ELSEVIER

Available online at www.sciencedirect.com

SCIENCE(dDIRECT“

Electronic Commerce Research and Applications 3 (2004) 214-231

Electronic
Commerce Research

and Applications

www.elsevier.com/locate/ecra

A three-level specification approach for an environment
of software agents and Web services

Zakaria Maamar **, Quan Z. Sheng ® Boualem Benatallah °, Ghazi Al-Khatib ©

& Software Agents Research Group, College of Information Systems, Zayed University, Dubai, United Arab Emirates
b School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia
¢ Qatar College of Technology, Doha, Qatar

Received 22 April 2003; received in revised form 19 November 2003; accepted 3 December 2003
Available online 31 December 2003

Abstract

This paper presents an approach for the specification of a software agent-based and Web service-oriented envi-
ronment. A software agent is an autonomous entity that acts on user’s behalf. Whereas a Web service is an accessible
application that other applications and humans can discover and trigger. Users in collaboration with their agents
compose Web services into high-level business processes denoted by composite services. The participation of Web
services in a composite service is based on several selection criteria such as the execution cost of a Web service and the
location of the resources on which a Web service will be performed. Prior to that selection, the specification approach
puts forwards three levels: intrinsic, organizational/functional, and behavior. Besides the specification approach, the
composition of Web services is illustrated in this paper with service chart diagrams.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Web services; Software agents; Specification; Composition; Location

1. Introduction

Our long-term research objective is the de-
ployment of anytime, anywhere applications
through the design and development of environ-
ments for stationary and mobile users. To reach
this objective, we consider two major components

*Corresponding author. Tel.: +971-42082461; fax: +971-
42640854.
E-mail addresses: zakaria.maamar@zu.ac.ae (Z. Maamar),
gsheng@cse.unsw.edu.au (Q.Z. Sheng), boualem@cse.unsw.
edu.au (B. Benatallah), alkhatib@qu.edu.qa (G. Al-Khatib).

to constitute such environments: software agents
and services. We decompose software agents into
two types [12]: stationary and mobile. Further, we
decompose services into two types: Web services
[21] and Mobile services (M-services) [15].

With the rapid development of information
technologies, several businesses are deploying Web-
based applications for more automation, efficient
business processes, and global visibility. Web ser-
vices are among the technologies that help busi-
nesses in being more Web-oriented. A Web service
is an accessible application that other applications
and humans as well can discover and trigger [8].

1567-4223/$ - see front matter © 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.elerap.2003.12.002

mail to: zakaria.maamar@zu.ac.ae

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 215

Various technologies are behind the success of Web
services including Web Services Description Lan-
guage (WSDL), Universal Description, Discovery
and Integration (UDDI), and Simple Object Access
Protocol (SOAP) [9]. These technologies support
the definition of Web services, their advertisement,
and their binding for triggering purposes. Web
services have the capacity to be composed into high-
level business processes usually known as composite
services. For example, a vacation scenario calls for
the collaboration of at least four Web services:
flight reservation, hotel booking, attraction search,
and user notification. These Web services need to be
connected according to a certain flow of control.
Flight reservation is first completed, before hotel
booking and attraction search can be both initiated.

With the latest development in mobile and
wireless technologies, a new generation of Web
services are put forward on the market for the
benefit of persons who are usually on the move
(e.g., sales representatives). This kind of persons
rely on mobile devices such as cell-phones to con-
duct their day-to-day operations. M-services de-
note this type of Web services and are meant to be
either: (i) triggered remotely from mobile devices
for execution purposes, or (ii) wirelessly transferred
from provider sites to the mobile devices of users
on which their execution is carried out [15]. Any-
time, anywhere applications should support users
in satisfying their needs regardless of their location
and the type of devices (fixed or mobile) they use.

It is observed in [20,23] that composing multiple
services rather than accessing a single service is
essential. Searching for the relevant services, inte-
grating them into a composite service, triggering
them, and monitoring their execution are among
the operations that users will be responsible. Most
of these operations are complex, although repeti-
tive with a large segment suitable to computer
assistance. Therefore, software agents are deemed
appropriate candidates to assist users in their op-
erations. For the needs of agentifying services, we
put forward two types of software agents; those
that act on behalf of users are called user-agents
and those that act on behalf of providers of ser-
vices are called provider-agents. Throughout this
paper, we argue that the integration of software
agents and services into the same environment

requires a specification approach that provides
assistance to designers. The specification is un-
dertaken at three levels: intrinsic, organizationall
Sfunctional, and behavior. Each level has a set of
properties that vary according to the component
(i.e., agent or service) to which the level is applied.
e Agent: the intrinsic level has the properties that
identify an agent as an independent entity. The
organizational level has the properties that
identify an agent as an element of a community
of agents. Finally, the behavior level has the
properties that describe the reactions of an
agent to the interactions in which it participates.
e Service: the intrinsic level has the properties

that identify a service as an independent entity.
The functional level has the properties that de-
scribe a service as a member of a composite ser-
vice. Finally, the behavior level has the
properties that describe the states of a service
when it is the subject of interactions between
agents.

In this paper, the following elements are dis-
cussed. What are the appropriate mechanisms for
specifying an environment of Web services? What
is the value-added of software agents to these
mechanisms? What are the selection criteria to in-
tegrate component services into composite ser-
vices? How to identify the resources on which the
component services will be performed? And finally,
how to validate the specification approach using
prototyping techniques? The remainder of this
paper is structured as follows. Section 2 overviews
some core concepts such as software agents and
service composition approaches. Section 3 presents
the three-level specification approach. Section 4
discusses the process of agentifying an environment
of Web services. Work in progress and related
work are respectively outlined in Sections 5 and 6.
Finally, Section 7 summarizes our contributions
and draws our conclusions.

2. Background

2.1. Software agents

A software agent is a piece of software that au-
tonomously acts to perform tasks on user’s behalf

216 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

[12]. Many software agents design is based on the
approach that the user only needs to specify a
high-level goal instead of issuing explicit instruc-
tions, leaving the how and when decisions to the
agent. A software agent has various features that
make it different from other traditional compo-
nents such as autonomy, goal-oriented, collabo-
rative, flexible, and mobile.

2.2. Services

Regardless of its type (i.e., Web or mobile), a
service consists of operations to perform according
to a certain input and a certain chronology. Po-
tential users have to know how to request a service
for execution, but neither how to operate the ser-
vice nor how the service operates or is operated. In
this paper, C-service denotes a composite service,
whereas P-service denotes a primitive service that
is either a Web service or an M-service.

2.2.1. Web services

A Web service in [3] is an accessible application
that other applications and humans can discover
and trigger. Benatallah et al. associate three
properties with a Web service: (i) independent as
much as possible from specific platforms and
computing paradigms; (ii) developed particularly
for inter-organizational situations; and (iii) easily
composable, i.e., its composition with other Web
services does not require the development of
complex adapters.

