ContextUML: A UML-Based Modeling Language for Model-Driven
Development of Context-Aware Web Services

Quan Z. Sheng and Boualem Benatallah

School of Computer Science and Engineering
The University of New South Wales, Sydney, NSW 2052, Australia
{gsheng, boualem} @cse.unsw.edu.au

Abstract

Context-aware Web services are emerging as a promis-
ing technology for the electronic businesses in mobile and
pervasive environments. Unfortunately, complex context-
aware services are still hard to build. In this paper, we
present a modeling language for the model-driven devel-
opment of context-aware Web services based on the Uni-
fied Modeling Language (UML). Specifically, we show
how UML can be used to specify information related to
the design of context-aware services. We present the ab-
stract syntax and notation of the language and illustrate
its usage using an example service. Our language offers
significant design flexibility that considerably simplifies
the development of context-aware Web services.

1. Introduction

The proliferation of ubiquitous, interconnected com-
puting devices (e.g., PDAs, 3G mobile phones) is fos-
tering the emergence of environments where Internet ap-
plications and services made available to mobile users
are a commodity [7]. Users expect that Web services
are aware of their current personal environments (e.g.,
their locations, the activities they are engaged in, and
personal preferences) and provide more intelligent ser-
vices. We call such kind of Web services context-aware
services (CASs) [12, 8, 4]. A CAS provides users with
a customized and personalized behaviour. For example,
a dining-at-uni service gives users suggestions on
where to have lunch in university’s campus, depending
on their food preferences, their locations on campus, and
even the weather conditions.

To date, CASs are still hard to build. One reason is
that current Web services standards (e.g., UDDI, WSDL,
SOAP) are not sufficient for describing and handling con-
text information. Although currently there exist many
tools for Web services development (e.g., Java2WSDL
utility in Apache Axis' can generate WSDL descriptions

Uhttp://ws.apache.org/axis.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

from Java class files), the development of CASs can not
benefit directly from such tools. CAS developers must
implement everything related to context management—
including the collection, dissemination, and usage of con-
text information—in an ad-hoc manner. Another rea-
son is that, to the best of our knowledge, there is a
lack of generic approaches for formalizing the develop-
ment of CASs. As a consequence, developing CASs is
a very cumbersome and time consuming activity, espe-
cially when these CASs are complex.

Model Driven Architecture (MDA) [9] is an approach
that supports system development by employing a model-
centric and generative development process. MDA in-
creases the quality of complex software systems based
on creating high level system models and automatically
generating system architectures from the models. In this
paper we show how this paradigm can be specialized to
CASs development. In particular, we present a UML-
based modeling language—ContextUML—for formaliz-
ing the design and development of CASs. ContextUML
provides constructs for i) generalizing context provision-
ing that includes context attributes specification and re-
trieval; and ii) formalizing context awareness mecha-
nisms and their usage in CASs.

Model-driven CAS development approach has a num-
ber of advantages. First, it improves the productivity
and quality of CASs development. By exploiting Con-
textUML, services are formally and clearly documented.
More importantly, the implementation of services can be
generated automatically by transforming the service de-
sign models to particular target platforms (e.g., BPEL [1]
specifications). The conformance of the implementation
with service models is guaranteed and the time and ef-
fort of service development can be reduced. Second, it
eases system maintenance and evolution. Any changes
can be easily made at the service model level and prop-
agated automatically to the implementation. Finally, it
enhances the portability of service design due to techni-
cal independency of service models. The service models
can be migrated to new technologies (e.g., new Web ser-
vice languages or protocols) by simply developing new
transformation rules.

YF]',F.

COMPUTER

SOCIETY

The work described in this paper is the first step for
creating a complete model-driven approach for CASs de-
velopment. With the approach, CASs can be formally
modeled and their executable implementations can be au-
tomatically generated and deployed. We believe that as
mobile computing devices become widely adopted and
the needs for mobile services continue to grow, such an
approach will be an important part of any mobile business
development environment.

The remainder of the paper is organized as follows:
Section 2 briefly overviews some basic concepts used
in the paper and then gives an example CAS. Section 3
presents abstract syntax of ContextUML. Section 4 il-
lustrates the notation of ContextUML and shows how to
design CASs using the example CAS. Finally, Section 5
discusses and concludes the paper.

2. Background

In this section, we first briefly overview some basic
relevant concepts, namely context, context-aware service
(CAS), and UML. We then present a CAS that will serve
as a running example throughout this paper.

