each action class. The sub-
set joints are representative of one action compared to oth-
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ers. Additionally, they claimed that the relative positions
of joints can result in more discriminative features. How-
ever, their approach is only applicable to the recognition of
pre-segmented instances and cannot be used in online recog-
nition of unsegmented data streams.

Li et al. in [7] proposed a Bag of Visual Words (BoVW)
model, which is used by many researchers for action recog-
nition from color videos, such as [24, 33]. In this paper our
proposed SSS feature extraction method is different from
(BoVW) model. Our SSS feature extraction method fo-
cuses on online gesture recognition from motion data stream.
Each attribute of SSS feature vector has specifically defined
similarity to a movement and is particularly well-suited for
analyzing time-series. BoOVW model uses histograms as the
features for recognition of gestures. In order to count his-
tograms, frames must be segmented first - this makes BoVW
model cannot handle online gesture recognition well. More
detailed discussions on the advantages of our SSS feature
extraction method are given in next section.

3. PROPOSED APPROACH

Figure 2 shows the framework of our approach, which con-
sists of two main stages: the learning and prediction stages.
The goal of the learning stage is to construct a dictionary of
templates and a gesture model. In prediction stage, motion
data stream with unknown gestures are assigned with labels
to each frame with the help of pre-learned template dictio-
nary and the gesture model. Basically, the learning stage is
off-line and prediction stage is online. We briefly describe
these two stages as follows.

At learning stage, there are four steps:

1. Motion data generation. A training dataset cap-
tured by depth camera consists of 3D joint positions
of the human skeletons. The training dataset has all
gestures manually labelled on all frames. The train-
ing dataset is then scanned once. The output of this
scanning is the motion data stream. The motion data
stream is expressed as sequences of normalized numeric
distance values of pairwise joints, which are viewpoint
and anthropometry invariant. The motion data stream
can be regarded as multi-dimensional time series. Each
dimension represents a pair of specific human body
joints. The dimensionality of motion data is deter-
mined by the number of joints that motion-capture
software of depth camera can detect.

2. Template dictionary learning. This step is to cre-
ate a dictionary of templates as a database of subse-
quences. We manually segment the training stream
into gesture instances. Then we apply clustering algo-
rithm to group gesture instances into a dictionary of
motion templates represented as a set of subsequences.
Here a template is defined as a one-dimensional time
series representing distance values of two joints of hu-
man body during the time of a gesture instance. For
example, in Figure 3, the motion data sequence is one
instance of “slide hand” gesture. The normalized dis-
tance sequence between the joints of two hands can
be a single template. As the consequence of cluster-
ing, all templates are elementary in the dictionary. We
cluster each dimension of instances separately because
they represent movements of different human body
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Figure 3: Example of normalized distances. The
pairwise joints are “left hand” and “right hand”. The
upper part illustrates the skeleton sequence of one
gesture instance. The lower part shows the normal-
ized distances form a time series.

part. For ordinary human gestures, different human
body parts have different movements. For example,
the movement patterns of two feet may not be matched
with the movements of two hands. So we cluster the
movements of each human body part separately, the
centroids of small number of clusters are enough to
approximately represent all types of movements of this
human body part. If we cluster movements of all hu-
man body parts together, like BoOVW model, the re-
quired number of clusters will be very large, which de-
creases the efficiency of online gesture recognition. So
our method has advantages over BoVM model. In our
method, a gesture will be represented by a combina-
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. SSS feature extraction.

tion of a number of templates in the dictionary. This
would increase the possibility to use these elementary
templates to compose a large number of gestures and
reduce redundancy for storage, therefore improve the
efficiency of online processing.

Based on the first two
steps, a dictionary of templates is created. Now the
training dataset will be scanned again for SSS fea-
ture extraction. The purpose of this step is to convert
each frame into one SSS feature vector. Semantically,
an SSS feature vector encodes the motion information
in so-far scanned frames for the current frame. Here
motion information is represented as pre-learned tem-
plates. Each SSS feature vector consists of a number of
attributes represented as distance values. Each value
is a minimum DTW distance between all the scanned
subsequences (ending at the current frame) and a tem-
plate in the dictionary for the given pair of joints. It
should be pointed out that a template can only be ap-
plied to the dimension it belongs to. For example, if
one template is about the joints of two hands, this tem-
plate can be used to match frame sequences only on
the dimension about the joints of two hands. Dimen-
sionality of an SSS feature vector is determined by the
number of templates in the dictionary. We use Figure
4 to illustrate details of SSS feature extraction that is
also appeared in Figure 2.

