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Abstract. Detecting the failure of a data stream is relatively easy when the
stream is continually full of data. The transfer of large amounts of data allows for
the simple detection of interference, whether accidental or malicious. However,
during interference, data transmission can become irregular, rather than smooth.
When the traffic is intermittent, it is harder to detect when failure has occurred
and may lead to an application at the receiving end requesting retransmission
or disconnecting. Request retransmission places additional load on a system and
disconnection can lead to unnecessary reversion to a checkpointed database, be-
fore reconnecting and reissuing the same request or response. In this paper, we
model the traffic in data streams as a set of significant events, with an arrival rate
distributed with a Poisson distribution. Once an arrival rate has been determined,
over-time, or lost, events can be determined with a greater chance of reliability.
This model also allows for the alteration of the rate parameter to reflect changes
in the system and provides support for multiple levels of data aggregation. One
significant benefit of the Poisson-based model is that transmission events can be
deliberately manipulated in time to provide a steganographic channel that con-
firms sender/receiver identity.

1 Introduction

The extensive use of sensor networks and distributed data gathering systems has in-
creased both the rate and quantity of data that is delivered to receiving and processing
nodes. Rather than processing a finite number of static records at a computationally-
convenient time, data streams represent the fluctuating and potentially continuous flow
of data from dynamic sources [1,2,3]. Data streams provide a rich and challenging
source of data, with pattern identification and structure extraction providing important
business knowledge for scientific, financial and business applications.

Several challenges occur when processing a data stream. Current data stream man-
agement techniques focus on a continuously generated stream of information and project
analysis windows onto this stream, based on time intervals. While this works for a large
number of applications, applications that wish to minimise onwards transmission based
on the importance of data values may produce a data stream that appears discontinuous
or fragmented. While a stream may be seen to never terminate, with a continuous flow
of data, at a given time there may be no transmission activity within the data stream. Al-
though the data stream may represent an abstract continuous data feed, it is implemented
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as a flow of data packets. Given that a data stream is composed of individual data pack-
ets, all data streams are, at a network level, non-continuous but, within the database and
sensing world, the stream is considered to be a continuous source of data from establish-
ment to disconnection. Analysing this stream often requires a Data Stream Management
System (DSMS) [4] that will place a set of expectations upon the performance charac-
teristics of the data stream. The DSMS then provides an ability to query the stream, in
an irregular, periodic or continuous manner. While data traffic on two data streams can
be irregularly spaced or presented out-of-order [5,6], there is, however, an assumption
that packets in a single stream will arrive at an, explicitly or implicitly defined, arrival
rate that meets the expectations of both producer and consumer. Some challenges that
we must address to provide the widest applicable model for data streams include:

– Relaxing rigid time constraints: The assumption that a data stream is both con-
tinuous and regularly periodic is a useful assumption, except where it is incorrect.
For wireless sensor networks, with low energy budgets and aperiodic transmission
profiles, a requirement to conform to a near-continuous transmission schedule will
drain their resources rapidly. A requirement to conform to centralised time con-
straints places a synchrony burden on the system that requires specialised hardware
or time poll updates to minimise drift.

– Managing significant data as a separate class of values: In any stream of data,
some values will be of more significance than others. We wish to be able to process
significant events in a timely fashion, potentially in a large collection of insignifi-
cant values. Without a classification model that allows the separation of the values
in a data stream into distinct sets of significant events, we must deal with all values
in the stream at the same level of priority for analysis and onwards transmission.

– Failure detection without constant polling: We wish to be able to detect failure
and, preferably, interference or tampering without having to send a continuous set
of data packets. Unless they are significant, continuous data packets only add to the
amount of traffic that must be discarded at the sink, reducing effective bandwidth
and consuming resources.

Consider two important applications for data stream interpretation: determining similar
subsequences between data streams and determining skyline elements within a data
stream. The subsequence problem requires the identification of elements of the data
stream that are sufficiently characteristic to be identified in another stream, and the
skyline problem requires us to find dominant elements in the stream, either across the
entire stream or within a sliding window. In both cases, we are moving beyond a naive
description of the stream it is now a stream of significant events, where this significance
and its definition are key to our ability to mine the data stream while it is still being
produced. Without an ongoing, and potentially evolvable, definition of significance, we
cannot begin processing until we are sure that we have received all of the data and can
now conduct our comparisons or selections with absolute certainty. This is, obviously,
not a workable solution.