2.2.2. M-services

Maamar and Mansour provide in [15] two
definitions for an M-service. The weak definition is
to remotely trigger a Web service from a mobile
device for execution. In that case, the Web service
acts as an M-service. The strong definition is to
transfer a Web service from its hosting site to a
mobile device where its processing takes place. In
that case, the Web service acts as an M-service that
is: (i) transportable through wireless networks; (ii)
composable with other M-services; (iii) adaptable
according to the computing features of mobile
devices; and (iv) runnable on mobile devices. In
this paper, we only consider the M-services that
comply with the weak definition.

Fig. 1 shows snapshots of a mobile service
running on a cell-phone. The service provides in-
formation to tourists visiting a city for instance
Dubai. Upon request of tourists, the service is
downloaded into their mobile devices.

2.2.3. C-service vs. P-service

A C-service aggregates multiple component P-
services. Since the M-services that we refer to in
this paper comply with the weak definition, the P-
services correspond only to Web services. Instead,
the C-services are made available to users for
triggering purposes in two different versions: Web
version for stationary users and M-version for
mobile users. As part of our work of specifying the
composition of services, we developed service chart
diagrams [14]. Details on these diagrams are given
below.

2.2.4. Service chart diagram

A service is expressed using a service chart di-
agram, which leverages the state chart diagram '
of UML [11]. In a service chart diagram, the em-
phasize is on the context surrounding the execu-
tion of a service rather than only on the states that
a service takes (Fig. 2).

A service chart diagram wraps the states of a
service into four perspectives, besides the state
perspective that is in fact the state chart diagram of
the service. The flow perspective corresponds to the
execution chronology of a composite service (pre-
vious services/next services attributes — M/O re-
spectively stands for Mandatory and Optional).
The business perspective identifies the organiza-
tions that are ready to provide a service (business
attribute). The information perspective identifies
the data that are exchanged between services (data
from previous services/data for next services attri-
butes). Because of the type of services (i.e., man-
datory and optional), the information perspective
is tightly coupled to the flow perspective with re-

! A state chart diagram is a graphical representation of a state
machine that visualizes how and under what circumstances a
modelled element (e.g., a class, a system, or a business process)
changes its states. Furthermore, a state chart diagram is used
for showing which actions are executed as a result of event
occurrence.

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 217

[FlpefaultGrayPhone S sf P!
-~

T —] L —

F il] |
Select a city:

Lbu Dhabi

Dubai

Fatl ED
iSpecial Events

GITEX

Pubai Shopping
Festivals

Dubai Air Show

Dubai Summer

/rars @ STUV wIrzg

Fig. 1. Snapshots of tourist mobile-book.

Service

1 (" Previous Business Next N
= services (M/O) services (M/O)F(

E
®

Data from) Perfor. type V' Datato
3 > . .
previous services | (localor remote) | next services

Fig. 2. Service chart diagram.

gard to mandatory data vs. optional data. Finally,
the performance perspective illustrates the ways a
service is invoked for execution whether remotely

Service Invocation
Host | Host , Host |

(a)

or locally (performance type attribute, Fig. 3, [13]
for more details on a service’s invocation types).

2.3. Approaches of service composition

A composite service consists of component ser-
vices that are either primitive or composite. We
outline below the approaches of service composi-
tion [5].

2.3.1. Proactive composition vs. reactive composi-
tion

Proactive composition is an off-line process
that gathers in advance the available component

Host ,

O oo P Senicd
e .0 -
N invocation |\ Service

Agent, Agent, Agent

>(\ Local
- — .0 B
Migration . invocation .-

Agent, Agent,

Fig. 3. Service invocation types: remote vs. local.

218 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

services to constitute a composite service. This
means that the composite services are pre-com-
piled and ready to be executed upon users’ re-
quests. In a proactive composition, the component
services are usually stable and may even be run-
ning on resource-rich platforms. With regard to
reactive composition, it is the process of creating
composite services on-the-fly. A composite service
is devised on a request-basis from users. Because
of the on-the-fly property, a component manager
that ensures the identification and coordination of
the component services is required. Despite a
“certain” complexity of reactive composition, it
presents several advantages such as the awareness
of the current status of the component services and
the possibility of optimizing certain runtime ar-
guments such as bandwidth use and data transfer
routes.

2.3.2. Mandatory composite service vs. optional
composite service

A mandatory composite service illustrates the
compulsory participation of all the component
services to the execution process. Because it is ex-
pected that the component services will be spread
across the network, the reliability of the execution
process of each component service affects the re-
liability of the whole composite service. On the
other hand, an optional composite service does not
necessarily require the participation of all the
component services. Certain component services
can be skipped during the execution for various
reasons such as possibility of replacement or
non-availability.

Service chart
diagram

Service,

Service chart
diagram
\)

Fig. 4. State chart diagram of a composite service.

We recall that a composite service consists of
several component services. Therefore, the process
model underlying a composite service is specified
as a state chart diagram whose: (i) states are as-
sociated with the service chart diagrams of the
component services, and (ii) transitions are la-
belled with events, conditions, and variable as-
signment operations. Fig. 4 illustrates the state
chart diagram of a composite service that inte-
grates the service chart diagrams of its component
services.

3. The three levels of the specification approach
3.1. Motivation

To satisfy users’ and businesses’ needs, multiple
advanced components are put forward to devise
new types of applications. Moreover, the diffusion
of mobile telecommunications and mobile access
to the Web has widened the heterogeneity of client
devices. Devices span from traditional worksta-
tions and PCs, to laptops, personal digital assis-
tants and smart phones, with wired/wireless
continuous/intermittent connectivity.

With the latest progress in information tech-
nologies, needs of users are getting diverse and
complex. To satisfy these needs, advanced com-
ponents are required for developing a new type of
applications. In our work, we decided using soft-
ware agents and services. Agents are autonomous
entities that take initiatives in solving problems.
Whereas services are computing packages that are
intended to be composed and executed. The com-
position of services into high-level business pro-
cesses is complex. Indeed, this requires searching
for the relevant services, integrating them into a
composite service, triggering the services at the
right time and in the right order, and monitoring
the execution progress of the composite service for
exception handling. All these operations can be
outsourced to software agents. They have the ca-
pacities to handle them such as autonomy, mo-
bility, and collaboration. Putting services and
agents in the same environment indicates the im-
portance of having a specification approach
that we apply in two steps. In the first step, the

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 219

specification approach is applied to agents and
services taken independently from each other.
Whereas in the second step, the specification ap-
proach is applied to agents and services taken in a
combined way.