As indicated by Papapetrou et al. in [22]: if two
sequences are similar to each other, their distances
to template sequence are likely to be closer to each
other. Similarly, if two sequences are not similar to
each other, their distances to template sequence are
likely to be farther from each other. Therefore, a
distance value in our SSS feature is more meaningful
and discriminative than histogram feature in BoVW
model. SSS is specifically well-suited to the analysis of
time series.

At the end of this step the labels of gestures originally
assigned to the training data frames by human become

SSS feature vectors assigned to each frame and ready
to be used to learn the gesture model.
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4. Gesture model training. This step is to use a clas-
sifier to learn a gesture model from the extracted SSS
feature vectors. In order to demonstrate the advan-
tages of our proposed SSS feature extraction method,
we use a basic classifier in the gesture model training.
We choose a linear regression based classifier namely
Jointly Sparse Coding [34] in this step. We will show
that even using a simple classifier, the performance will
be significantly improved compared with the state-of-
the-art approaches.

At the end of this step a gesture model is represented
as a transformation matrix ready to be used for the
prediction.

At prediction stage as illustrated in Figure 2, there are
three steps performed in online prediction. Firstly, the input
human skeletons captured from depth camera are translated
into motion data stream using the method described in the
learning stage. Then, each frame of motion data stream is
mapped into an SSS feature vector also using the method
described in the learning stage. Finally, at each frame, pre-
diction is performed by a linear regression method that as-
signs each feature vector with a gesture label based on the
learned gesture model.

3.1 Normalized Distances of Pairwise Joints

Certain amount 7 of joint positions are estimated by the
motion capturing technique from depth videos. Each joint ¢
has 3 coordinates p;(t) = (zi(t),yi(t), zi(t)) at frame ¢. For
each pairwise joints ¢ and j, 1 <= i < j <= J, we cal-
culate their normalized distances: si; = ||p; — pj||2/pathij,
where path;; is the path between joints ¢ and j in the human
skeleton. As shown in the upper part of Figure 3, J = 20
joints are captured with Microsoft Kinect system [27], and
M =T x(J—1)/2 =190 pairwise joints are generated. We
take “left hand” and “right hand” for example. The dotted
line is the Euclidean distance between them. The bold lines
indicate the path of these two joints in the human skeleton.
We can see that s;; has no relationship with the body po-
sition, body orientation and body size. i.e., viewpoint and
anthropometry invariant.

We treat the normalized distance of one pairwise joints
as one dimension of motion data. Along the time axis, the
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distances form a one-dimensional time series, as shown in
the lower part of Figure 3. Therefore, motion data stream is
a multiple dimensional time series: S(:,t) = {si;(t)},1 <=
1<j<=J.
3.2 Template Dictionary

From training motion data stream S = [S(:,1),...,S(:
,N)], where N is the number of frames in motion data
stream S, we manually segment all gesture instances and
learn a template dictionary D. One template is one di-
mension time series of one instance. For each dimension
of motion data, we cluster these instances into G clusters.
In each cluster, the gesture instance with minimum aver-
age distance to others on this dimension is chosen as one
template. There are G X M templates in this dictionary.
Therefore, template dictionary D = {d -}, where i and j
indicate the pairwise joints and g mdlcates the cluster index
in this pairwise joints. Spectral clustering algorithm [21],
which can be used in non-Euclidean space, is adopted for
the clustering. K-means clustering algorithm [11] is not ap-
plicable to non-Euclidean space, so it is not suitable here.
We also tested other clustering algorithms such as k-medoids
clustering [13] and optics clustering [3]. Spectral clustering
algorithm is the most robust one. DTW is adopted as the
distance measure for time series to eliminate execution rate
variation.

3.3 New SSS Feature

For recognition, each frame in S is required to be repre-
sented by an SSS feature vector. We compute the distances
between the best fitting subsequences ending at this frame
and template dictionary D as the SSS feature vector.

We use S(:,% : t) to represent all subsequences ending
at frame ¢. From the dictionary D, each template di; is

used to find one best fitting subsequence S(:, ¢ ” : t) among

S(:,t : t). The distance between the template and the best
fitting subsequence on related dimension is the minimum:

wf;(t) = |sis (15 : 1) — df (1

ffj = argt}rnin |sij (£ :t) —

d; )
Here, DTW is still used as the distance measure between
two sequences to eliminate execution rate variation. The
stream monitoring technique [25] can be used to detect the
optimal starting point t

We further use an SSS feature vector to represent one
frame. Fach minimum distance z]; according to one tem-
plate df; is one attribute of the SSS feature vector. In this
paper, G X M templates in the dictionary D can gener-
ate a vector with G x M dimensions. We treat this vector
X(:,t) = {x};(t)} as the SSS feature for frame t. X = [X(:
1), ..., X(:, V)] is the SSS feature matrix for S.