Our contribution is to provide a statistically-based model that can provide multiple
views of the same data stream, with significance thresholds and arrival expectations de-
fined for each view. By communicating expected rate information and comparing with
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actual rate information, we can detect failure and interference, and, in addition, exploit
the statistical characteristics to provide an out-of-band communications channel. In this
paper, we will provide a description of a significant event data stream that defines the
nature of significance, the impact of the significance on the interpretation of the stream,
and the expectation of the inter-arrival time in a way that allows the consumer and
producer to agree upon a given rate, without being required to enforce a synchronous
schedule.

The remaining sections of the paper are organized as follows. Section 2 presents
the related work in this area. Section 3 introduces our model and provides the key
definitions. Section 4 presents the failure detection model. The Out-of-band encoding
mechanism is described in Section 5, with the results of experiments conducted to verify
the work presented in Section 6. Finally, Section 7 provides some concluding remarks.

2 Related Work

Within data stream research, there are many examples of the application of an implied
significant event stream over a continuous data stream. Dynamic Time Warping (DTW)
[5] allows for the measurement of the similarity of two data sequences by allowing for
a non-linear warping of the time scale on the measurements to provide a measurement
of similarity between distinct events, regardless of their position in the data sequence.
This does not, however, provide any estimates as to the constraining window that con-
tains events of likely similarity. Other work has used Poisson-distributed test data to
measure performance with well-established characteristics [7,8], but does not separate
these Poisson streams for analysis, nor take the cumulative stream characteristics into
account when multiple streams merge.

Streaming pattern discovery in multiple time-series (SPIRIT) [6] is an approach that
employs principal component analysis to allow the location of correlations and hid-
den variables that are influencing the reported readings. SPIRIT is designed to allow
the rapid incorporation of received events into dynamic weights, rather than detecting
when a predicted event has not been received. SPIRIT can provide a reliable estimate
by applying forecasting techniques to the hidden variables derived from the data stream
and can use these to estimate missing data in the xt data set, based on the xt−1 data set.
However, this assumes continuous and regular data intervals. SPIRIT assumes period-
icity in the data stream, rather than an irregular data stream or a data stream where the
significant events are not spaced regularly in time.

StatStream [9] allows for the real-time analysis of large volumes of data, employing
the Discrete Fourier Transform and a three-tiered time interval hierarchy. StatStream
does assume that the data stream cannot be regarded as having a terminating point, and
works on the data stream continuously, in order to meet real-time requirements. To be
explicit, a data stream is regarded as a sequence, rather than a set. StatStream provides a
basis for stating that any statistic present in the data stream at time t will be reported at
time t+v, where v is a constant and is independent of the size and duration of the stream
[9]. StatStream establishes three time periods: i) timepoints - the system quantum, ii)
basic window - a consecutive subsequence of time points which comprise a digest, and
iii) sliding window - a user-defined consecutive subsequence of basic windows that will
form the basis for the time period over which a query may be executed.



648 N.J.G. Falkner and Q.Z. Sheng

While this provides a great deal of flexibility in dealing with intervals, StatStream
expects to have at least one value per timepoint and, if one is not present, an interpolated
value is used. This does not accommodate two possibilities. The first is that there is
a reading but it is not sufficiently important to report at that time, where the system
is filtering the result. The second is that there is no sensor reading to report at that
point because the size of the time interval and the expected number of events leads
to an event/interval ratio less than 1. More importantly, interpolation in the face of
missing data may insert a false reading into the network. To explain this, it is first
important to realise that, in the event of multiple values being reported in one timepoint,
StatStream will provide a summary value. The reported arrival of an event in an adjacent
interval can result in the preceding time interval being reported incorrectly, with the next
interval providing a summary value that is also artificially high. While the synthesis of
summary values will, over time, produce the same stream characteristics, there is no
clear indication that an irregularity has occurred, nor can action take place to rectify the
mistake. This summarisation can also obscure the point where a value, or set of values,
has crossed the significance threshold.

There is a great deal of existing work in the field of sensor networks pertaining to
more efficient use of resources through filtering, the discarding of insignificant data, and
aggregation of significant data for more efficient upstream transmission. There is very
little work that addresses the modelling of the implicit stream of significant events that
these networks generate. Gu et al. [10] discuss a lightweight classification scheme for
wireless sensor networks employing a hierarchical classification architecture but do not
address statistical detection of node failure. Solis and Obraczka [11] discuss several ag-
gregation mechanisms for power-efficiency but use temporal aggregation mechanisms
and do not address node failure. Ye et al. [12] propose a statistical filtering process
for injected false data but do not address statistical mechanisms for determining sensor
operation.