3.2. Levels of the approach

The three levels of the specification approach
are as follows: intrinsic, organizational/functional,
and behavior. In what follows, the properties of
each level are described and afterwards illustrated
with examples.

3.2.1. Software agent
Table 1 summarizes the properties of the spec-

ification approach when applied to software

agents.

e The intrinsic level consists of three properties:
identifier (identifies an agent with regard to a
certain Internet domain), role (lists the respon-
sibilities of an agent), and type (indicates if an
agent is of type provider or user).

e The organizational level consists of two proper-
ties: visited domain, and not-visited domain.
When a service is locally triggered, this means
that the requesting agent is visiting the domain
of the requested agent of the service. The infor-
mation on that domain updates visited-domain
property. The opposite happens if a service is
remotely requested; not-visited-domain prop-
erty is updated.

e The behavior level consists of one property:
state chart diagram (lists the states that an
agent takes when it interacts with its peers).

3.2.2. Service
Table 2 summarizes the properties of the spec-
ification approach when applied to services.

Table 1
Properties of the specification approach applied to software
agents

Level Properties

Intrinsic Identifier, role, type
Organizational Visited domain, not-visited domain
Behavior State chart diagram

Table 2

Properties of the specification approach applied to services
Level Properties
Intrinsic Identifier, description, type, input

arguments, output arguments, cost

Functional Component link, mandatory causal
link, optional causal link
Behavior State chart diagram

e The intrinsic level consists of seven properties:
identifier (identifies a service with regard to all
the services offered to users), description (pro-
vides an overview of a service), type (indicates
if a service is of type composite or primitive), in-
put arguments (lists the number and type of ar-
guments that are submitted when a service is
triggered), output arguments (lists the number
and type of arguments that a service returns af-
ter processing), and cost (corresponds to the
charges of executing a service).

e The functional level consists of the three proper-
ties: component link (only applies to composite
services and identifies the component primi-
tive-services), mandatory causal link (identifies
the primitive services that are attached to a
primitive service; these primitive services have
to be added to the composite service in case
the primitive service participates in this compos-
ite service), and optional causal link (identifies
the primitive services that are attached to a
primitive service; these primitive services can
be added to the composite service in case the
component service participates in this composite
service. >

e The behavior level consists of one property:
state chart diagram (describes the states that a
service takes when the service is the subject of
conversation between agents).

3.2.3. Connection between agents and services

The connection occurs at the three levels
namely intrinsic, organizational/functional, and
behavior.

2 A person attending a conference in city X could be
interested in visiting the famous places of that city even if the
person did not explicitly mention his interest.

220 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

o [Intrinsic level: An agent of type provider has to
know the services it offers. Thus, service prop-
erty, which refers to these services, is added to
the intrinsic level of the agent.

o Organizational-functional level: To satisfy his
needs, a user triggers a composite service to be
assigned to an agent of type user. This agent
knows the primitive services of the composite
service using component link, mandatory causal
link, and optional causal link properties of the
functional level of the service. The agent has
to select the primitive services needed according
to execution cost property. In addition, the
agent has two options to trigger a primitive ser-
vice: (i) locally within the same domain of the
primitive service, or (ii) remotely from a differ-
ent domain of the primitive service. The type
of invocation enables updating visited domain
and not-visited domain properties of the orga-
nizational level of the agent.

e Behavior level: When agents initiate conversa-
tions with their peers, they take different states
based on the messages these agents submit and
receive. It may occur that within certain states,
the agents perform operations that initiate ser-
vices. Thus, services take appropriate states.

3.3. Application of the three levels

After presenting the three-level specification
approach, the current step consists of applying the
approach to vacation scenario. Four services are
required to handle this scenario. At present, the
focus is on the specification of each service. The
specification of agents happens once the agentifi-
cation of services is completed (Section 4).

The application of the specification approach to
vacation scenario occurs as follows (Fig. 5):

o A designer devises a C-service to be denoted by
vacation C-service. The specification approach
assists the designer in his work.

e The P-services that constitute vacation C-ser-
vice are: flight reservation, hotel booking,
attraction search, and user notification. These
P-services are listed in component link property
of the functional level of the service.

e Based on mandatory causal link property of the
functional level of the service, driving time cal-
culation and car rental P-services have to be
added to vacation C-service (Fig. 5(a)). The first
P-service checks the distance between the loca-
tion of the hotel and the location of the main
attraction. If the distance is greater to a user-
defined limit, car rental P-service is triggered.

e Based on optional causal link property of the
functional level of the service, historic details
P-service can be added to vacation C-service
(Fig. 5(b)). This P-service provides historic in-
formation on the city the user plans visiting.
This new P-service is triggered upon the user’s
approval.

The application of service chart diagrams to
vacation C-service occurs as follows. For the sake
of space, only two primitive services are presented.
o Flight reservation P-service (Fig. 6(a)): it is the

first P-service of vacation C-service to be trig-

gered. It is followed by hotel booking and at-
traction search P-services. These P-services
need for their processing departure date, return
date, and city of destination to be obtained

from flight reservation P-service. This latter P-

service takes stand by and execution states.

-

Flight
reservation
- AT TN s
Basic | Mandatory | { Optional }
services)\ services/J {_ services

Hotel
booking

Attraction
searching

' Historic
details

approval

Fig. 5. Vacation composite-service.

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

(a) Flight reservation P-service

Hotel booking
Null ?Business and
Attra. searching

(b) Driving time calculation P-service

Hotel booking
and
Attra. searching

?Business

Carrental)
xor
User notification

g%(Stand by H Execution J%(E)
J

H Stand by H Exec

E
ution)%@

i

Person name

221

— - Hotel location
Destination cit 9
?Performance Y and Performance xor
Null tyne Departure date Attra. Tocati type Hotel name
g yp Return date ttra. location Attraction name/

Fig. 6. Application

The businesses that will provide flight reserva-
tion P-service (?business attribute) and the invo-
cation way of flight reservation P-service
(?performance type attribute) are identified dur-
ing run-time.

¢ Driving time calculation P-service (Fig. 6(b)): it
has been added to vacation C-service according
to causal link property of the functional level of
the service. Hotel booking and attraction search
P-services precede the execution of driving time
calculation P-service. In addition, this P-service
is followed either by car rental P-service or user
notification P-service. The decision is made
based on the distance that exists between the lo-
cation of the hotel and the location of the at-
traction. According to the distance, driving
time calculation P-service triggers the relevant
P-service. Car rental P-service needs the name
of the person for whom the lease of the car will
be made. User notification P-service needs the
hotel and attraction names so the user can be
informed about all these details. The businesses
that will provide driving time calculation P-ser-
vice (?business attribute) and the invocation
way of driving time calculation P-service (?per-
formance type attribute) are identified during
run-time.