3.4 C(lassification

It is insufficient to use only one attribute of the feature
to discriminate different gestures. How to learn a combina-
tion of these attributes, which is representative of identical
gesture and discriminative compared with different gesture.
This can be achieved by machine learning techniques. We
adopt jointly sparse coding [34], which focus on feature se-
lection and classification, to learn the combination.



Table 1: Notations.
Description
number of joints
number of joint pairs
number of frames
number of clusters
motion data stream
template dictionary
SSS feature matrix
gesture model

[ Symbol |
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Classic least square regression is used to learn a trans-
formation matrix W to transfer features into gesture la-
bels. Furthermore, without reducing the effectiveness, the
amount of involved attributes should be as small as possible
to improve the efficiency. This can be achieved with /21
norm regularization. In addition, the minimization of ¢ 1
norm regularization will enable the algorithm to leverage the
shared information across multiple gesture classes [18].
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where C is the number of gesture classes, matrix Y = [Y(:
1), YN, Y (5, t) € RE indicates the multiple labels
for frame ¢ in stream S. If S(:,t) belongs to the ¢ ges-
ture class, Y(c,t) = 1, Y(e,t) = —1, for e # c. If Y(;,¢)
does not belong to any C classes of gestures, Y (:,t) = —1,
matrix W is the gesture model, with the help of f2,1 norm
regularization, many rows of W are near to 0 [36]. We can
prune invalid feature attributes. In this paper, the weight of
the m*" attribute in feature is measured with [|[W(m,:)||2
We descendingly sort these weights. The first I attributes
who’s weight sum is up to 99% of the total are regarded as
valid. Others are set to 0, and related template are noted
as invalid templates. Here A is the parameter to control
regularization.

3.5 Prediction

In online prediction stage, given an unknown motion data
steam, at frame ¢, we extract SSS feature U(:,t) only with
the valid templates in dictionary D. The attributes related
with invalid templates are set to 0 without computation. If
maz(WTU(:,t)) > A, the row index with maximum value
indicates the gesture class, otherwise, this frame does not
belong to any C classes of gestures. Here (8 is a parameter
for leverage precision and recall.

In online prediction stage, at each frame, the time com-
plexity of generating motion data is O(M), the time com-
plexity of extracting SSS feature is O(M x K x A), where
A is the average length of template sequence, and the time
complexity of classification is O(C x K).

The notations used in this paper are given in Table 1.

4. EXPERIMENTS

We chose MSRC-12 Kinect Gesture dataset [8] to evalu-
ate our proposed SSS feature for online gesture recognition.
To the best of our knowledge, this is the only one public
dataset for the research of online human gesture recogni-
tion from motion data stream. However, this dataset is very
large with more than 700,000 frames available for the ground
truth testing. In addition, we also validated our approach
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in pre-segmented action recognition using MSR-Action3D
dataset [15] which is a well-known action recognition dataset
for bench-marking with relevant algorithms. However, the
data has been pre-segmented for evaluating action instances
already. So the advantages of our SSS feature on online pre-
diction cannot be demonstrated. Moreover we can still use
this dataset for the demonstration of the advantages of our
SSS feature on the lower level granularity of recognition.

4.1 Results on MSRC-12 Kinect Gesture
Dataset

MSRC-12 Gesture dataset comprises of 594 sequences,
more than 700,000 frames (approximately 6 hours and 40
minutes) collected from 30 people performing 12 classes of
gestures. In total, there are 6,244 gesture instances. The
ending points of all gesture instances were manually labeled.
Twenty human body joints (J = 20) are captured with Mi-
crosoft Kinect system. The body poses are captured at a
sample rate of 30Hz with an accuracy approximately two
centimeters in joint positions. In this dataset, for research
various methods of teaching human on how to perform dif-
ferent gestures, the participants were provided with three
instruction modalities and their combinations to perform
gestures. The three instruction modalities are i) text de-
scriptions, ii) image sequences, and iii) video demos. There
are also two combinations of the three modalities, i.e., im-
ages with text, and video with text. When participants are
given instructions, different modalities of instructions may
cause different responses. For example, when instructions
are given by videos, the gestures can be performed with an
imitated pace from the images of video. This would cause
the fixed-size sliding window approach can have less chances
of segmentation errors.