3 Traffic Modelling in Intermittent Data Streams

Formally, a data stream is an ordered pair (s, δ) where s is a sequence of tuples of the
form (ξ0, ξ1...ξN ), representing the data values contained in a single data packet, and δ
is a sequence of time intervals where ∀i, δi > 0.

In a regular, continuous data stream, the deviation from the average arrival time for
each i is much smaller than the average arrival time (Equation 1). When data starts to
arrive in an irregular fashion, the deviation can be of the same order of magnitude as
the average time with a multiplier k, where k may be a fixed bound or may vary with
time (Equation 2). The interpacket time interval, δi, must be sufficiently small that the
client’s expectation of continuity is not contradicted, otherwise the stream no longer
appears continuous, i.e., it appears to be composed of irregular packets.

|δaverage − δi| < ε, ∀i, ε � δaverage (1)

|δaverage − δi| <= kε, ∀i, ε ≈ |δaverage| (2)
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A user’s expectation of continuity of a stream is only satisfied if k is sufficiently small
that the δi values have an acceptable upper bound, δmax (Equation 3). However, de-
termining a reasonable expectation for δmax is difficult, where data inter-arrival is ir-
regular, as it may require a great deal of observation that is potentially only valid for
one producer and consumer pair, or for one connection at a given time. This problem
becomes more complex when we seek to place additional structure into the ongoing
interpretation of a data stream.

∀i, δi < δmax, δmax >= δaverage (3)

3.1 Definition of the Model

Definition 1. A significant event data stream, SED, is an ordered tuple (L, E , ΔL, λL)
where:

– A tuple (ξ0, ξ1...ξN ) in the sequence s is significant if the removal or alteration
of the tuple will have a significant and discrete impact on the result of a specified
computation that depends on s.

– L is a unique label, identifying this SED.
– E is a sequence of tuples, such that E ⊆ s and all tuples in E are significant.
– ΔL is a sequence of time intervals where ∀i, ΔL > 0 and ΔL ∼ Pois(λL).
– λL is the expected arrival rate of Ei ∈ E .
– Any SED is a subsequence of an existing data stream, S : (s, δ) where (si, δi) ∈

(E , Δ) �⇒ (si+1, δi+1) ∈ (E , Δ). �

Definition 2. A SED Implementing Model (SEDIM) for a data stream is defined as
follows:

– The data stream S is an ordered pair (s, δ) as defined previously,
– Within S, there exists a set of significant event data streams, Ŝ : (Ŝ0...Ŝi), i ≥ 0.
– A significant event E in (Ŝi) is defined such ∀Ei ∈ E , Vloweri ≤ Ei ≤ Vupperi ,

where Vupperi and Vloweri represent the bounds of significance for the SED Ŝi.
– The set Λ : (λL0 ...λLn) is a set of independent rate parameters for the expected

arrival rate of significant data in the SEDs Ŝ.
– tnow is defined as the current time in the system.
– twindow is defined as the time to the expiry of the current sliding window associated

with a user query. An ongoing query may generate many subqueries, all of which
have their own sliding window.

– The received set R is the set of all events that have been consumed in order to meet
the requirements of the current query. The event ER is the last event that has been
received and the event ER+1 is the next event that will occur, regardless of the SED
or stream that generates it. All events ER+1 have an associated time interval ΔR+1

and, by definition,
∑R+1

j=0 Δj > tnow. �
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3.2 Rationale

We must first justify that a data stream can be regarded as continuous, and still have
the potential for irregular and insignificant data packet transfer. Many data stream ap-
plications make a similar assumption to StatStream, namely that there exists a system
quantum and that events will arrive, at a roughly equal spacing, at a rate determined by
the size of this quantum. For example, if the quantum is a second, the expected arrival
rate is one event per second. This does, however, immediately provide the possibility of
a continuous stream that can be viewed in such a way as to appear non-continuous in
transmission. Consider a system with a one second timepoint and then, without chang-
ing the rate of arrival, change the timepoint to 0.1 seconds. Now the arrival rate is 1
event in every 10 timepoints and this, originally continuous and 100% utilised, data
stream is now occupied 10% of the time. Considering the impact of pragmatic network-
ing considerations on the transmission of data, given that it takes a finite non-zero time
to transfer a network packet, there must exist a timepoint, Tε, such that any data stream
may be regarded non-continuous, regardless of the regularity of data transmission.