2.1. Context

Dey and Abowd have defined context—which is
widely used in the literature today—as “any information
that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered
relevant to the interaction between a user and an applica-
tion, including the user and applications themselves” [8].

In a CAS environment, context contains any informa-
tion that can be used by a Web service to adjust its exe-
cution and output. Examples of contexts are: i) contexts
related to a service requester (mostly it is the client who
invokes a service), including the requester’s identification
information, personal preferences, current situation (e.g.,
location), and other information (e.g., friends list, calen-
dar); ii) contexts related to a Web service, such as service
location, service status (e.g., available, busy), and its QoS
attributes (e.g., price, reliability); and iii) other contexts
like time and weather information.

It should be noted that some contexts are application
specific. Forecasted weather, for instance, could be a con-
text in a vacation planning service, but not in a currency
conversion service.

Some context information can be sensed directly (e.g.,
locations and temperatures using physical sensors), while
others have to be derived from available context infor-
mation. Contexts are provided by context providers. It
is interesting to mention that more and more context
providers advertise their services—called context infor-
mation services>—over the Web that can be seamlessly
integrated into CASs. Recently, quite a few research ef-
forts on modeling the context provisioning services are
proposed [15, 4, 11].

2E.g., US National Weather Service, http://www.nws.noaa.gov.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

2.2. Context-Aware Service

A service is context-aware if it uses context informa-
tion to provide relevant information and/or services to
users, where relevancy depends on the users’ task [8,
14, 16]. A CAS can present relevant information or can
be executed or adapted automatically, based on available
context information. For example, a service can display
restaurants that are around a user’s current location, and
if the weather is good, the service even suggests some
restaurants that customers can sit outside.

To develop CASs, two important issues need to be
considered. The first is the provisioning of context in-
formation. CAS developers have to identify what kind
of context information will be used and how to derive it.
Due to heterogeneity of context providers, sensor imper-
fection, quality of context information, and dynamic con-
text environments, context provisioning is not trivial [15].
In particular, various context providers may provide a
same piece of context information (usually with different
quality and data formats) and it is difficult to specify— at
design stage—which context provider should be contacted
for the provision of a particular context. Further, some
context required by a CAS may not be able to find any
context provider who can supply the context directly.

The second issue is the mechanisms that can be used
by CASs to adapt their behaviours based on correspond-
ing context information without explicit user interven-
tion. In other words, it is the problem of how to use con-
text information to achieve context awareness of services.
In addition, the abstracted context awareness mechanisms
should guarantee the efficiency of the development and
maintenance of CASs. For instance, it should be possi-
ble to use legacy Web services to develop CASs without
changing their implementation.

2.3. Unified Modeling Language

The Unified Modeling Language (UML)? is consid-
ered as the industry de-facto standard for modeling soft-
ware systems and plays a central role in Model Driven
Architecture (MDA) [9]. In UML, the structural aspects
of software systems are defined as classes, each formaliz-
ing a set of objects with common services, properties, and
behaviour. Services are described by methods. Properties
are described by attributes and associations. Object Con-
straint Language (OCL) can be used to express additional
constraints.

UML can also serve as foundation for building domain
specific languages by specifying stereotypes, which in-
troduce new language primitives by subtyping UML core
types, and ragged values, which represent new properties
of these primitives. Model elements are assigned to such
types by labeling them with the corresponding stereo-
types. In addition, UML can also be used as metamodel-
ing language, where UML diagrams are used to formalize
the abstract syntax of another modeling language.

3http://www.omg.org/technology/documents/formal/uml.htm.

YF]',F.

COMPUTER

SOCIETY

Service

AtomicContext

CompositeContext

w

CAMechanism

Context | . ContextSource
SourceAssignment
B 1.%

L | |

N

‘ ContextService ‘ ‘ContextServiceCommunity‘

ContextBinding ContextTriggering ‘ ‘ ‘ ‘
* * *

> Member

1.
‘ ContextConstraint

‘ Action i

Figure 1. ContextUML metamodel

2.4. Example: Attractions Searching Service

Suppose that there is a context-aware attraction
searching service that is offered by a mobile network op-
erator. Mobile users subscribed to the network operator
can invoke this service using their mobile devices to get
the recommended attractions when they visit new cities.
The service works like the following:

e Users can subscribe their personal preferences to the
service. For example, a user can specify what kinds
of attractions (e.g., historical sites) she likes, and
which language (e.g., Chinese) the description of at-
tractions should be.