For a comparison with the state-of-the-art work in [8], we
use the same criteria (F-score) and latency-aware measure
as that justified in [8]. Precision measures how often is the
gesture actually present when the system predicts it is. Re-
call measures how many true gestures are recognized by the
approach. Latency measures how much time is the delay be-
tween the true action starting point and the prediction. Fol-
lowing the experiment setting of [8] , we treat the previous 34
frames and ending point as one gesture instance. Thus, the
average length of templates is A = 35 frames. For a specified
amount of tolerated latency /A = 10 frames, a fixed window
of size 2/ is centered around each ending point. All the
frames inside the window are given the same gesture label
as the ending point, and other frames outside the window
are regarded as negative samples. Therefore, the latency is
0.83s-1.5s ((35+10)(frames)/30(Hz)). In this way, we obtain
the ground truth label of each frame for evaluation. Each
frame is treated as one sample for training and test. A bal-
anced F-score between 0 and 1 combines precision and recall
is chosen as the evaluation measure. We measure the intra-
modality generalization performance: training and testing
using the same instruction modality. For each modality, a
“leave-person-out” protocol is used to split dataset into 10
disjoint sets. Here, disjoint is in terms of the person-gesture
combination. In each set, we remove a set of persons from
full dataset to obtain the minimum set that contains perfor-
mances of all gestures. Nine sets are used for training, and
one set is used for testing. We finally obtain five F-scores,
one for each modality. Each F-score is an average over 10
repetitions and 12 gestures.
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are stabilized at A = 100 and —0.5 < 5 < —0.3.

Table 2: Comparison on MSRC-12 Gesture dataset on five modalities.

[ Method | Text | Images | Video | Images+Text | Video+Text |
Ours 0.713 £0.191 | 0.666 +£0.194 | 0.557 £+ 0.291 0.730 £0.148 | 0.707 £0.17
Baseline [8] [ 0.479 + 0.104 0.549 £0.102 | 0.627 +£0.053 | 0.563 +0.045 | 0.679 +0.035

We compare our approach with the state-of-the-art method
[8], which adopted fixed size sliding window and random for-
est classifiers for this dataset. In this dataset, we use fixed
values A = 100 and 5 = —0.4 for evaluation. These parame-
ters are derived from an experiment that is designed to find
the optimal parameters. In that experiment, parameter A\
was firstly set as {10,100, 1000} and parameter S was set as
{-1,-0.9,-0.8,...,0.8,0.9,1}. The dataset is also split into
10 disjoint sets (different from the 10 disjoint sets split for
the evaluation) for finding the optimal parameters (A and
B). The reason we do not use conventional 10-fold cross
validation is that it is very time consuming when dataset is
large (with more than 700,000 samples in this dataset), so
the parameters can be derived by an experiment. In fact,
Fothergill et al. in [8] also chose the parameters in this way.

‘We show the effect caused by the parameter A and param-
eter 8 when number of clusters G is fixed to 20 (the reason
to choose parameter G as 20 will be discussed in following).
The recognition F-scores of all modalities are illustrated in
Figure 5. We can see that the optimal values of parameters
stabilize at A = 100 and —0.5 < 5 < —0.3.

Table 2 shows the comparison results for each modality.
We can see that our approach obtains average improvement
of F-scores by 10%. There are considerable improvements in
“Text”, “Images”, and “Images+Text” modalities, which are
more susceptible to execution rate variation. This demon-
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strates that our approach can handle incorrect segmentation
problems. It worths to note that the instructions given by
video modality is impractical in an experiment because the
variations of different participants are mostly precluded by
the behaviors of participants who are simply imitating the
video instructions. In human-computer interaction appli-
cations, user should remember instructions by themselves,
they have no chance to imitate the gestures by watching
video instructions. In this case, the high F-score of video
modality has little significance.

‘We notice that our approach presents more variance than
that of the baseline. One explanation is that parameter
causes the variance. In our experiments, the F-score is the
average over 10 repetitions and 12 gestures, with the same
value of parameter 5. The optimal value of parameter g is
stable for the highest average F-score, but for different ges-
tures in different repetitions, the optimal value of parameter
B changes. In our current system, we adopt a linear regres-
sion classifier to demonstrate the advantages of our proposed
SSS feature. It works well even with a simple classifier. In
our future work, we will consider the model selection prob-
lem for our proposed SSS feature.

We also notice that “Text” exhibits better performance.
As Fothergill et al. in [8] reported “the text provided a spe-
cific of what the sensor was going to pick up”. So people
can more clearly understand the key movements of differ-
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ent gestures. However, the research on the effect caused by
modality of instruction is beyond the scope of this paper.
For more details about MSRC-12 Gesture dataset, please
refer to [§].