A more complex problem arises when, rather than managing regular transmission in
a non-continuous data stream, we must consider the effect of irregularly spaced data,
whether this is due to an absence of data or the insignificance of the data being trans-
mitted. In the previous example, non-continuous data only constitutes a problem if the
receiver fails to define their own aggregation or summary operations correctly for a
given query in a sliding window. For example, if the value 10 is sent once per 10 time-
points, is the average over time 10 or 1? This will have an impact on the final answer
delivered in response to the query “What is the average value over the sliding window
from ti to ti+x?”. As previously illustrated in the discussion of StatStream, a value that
is incorrectly placed into a different timepoint can have a significant impact on the result
of queries that span a subsequence, and this extends to the boundaries of sliding win-
dows if they are purely timebased, rather than taking into account the possibility that an
interval does not contain the same number of events. The query “What is the average
value of the significant events received over the sliding window from ti to ti+x?” is an
unambiguous query and, in the example above, would result in the value 10.

A data stream that is intermittently active may or may not have an associated sequence
of significant events, given that the definition of significance is associated primarily with
the consumer. However, if a significant event sequence exists within a data stream, the
sequence may have a regular period that allows simple prediction of inter-event time,
as the data stream can be composed of ongoing data combined with a regularly inserted
significant element. It is, however, far more likely that events of significance will be
more randomly distributed, unless what is being monitored for significance is naturally
periodic or has been defined to be so.

We have employed the Poisson distribution to model the behaviour of significant
event sequences arriving over data streams. The Poisson distribution is used where a
number of discrete events occur within a given time-interval. Where an approximation
can be made to the arrival rate, the Poisson distribution can be used to establish the inter-
arrival time and also determine when it is likely that an event is lost or non-existent,
rather than late. A significant advantage of the Poisson distribution is that, among other
benefits, the combination of Poisson processes is another Poisson process with a rate



Significance-Based Failure and Interference Detection in Data Streams 651

parameter that is the sum of the composing processes. Changing the arrival rate allows
the immediate alteration of the expectation of the arrival rate and inter-arrival rate of
future events, without requiring the storage of previous event and time pairs.

The Poisson distribution, for rate λ, has a mean of λ. Thus, once an arrival rate has
been established for a given interval, λ, we would expect λ events per interval. Given
that we wish to be able to predict arrival and, hence, failure to arrive, we need to be able
to predict the inter-arrival time. If the number of arrivals in a time interval [ti...ti+x]
follows the Poisson distribution, with rate parameter λ, then the lengths of the inter-
arrival times are defined as I ∼ Exponential(λ), with a mean inter-arrival time of 1

λ .
This is an important result as it clearly shows that the Poisson distribution will correctly
model a continuous, regularly spaced data stream but it also gives us the ability to model
a non-continuous, irregularly spaced data stream.

3.3 An Example

Wireless sensor network applications may employ multiple sensors in an observation
domain, on the same node or by combining the results of several nodes [13,14]. This
example illustrates a surveillance application, with a widespread WSN constructed of
nodes that employ vibration sensors, photosensors and acoustic sensors. This WSN is
spread over a large geographical range and has a lifespan measured in months. Main-
tenance is limited, due to the cost and time involved in travelling to the sensor nodes.
With the sensor nodes ground-mounted, the vibration sensors report ground movement
in the vicinity of the sensor, photosensors report an interruption to a light beam pro-
jected at the node from a nearby position and the acoustic sensors provide a measure
of the acoustic pressure in the region. These three sensors display the range of possible
sensor event generation. The vibration sensor will be continuously reading small vibra-
tions in the ground, the photosensor is effectively boolean in that the light beam is either
striking it or it is interrupted, and the acoustic sensor is more likely to manifest a com-
bination of the previous two, as sound pressures can easily drop below the detectable
level but have a continuous distribution once detected.

At each sensor node, a sequence of tuples, s, is generated each time transmission
occurs. The sensor readings are only a subset of this tuple as the (ξ0...ξN ) in s also
include information such as source and destination, as well as any other system-specific
information. The sensor reading tuple takes the form (η0, η1, η2, η3), where:

– η0 is the timepoint at which the data was sensed,
– η1 is the vibration reading,
– η2 is the photosensor reading,
– η3 is the acoustic pressure

The sensor nodes employ both filtering and aggregation to limit upstream transmission
but, given their remote location, each node must transmit sufficiently often to prevent
unneeded maintenance visits [11]. In this example, the nodes employ local significance
filtering, but no aggregation. Aggregation is carried out at a regional level, with filtering
also employed on the aggregates where necessary, and may take a number of forms
[15,16]. Such aggregation and filtering is vital because there is a maximum capacity
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SED t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

VIB: 10 10 4 6 4 100 10 10 4 6 4 100
PS: 1 1 1 1
AP: 120 120

INSIG: 2 2 2 2 1 3 1 3 1 2 2 1 2 3 1 2

Fig. 1. Sample data stream decomposition

for a given sensor network, not just because of the information that each node wishes
to send, because of the requirement for nodes to route information for other nodes.
Ultimately, any sensor network has a maximum throughout, based on the number of
nodes and their available bandwidth [17]. It is essential to keep bandwidth use below
this threshold.