e The service recommends attractions according to a
user’s location (e.g., the city that the user is currently
in).

e During the recommendation, the service also consid-
ers other contexts like weather and user preferences.
If the weather is harsh, the service will only suggest
indoor attractions (e.g., Sydney Aquarium). The def-
inition of weather to be harsh depends on a couple of
contexts like the temperature (e.g., above 40 degree
Celsius) and the likelihood of rain (e.g., more than
80%). The recommended attractions will also reflect
the user’s preferences, e.g., translating the attraction
descriptions to user’s preferred language.

In the following of the paper, we will introduce our
modeling language, ContextUML, which provides the
foundation for designing such a CAS.

3. ContextUML

We now define the syntax of ContextUML, including
a metamodel and a notation. The metamodel defines ab-
stract syntax of the language, while the notation defines
the concrete format used to represent the language (also
called concrete syntax). We will give examples of con-
crete syntax in Section 4.

Figure 1 shows the metamodel of ContextUML. We
will introduce the abstract syntax of ContextUML from
two aspects: context modeling and context-awareness
modeling.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

3.1. Context Modeling

3.1.1 Context Type

A Context is a class that models the context information.
In our design, the type Context is further distinguished
into two categories that are formalized by the subtypes
AtomicContext and CompositeContext. Atomic contexts
are low-level contexts that do not rely on other contexts
and can be provided directly by context sources (see Sec-
tion 3.1.2). In contrast, composite contexts are high-level
contexts that may not have direct counterparts on the con-
text provision. A composite context aggregates multi-
ple contexts, either atomic or composite. The concept of
composite context can be used to provide a rich modeling
vocabulary.

For instance, in the scenario of attraction search-
ing service, temperature and rainLikelihood
are atomic contexts because they can be provided
by e.g., G1 obalWeather* Web service. Whereas,
harshWeather is a composite context that aggregates
the former two contexts.

3.1.2 Context Source

The type ContextSource models the resources from
which contexts are retrieved. We abstract two categories
of context sources, formalized by the context source sub-
types ContextService and ContextServiceCommunity, re-
spectively. A context service is provided by an au-
tonomous organization (i.e., context provider), collect-
ing, refining, and disseminating context information. To
solve the challenges of heterogeneous and dynamic con-
text information, we abstract the concept of context ser-
vice community, which enables the dynamic provisioning
of optimal contexts. The concept is evolved from service
community we developed in [3] and the details will be
given in Section 3.1.3.

It should be noted that in ContextUML, we do not
model the acquisition of context information, such as
how to collect raw context information from sensors. In-
stead, context services that we abstract in ContextUML

“http://www.capescience.com/webservices/globalweather.

YF]',F.

COMPUTER

SOCIETY

encapsulate sensor details and provide context informa-
tion by interpreting and transforming the sensed infor-
mation (i.e., raw context information). The concept of
context service hides the complexity of context acquisi-
tion from CAS designers so that they can focus on the
functionalities of CASs, rather than context sensing.

3.1.3 Context Service Community

A context service community aggregates multiple con-
text services, offering with a unified interface. It is in-
tended as a means to support the dynamic retrieval of
context information. A community describes the capa-
bilities of a desired service (e.g., providing user’s loca-
tion) without referring to any actual context service (e.g.,
WhereAmI service). When the operation of a commu-
nity is invoked, the community is responsible for select-
ing the most appropriate context service that will provide
the requested context information. Context services can
join, leave communities at any time.

By abstracting ContextServiceCommunity as one of
context sources, we can enable the dynamic context pro-
visioning. In other words, CAS designers do not have to
specify which context services are needed for context in-
formation retrieval at the design stage. The decision of
which specific context service should be selected for the
provisioning of a context is postponed until the invoca-
tion of CAS:s.

The selection can be based on a multi-criteria util-
ity function [18, 3] and the criteria used in the func-
tion can be a set of Quality of Context (QoC) param-
eters [5]. The examples of QoC parameters are: 1)
precision indicating the accuracy of a context infor-
mation; ii) correctnessProbability representing
the probability of the correctness of a context informa-
tion; and iii) refreshRate indicating the rate that a
context is updated.