4. Agentification of an environment of Web services
4.1. Architecture
For the agentification needs of an environment

of Web services, we deployed an agent-based multi-
domain architecture (Fig. 7). Domains are spread

of service chart diagram.

across the network and administrators maintain
them. Two types of domain exist: user-domain and
provider-domain. We assume the existence of one
user-domain (despite the issue of bottleneck or a
single point-of-failure that both could be handled
with replication) and several provider-domains.
Domains are computing platforms on which ser-
vices and agents can run. Users browse the list of
composite services from different devices whether
fixed or mobile.

The user-domain has a service-zone and a
working-zone. The service-zone has a list from
which composite services are managed using the
three-level specification approach. This list offers
composite Web services to users of fixed devices
and composite M-services to users of mobile de-
vices. The service-zone of the user-domain has a
bank from which user-agents are created. For their
installation, user-agents are located in the work-
ing-zone of the user-domain. User-agents can mi-
grate from one domain to another based on the
strategy of invoking services. For each composite
service that a user selects, a user-agent is associ-
ated with. We recall that only primitive Web ser-
vices participate in composite services.

A provider-domain consists of a working-zone
and several lists of primitive services. Each list is
reserved to a specific category such as finance,
education, and travel. The working-zones are de-
vised in a way to receive user-agents arriving from
the user-domain or from other provider-domains.
Within provider-domains, installation and control
procedures of user-agents are performed (these
procedures do not fall within this paper’s scope).
Provider-agents handle the invocation requests
that user-agents submit to the primitive services. A

222

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

User-domain

Administrator

Service-zone

|
1”4

List of

Users X
C-services

|
N

Bank of
user-agents
I

DY

1\

Working-zone

User-agents

58

/

©®

Remote interaction

-
-

/ . .
Provider-domain |

=
o0
Local \\7,
interaction
% List , of P-services <U> ‘

‘ List,, of P-services @ ‘
Administrator

[‘ Working-zone

~

¢

‘ Provider-domain,

. Migration ~

Rerfote
interaction

N
N

Migration
I

Provider-domain

Working-zone

‘ List,, of P-services @ ‘

Administrator

)

Provider-domain,, ‘

@ Provider-agent @ User-agent X Network P: Primitive C: Composite

Fig. 7. Software agent-based multi-domain architecture.

user-agent submits a local request to a provider-
agent in case both agents are in the same provider-
domain. In case the user-agent and provider-agent
are in separate domains, the user-agent submits a
remote request to the provider-agent so, the
primitive service can be triggered.

4.2. Operation

The operation of the multi-domain architecture
consists of the specification of the composite ser-
vices and their deployment once users initiate
them. The specification of a composite service is
discussed in Section 3.3. This means that the
communities of component primitive-services of a
composite service are already known (details on
service communities are provided in [3]). Now, the
focus is on deploying the composite service in
terms of: (i) selecting the component services as
providers can have services in common, and (ii)
executing the component services selected as ser-

vices can be remotely or locally invoked. Users
browse the list of composite services from their
fixed or mobile devices. The deployment of a
composite service is not affected by the type of the
device from which it is triggered. The only differ-
ence occurs at the communication protocol (HTTP
vs. WAP) that connects users to the user-domain.

When a composite service is selected, the user
indicates his needs (e.g., city of destination, num-
ber of persons). This leads into the creation of a
user-agent to handle the satisfaction of the user’s
request. Initially, the user-agent is in the working
zone of the user-domain. Then, the user-agent
starts identifying the component primitive-services
of the composite service. The user-agent relies on
component link property of the functional level
(Table 2). At this stage, the user-agent knows the
appropriate component primitive-services. Before
it interacts with the respective provider-agents of
these primitive services, the user-agent checks if
additional primitive services are not also required.

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 223

To this purpose, it checks mandatory causal link
and optional causal link properties (Table 2). The
primitive services that are identified in the man-
datory causal link property have to be attached to
the composite service. Regarding optional causal
link property, the user-agent may decide to pro-
vide additional details that were not mentioned in
the user’s initial-request.

After the user-agent identifies the primitive
services that have to be and can be attached to a
composite service, it starts implementing the
composite service by interacting with their pro-
vider-agents. The user-agent either migrates to a
provider-domain in which it locally requests the
execution of a primitive service. Or, the user-agent
remotely requests the execution of a primitive
service from the domain (either a user-domain or a
different provider-domain) in which it currently
resides. Once all the primitive services are exe-
cuted, the user-agent returns details to the user.
For the primitive services that were included ac-
cording to optional causal link property, the user-
agent checks whether the user is interested in
getting extra information. The user may be in-
formed about the charges related to the new
primitive services.

4.3. Getting Web services ready

For a composite service, preparing the compo-
nent primitive-services for composition and exe-
cution relies on two selection criteria: execution
cost and location of computing hosts (a computing
host corresponds to a provider-agent). Execution
cost criterion is directly related to a primitive
service. Whereas the location of computing host
criterion aims at gathering in the same provider-
domain the maximum number of primitive services
for execution, privileging local interactions over
remote interactions. This means reducing: (i) the
number of remote interactions between domains,
(i1) the number of migrations of user-agents to
provider-domains, and (iii) the number of remote
data exchanges between domains.

The identification of the provider-domains and
their computing host is based on an Algorithm
that is given in Fig. 8. First, the domain of where a
service is currently being executed is considered
(set 4 in Fig. 8, line 03). By selecting this domain,
remote data exchanges between services are avoi-
ded. Next, the domain of where the user-agent
currently resides is considered (set B in Fig. 8, line
04). By selecting this domain, local invocations of

01: for each < p.s;, PRO.AGT;, type >,i=2,---,p

02: begin

03: | A« ¢ //provider-agents in the same domain as pro.agt;_;

04: | B« ¢ //provider-agents in the same domain as user-agent
05: | C « ¢ //provider-agents that are in other domains

06: | for (j =1;j <= ||PRO.AGT;||;j + +) //pro.agt; € PRO.AGT,
07: | begin

08: | | if domain(pro.agt;) = domain(pro.agt;_1)

09: | | then A — AU pro.agt;

10: | | else if domain(pro.agt;) = domain(user — agent)

11: | | then B «— B U pro.agt;

12: | | else C — C Upro.agt;

13: | end //AUBUC = PRO.AGT;

14: | if A#¢

15: | then contact provider-agents of A - Go Phase 2.1

16: | else if B# ¢

17: | then contact provider-agents of B - Go Phase 2.1
18: | else contact provider-agents of C' - Go Phase 2.1
19: end

Fig. 8. Algorithm for selecting provider-agents.

224 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

services as well as local data exchanges between
services are enabled. In case none of the afore-
mentioned cases happen, any domain is considered
(set C in Fig. 8, line 05).