The significance thresholds for instantaneous readings on each sensor are Sigvib,
Sigps and Sigap, reflecting the level that separates filtered events from unfiltered events.

Defining Significant Event Streams. Within this SEDIM, there are four SEDs. These
are:

– (V IB, E : η1 >= Sigvib, ΔV ib, λV ib)
– (PS, E : η2 >= Sigps, Δps, λps)
– (AP, E : η3 >= Sigap, Δap, λap)
– (INSIG, E �∈ [V IB, PS, AP ], Δinsig , λinsig)

and the corresponding data model is SE , where

– SE : [V IB, PS, AP, INSIG]
– Λ : [λV ib, λps, λap, λinsig ]

Given that the events in SE are the tuples (ξ0...ξN ), where each ξ is composed of trans-
mission headers and footers and the sensor reading tuple (η0, η1, η2, η3), we can now
model an individual SED as a set of events that meet the SED criteria. This allows us to
provide sample data streams for each SED, which would be interspersed in the true data
stream, and analyse them separately at any node that can carry out filtering, aggregation
and analysis.

The Sample Streams. This example presents tuples containing the sample data de-
tected by the sensor node. Each tuple entry represents one poll of the sensors and all
tuples are defined to be in synchrony. Each tuple entry is a timestamp (η0) and the asso-
ciated value (i.e., η1, η2, or η3). The INSIG SED contains the cardinality of insignificant
values, rather than the values themselves, although this is an implementation decision.
Figure 1 shows a decomposed data stream, with the values allocated to the SEDs and
insignificant values shown as cardinalities in the INSIG SED.

If we define t0 as the time at the start of interval Δi and tnow as t15, then we can
regard each ti as a discrete tick within the time interval. For the purposes of the example,
the range [t0..tnow] is divided between time intervals Δi and Δi+1.

The estimated arrival rates (EAR), defined by previous observation and established
as system baselines, for each SED are given in Figure 2 along with the Time Interval
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SED EAR TIAAR (Δi, Δi+1) AAR (Δi, Δi+1) Interval
VIB 6 (6,6) (6,6) 8 ticks
PS 2 (1,3) (2,2) 8 ticks
AP 1 (2,0) (1,1) 8 ticks

Fig. 2. Estimated arrival rates

SED Transmission times (ticks)
VIB t8 and t16
PS t9 and t16
AP t16 (first transmission)

Fig. 3. Transmission times

Aligned Arrival Rate (TIAAR), the Actual Arrival Rate (AAR) and the interval over
which the rate is measured. TIAAR shows the rate that would be returned by a naive
interpretation of the data stream on strict time boundaries, while AAR gives the arrival
rate adjusted for the relaxation implicit in accepting data within the Poisson noise. Both
TIAAR and AAR are given as a pair of values, one for each time interval.

The INSIG stream is continuous, as the cardinality of events is continuously gener-
ated. However, this SED is for internal reference only, and is not transmitted to other
nodes (although a summary may be requested by a superior node).

The AAR values match the EAR values because ‘late’ events can be accepted within√
EAR, in terms of the fraction of the previous interval that the collection window is

still considered to be opened. Importantly, events accepted as part of a previous window
cannot be counted as part of a subsequent window and, in the case of SEDPS , the
second interval has the range [t9..t15], as the t8 tick has been included in the previous
window. While not shown in Figure 1, t16 is the next tick that will occur after t15 and
denotes the start of the next interval.

The delay introduced by this scheme can be seen by displaying the transmission
times, as a given tick ti, where the tuple is encapsulated and sent to the network as a
significant packet. These transmissions times are shown in Figure 3.

The AP delay is the most significant, as we must wait an entire interval to ensure that
the event at t7 is an advanced event from Δi + 1 (within the noise parameter), rather
than an additional event from interval Δi. As the λAP is 1, and

√
1 is 1, we can wait an

entire interval before receiving the packed that was supposed to have occurred in Δi.
However, this is the worst case situation - the maximum delay inserted is one interval
length in the rare situation that we are only expecting one event per interval.