The quality of context is extremely important for
CASs in the sense that context information is used to au-
tomatically adapt services or content they provide. The
imperfection of context information may make CASs
misguide their users. For example, if the weather in-
formation is outdated, our attractions searching service
might suggest users to surf at the Bondi Beach although
it is rainy and stormy. Via context service communities,
the optimal context information is always selected, which
in turn, ensures the quality of CASs.

It should be noted that ontologies play a pivotal role
in understanding the semantics of the context services.
An ontology refers to the formal, explicit description of a
shared conceptualization of a domain of interest that are
often conceived as a set of entities, relations, instances,
functions, and axioms [10]. Context services described
in ontologies possess explicit semantic representations,
which makes the automatic selection of context services
possible. The description of the detailed ontology model
of context services is outside of the scope of this paper.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

3.2. Context Awareness Modeling

A CAMechanism is a class that formalizes the mech-
anisms for context awareness (CA for short). We dif-
ferentiate between two catergories of context awareness
mechanisms by subtypes ContextBinding and Context-
Triggering, which will be detailed in Section 3.2.1 and
Section 3.2.2, respectively. Context awareness mecha-
nisms are assigned to context-aware objects—modeled
in the type CAObject—by the relation MechanismAssign-
ment, indicating which objects have what kinds of con-
text awareness mechanisms.

CAODbiject is a base class of all model elements in Con-
textUML that represent context-aware objects. There are
four subtypes of CAObject: Service, Operation, Message,
and Part. Each service offers one or more operations and
each operation belongs to exactly one service. The re-
lation is denoted by a composite aggregation (i.e., the
association end with a filled diamond). Each operation
may have one input and/or one output messages. Simi-
larly, each message may have multiple parts (i.e., param-
eters). A context awareness mechanism can be assigned
to either a service, an operation of a service, input/output
messages of an operation, or even a particular part (i.e.,
parameter) of a message. It is worth mentioning that the
four primitives are directly adopted from WSDL, which
enables designers to build CASs on top of the previous
implementation of Web services.

3.2.1 Context Binding

A ContextBinding is a subtype of CAMechanism that
models the automatic binding of contexts to context-
aware objects. By abstracting the concept of context
binding, it is possible to automatically retrieve informa-
tion for users based on available context information. For
example, suppose that the operation of our example CAS
has an input parameter city. Everyone who wants to
invoke the service needs to supply a city name to search
the attractions. Further suppose that we have a context
userLocation that represents the city a user is cur-
rently in. A context binding can be built between city
(input parameter of the service) and userLocation
(context). The result is that whenever our CAS is in-
voked, it will automatically retrieve attractions in the city
where the requester is currently located.

An automatic contextual reconfiguration (i.e., context
binding) is actually a mapping between a context and a
context-aware object (e.g., an input parameter of a service
operation). The semantics is that the value of the object is
supplied by the value of the context. Note that the value
of a context-aware object could be derived from multi-
ple contexts. For the sake of the simplicity, we restrict
our mapping cardinality as one to one. In fact, thanks to
the introduction of the concept of composite context, we
can always model an appropriate composite context for
a context-aware object whose value needs to be derived
from multiple contexts.

YF]',F.

COMPUTER

SOCIETY

«conuml.service»
AttractionSearch

«conuml.atomicContext» LocationBinding
Location
city:string «conuml.part»
«conuml.contextService» city
WhereAml

«conum'.contxtBinding»

«conuml.atomicContext»
Language

«conuml.contextTriggering»
LanguageTrigger

«conuml.operation»
SearchAttractions

preferredLanguage:string
«conuml.contextService»

«conuml.action»
TransformLanguage

UserProfile

«conuml.atomicContext»

1

N

«conuml.message» «conuml.message»

Temperature

temperature:real
«conuml.contextServiceCommunity»

{self.preferredLanguage<>
Attraction.descriptionLanguage}

ASSInput ASSOutput
city:string attractions:Attraction(]

I~
|
!
|
|
!
|
!
|
|
!
|
|

WeatherServices

«conuml.atomicContext»
RainLikelihood

«ube»
I

|
|
!
|
!
J—

rainlikelihood:real
«conuml.contextServiceCommunity»

{self.HarshWeather=true} ﬁ

«conumI.mechar}isimiAgsignmeinpi \T L
/ |

/ A\

WeatherServices

l

1

/ «xsd.complexType»
/ Attraction

/ attractionName:string

/ description:string

«conuml.compositeContext»
HarshWeather

«conuml.contextTriggering»
WeatherTrigger

descriptionLanguage:string
location:string

harshWeather:boolean
getHarshWeather(temperature:real,

«conuml.action»
FilterOutdoorActivities

maplmage: string
price: real

rainLikelihood:real): boolean

Figure 2. Attractions searching service

3.2.2 Context Triggering

The type ContextTriggering models the situation of con-
textual adaptation where services can be automatically
executed or modified based on context information. A
context triggering mechanism contains two parts: a set of
context constraints and a set of actions, with the seman-
tics of that the actions must be executed if and only if all
the context constraints are evaluated to true.