4.3.1. Definitions
A user-agent expects to: (i) associate each

primitive service with a provider-agent and (ii)

define the strategy of invoking the primitive service.

We assume a C-service CS of n P-services, CS =

{p.s1,p-s2,...,p.8,}. The specification of CS cor-

responds to the set {< p.sj,pro.agt,,type >, <

p.s2, pro.agt,, fype >,..., < p.s,,pro.agt,, type >}
where |J._,p.s;=CS and for each <p.s;,
pro.agt;, type > 1) the P-service p.s; is provided
by the provider-agent pro.agt;, and invoked ac-
cording to remote or local type. The number of
provider-agents that contribute to the provisioning

of CS is not necessarily equal to the number of P-

services that are involved in a composite service.

Certain provider-agents may contribute with more

than one P-service (e.g., < p.s;, pro.agt,, type > and

< p.sy, pro.agt,, type >).
Given a P-service, its execution cost is decom-
posed into two parts:

e Remote cost of a P-service includes: (i) the cost of
establishing a communication link between the
domain in which the user-agent is now located
and the provider-domain of the provider-agent
of the P-service, plus (ii) the cost of performing
the P-service, plus (iii) the cost of sending back
the results from the provider-domain of the pro-
vider-agent to the domain of the user-agent.

e Local cost of a P-service includes: (i) the cost of
moving the user-agent from the domain in
which it now resides to the provider-domain
of the provider-agent of the P-service, plus (ii)
the cost of performing the P-service.

4.3.2. Preparation

The preparation of the primitive services for
composition is divided into two phases. Phase 1
consists of searching for the provider-agents that
have the P-services. Because provider-agents can
have P-services in common, Phase 2 consists of
selecting a particular provider-agent based on the
criteria of execution cost and location of comput-
ing hosts.

In Phase 1, the identification of the provider-
agents is based on the business perspective of the
service chart diagram (Fig. 2). For each P-service
p-s;, potential provider-agents are identified. This is
similar to < p.s;, PRO.AGT;, type > where PRO.
AGT; = {pro.agt,,...,pro.agt,} is the list of pro-
vider-agents that have the P-service p.s; in com-
mon, forexample < p.s;, PRO.AGT\, type >, where
PRO.AGT, = {pro.agt,, pro.agt,, pro.agt, }.

In Phase 2, because provider-agents can have P-
services in common, the association of a P-service
with a specific provider-agent has to be completed.
In addition, because of the location criterion the P-
services are treated one at a time. The definition of
< p.s;,pro.agt;, type > is broken down into two
sub-phases.

In Phase 2.1, the P-service p.s;;—;) of CS is
considered. At this level, only the execution-cost
selection-criterion is considered (location criterion
does not hold). From each provider-agent of
PRO.AGT; ;) that offers the P-service p.s; -1,
the user-agent receives the execution cost for re-
mote and local invocation types (Eq. (1)).

User-agent :
pro.agt, : (remoteCost(p.s!), localCost(p.s!))

D-Si(i=1)
pro.agt, : (remoteCost(p.s¥), local Cost(p.s*))

(1)

For each offer that a provider-agent pro.agt,
submits to the user-agent, the user-agent selects
the minimum cost between the two types of invo-
cation (min(remoteCost(p.s¥), localCost(p.s¥))).
Afterwards, the user-agent selects for the P-service
p-Si 1) the minimum cost among all the offers of
the provider-agents. For example, the user-agent
sets < p.si, pro.agt,, remote >: pro.agt, provides
p-s; and p.s; is remotely invoked. Because of the
remote invocation, the user-agent and pro.agt, will
definitely be in two different domains.

In Phase 2.2, the user-agent continues with the
remaining P-services p.s;, (i =2,...,n) also one at
a time. Now, the two selection criteria are simul-
taneously considered. It should be noted that the
location criterion is privileged over the execution

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 225

cost criterion due to the aforementioned benefits.
Considering the location criterion, the provider-
agent that is associated with a P-service p.s; (icp)
depends on the provider-agent that has been se-
lected to offer the predecessor P-service p.s; ;. The
user-agent proceeds according to the algorithm of
Fig. 8 (in the algorithm, < p.s;_;,pro.agt, ,,
local|remote > is assumed). When the user-agent
finishes working on a P-service p.s;, its provider-
agent and invocation strategy of that P-service are
known. The purpose of the algorithm is to gener-
ate a short list of provider-agents with whom the
user-agent will interact about their services. This
short list ranks the domains in which the provider-
agents and user-agent reside (4, B, and C sets, lines
08-12).

4.3.3. Execution

When all the P-services of a C-service are
identified, the user-agent starts invoking these P-
services through their provider-agent. For illus-
tration, the following C-service is used CS =
{< p.s1,pro.agt,, local >, < p.s,, pro.agt,, local >,
< p.s3,pro.agty, remote >}. Initially, the user-
agent is in the user-domain, pro.agt; and pro.agt,
are both in provider-domain;, and pro.agt; is in
provider-domains. Since p.s; is going to be locally
executed, the user-agent migrates from the user-
domain to provider-domain;. Once the execution
of p.s; is completed, the user-agent locally executes
p-s». Because pro.agt, is within the same domain as
pro.agt, this shows an implementation of the lo-
cation criterion. This also shows that the transfer
of data from p.s| to p.s, if both are interdependent
is locally done, which avoids dealing with net-
work-connection failures. Finally, from provider-
domain; the user-agent submits a remote request
to pro.agt; so p.s3 can be executed. The transfer of
data from p.s, to p.s; if both are interdependent is
remotely done, which means the importance of
being aware of network-connection failures.

5. Work in-progress
Several aspects are under development in the

agent-based multi-domain architecture of Fig. 7.
In this paper, we discuss three of them namely

interleaving Web services composition and execu-
tion, reliability of composite services execution,
and prototype implementation.

5.1. Interleaving Web services composition and
execution

It is shown in Section 4.3 that the deployment
of a composite service is sequential and demands
from the user-agent: (i) to process all the provider-
agents’ offers about the primitive services, (ii) to
constitute the composite service, and finally (iii) to
execute the composite service. It would be more
appropriate if the composition and execution of
services could be interleaved [18]. The user-agent
has to delegate a part of its work (either compo-
sition or execution) to a third party. To this end, a
delegate-agent is concurrently created to the user-
agent deployment. While the user-agent is re-
motely interacting with provider-agents or visiting
domains of provider-agents, the delegate-agent is
preparing the component services for execution on
behalf of the user-agent, and submitting the details
on what the user-agent has to carry out. These
details concern the provider-agents of the compo-
nent services and the invocation types of these
component services. While the delegate-agent is
working on the P-service p.s;, the user-agent is
executing the P-service p.s;_;. Therefore, the
delegate-agent is always one-step ahead of the
user-agent. User-agent and delegate-agent com-
municate in two ways: locally when both agents
are in the user-domain and remotely when the
delegate-agent is in the user-domain and the user-
agent is in one of the provider-domains visiting
their provider-agents.