4 Failure Detection

Failure detection in a continuous, regular data stream is relatively straight forward: the
data stops. In a SED, a missing event poses a more complex problem as there are dif-
ferent possibilities:
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1. Events are still arriving but are below the significance threshold of a given SED.
2. An event will be sent but it will arrive slightly after the deadline.
3. The event is actually lost.

In terms of the data stream S, we can describe each of these possibilities as equations.

∃Ŝi : ∀Ei ∈ E , Ei �∈ [Vloweri ...Vupperi ], Δi >= tnow (4)

∃Ŝi : ∃(ER+1, ΔR+1), ΔR+1 > twindow (5)

� ∃Ŝi : ∃(ER+1, ΔR+1) (6)

In S, equation 4 only constitutes failure in the SED that has the restrictive range of
significance. In this case, it does not constitute a stream failure but indicates that no
significant events are arriving. This may indicate that there are no significant events to
report or that there is a mis-reporting of events. There are several possible reactions:

1. After a given time, adjust the range of significance to reflect increased knowledge
of the data stream contents. This is referred to as rate relaxation.

2. The producer can generate a system message that provides evidence that, should
a significant event occur, it will be generated and passed on. We refer to this as
significance exchange.

3. If test equipment is in place, an artificially significant event is generated and sent
upstream, to be discarded by the consumer. We refer to this as significance verifi-
cation.

4. Ignore it and drop this SED from S. This may also be considered equivalent to a
rate relaxation to a parameter of zero - we expect nothing significant to occur in an
interval.

5. Report it.

Rate relaxation increases the time over which events may be detected. As the Poisson
distribution may only take integer valued parameters, the minimum non-zero rate is one
event per interval. Once the rate has been relaxed to one event per interval, the only
further relaxation possible is the extension of the interval and this is carried out by
doubling the interval size, to a maximum value of 1 calendar year, although it may be
smaller for a more short-lived system. Once relaxation has occurred to the occurrence
and time limit, any further relaxation will set the rate parameter to zero, effectively
terminating the expectation of arrivals in this SED. This is equivalent to reaction 4.

Significance exchange requires both producer and consumer to be able to exchange
meta-values that describe the context or value ranges expected for the values. XML,
provided that there is a contextual basis such as RDF or OWL-XML in place describing
the shared context, may be used to exchange system messages that are not interpreted
as events but contain information that confirm what both parties consider significance
to be. These messages can piggy back onto events, if the events are wrapped in XML
and are tagged by the producer as significant or insignificant. However, by choosing the
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lowest value x : x > Vloweri and sending this as a test, the producer clearly indicates
where the threshold is.

Significance verification requires that the producer be capable of injecting a signifi-
cant event into the data stream and reporting on it, while labelling it in such a way that it
is not treated as a significant event elsewhere. This is also a system, or test, message but,
instead of simulating event handling, the test event is injected prior to detection. This
requires a comprehensive test harness if physical sensors are being employed. Where
data is not being acquired directly through physical sensors, we can separate the net-
work reading component and data processing component of the producer and insert a
data injection mechanism between the two. This also relies upon the ability of both
producer and consumer to agree upon what constitutes a test message, and to be able to
send and receive meta-values, rather than a composite stream of values, parsed from a
purely structural perspective into a value stream with no type or context information.

Equation 5 may cause problems in a system with a synchronous time requirement,
from the movement of values into adjacent cells potentially leading to incorrect sum-
marisation, but is manageable within a SED. This is due to key properties of the Poisson
distribution. The Poisson distribution has a mean of λ but also has a variance of λ. For
a given interval, the number of observed arrivals fluctuates about the mean λ with stan-
dard deviation of

√
λ, where these fluctuations are referred to as the Poisson noise.

Poisson noise, or shot noise, describes the statistical fluctuation observed from the
arrival of finite, discrete events. This effect is seen in electronic applications, photon
counters and particle simulations. The Poisson noise increases as the rate of arrival
increases, but at a slower rate. For any number of events sampled, where the sample has
a Poisson distribution, the average number of events does not reflect that true number of
events detected in that interval but the actual result will be distributed about the average
with a Poisson distribution.

Similar to StatStream, we now have a time interval within which we will have been
able to detect the vast majority of failures and it is a fixed time, given by the arrival rate
λ and the time interval, TI . We declare likely failure in Δi for a rate λ if, for a given
interval [Δi...(Δi+1/

√
λ)], the cardinality of events Ei in the interval is less than λ.