A context constraint specifies that a certain context
must meet certain condition in order to perform a partic-
ular operation. Formally, a context constraint is modeled
as a predicate (i.e., a Boolean function) that consists of
an operator and two or more operands. The first operand
always represents a context, while the other operands
may be either constant values or contexts. An operator
can be either a prefix operator that accepts two or more
input parameters or a binary infix operator (e.g., =, <,
#, and 3) that compares two values. Examples of con-
text constraints can be: i) harshWeather= true; ii)
rainLikelihood> 80%.

Considering our attractions searching service, we can
have a context triggering mechanism assigned to its out-
put message. The constraint part of the mechanism is
harshWeather= true, and the action part is a trans-
formation function £ilter(M,R), where M is the
output message and R is a transformation rule (e.g., se-
lecting only indoor attractions)’. Consequently, when
weather condition is not good, the output message will

31t should be noted that the transformation can be achieved by e.g.,
applying the eXtensible Stylesheet Language Transformation (XSLT,
http://www.w3.org/TR/xslt).

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

be automatically filtered (e.g., removing outdoor attrac-
tions) by the service.

4. ContextUML Notation

As introduced before, a notation of ContextUML is
used to help designers create intuitive, readable CAS ser-
vice models. In this section, we explain our UML-based
notation (i.e., concrete syntax) and illustrate the seman-
tics of ContextUML using our example CAS.

Figure 2 formalizes the attractions searching service,
which in particular i) suggests attractions of the city
where user is currently located, ii) transforms the results
to the user’s preferred language, if not expressed in this
language, and iii) suggests only indoor attractions if the
weather is not good.

4.1. Context

We start by declaring the contexts used in the ser-
vice, namely Location, Language, Temperature,
RainLikelihood, and HarshWeather (see Fig-
ure 2). The former four are atomic contexts that are
represented by UML classes with the stereotype con-
uml.atomicContext °. Each atomic context class has two
attributes. One is the context name and the other is
an assigned context source (a context service or a com-
munity). The assigned context source should be con-
tacted for the retrieval of the context. As Figure 2 sug-
gests, the value of Location will be derived by a con-
text service named WhereAmI, whereas the retrieval of

SWe use conuml to indicate ContextUML in the stereotype.

YF]',F.

COMPUTER
SOCIETY

Temperature and RainLikelihood will be cared
by a context service community WeatherServices.

On the other hand, HarshWeather is a composite
context represented by a UML class with the stereotype
conuml.compositeContext. Unlike atomic context class,
a composite context class has one attribute (i.e., context
name). The business logic of the aggregation (i.e., how
to compute the value of a composite context from its ag-
gregated contexts) is implemented via an operation of the
composite context class. For instance, Har shieather
aggregates Temperature and RainLikelihood us-
ing the operation getHarshWeather ().

4.2. Context-Aware Objects

We then define the context-aware objects that—as dis-
cussed before—are basically service components (e.g.,
operation, input message). From Figure 2 we can see
that our service AttractionSearch is represented as
a class with the stereotype conuml.service. The service
has one operation searchAttractions represented
by a class with the stereotype conuml.operation.

The operation’s input and output messages are repre-
sented by classes with stereotype conuml.message. The
input message of the operation is a simple type (i.e.,
city:string), while the output message is an ar-
ray of Attraction, which is a complex type that in-
cludes a couple of attributes like attractionName,
location,description etc. It should be noted that
we use WXS (W3C XML Schema) 7 for the declaration
of data types in the operation messages. The prefix xsd is
used in the stereotypes to identify WXS.