Furthermore, we research the effect caused by the number
of clusters. We set G = [5, 10, 15, 20] respectively when A =
100 and 8 = —0.4. The recognition F-scores and the number
of valid templates K are illustrated in Figure 6. As the
increasing number of clusters, F-scores increase slowly, and
the number of valid templates increases linearly. Therefore,
we choose G = 20 to balance the effectiveness as well as the
efficiency.

We preform our experiments with hardware of “i7 860
CPU” and “4G RAM”; and software of Matlab hybrid with
parts of C code. With our approach, In prediction stage,
gesture recognition of one frame costs less than 2ms.

4.2 Results on MSR-Action3D Dataset

MSR-Action3D dataset [15] comprises of 557 pre-segmented
action instances. There were 10 people performing 20 classes
of gestures. Same as MSRC-12 Kinect Gesture Dataset, hu-
man body joints (J = 20) were captured with Microsoft
Kinect system.

Because the instances have been manually segmented, we
simplify online extracting features as computing the dis-
tances between the pre-segmented instance and the template
dictionary directly. Each instance is treated as one sample.
We use fixed values A = 10 and G = 20 for experiments. In
this dataset, the parameters are optimized on the test sets.
In all comparing approaches, the parameters are optimized
in the same way. The fairness of the comparison is evidenced
by using the same experiment setting (the method of parti-
tion of training datasets and test datasets, and the method
of parameter tuning) on the same standard dataset.

We compare our approach with the state-of-the-art meth-
ods on the cross-subject test setting [15, 32], where the sam-
ples of half number of persons are used as training data, and
the rest are used as testing data. As Table 3 shows, our ap-
proach outperforms the other time series based methods [6,
17, 19, 20], which treat the motion data as an undivided
whole set. The only approach [32] that outperforms ours
uses a subset of joints for classification, which is similar to
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Table 3: Comparison on MSR-Action3D dataset.

| Method | Accuracy |
Recurrent Neural Network [19] 0.425
Dynamic Temporal Warping [20] 0.54
Hidden Markov Model [17 0.63
Multiple Instance Learning [6] 0.657
Our Approach 0.817
Actionlet Ensemble [32] 0.882

our approach, but it focuses on recognition at pre-segmented
document level, and cannot be used in online recognition
from unsegmented streams.

The confusion matrix is illustrated in Figure 7. We can
see that for most actions, our approach works well, while for
the similar actions such as “hand catch” and “high throw”,
“draw X” and “draw circle”, there are some misclassifica-
tions. It can be seen that, for each action, there are about
10 instances performed by 5 people for training, which may
be insufficient to distinguish these similar gestures.

S.  CONCLUSIONS

Depth cameras are now widely used in applications of
human-computer interaction. There is a growing need to
apply depth cameras in human behaviors detections, such
as gesture, action, and activity recognition. The effective
and efficient recognition of human gestures in a real-time
fashion has a significant impact on the recognition of hu-
man actions.

In a nutshell, our contributions are as follows:

e New SSS feature. We proposed a novel feature,
namely, Structured Streaming Skeletons (SSS), for on-
line gesture recognition from motion data streams to
deal with four types of intra-class variations (i.e., view-
point, anthropometry, execution rate, and personal
style), thereby effectively and efficiently solved the in-
correct segmentation and inadequate template match-
ing problems.
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e None prior segmentation. We detect the size of
segment by dynamically matching with pre-learned tem-
plates. Execution variation is eliminated and there is
no avenue for errors made by prior segmentations.

e Fine-tuned granularity of motion templates. We
create a motion template dictionary at a granularity
of elementary body-part-movement level. We consider
human body as a combination of many small parts and
perform body part analysis separately. One advantage
is that personal styles of gestures can be represented
by different combinations of human-body-part move-
ments.

e Superior online performance. Because of the dis-
criminative nature of SSS feature, the superior perfor-
mance is achieved even with a simple classifier, with
average improvement of F-scores by 10% (Table 2)
compared with the stat-of-the-art approaches. Also
our online prediction of gestures is extremely fast cost-
ing less than 2ms per frame. The latency is 0.83s-1.5s
(in realtime response)’.

Our further research will consider: i) the model selec-
tion based on our proposed SSS feature; ii) online gesture
recognition with inaccurate skeleton data to reduce gesture
recognition errors that are caused by incomplete skeleton
tracking; iii) studies of real user experience.
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