Fail(Δi, λ) : card(Ei ∈ [Δi...(Δi+1/
√

λ)]) < λ (7)

We have now presented the way of dealing with possibilities contained in equations 5
and 6. If an event is merely delayed, waiting for a pre-determined period beyond the
original deadline will capture the event and there is no need to handle the event as lost
or carry out any adjustments to the rate parameters. However, if the event doesn’t arrive,
even within the noise interval, then we have successfully detected a failure event and
we can now take actions as outlined in the solution to equation 4.

A useful result of equation 7 is that it is immediately apparent that the higher the
rate of arrival, the shorter the proportion of an interval that is required to detect failure.
In a system with a high rate of arrival and short interval, this means that failure can be
detected in very short time. Conversely, a system with low rate of arrival has a corre-
spondingly long time to failure detection.This immediately motivates the need for the
use of an artificially high significance rate, employing test data to keep the rate high,
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while not requiring a high rate of actual events. Significance verification or significance
testing can both be used to achieve these aims.

Where interest is primarily on the waiting time to a given event somewhere in the
stream, the Gamma (Γ ) distribution is a family of continuous probability distributions
with two paramers, k and θ, that is used for modelling waiting times. With integer k, the
Γ distribution is the Erlang distribution and is the probability distribution of the waiting
time until the k-th event in a Poisson process with rate 1/θ. Rather than monitoring
every event to determine failure, which is energy intensive, we can now observe a k-th
event to determine if the waiting times are meeting our estimates.

5 Encoding Information within the Poisson Noise

One of the advantages of allowing events to be legitimately “placed” within an interval,
or within the Poisson noise of the interval, is that this information can be used as an
additional communications channel. In a continuous, regular data stream, varying the
regularity deliberately can be used to indicate out-of-band information that allows com-
munication between producer and consumer, without placing an additional data burden
on the main channel. In a sensor network this is vital as the smaller the data stream
is, the less power is consumed in all parts of the network for transmission and pro-
cessing. Examples of out-of-band channel use in the real world range from the use of
tone in spoken language to signify additional meaning, such as questioning, sarcasm or
dubiety, when the semantic content of the written form does not need to capture this.

Encoding information within the Poisson noise requires either that the producer and
consumer have a synchronous communication channel, where deliberate movement is
detectable, or have the ability to embed timestamps into their data streams to indicate
the point at which they planned to send the data.

In a continuous, synchronous channel environment, producer and consumer will ex-
change λ events per interval. The simplest encoding available in the Poisson noise is to
vary the arrival time of the final event and to reduce or increase the inter-arrival time.
If we encode 0 as an unlikely reduction in arrival time and 1 as an unlikely increase in
inter-arrival time, then it is possible to send binary messages from producer to consumer
at the rate of 1 bit per event. This, however, does rely upon the channel in question being
highly reliable, with a well-defined rate of arrival.

Where we cannot assume regularity, we must use timestamps, to allow the producer
to indicate to the consumer that they had planned to send the data at time t, but actually
did so at time t+x. Whatever x is, it must still fall within the Poisson noise interval but,
in this case, we now have a greater range of possible value representations available, as
the reference timestamp is within the stream.

One application of this is in non-continuous, irregularly reporting low-power sensors
such as wireless surveillance sensor nodes. If these nodes only report periodically, how
do we know that they haven’t been tampered with in the interim? One approach is
to provide a pseudo-random number generator of known and very large period, or a
set of pre-generated pseudo-random numbers, to both producer and consumer and to
offset the producer’s messages by an interval based on these numbers. This reduces
both the predictability of the event transmission and provides a low-power identification
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mechanism for a node. By choosing a generator with a large period, determining the
sequence of numbers by observations is infeasible. If the seed, or the pre-generated
sequence, are physically protected within the node, then an intruder is limited in how
they can bypass a node, as they cannot replace it without losing the identification out-of-
band channel, and disabling the sensor will, after some interval, generate a Fail(Δi, λ)
event, which will also constitute a reportable warning event.

6 Experimental Results

We used a number of simulated test environments to test classification, failure detection
reliability and the time to detection of our approach. Due to space constraints, we dis-
cuss one here, a statistical simulation based on event queues, with randomised failure.

In the experiment, a SEDIM entity (SEDIMent) was constructed as a set of simulated
data streams, composed of data from three sensors. The time interval was set to 3600
seconds and λ increased from 1 event per interval to 30 events per interval. The SED-
based classification was used to classify the cumulative data stream into VIB, PS, AP
and INSIG SEDs. Stream transmission rates were monitored at the transmitting node
and at upstream nodes. The experiment was designed to test: i) the correct detection of
event loss when events fell outside of the Poisson noise interval, ii) the correct estimates
of the rates of individual SEDs for determining failure of an individual sensor, iii) the
correct estimates of total node failure in upstream nodes, iv) maintaining node liveness
through the use of injected test data, implementing significance exchange and signif-
icance verification, as described in Section 4, and finally v) node identification using
variation in the Poisson noise.