4.3. Context Awareness Mechanisms

Now we specify several context awareness mecha-
nisms, each formalizing a requirement of the example
CAS. The first requirement of our example CAS is mod-
eled in a context binding called LocationBinding
(Figure 2). A context binding is represented as an asso-
ciation class with the stereotype conuml.contextBinding,
connecting a context with a UML class representing a
context-aware object. The attribute of the class repre-
sents the binding object to the context. For example,
LocationBinding connects context Location and
input message of SearchAttractions, where the
binding object is an input parameter (city, represented
as conuml.part) of the message.

The latter two requirements of the service are for-
malized by the context triggering called Language—
Trigger and WeatherTrigger (Figure 2). A con-
text triggering is drawn as a class with the stereo-
type conuml.contextTriggering. Each attribute of the
class represents an action of the context triggering.
Each context triggering is associated with a context
constraint. Context constraints are expressed using

Thttp://www.w3.org/TR/xmlschema-2.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

UMVL’s Object Constraint Language (OCL). The con-
straint sel f.harshWeather = true of the context trig-
gering WeatherTrigger, for example, restricts the
context awareness mechanism to cases where the weather
is not good. The assignment of a context triggering
mechanism is defined using a dependency relationship
(dashed line with an arrow) with the stereotype con-
uml.mechanismAssignment.

5. Discussions and Conclusion

The work presented in this paper is related to model-
driven development of context-aware Web services. Re-
garding the CASs development, very few research pro-
posals have been presented in the literature. A repre-
sentative effort is the work done by Keidl and Kemper
in [12]. The authors propose a context framework for the
development and deployment of context-aware adaptable
Web services. In the framework, contexts are limited to
the information of service requesters and are embedded
into the SOAP messages. Further, the issue of context
retrieval leaves open in their work. In contrast, our lan-
guage provides not only context processing mechanisms
for CASs development, but also rich primitives for mod-
eling contexts and their retrieval.

Although model-driven software development is a
well established practice [13], the technology is still in
the early stages in terms of context-aware Web services
development. To the best of our knowledge, the work
presented in this paper is the first effort in modeling
CASs development based on UML language. Recently,
there are a few efforts emerged for model-driven Web
services development. In [17], authors propose a UML-
based model-driven method for Web services composi-
tion. While in [2], authors discuss a framework that
supports model-driven development of Web services and
show how a completed executable service specification
of a Web service can be generated from its external
specifications (e.g., protocol specifications and interface).
Both efforts, however, do not address the development of
CASs. In [6], authors propose some solutions for con-
ceptual modeling of multi-channel, context-aware Web
applications. The work is based on a modeling language
called WebML, which was initially designed for the de-
velopment of Web page (i.e., hypertext) based applica-
tions. Further, their context model does not cover the het-
erogeneity of contexts.

In this paper, we present ContextUML, a UML-based
language for model-driven CASs development. We in-
troduce the metamodel and notation of the language and
illustrate its usage using an example CAS. Our Contex-
tUML offers significant design flexibility to CAS design-
ers. Firstly, ContextUML separates the modeling of con-
text and context awareness from service components. A
couple of context awareness mechanisms are abstracted
and context awareness is achieved by assigning the mech-
anisms to relevant service components like service oper-

YF]',F.

COMPUTER

SOCIETY

ations and their input/output messages. This separation
eases both development and maintenance of CASs. If
new context-aware requirements are needed in a CAS, the
CAS designer only needs to modify/create context aware-
ness mechanisms and (possibly) redo their assignments.
The designer does not, however, need to adjust the imple-
mentation of the service components. Another benefit is
that it is possible to use legacy codes of Web services in
the development of CASs.

Secondly, the abstraction of context service commu-
nities provides a significant flexibility for context provi-
sioning by dynamic binding of context services, and en-
sures the quality of context information by enforcing e.g.,
QoC based selection policy. CAS designers do not have
to decide—and even do not have to know—which con-
text services will be used at CAS design time. Commu-
nities also make context provisioning more robust. For
example, if a selected context service from a community
becomes unavailable, another context service can be se-
lected from the community.

Finally, the concept of composite context improves the
modeling power of context information to CAS design-
ers. By applying composite contexts, service designers
can model any high-level context attributes that are use-
ful in CASs.

We view our work presented in this paper as a first step
towards formalized development of context-aware Web
services. Our ongoing work includes the generation of
complete, executable implementation of CASs from their
ContextUML service models. For example, it is possible
to transform a CAS design model to a BPEL specification
where context processing, service invocation, and context
awareness handling are processed sequentially. The re-
sulted BPEL specification can be executed in any BPEL
execution engine. Another plan is to extend our modeling
language to support the development of context-aware
composite Web services.