Fig. 9 illustrates the way user-agent and dele-
gate-agent implement the interleaving of Web
services composition and execution. We assume
a C-service CS = {< p.sy, 7pro.agt, 7type >, < p.sa,
?pro.agt, 7type >}. First of all, the delegate-agent
starts working on p.s; for execution. Based on the
offers it receives from provider-agents, the dele-
gate-agent establishes for p.s; what follows: local
execution in provider-domain; of pro.agt,
(< p.s1,pro.agt,, local >). Therefore, the delegate-
agent asks the user-agent to migrate to provider-
domain,;. Before it moves, the user-agent resides in

226

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

User-domain

Delegate-agent

.
)
N2/~ Interaction

User-agent

©

(€]

Provider-domain,,

Working-zone %

L]
User-agent \ ™/

(5) Interaction

Provider-agent,(p.s,) @

submissi& |
\
N

V|—|” Migration T —

~
N

(@)
Migration

(39

details

Provider-domain |

@ N

e Working-zone
7 User-agent

(3) Interaction

‘ Provider-agent (p.s) @

Fig. 9. Interleaving service composition and execution.

the user-domain. While the user-agent is getting
ready for migration, the delegate-agent starts the
preparation of p.s;. After performing all the nec-
essary operations, the delegate-agent establishes
for p.s, what follows: local execution in provider-
domain, of pro.agt, (< p.sy,pro.agt,,remote >).
The details on p.s, are transferred to the user-agent
that is now located in provider-domain;. After the
user-agent finishes the execution of p.s;, it moves
to provider-domain, to locally interact with
pro.agt,.

5.2. Reliability of composite services execution

The reliability of a Web service is defined as the
probability that a request submitted to a Web
service is correctly responded within the maximum
expended time frame [24]. This time frame is
mostly published as part of the Web service de-
scription. Reliability is a technical measure that
depends on hardware and/or software configura-
tion of Web services and on network connections
between requestors and service providers. The re-
liability value can be computed from historical
data about past invocations using for example the
number of times that a Web service has been
successfully delivered within the maximum ex-
pected time frame, with regard to the total number
of invocations.

Because reliability deals with service execution
failures, backup approaches are deemed appro-
priate. A Web service cannot be executed for
multiple reasons: network connection problems,
service disconnected for maintenance, service
overloaded, just to cite a few. In the following, we
present the way reliability is integrated into the
operation of the multi-domain architecture of
Fig. 7.

Interleaving Web services composition and
execution has called for two types of agents: us-
er-agent and delegate-agent. Initially, the dele-
gate-agent associates a Web service with a
provider-agent and submits that information to
the user-agent that must be running either in the
user-domain or in one of the multiple provider-
domains. The selected provider-agent is part of a
pool of potential provider-agents (PRO.AGT))
that have a Web service in common. Before the
delegate-agent starts working on the next com-
ponent services, it stores the information about
the pool of provider-agents (for example the “x”
best ranked provider-agents from sets 4, B, and
C of PRO.AGT;, x <= (||PRO.AGT,|| — 1)) for a
later use. If the user-agent faces any difficulties in
the execution of a service, it immediately contacts
the delegate-agent which is always located in the
user-domain. Because the delegate-agent is now
working on the preparation of the remaining

Z. Maamar et al. | Electronic Commerce R

[SELF-SERV

esearch and Applications 3 (2004) 214-231 227

Laginto the System
Login fpn

(o] cm |

Passward [r==

File Edit Shape Line Construct

ol |O|@B|@|1 |d|]EE

~Senvice Definition
@[mmos[inmim” Domestic Flight Booking
(DFB)

fnot domestic{destination)|

International Travel
Arrangements
(ITA)

Accommodation
Booking
(AB)

=

[near(major_attraction, accommodation)]

Car Rental
(CR)

not near
(major_attractiond

I Attractions Search
it TR

B I —

-Edil Attributes XML Document

Name [Car Rental
ofr
Description [Renting cars
Url [ittp:iorerw £ 2 Unsw edu aWSELF-GERVICarRental

<l
<CompositeService name="
i ravel Solul

</Provider>
<URL>mozart.orchestra
</URL>
<Input-data>In_CTS.xu
</Input -data>
<Output-data>fut_CTS.
</Dutput-data>
<Statechart mames"Tra
<InitialState name
<FinalState name-"|

| 7vpe | Derived-rule

rentalDate [Date _|iivariable[Name="aclualDepa. ﬂ
reumDate |Date ivariable[Name ='sctualretu .|
city |String iVariable[Name="destination"..|
name |String jivariable[Name=name}Value |
accommodation [String iVanable[Name="accommod... | =

| Tyme | Dertvad-rule

e W

Nama

Input Data

Name
lientainiate.

Al

> =
completeTravelService” d="CTS" dosc="example scrvice for SELF-SERV protocype™> :I
rions Pry Ltd.
. cze, unsw, edu. au: 3000
1

xml

wel Solution” desca”For SERV prototype”>

Fig. 10. Web services composition.

component services, it stops its preparation work
and browses the stored pool of provider-agents
for the service in trouble. The objective is to
identify a new provider-agent, * inform the user-
agent about this provider-agent, and finally store
the newly updated pool of potential provider-
agents. Information on a pool of potential pro-
vider-agents are not deleted until the delegate-
agent receives a notification message from the
user-agent that the execution of a service has
been successfully completed. During that confir-
mation exchange, the delegate-agent submits to
the user-agent the details on the next service to
execute.

3 The delegate-agent may request new offers from the
provider-agents that are stored in the pool.

5.3. Implementation of prototype

We overview the status of the prototype im-
plementation. The prototype architecture consists
of a service composition environment and a pool of
services and agents. All these components are being
implemented in Java, whereas services communi-
cate through XML documents.

5.3.1. Service composition environment

The service composition environment consists
of a set of integrated tools that allow service pro-
viders and users to create and execute services.
WSDL is used to specify Web services and UDDI
is used as a service repository. Since WSDL fo-
cuses on how to invoke a Web service, some of the
attributes proposed in our approach are not sup-
ported by WSDL (e.g., service domain). To over-

228 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

come this limitation, such attributes are specified
as tModels. Each tModel represents the specifica-
tion of one attribute. The keys of these tModels
are included into the categoryBag of the tMo-
del of a Web service.

The service builder assists providers in defining
new services and editing existing ones as well. A
service definition is edited through a visual inter-
face (Fig. 10), and translated into an XML docu-
ment for further processing. The service builder
offers an editor for describing a service chart dia-
gram of a component service participating in a
composite service (an extension of our previous
work in [19]). It also provides means to describe
the properties of states (e.g., state ID, state name,
component service operation) and transitions (e.g.,
ECA rules).