Experiments were run with failure rates ranging from 0 to 50% of nodes, with 1000
iterations of each experimental configuration. The failure of an individual event to arrive
was detected within one time interval with a cumulative success rate 89.2%. Where no
errors occurred in contiguous intervals, the probability of success increased to 99.6%.
This established successful detection of event loss. The time taken to detect failure was
proportional to 1

λ , as expected.
The removal of INSIG data streams from transmission, and the calculation of indi-

vidual arrival rates for all other SED, was tested at the event injecting node and at the
simulated sink node. Transmitted events maintained their TIAAR across the system and
measurements of failure detection and arrival rate were consistent with the EAR for the
decomposed streams across all experiments.

The simulated sink node calculated the cumulative arrival rate, ΛEAR, for all sim-
ulated sensor nodes. Individual nodes maintained a counter of the number of events
where INSIG was the only active SED. In any interval where INSIG was the only active
SED for the entirety of the interval, a test packet was injected into the data stream, giv-
ing the EAR for the node’s active SEDs and an example classification of significance. If
received at the sink, the node continued to be marked live and the classification condi-
tion was checked. Total node failure was simulated by setting all significance thresholds
to the maximum value and disabling test packet injection. In this case, total node failure
was detected at sink nodes within ((1 + ( 1

λ ))δi).
Finally, node identification was tested by dividing the first Poisson noise interval

within a time interval into millisecond intervals, and encoding the transmission time
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Failure rate 0.00 0.05 0.10 0.15 0.20 0.25
MoS 0.00 0.724 2.641 15.277 99.142 194.905

Failure rate 0.30 0.35 0.40 0.45 0.50
MoS 271.944 337.732 393.982 446.978 498.445

Fig. 4. Measure of Suspicion metrics for increasing failure rates

as marked-up XML data, accompanying the data stream. This transmission time was
moved within the available slots by employing a fixed-period rotating set of random
numbers, with the sequence known to both an individual node and the sink. In the
event of an event being labelled as failed, due to falling outside of the expected range,
the random number that would have matched the offset is discarded at the sink. This
automatically causes the rejection of the packet, should it arrive late. A Measure of
Suspicion (MoS) is kept at the sink node, increasing monotonically for every packet
that either fails to arrive, or arrives with an unexpected offset. The MoS is decreased
by one for every 10 packets that arrive with the expected offset. In testing, the average
MoS for the system was 0.00 for experiments without synthetic failure and all events
arriving within the intervals, as expected. Figure 4 shows the MoS for higher failure
rates with a thousand individual trials of one thousand events.

It is of little surprise that higher failure rates have higher levels of uncertainty as a
large number of the confirmation numbers will be dropped from the queue. At failure
rates above 10%, the reduction in MoS is dominated by the ongoing increase, and ap-
proaches the failure rate multiplied by the number of events, 1000 in this case. However,
for low failure rate data stream producing networks, a MoS threshold of 1 allows for
the detection of increasing failure rates and the possibility of compromised nodes.

7 Conclusions

We have provided a model for the flow of significant events in data streams, in terms
of the rate of arrival of these events, and the distribution of these events. This model
is suitable for the modelling of both regular and irregular data streams, and is event-
focused, rather than time-focused. By employing this model, it is possible to detect
failure in the data stream, where this failure is a failure of transmission, or an absence
of significant events.

Our experimental results clearly show that this model adapts to change, as well as
reducing network overhead due to i) a minimisation of polling or liveness information,
and ii) a well-defined expectations of network behaviour. We have also shown a simple
application of our approach, which allows additional use of a channel without having
to alter time boundaries or expected arrival rates.

We have already developed three simulation models, one statistical, one software
based as a node level simulation and one grounded in the TinyOS Simulation (TOSSIM)
[18] environment for power consumption.We are further developing an implementation
of SEDIM in a WSN environment, and ad-hoc networking environment on hand-held
computing devices. The power consumption in a mobile and distributed environment
is further constrained by the requirement to support ad-hoc routing protocols and route
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discovery. In this role, the SEDIM approach will provide significant power savings, that
will allow more aggressive route discovery and maintenance, supporting stream-based
communication over ad-hoc networks, as well as packet-based communication.
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