In summary, we believe that, once the research and de-
velopment work on the aspects described above has been
completed, the approach will result in a comprehensive
platform that can substantially reduce CASs development
effort, and therefore, foster the flourish of electronic busi-
nesses in mobile and pervasive environments.

References

[1] T. Andrews et.al. Business Process Execution Language
for Web Services 1.1. http://www—106.1ibm.com/
developerworks/library/ws-bpel.

[2] K. Baina, B. Benatallah, F. Casati, and F. Toumani.
Model-Driven Web Service Development. In Proc. of
the 16th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’04), Riga, Latvia, June
2004.

[3] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitat-
ing the Rapid Development and Scalable Orchestration
of Composite Web Services. Distributed and Parallel
Databases, An International Journal, 17(1):5-37, 2005.

Proceedings of the International Conference on Mobile Business (ICMB’05)
0-7695-2367-6/05 $20.00 © 2005 IEEE

(4]

[5

—

[6

—

(7]
(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

T. Buchholz, M. Krause, C. Linnhoff-Popien, and
M. Schiffers. CoCo: Dynamic Composition of Context
Information. In Proc. of the First Annual International
Conference on Mobile and Ubiquitous Systems: Net-
working and Services (MobiQuitous’04), Boston, Mas-
sachusets, USA, August 2004.

T. Buchholz, A. Kiipper, and M. Schiffers. Quality of
Context: What It Is And Why We Need It. In Proc. of the
10th Workshop of the OpenView Univeristy Association
(OVUA’03), Geneva, Switzerland, July 2003.

S. Ceri, F. Daneil, and M. Matera. Extending WebML
for Modeling Multi-Channel Context-Aware Web Ap-
plications. In Proc. of the 4th International Confer-
ence on Web Information Systems Engineering Work-
shops (WISEW’03), Roma, Italy, December 2003.

Y. Chen and C. Petrie. Ubiquitous Mobile Computing.
IEEE Internet Computing, 7(2):16-17, 2003.

A. K. Dey and G. D. Abowd. Towards a Better Under-
standing of Context and Context-Awareness. Technical
Report GIT-GVU-99-22, GVU Center, Georgia Institute
of Technology, June 1999.

D. S. Frankel. Model Driven Architecture™ : Applying
MDA™™ 1o Enterprise Computing. John Wiley & Sons,
2003.

T. R. Gruber. A Translation Approach to Portable On-
tology Specifications. Knowledge Acquisition, 5(2):199—
220, 1993.

K. Henricksen and J. Indulska. A Software Engineering
Framework for Context-Aware Pervasive Computing. In
Proc. of the Second IEEE Annual Conference on Perva-
sive Computing and Communications (PerCom’04), Or-
lando, Florida, USA, March 2004.

M. Keidl and A. Kemper. Towards Context-Aware Adapt-
able Web Services. In Proc. of the 13th International
World Wide Web Conference (WWW’04), New York,
USA, May 2004.

S. Mellor, A. N. Clark, and T. Futagami. Special Issue on
Model-Driven Development. [EEE Software, 20(5):14—
18, 2003.

J. Pascoe. Adding Generic Contextual Capabilities to
Wearable Computers. In Proc. of the 2nd International
Symposium on Wearable Computers, Pittsburgh, USA,
October 1998.

D. Salber, A. K. Dey, and G. D. Abowd. The Context
Toolkit: Aiding the Development of Context-Enabled Ap-
plications. In Proc. of the Conference on Human Factors
in Computing Systems (CHI’99), Pittsburgh, PA, USA,
May 1999.

B. Schilit, N. Adams, and R. Want. Context-Aware Com-
puting Applications. In Proc. of the Ist International
Workshop on Mobile Computing Systems and Applica-
tions, Santa Cruz, CA, USA, December 1994.

D. Skogan, R. Gronmo, and 1. Solheim. Web Service
Composition in UML. In Proc. of the 8th International
IEEE Enterprise Distributed Object Computing Confer-
ence (EDOC’04), California, USA, September 2004.

M. Stolze and M. Stoebel. Utility-based Decision Tree
Optimization: A Framework for Adaptive Interviewing.
In Proc. of the 8th International Conference on User
Modeling (UM’01), Sonthofen, Germany, July 2001.

YF]',F.

COMPUTER

SOCIETY