5.3.2. Pre-built agents

For any user (resp., service) wishing to partici-
pate in our platform, the user (resp., the adminis-
trator of the service) needs to download and install
a set of pre-built agents, namely user agent (resp.,
provider-agent). The functionalities of the provider

agents are realized by a class called service Wrap-
per, which provides methods for receiving, pro-
cessing, generating and sending control-flow
notifications, service invocation, and service com-
pletion messages.

User agents are mobile agents implemented
using Aglet [1]. IBM’s Aglets Software Develop-
ment Kit V2 is used for implementing Aglets. The
only infrastructure required to install and config-
ure these agents are Java, Tahiti (a tiny Aglet
server program) and an XML parser. The func-
tionalities of user agents are realized by a class
called userAgent. Upon the initialization of the
userAgent, a delegateAgent is created and in-
stalled in the user domain, which is responsible for:
(i) preparing the execution plan of each compo-
nent of a composite service; and (ii) submitting
details on the execution plan to userAgent.

The userAgent is a static Aglet. When a ser-
vice needs to be locally invoked, userAgent
creates a slave called userAgentSlave, and passes
the destination (e.g., service host) to the user-
AgentSlave. userAgentSlave is the labor
Aglet that actually goes to the service site. Upon

Er,, %G Fahiti= Thi Aalet s

I o a G - 1A A 7- 1 A
Fate s i et b O e o A A DR Lok

Aglet Mobility View Options Tools Help

:l Create| Dialugl Agleﬂnfa' Dispasel Clune] Dispatchl Re1ract|

development.selfserv.carRental.CarRental : Sun Jan 26 23:00:15 EST 2003 result

evelopment selfsery carRental Master . Sun Jan 26 23:00:06 EST 2003
development.selfserv.attractionSearch.Master : Sun Jan 26 22:56:06 EST 2003

AddressBook |Address: [atp://your-ubxaOgnTud :4434

ALEX
ABC122 5 8 40
HLEST 7 8 56

Total Cozt: 48.0

|] Resuiti CIearJ Terminate |

Fud

Dispatch : developml

Fig. 11. Service execution using user agent.

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 229

arrival at the service site, doJob method of the
userAgentSlave is called, which performs the
real work that we assign to the slave (i.e., invoke
the service). Depending on the invocation type
(i.e., locally or remotely) of next service, user-
AgentSlave either migrates to the site of the
service or sends a request message for invocation
needs. When all the component services are in-
voked, the userAgentSlave returns to the user-
domain, callBack method of the master Aglet
userAgent is activated. The results are passed
as an argument of the callBack method. The
userAgent Aglet then extracts and passes the
results to the user. Fig. 11 shows the screenshot for
service execution using user agent. The Aglet
viewer window displays and controls the Aglets.
When the button Dispatch is clicked, a slave
agent is created for the userAgent and migrates
to the destination for the execution of services. The
results are returned to the userAgent and dis-
played in the Aglet viewer window. The detailed
results can be obtained by simply clicking on the
result message (e.g., carRental in the figure).

6. Related work

Several research projects have studied Web ser-
vices composition [2]. With the progress of wireless
technologies and handheld devices, mobile services
are attracting the attention of both academia and
industry [4,7,17]. As example, the MObile Team-
work Infrastructure for Organization Networking
(MOTION) addresses the mobile teamwork re-
quirements of organizations in their daily business
[10]. MOTION provides support to mobile team-
work such as locating distributed business docu-
ments and expertise through peer-to-peer searches,
advanced subscription and notification, commu-
nity building, and mobile information sharing and
access.

The importance of enhancing agents with mo-
bility mechanisms has been pointed out in [22].
Wang worked on a system that allows the dispatch
of multiple mobile agents in parallel when visiting
e-shops. The mobile agent approach is suitable for
deploying parallel processes over distributed
sites on the Internet. The tasks to undertake are

decomposed and encapsulated into multiple mo-
bile agents. In the framework that Wang suggests,
a mobile agent service provider is proposed as an
execution environment for mobile agents [22]. This
environment is similar to the working zone of the
multi-domain architecture where creation, instal-
lation, verification, and performance operations
are conducted.

Chakraborty et al. [6] have introduced a reac-
tive service composition architecture for pervasive
computing environments. The architecture con-
sists of five layers: network, service discovery,
service composition, service execution, and appli-
cation. While reviewing Chakraborty et al.’s work,
we were interested in the service execution layer.
During the execution of services, this layer might
want to optimize the bandwidth required to
transfer data over the wireless links between ser-
vices and hence, execute the services in an order
that minimizes the bandwidth utilization. This
optimization approach is similar to the location
criterion that we introduced. With that criterion,
we reduced the number of remote interactions
between domains, the number of migrations of the
user-agent to domains, and the number of data
transfer between domains.

Another relevant work to the location criterion
is presented in [16]. Because it will be challenging
to create services that can execute well on the large
variety of devices (problems of diversity and re-
source constraints), Messer et al. [16] suggest to
transparently offload portions of a service code
from resource-constrained devices to nearby serv-
ers. Code offloading requires partitioning strate-
gies. If two components interact frequently (e.g.,
because of many method invocations), then a
partitioning strategy should suggest placing these
components together on one machine; splitting
them across the network could severely affect
performance. The aforementioned partitioning
strategy has similarities with the location of com-
puting hosts criterion. This criterion promotes the
use of local interactions between services as well as
between agents. In [16], the selection of the same
host may cause an overloading for that host. In
this paper, this situation is avoided for two main
reasons. First, the work is done at the level of
domains of computing hosts rather than at the

230 Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231

level of computing hosts. Second, the location
criterion helps in finding domains (Fig. 8). When a
domain is considered, traditional selection crite-
rion (such as execution cost and execution time)
are applied to identify the best computing hosts
and thus, the best providers of services.

7. Conclusion

In this paper, we presented a specification ap-
proach for Web services composition and deploy-
ment. The approach has been featured by the use
of different types of software agents and three
levels of specification. The levels were denoted by
intrinsic, organizational/functional, and behavior,
and illustrated with a running scenario. Because of
the complexity of Web services composition and
deployment, it has been suggested to associate
users with software agents and associate compo-
nent services with service chart diagrams. A service
chart diagram represents a service from five per-
spectives: state, flow, business, information, and
performance.

In this paper, the composition and deployment
of Web services have been handled by a two-phase
process. The first phase has consisted of identify-
ing the providers that offer the Web services that
participate in composite services. The second
phase has consisted of selecting specific providers
according to two criteria: execution cost, and lo-
cation of computing hosts. Location criterion has
been privileged over the first criterion, enabling for
instance to avoid cross-network traffic.

Our ongoing work includes the assessment of
the performance and scalability of the proposed
agent-based multi-domain architecture. We also
plan to focus on interleaving Web services com-
position and execution. It was shown from the
basic example of Fig. 9 that interleaving presents
benefits when it comes to considering the context
in which Web services evolve.

Acknowledgements

The authors would like to thank the referees
for their valuable comments and suggestions of

improvements. The authors also acknowledge the
implementation work of Aysha Alsayed Alma-
rzouqi, Alex Yue-Fai Tang, Eileen Oi-Yan Mak,
and Nathan Wong. The third author’s work was in
part supported by an Australian Research Council
(ARC) Discovery grant #DP0211207.

References

[1] Aglet. http://www.trl.ibm.com/aglets/, Visited September
2003.

[2] B. Benatallah, F. Casati (Guest Editors), Special issue on
Web services, Distributed Parallel Databases 12 (2-3)
(2002).

[3] B. Benatallah, Q.Z. Sheng, M. Dumas, The self-serv
environment for web services composition, IEEE Internet
Computing 7 (1) (2003).

[4] G. Caire, N. Lhuillier, G. Rimassa, A communication
protocol for agents on handheld devices, in: Proceedings of
the First International Workshop on Ubiquitous Agents
on Embedded, Wearable, and Mobile Devices held in
conjunction with the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AA-
MAS’2002), Bologna, Italy, 2002.

[5] D. Chakraborty, A. Joshi, Dynamic service composition:
State-of-the-art and research directions, Technical report,
TR-CS-01-19, Department of Computer Science and Elec-
trical Engineering, University of Maryland, Baltimore
County, MD, USA, 2001.

[6] D. Chakraborty, F. Perich, A. Joshi, T. Finin, Y. Yesha, A
reactive service composition architecture for pervasive
computing environments, in: Proceedings of the Seventh
Personal Wireless Communcations Conference
(PCW2002), Singapore, 2002.

[7] 1. Chisalita, N. Shahmehri, Issues in image utilization with
mobile e-services, in: Proceedings of the 10th IEEE
International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE2001),
Cambridge, MA, USA, 2001.

[8] J.Y. Chung, K.J. Lin, R.G. Mathieu, Web services
computing: advancing software interoperability, IEEE
Computer 36 (10) (2003).

[9] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana,
The next step in web services, Commun. ACM 46 (10)
(2003).

[10] P. Fenkam, E. Kirda, S. Dustdar, H. Gall, G. Reif,
Evaluation of a publish/subscribe system for collaborative
and mobile working, in: Proceedings of the 10th IEEE
International Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises (WETICE2002),
Pittsburgh, Pennsylvania, USA, 2002.

[11] D. Harel, A. Naamad, The STATEMATE semantics of
statecharts, ACM Trans. Software Eng. Methodol. 5 (4)
(1996).

http://www.trl.ibm.com/aglets/

Z. Maamar et al. | Electronic Commerce Research and Applications 3 (2004) 214-231 231

[12] N. Jennings, K. Sycara, M. Wooldridge, A roadmap of
agent research and development, Autonomous Agents
Multi-Agent Systems 1 (1) (1998).

[13] Z. Maamar, Moving code (Servlet Strategy) vs. inviting
code (Applet Strategy) — which strategy to suggest to
software agents?, in: Proceedings of the Third International
Conference on Enterprise Information Systems
(ICEIS’2001), Setubal, Portugal, 2001.

[14] Z. Maamar, B. Benatallah, W. Mansoor, Service chart
diagrams — description and application, in: Proceedings of
the 12th International World Wide Web Conference
(WWW’2003), Budapest, Hungary, 2003.

[15] Z. Maamar, W. Mansoor, Design and development of a
software agent-based and mobile service-oriented environ-
ment, e-Service J. 2 (3) (2003).

[16] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D.
Chen, T.J. Giuli, X. Gu, Towards a distributed platform
for resource-constrained devices, in: Proceedings of the
22nd IEEE International Conference on Distributed Com-
puting Systems (ICDCS’2002), Vienna, Austria, 2002.

[17] D. Milojicic, A. Messer, P. Bernadat, I. Greenberg, G. Fu,
O. Spinczyk, D. Beuche, W. Schroder-Preikschart, ¥’s —
pervasive services infrastructure, Technical Report HPL-
2001-87, HHP Laboratories, Palo Alto, CA, USA, 2001.

[18] M. Paolucci, O. Shehory, K. Sycara, Interleaving Planning
and Execution in a Multiagent Team Planning Environment,

Technical report, CMU-RI-TR-00-01, The Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, USA, 2000.

[19] Q.Z. Sheng, B. Benatallah, M. Dumas, E. Mak, SELF-
SERV: a platform for rapid composition of web services in
a peer-to-peer environment, in: Proceedings of the 28th
Very Large DataBase Conference (VLDB’2002), Hong
Kong, China, 2002.

[20] M.P. Singh, The pragmatic web, IEEE Internet Comput. 6
(3) (2002).

[21] A. Tsalgatidou, T. Pilioura, An overview of standards and
related technology in web services, Distributed Parallel
Databases 12 (2-3) (2002) 135-162.

[22] Y. Wang, Dispatching multiple mobile agents in parallel
for visiting e-shops, in: Proccedings of the Third Interna-
tional Conference on Mobile Data Management
(MDM™2002), Singapore, 2002.

[23] J. Yang, M. Papazoglou, W.-J. van den Heuvel, Tackling
the challenges of service composition in e-marketplace, in:
Proceedings of the 12th International Workshop on
Research Issues on Data Engineering: Engineering E-
Commerce/E-Business Systems (RIDE-2EC’2002) in Con-
junction with ICDE’02, San Jose, USA, 2002.

[24] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.Z.
Sheng, Quality driven Web service composition, in: Pro-
ceedings of the 12th International World Wide Web
Conference (WWW?2003), Budapest, Hungary, 2003.

	A three-level specification approach for an environment of software agents and Web services
	Introduction
	Background
	Software agents
	Services
	Web services
	M-services
	C-service vs. P-service
	Service chart diagram

	Approaches of service composition
	Proactive composition vs. reactive composition
	Mandatory composite service vs. optional composite service

	The three levels of the specification approach
	Motivation
	Levels of the approach
	Software agent
	Service
	Connection between agents and services

	Application of the three levels

	Agentification of an environment of Web services
	Architecture
	Operation
	Getting Web services ready
	Definitions
	Preparation
	Execution

	Work in-progress
	Interleaving Web services composition and execution
	Reliability of composite services execution
	Implementation of prototype
	Service composition environment
	Pre-built agents

	Related work
	Conclusion
	Acknowledgements
	References

